Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / acorn32 / eb7500atx / eb7500atx_machdep.c
blob9a9bcf65b3f7b7ee1e086c8436d973e7019cb498
1 /* $NetBSD$ */
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
9 * This code is derived from software written for Brini by Mark Brinicombe
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * RiscBSD kernel project
40 * machdep.c
42 * Machine dependant functions for kernel setup
44 * This file still needs a lot of work
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
50 #include "opt_ddb.h"
51 #include "opt_modular.h"
52 #include "opt_pmap_debug.h"
53 #include "vidcvideo.h"
54 #include "pckbc.h"
56 #include <sys/param.h>
58 __KERNEL_RCSID(0, "$NetBSD$");
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/reboot.h>
63 #include <sys/proc.h>
64 #include <sys/msgbuf.h>
65 #include <sys/exec.h>
66 #include <sys/exec_aout.h>
67 #include <sys/ksyms.h>
69 #include <dev/cons.h>
71 #include <machine/db_machdep.h>
72 #include <ddb/db_sym.h>
73 #include <ddb/db_extern.h>
75 #include <uvm/uvm.h>
77 #include <machine/signal.h>
78 #include <machine/frame.h>
79 #include <machine/bootconfig.h>
80 #include <machine/cpu.h>
81 #include <machine/io.h>
82 #include <machine/intr.h>
83 #include <arm/cpuconf.h>
84 #include <arm/arm32/katelib.h>
85 #include <arm/arm32/machdep.h>
86 #include <arm/undefined.h>
87 #include <machine/rtc.h>
88 #include <machine/bus.h>
90 #include <arm/iomd/vidc.h>
91 #include <arm/iomd/iomdreg.h>
92 #include <arm/iomd/iomdvar.h>
94 #include <arm/iomd/vidcvideo.h>
96 #include <sys/device.h>
97 #include <dev/ic/pckbcvar.h>
99 #include <dev/i2c/i2cvar.h>
100 #include <dev/i2c/pcf8583var.h>
101 #include <arm/iomd/iomdiicvar.h>
103 /* static i2c_tag_t acorn32_i2c_tag;*/
105 #include "ksyms.h"
107 /* Kernel text starts at the base of the kernel address space. */
108 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
109 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
112 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
113 * Fixed mappings exist from 0xf6000000 - 0xffffffff
115 #define KERNEL_VM_SIZE 0x05000000
118 * Address to call from cpu_reset() to reset the machine.
119 * This is machine architecture dependant as it varies depending
120 * on where the ROM appears when you turn the MMU off.
122 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
124 #define VERBOSE_INIT_ARM
127 /* Define various stack sizes in pages */
128 #define IRQ_STACK_SIZE 1
129 #define ABT_STACK_SIZE 1
130 #define UND_STACK_SIZE 1
133 struct bootconfig bootconfig; /* Boot config storage */
134 videomemory_t videomemory; /* Video memory descriptor */
136 char *boot_args = NULL; /* holds the pre-processed boot arguments */
137 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
139 extern int *vidc_base;
140 extern u_int32_t iomd_base;
141 extern struct bus_space iomd_bs_tag;
143 paddr_t physical_start;
144 paddr_t physical_freestart;
145 paddr_t physical_freeend;
146 paddr_t physical_end;
147 paddr_t dma_range_begin;
148 paddr_t dma_range_end;
150 u_int free_pages;
151 paddr_t memoryblock_end;
153 #ifndef PMAP_STATIC_L1S
154 int max_processes = 64; /* Default number */
155 #endif /* !PMAP_STATIC_L1S */
157 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
159 /* Physical and virtual addresses for some global pages */
160 pv_addr_t systempage;
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
166 paddr_t msgbufphys;
168 extern u_int data_abort_handler_address;
169 extern u_int prefetch_abort_handler_address;
170 extern u_int undefined_handler_address;
172 #ifdef PMAP_DEBUG
173 extern int pmap_debug_level;
174 #endif /* PMAP_DEBUG */
176 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
177 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
178 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
179 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
180 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
181 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
