Expand PMF_FN_* macros.
[netbsd-mini2440.git] / lib / libm / src / e_exp.c
bloba5286b699e14d39f1c63a6ca5dcbbf8904bec345
1 /* @(#)e_exp.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_exp.c,v 1.10 1999/07/02 15:37:39 simonb Exp $");
16 #endif
18 /* __ieee754_exp(x)
19 * Returns the exponential of x.
21 * Method
22 * 1. Argument reduction:
23 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
24 * Given x, find r and integer k such that
26 * x = k*ln2 + r, |r| <= 0.5*ln2.
28 * Here r will be represented as r = hi-lo for better
29 * accuracy.
31 * 2. Approximation of exp(r) by a special rational function on
32 * the interval [0,0.34658]:
33 * Write
34 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
35 * We use a special Reme algorithm on [0,0.34658] to generate
36 * a polynomial of degree 5 to approximate R. The maximum error
37 * of this polynomial approximation is bounded by 2**-59. In
38 * other words,
39 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
40 * (where z=r*r, and the values of P1 to P5 are listed below)
41 * and
42 * | 5 | -59
43 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
44 * | |
45 * The computation of exp(r) thus becomes
46 * 2*r
47 * exp(r) = 1 + -------
48 * R - r
49 * r*R1(r)
50 * = 1 + r + ----------- (for better accuracy)
51 * 2 - R1(r)
52 * where
53 * 2 4 10
54 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
56 * 3. Scale back to obtain exp(x):
57 * From step 1, we have
58 * exp(x) = 2^k * exp(r)
60 * Special cases:
61 * exp(INF) is INF, exp(NaN) is NaN;
62 * exp(-INF) is 0, and
63 * for finite argument, only exp(0)=1 is exact.
65 * Accuracy:
66 * according to an error analysis, the error is always less than
67 * 1 ulp (unit in the last place).
69 * Misc. info.
70 * For IEEE double
71 * if x > 7.09782712893383973096e+02 then exp(x) overflow
72 * if x < -7.45133219101941108420e+02 then exp(x) underflow
74 * Constants:
75 * The hexadecimal values are the intended ones for the following
76 * constants. The decimal values may be used, provided that the
77 * compiler will convert from decimal to binary accurately enough
78 * to produce the hexadecimal values shown.
81 #include "math.h"
82 #include "math_private.h"
84 static const double
85 one = 1.0,
86 halF[2] = {0.5,-0.5,},
87 huge = 1.0e+300,
88 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
89 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
90 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
91 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
92 -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
93 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
94 -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
95 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
96 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
97 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
98 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
99 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
100 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
103 double
104 __ieee754_exp(double x) /* default IEEE double exp */
106 double y,hi,lo,c,t;
107 int32_t k,xsb;
108 u_int32_t hx;
110 hi = lo = 0;
111 k = 0;
112 GET_HIGH_WORD(hx,x);
113 xsb = (hx>>31)&1; /* sign bit of x */
114 hx &= 0x7fffffff; /* high word of |x| */
116 /* filter out non-finite argument */
117 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
118 if(hx>=0x7ff00000) {
119 u_int32_t lx;
120 GET_LOW_WORD(lx,x);
121 if(((hx&0xfffff)|lx)!=0)
122 return x+x; /* NaN */
123 else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
125 if(x > o_threshold) return huge*huge; /* overflow */
126 if(x < u_threshold) return twom1000*twom1000; /* underflow */
129 /* argument reduction */
130 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
131 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
132 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
133 } else {
134 k = invln2*x+halF[xsb];
135 t = k;
136 hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
137 lo = t*ln2LO[0];
139 x = hi - lo;
141 else if(hx < 0x3e300000) { /* when |x|<2**-28 */
142 if(huge+x>one) return one+x;/* trigger inexact */
144 else k = 0;
146 /* x is now in primary range */
147 t = x*x;
148 c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
149 if(k==0) return one-((x*c)/(c-2.0)-x);
150 else y = one-((lo-(x*c)/(2.0-c))-hi);
151 if(k >= -1021) {
152 u_int32_t hy;
153 GET_HIGH_WORD(hy,y);
154 SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
155 return y;
156 } else {
157 u_int32_t hy;
158 GET_HIGH_WORD(hy,y);
159 SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
160 return y*twom1000;