Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / acorn32 / stand / boot32 / boot32.c
blobdc761862ba5204def8b13f9af055cea6e97fa5cf
1 /* $NetBSD: boot32.c,v 1.36 2009/03/18 16:00:08 cegger Exp $ */
3 /*-
4 * Copyright (c) 2002 Reinoud Zandijk
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * Thanks a bunch for Ben's framework for the bootloader and its suporting
30 * libs. This file tries to actually boot NetBSD/acorn32 !
32 * XXX eventually to be partly merged back with boot26 ? XXX
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
45 extern char end[];
47 /* debugging flags */
48 int debug = 1;
51 /* constants */
52 #define PODRAM_START (512*1024*1024) /* XXX Kinetic cards XXX */
54 #define MAX_RELOCPAGES 4096
56 #define DEFAULT_ROOT "/dev/wd0a"
59 #define IO_BLOCKS 16 /* move these to the bootloader structure? */
60 #define ROM_BLOCKS 16
61 #define PODRAM_BLOCKS 16
64 /* booter variables */
65 char scrap[80], twirl_cnt; /* misc */
66 char booted_file[80];
68 struct bootconfig *bconfig; /* bootconfig passing */
69 u_long bconfig_new_phys; /* physical address its bound */
71 /* computer knowledge */
72 u_int monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int superio_flags, superio_flags_basic, superio_flags_extra;
75 /* sizes */
76 int nbpp, memory_table_size, memory_image_size;
77 /* relocate info */
78 u_long reloc_tablesize, *reloc_instruction_table;
79 u_long *reloc_pos; /* current empty entry */
80 int reloc_entries; /* number of relocations */
81 int first_mapped_DRAM_page_index; /* offset in RISC OS blob */
82 int first_mapped_PODRAM_page_index;/* offset in RISC OS blob */
84 struct page_info *mem_pages_info; /* {nr, virt, phys}* */
85 struct page_info *free_relocation_page; /* points to the page_info chain*/
86 struct page_info *relocate_code_page; /* points to the copied code */
87 struct page_info *bconfig_page; /* page for passing on settings */
89 unsigned char *memory_page_types; /* packed array of 4 bit typeId */
91 u_long *initial_page_tables; /* pagetables to be booted from */
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is */
97 u_long videomem_start, videomem_pages, display_size;
99 u_long pv_offset, top_physdram; /* kernel_base - phys. diff */
100 u_long top_1Mb_dram; /* the lower mapped top 1Mb */
101 u_long new_L1_pages_phys; /* physical address of L1 pages */
103 /* for bootconfig passing */
104 u_long total_podram_pages, total_dram_pages, total_vram_pages;
105 int dram_blocks, podram_blocks; /* number of mem. objects/type */
106 int vram_blocks, rom_blocks, io_blocks;
108 u_long DRAM_addr[DRAM_BLOCKS], DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM */
110 u_long PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long VRAM_addr[VRAM_BLOCKS], VRAM_pages[VRAM_BLOCKS];
112 u_long ROM_addr[ROM_BLOCKS], ROM_pages[ROM_BLOCKS];
113 u_long IO_addr[IO_BLOCKS], IO_pages[IO_BLOCKS];
116 /* RISC OS memory pages we claimed */
117 u_long firstpage, lastpage, totalpages; /* RISC OS pagecounters */
118 /* RISC OS memory */
119 char *memory_image, *bottom_memory, *top_memory;
121 /* kernel info */
122 u_long marks[MARK_MAX]; /* loader mark pointers */
123 u_long kernel_physical_start; /* where does it get relocated */
124 u_long kernel_physical_maxsize; /* Max allowed size of kernel */
125 u_long kernel_free_vm_start; /* where does the free VM start */
126 /* some free space to mess with */
127 u_long scratch_virtualbase, scratch_physicalbase;
130 /* bootprogram identifiers */
131 extern const char bootprog_rev[];
132 extern const char bootprog_name[];
133 extern const char bootprog_date[];
134 extern const char bootprog_maker[];
137 /* predefines / prototypes */
138 void init_datastructures(void);
139 void get_memory_configuration(void);
140 void get_memory_map(void);
141 void create_initial_page_tables(void);
142 void add_pagetables_at_top(void);
143 int page_info_cmp(const void *a, const void *);
144 void add_initvectors(void);
145 void create_configuration(int argc, char **argv, int start_args);
146 void prepare_and_check_relocation_system(void);
147 void compact_relocations(void);
148 void twirl(void);
149 int vdu_var(int);
150 void process_args(int argc, char **argv, int *howto, char *file,
151 int *start_args);
153 char *sprint0(int width, char prefix, char base, int value);
154 struct page_info *get_relocated_page(u_long destination, int size);
156 extern void start_kernel(
157 int relocate_code_page,
158 int relocation_pv_offset,
159 int configuration_structure_in_flat_physical_space,
160 int virtual_address_relocation_table,
161 int physical_address_of_new_L1_pages,
162 int kernel_entry_point
163 ); /* asm */
166 /* the loader itself */
167 void
168 init_datastructures(void)
171 /* Get number of pages and the memorytablesize */
172 osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
174 /* Allocate 99% - (small fixed amount) of the heap for memory_image */
175 memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
176 memory_image_size /= 100;
177 memory_image_size *= 99;
178 if (memory_image_size <= 256*1024)
179 panic("Insufficient memory");
181 memory_image = alloc(memory_image_size);
182 if (!memory_image)
183 panic("Can't alloc get my memory image ?");
185 bottom_memory = memory_image;
186 top_memory = memory_image + memory_image_size;
188 firstpage = ((int)bottom_memory / nbpp) + 1; /* safety */
189 lastpage = ((int)top_memory / nbpp) - 1;
190 totalpages = lastpage - firstpage;
192 printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
193 totalpages, nbpp>>10 );
196 * Setup the relocation table. Its a simple array of 3 * 32 bit
197 * entries. The first word in the array is the number of relocations
198 * to be done
200 reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
201 reloc_instruction_table = alloc(reloc_tablesize);
202 if (!reloc_instruction_table)
203 panic("Can't alloc my relocate instructions pages");
205 reloc_entries = 0;
206 reloc_pos = reloc_instruction_table;
207 *reloc_pos++ = 0;
210 * Set up the memory translation info structure. We need to allocate
211 * one more for the end of list marker. See get_memory_map.