183 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
186 #ifdef CPU_SA110
187 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
188 static vaddr_t sa110_cc_base;
189 #endif /* CPU_SA110 */
191 /* Prototypes */
192 void physcon_display_base(u_int);
193 extern void consinit(void);
195 void data_abort_handler(trapframe_t *);
196 void prefetch_abort_handler(trapframe_t *);
197 void undefinedinstruction_bounce(trapframe_t *frame);
199 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
200 static void process_kernel_args(void);
202 extern void dump_spl_masks(void);
204 void rpc_sa110_cc_setup(void);
206 void parse_rpc_bootargs(char *args);
208 extern void dumpsys(void);
211 # define console_flush() /* empty */
214 #define panic2(a) do { \
215 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
216 consinit(); \
217 panic a; \
218 } while (/* CONSTCOND */ 0)
221 * void cpu_reboot(int howto, char *bootstr)
223 * Reboots the system
225 * Deal with any syncing, unmounting, dumping and shutdown hooks,
226 * then reset the CPU.
229 /* NOTE: These variables will be removed, well some of them */
231 extern u_int current_mask;
233 void
234 cpu_reboot(int howto, char *bootstr)
237 #ifdef DIAGNOSTIC
238 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
240 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
241 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
242 irqmasks[IPL_VM]);
243 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
244 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
246 /* dump_spl_masks(); */
247 #endif /* DIAGNOSTIC */
250 * If we are still cold then hit the air brakes
251 * and crash to earth fast
253 if (cold) {
254 doshutdownhooks();
255 pmf_system_shutdown(boothowto);
256 printf("Halted while still in the ICE age.\n");
257 printf("The operating system has halted.\n");
258 printf("Please press any key to reboot.\n\n");
259 cngetc();
260 printf("rebooting...\n");
261 cpu_reset();
262 /*NOTREACHED*/
265 /* Disable console buffering */
266 cnpollc(1);
269 * If RB_NOSYNC was not specified sync the discs.
270 * Note: Unless cold is set to 1 here, syslogd will die during
271 * the unmount. It looks like syslogd is getting woken up
272 * only to find that it cannot page part of the binary in as
273 * the filesystem has been unmounted.
275 if (!(howto & RB_NOSYNC))
276 bootsync();
278 /* Say NO to interrupts */
279 splhigh();
281 /* Do a dump if requested. */
282 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
283 dumpsys();
286 * Auto reboot overload protection
288 * This code stops the kernel entering an endless loop of reboot
289 * - panic cycles. This will have the effect of stopping further
290 * reboots after it has rebooted 8 times after panics. A clean
291 * halt or reboot will reset the counter.
294 /* Run any shutdown hooks */
295 doshutdownhooks();
297 pmf_system_shutdown(boothowto);
299 /* Make sure IRQ's are disabled */
300 IRQdisable;
302 if (howto & RB_HALT) {
303 printf("The operating system has halted.\n");
304 printf("Please press any key to reboot.\n\n");
305 cngetc();
308 printf("rebooting...\n");
309 cpu_reset();
310 /*NOTREACHED*/
315 * u_int initarm(BootConfig *bootconf)
317 * Initial entry point on startup. This gets called before main() is
318 * entered.
319 * It should be responsible for setting up everything that must be
320 * in place when main is called.
321 * This includes
322 * Taking a copy of the boot configuration structure.
323 * Initialising the physical console so characters can be printed.
324 * Setting up page tables for the kernel
325 * Relocating the kernel to the bottom of physical memory
329 * this part is completely rewritten for the new bootloader ... It features
330 * a flat memory map with a mapping comparable to the EBSA arm32 machine
331 * to boost the portability and likeness of the code
335 * Mapping table for core kernel memory. This memory is mapped at init
336 * time with section mappings.
338 * XXX One big assumption in the current architecture seems that the kernel is
339 * XXX supposed to be mapped into bootconfig.dram[0].
342 #define ONE_MB 0x100000
344 struct l1_sec_map {
345 vaddr_t va;
346 paddr_t pa;
347 vsize_t size;
348 vm_prot_t prot;
349 int cache;
350 } l1_sec_table[] = {
351 /* Map 1Mb section for VIDC20 */
352 { VIDC_BASE, VIDC_HW_BASE,
353 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
354 PTE_NOCACHE },
356 /* Map 1Mb section from IOMD */
357 { IOMD_BASE, IOMD_HW_BASE,
358 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
359 PTE_NOCACHE },
361 /* Map 1Mb of COMBO (and module space) */
362 { IO_BASE, IO_HW_BASE,
363 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
364 PTE_NOCACHE },
365 { 0, 0, 0, 0, 0 }
369 static void
370 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
372 /* check for bootconfig v2+ structure */
373 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
374 /* v2+ cleaned up structure found */
375 *bootconf = *raw_bootconf;
376 return;
377 } else {
378 panic2(("Internal error: no valid bootconfig block found"));
383 u_int
384 initarm(void *cookie)
386 struct bootconfig *raw_bootconf = cookie;
387 int loop;
388 int loop1;
389 u_int logical;
390 u_int kerneldatasize;
391 u_int l1pagetable;
392 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
395 * Heads up ... Setup the CPU / MMU / TLB functions
397 set_cpufuncs();
399 /* canonicalise the boot configuration structure to alow versioning */
400 canonicalise_bootconfig(&bootconfig, raw_bootconf);
401 booted_kernel = bootconfig.kernelname;
403 /* if the wscons interface is used, switch off VERBOSE booting :( */
404 #if NVIDCVIDEO>0
405 # undef VERBOSE_INIT_ARM
406 # undef PMAP_DEBUG
407 #endif
410 * Initialise the video memory descriptor
412 * Note: all references to the video memory virtual/physical address
413 * should go via this structure.
416 /* Hardwire it on the place the bootloader tells us */
417 videomemory.vidm_vbase = bootconfig.display_start;
418 videomemory.vidm_pbase = bootconfig.display_phys;
419 videomemory.vidm_size = bootconfig.display_size;
420 if (bootconfig.vram[0].pages)
421 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
422 else
423 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
424 vidc_base = (int *) VIDC_HW_BASE;
425 iomd_base = IOMD_HW_BASE;
428 * Initialise the physical console
429 * This is done in main() but for the moment we do it here so that
430 * we can use printf in initarm() before main() has been called.
431 * only for `vidcconsole!' ... not wscons
433 #if NVIDCVIDEO == 0
434 consinit();
435 #endif
438 * Initialise the diagnostic serial console
439 * This allows a means of generating output during initarm().
440 * Once all the memory map changes are complete we can call consinit()
441 * and not have to worry about things moving.
443 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
444 /* XXX snif .... i am still not able to this */
447 * We have the following memory map (derived from EBSA)
449 * virtual address == physical address apart from the areas:
450 * 0x00000000 -> 0x000fffff which is mapped to
451 * top 1MB of physical memory
452 * 0xf0000000 -> 0xf0ffffff wich is mapped to
453 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
455 * This means that the kernel is mapped suitably for continuing
456 * execution, all I/O is mapped 1:1 virtual to physical and
457 * physical memory is accessible.
459 * The initarm() has the responsibility for creating the kernel
460 * page tables.
461 * It must also set up various memory pointers that are used
462 * by pmap etc.
465 /* START OF REAL NEW STUFF */
467 /* Check to make sure the page size is correct */
468 if (PAGE_SIZE != bootconfig.pagesize)
469 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
470 bootconfig.pagesize, PAGE_SIZE));
472 /* process arguments */
473 process_kernel_args();
477 * Now set up the page tables for the kernel ... this part is copied
478 * in a (modified?) way from the EBSA machine port....
481 #ifdef VERBOSE_INIT_ARM
482 printf("Allocating page tables\n");
483 #endif
485 * Set up the variables that define the availablilty of physical
486 * memory
488 physical_start = 0xffffffff;
489 physical_end = 0;
490 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
491 if (bootconfig.dram[loop].address < physical_start)
492 physical_start = bootconfig.dram[loop].address;
493 memoryblock_end = bootconfig.dram[loop].address +
494 bootconfig.dram[loop].pages * PAGE_SIZE;
495 if (memoryblock_end > physical_end)
496 physical_end = memoryblock_end;
497 physmem += bootconfig.dram[loop].pages;
499 /* constants for now, but might be changed/configured */
500 dma_range_begin = (paddr_t) physical_start;
501 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
502 /* XXX HACK HACK XXX */
503 /* dma_range_end = 0x18000000; */
505 if (physical_start != bootconfig.dram[0].address) {
506 int oldblocks = 0;
509 * must be a kinetic, as it's the only thing to shuffle memory
510 * around
512 /* hack hack - throw away the slow dram */
513 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
514 if (bootconfig.dram[loop].address <
515 bootconfig.dram[0].address) {
516 /* non kinetic ram */
517 bootconfig.dram[loop].address = 0;
518 physmem -= bootconfig.dram[loop].pages;
519 bootconfig.drampages -=
520 bootconfig.dram[loop].pages;
521 bootconfig.dram[loop].pages = 0;
522 oldblocks++;
525 physical_start = bootconfig.dram[0].address;
526 bootconfig.dramblocks -= oldblocks;
529 physical_freestart = physical_start;
530 free_pages = bootconfig.drampages;
531 physical_freeend = physical_end;
535 * AHUM !! set this variable ... it was set up in the old 1st
536 * stage bootloader
538 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
540 /* Update the address of the first free page of physical memory */
541 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
542 physical_freestart +=
543 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
544 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
546 /* Define a macro to simplify memory allocation */
547 #define valloc_pages(var, np) \
548 alloc_pages((var).pv_pa, (np)); \
549 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
551 #define alloc_pages(var, np) \
552 (var) = physical_freestart; \
553 physical_freestart += ((np) * PAGE_SIZE); \
554 free_pages -= (np); \
555 memset((char *)(var), 0, ((np) * PAGE_SIZE));
557 loop1 = 0;
558 kernel_l1pt.pv_pa = 0;
559 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
560 /* Are we 16KB aligned for an L1 ? */
561 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
562 && kernel_l1pt.pv_pa == 0) {
563 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
564 } else {
565 valloc_pages(kernel_pt_table[loop1],
566 L2_TABLE_SIZE / PAGE_SIZE);
567 ++loop1;
572 #ifdef DIAGNOSTIC
573 /* This should never be able to happen but better confirm that. */
574 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
575 panic2(("initarm: Failed to align the kernel page "
576 "directory\n"));
577 #endif
580 * Allocate a page for the system page mapped to V0x00000000
581 * This page will just contain the system vectors and can be
582 * shared by all processes.
584 alloc_pages(systempage.pv_pa, 1);
586 /* Allocate stacks for all modes */
587 valloc_pages(irqstack, IRQ_STACK_SIZE);
588 valloc_pages(abtstack, ABT_STACK_SIZE);
589 valloc_pages(undstack, UND_STACK_SIZE);
590 valloc_pages(kernelstack, UPAGES);
592 #ifdef VERBOSE_INIT_ARM
593 printf("Setting up stacks :\n");
594 printf("IRQ stack: p0x%08lx v0x%08lx\n",
595 irqstack.pv_pa, irqstack.pv_va);
596 printf("ABT stack: p0x%08lx v0x%08lx\n",
597 abtstack.pv_pa, abtstack.pv_va);
598 printf("UND stack: p0x%08lx v0x%08lx\n",
599 undstack.pv_pa, undstack.pv_va);
600 printf("SVC stack: p0x%08lx v0x%08lx\n",
601 kernelstack.pv_pa, kernelstack.pv_va);
602 printf("\n");
603 #endif
605 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
607 #ifdef CPU_SA110
609 * XXX totally stuffed hack to work round problems introduced
610 * in recent versions of the pmap code. Due to the calls used there
611 * we cannot allocate virtual memory during bootstrap.
613 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
614 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
615 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
616 #endif /* CPU_SA110 */
619 * Ok we have allocated physical pages for the primary kernel
620 * page tables
623 #ifdef VERBOSE_INIT_ARM
624 printf("Creating L1 page table\n");
625 #endif
628 * Now we start construction of the L1 page table
629 * We start by mapping the L2 page tables into the L1.
630 * This means that we can replace L1 mappings later on if necessary
632 l1pagetable = kernel_l1pt.pv_pa;
634 /* Map the L2 pages tables in the L1 page table */
635 pmap_link_l2pt(l1pagetable, 0x00000000,
636 &kernel_pt_table[KERNEL_PT_SYS]);
637 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
638 &kernel_pt_table[KERNEL_PT_KERNEL]);
639 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
640 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
641 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
642 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
643 &kernel_pt_table[KERNEL_PT_VMEM]);
645 /* update the top of the kernel VM */
646 pmap_curmaxkvaddr =
647 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
649 #ifdef VERBOSE_INIT_ARM
650 printf("Mapping kernel\n");
651 #endif
653 /* Now we fill in the L2 pagetable for the kernel code/data */
654 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
656 * The defines are a workaround for a recent problem that occurred
657 * with ARM 610 processors and some ARM 710 processors
658 * Other ARM 710 and StrongARM processors don't have a problem.
660 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
661 #if defined(CPU_ARM6) || defined(CPU_ARM7)
662 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
663 physical_start, kernexec->a_text,
664 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
665 #else /* CPU_ARM6 || CPU_ARM7 */
666 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
667 physical_start, kernexec->a_text,
668 VM_PROT_READ, PTE_CACHE);
669 #endif /* CPU_ARM6 || CPU_ARM7 */
670 logical += pmap_map_chunk(l1pagetable,
671 KERNEL_TEXT_BASE + logical, physical_start + logical,
672 kerneldatasize - kernexec->a_text,
673 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674 } else { /* !ZMAGIC */
676 * Most likely an ELF kernel ...
677 * XXX no distinction yet between read only and
678 * read/write area's ...
680 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
681 physical_start, kerneldatasize,
682 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
686 #ifdef VERBOSE_INIT_ARM
687 printf("Constructing L2 page tables\n");
688 #endif
690 /* Map the stack pages */
691 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
692 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
693 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
694 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
696 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
698 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
700 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
701 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
703 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
704 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
705 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
706 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
709 /* Now we fill in the L2 pagetable for the VRAM */
711 * Current architectures mean that the VRAM is always in 1
712 * continuous bank. This means that we can just map the 2 meg
713 * that the VRAM would occupy. In theory we don't need a page
714 * table for VRAM, we could section map it but we would need
715 * the page tables if DRAM was in use.
716 * XXX please map two adjacent virtual areas to ONE physical
717 * area
719 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
720 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
721 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
722 videomemory.vidm_pbase, videomemory.vidm_size,
723 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 /* Map the vector page. */
726 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
727 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
729 /* Map the core memory needed before autoconfig */
730 loop = 0;
731 while (l1_sec_table[loop].size) {
732 vm_size_t sz;
734 #ifdef VERBOSE_INIT_ARM
735 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
736 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
737 l1_sec_table[loop].va);
738 #endif
739 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
740 pmap_map_section(l1pagetable,
741 l1_sec_table[loop].va + sz,
742 l1_sec_table[loop].pa + sz,
743 l1_sec_table[loop].prot,
744 l1_sec_table[loop].cache);
745 ++loop;
749 * Now we have the real page tables in place so we can switch
750 * to them. Once this is done we will be running with the
751 * REAL kernel page tables.
754 #ifdef VERBOSE_INIT_ARM
755 printf("switching domains\n");
756 #endif
757 /* be a client to all domains */
758 cpu_domains(0x55555555);
760 /* Switch tables */
761 #ifdef VERBOSE_INIT_ARM
762 printf("switching to new L1 page table\n");
763 #endif
764 cpu_setttb(kernel_l1pt.pv_pa);
767 * We must now clean the cache again....
768 * Cleaning may be done by reading new data to displace any
769 * dirty data in the cache. This will have happened in cpu_setttb()
770 * but since we are boot strapping the addresses used for the read
771 * may have just been remapped and thus the cache could be out
772 * of sync. A re-clean after the switch will cure this.
773 * After booting there are no gross reloations of the kernel thus
774 * this problem will not occur after initarm().
776 cpu_idcache_wbinv_all();
777 cpu_tlb_flushID();
778 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
781 * Moved from cpu_startup() as data_abort_handler() references
782 * this during uvm init
784 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
787 * if there is support for a serial console ...we should now
788 * reattach it
790 /* fcomcndetach();*/
793 * Reflect videomemory relocation in the videomemory structure
794 * and reinit console
796 if (bootconfig.vram[0].pages == 0) {
797 videomemory.vidm_vbase = VMEM_VBASE;
798 } else {
799 videomemory.vidm_vbase = VMEM_VBASE;
800 bootconfig.display_start = VMEM_VBASE;
802 vidc_base = (int *) VIDC_BASE;
803 iomd_base = IOMD_BASE;
805 #ifdef VERBOSE_INIT_ARM
806 printf("running on the new L1 page table!\n");
807 printf("done.\n");
808 #endif
810 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
812 #ifdef VERBOSE_INIT_ARM
813 printf("\n");
814 #endif
817 * Pages were allocated during the secondary bootstrap for the
818 * stacks for different CPU modes.
819 * We must now set the r13 registers in the different CPU modes to
820 * point to these stacks.
821 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
822 * of the stack memory.
824 #ifdef VERBOSE_INIT_ARM
825 printf("init subsystems: stacks ");
826 console_flush();
827 #endif
829 set_stackptr(PSR_IRQ32_MODE,
830 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
831 set_stackptr(PSR_ABT32_MODE,
832 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
833 set_stackptr(PSR_UND32_MODE,
834 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
835 #ifdef PMAP_DEBUG
836 if (pmap_debug_level >= 0)
837 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
838 kernelstack.pv_pa);
839 #endif /* PMAP_DEBUG */
842 * Well we should set a data abort handler.
843 * Once things get going this will change as we will need a proper
844 * handler. Until then we will use a handler that just panics but
845 * tells us why.
846 * Initialisation of the vectors will just panic on a data abort.
847 * This just fills in a slightly better one.
849 #ifdef VERBOSE_INIT_ARM
850 printf("vectors ");
851 #endif
852 data_abort_handler_address = (u_int)data_abort_handler;
853 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
854 undefined_handler_address = (u_int)undefinedinstruction_bounce;
855 console_flush();
859 * At last !
860 * We now have the kernel in physical memory from the bottom upwards.
861 * Kernel page tables are physically above this.
862 * The kernel is mapped to 0xf0000000
863 * The kernel data PTs will handle the mapping of
864 * 0xf1000000-0xf5ffffff (80 Mb)
865 * 2Meg of VRAM is mapped to 0xf7000000
866 * The page tables are mapped to 0xefc00000
867 * The IOMD is mapped to 0xf6000000
868 * The VIDC is mapped to 0xf6100000
869 * The IOMD/VIDC could be pushed up higher but i havent got
870 * sufficient documentation to do so; the addresses are not
871 * parametized yet and hard to read... better fix this before;
872 * its pretty unforgiving.
875 /* Initialise the undefined instruction handlers */
876 #ifdef VERBOSE_INIT_ARM
877 printf("undefined ");
878 #endif
879 undefined_init();
880 console_flush();
882 /* Load memory into UVM. */
883 #ifdef VERBOSE_INIT_ARM
884 printf("page ");
885 #endif
886 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
887 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
888 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
889 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
891 if (start < physical_freestart)
892 start = physical_freestart;
893 if (end > physical_freeend)
894 end = physical_freeend;
896 /* XXX Consider DMA range intersection checking. */
898 uvm_page_physload(atop(start), atop(end),
899 atop(start), atop(end), VM_FREELIST_DEFAULT);
902 /* Boot strap pmap telling it where the kernel page table is */
903 #ifdef VERBOSE_INIT_ARM
904 printf("pmap ");
905 #endif
906 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
907 console_flush();
909 /* Setup the IRQ system */
910 #ifdef VERBOSE_INIT_ARM
911 printf("irq ");
912 #endif
913 console_flush();
914 irq_init();
915 #ifdef VERBOSE_INIT_ARM
916 printf("done.\n\n");
917 #endif
919 #if NVIDCVIDEO>0
920 consinit(); /* necessary ? */
921 #endif
923 /* Talk to the user */
924 printf("NetBSD/evbarm booting ... \n");
926 /* Tell the user if his boot loader is too old */
927 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
928 (bootconfig.version != BOOTCONFIG_VERSION)) {
929 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
930 delay(5000000);
933 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
934 printf("Kernel arg string (@%p) %s\n",
935 bootconfig.args, bootconfig.args);
936 printf("\nBoot configuration structure reports the following "
937 "memory\n");
939 printf(" DRAM block 0a at %08x size %08x "
940 "DRAM block 0b at %08x size %08x\n\r",
941 bootconfig.dram[0].address,
942 bootconfig.dram[0].pages * bootconfig.pagesize,
943 bootconfig.dram[1].address,
944 bootconfig.dram[1].pages * bootconfig.pagesize);
945 printf(" DRAM block 1a at %08x size %08x "
946 "DRAM block 1b at %08x size %08x\n\r",
947 bootconfig.dram[2].address,
948 bootconfig.dram[2].pages * bootconfig.pagesize,
949 bootconfig.dram[3].address,
950 bootconfig.dram[3].pages * bootconfig.pagesize);
951 printf(" VRAM block 0 at %08x size %08x\n\r",
952 bootconfig.vram[0].address,
953 bootconfig.vram[0].pages * bootconfig.pagesize);
955 #if NKSYMS || defined(DDB) || defined(MODULAR)
956 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
957 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
958 #endif
961 #ifdef DDB
962 db_machine_init();
963 if (boothowto & RB_KDB)
964 Debugger();
965 #endif /* DDB */
967 /* We return the new stack pointer address */
968 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
972 static void
973 process_kernel_args(void)
975 char *args;
977 /* Ok now we will check the arguments for interesting parameters. */
978 args = bootconfig.args;
979 boothowto = 0;
981 /* Only arguments itself are passed from the new bootloader */
982 while (*args == ' ')
983 ++args;
985 boot_args = args;
986 parse_mi_bootargs(boot_args);
987 parse_rpc_bootargs(boot_args);
991 void
992 parse_rpc_bootargs(char *args)
994 int integer;
996 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
997 &integer)) {
998 videodram_size = integer;
999 /* Round to 4K page */
1000 videodram_size *= 1024;
1001 videodram_size = round_page(videodram_size);
1002 if (videodram_size > 1024*1024)
1003 videodram_size = 1024*1024;
1006 /* End of machdep.c */