213 mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
214 if (!mem_pages_info)
215 panic("Can't alloc my phys->virt page info");
218 * Allocate memory for the memory arrangement table. We use this
219 * structure to retrieve memory page properties to clasify them.
221 memory_page_types = alloc(memory_table_size);
222 if (!memory_page_types)
223 panic("Can't alloc my memory page type block");
226 * Initial page tables is 16 kb per definition since only sections are
227 * used.
229 initial_page_tables = alloc(16*1024);
230 if (!initial_page_tables)
231 panic("Can't alloc my initial page tables");
234 void
235 compact_relocations(void)
237 u_long *reloc_entry, current_length, length;
238 u_long src, destination, current_src, current_destination;
239 u_long *current_entry;
241 current_entry = reloc_entry = reloc_instruction_table + 1;
243 /* prime the loop */
244 current_src = reloc_entry[0];
245 current_destination = reloc_entry[1];
246 current_length = reloc_entry[2];
248 reloc_entry += 3;
249 while (reloc_entry < reloc_pos) {
250 src = reloc_entry[0];
251 destination = reloc_entry[1];
252 length = reloc_entry[2];
254 if (src == (current_src + current_length) &&
255 destination == (current_destination + current_length)) {
256 /* can merge */
257 current_length += length;
258 } else {
259 /* nothing else to do, so save the length */
260 current_entry[2] = current_length;
261 /* fill in next entry */
262 current_entry += 3;
263 current_src = current_entry[0] = src;
264 current_destination = current_entry[1] = destination;
265 current_length = length;
267 reloc_entry += 3;
269 /* save last length */
270 current_entry[2] = current_length;
271 current_entry += 3;
273 /* workout new count of entries */
274 length = current_entry - (reloc_instruction_table + 1);
275 printf("Compacted relocations from %d entries to %ld\n",
276 reloc_entries, length/3);
278 /* update table to reflect new size */
279 reloc_entries = length/3;
280 reloc_instruction_table[0] = length/3;
281 reloc_pos = current_entry;
284 void
285 get_memory_configuration(void)
287 int loop, current_page_type, page_count, phys_page;
288 int page, count, bank, top_bank, video_bank;
289 int mapped_screen_memory;
290 int one_mb_pages;
291 u_long top;
293 printf("Getting memory configuration ");
295 osmemory_read_arrangement_table(memory_page_types);
297 /* init counters */
298 bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
299 podram_blocks = 0;
301 current_page_type = -1;
302 phys_page = 0; /* physical address in pages */
303 page_count = 0; /* page counter in this block */
304 loop = 0; /* loop variable over entries */
306 /* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
307 while (loop < 2*memory_table_size) {
308 page = memory_page_types[loop / 2]; /* read twice */
309 if (loop & 1) page >>= 4; /* take other nibble */
312 * bits 0-2 give type, bit3 means the bit page is
313 * allocatable
315 page &= 0x7; /* only take bottom 3 bits */
316 if (page != current_page_type) {
317 /* passed a boundary ... note this block */
319 * splitting in different vars is for
320 * compatability reasons
322 switch (current_page_type) {
323 case -1:
324 case 0:
325 break;
326 case osmemory_TYPE_DRAM:
327 if ((phys_page * nbpp)< PODRAM_START) {
328 DRAM_addr[dram_blocks] =
329 phys_page * nbpp;
330 DRAM_pages[dram_blocks] =
331 page_count;
332 dram_blocks++;
333 } else {
334 PODRAM_addr[podram_blocks] =
335 phys_page * nbpp;
336 PODRAM_pages[podram_blocks] =
337 page_count;
338 podram_blocks++;
340 break;
341 case osmemory_TYPE_VRAM:
342 VRAM_addr[vram_blocks] = phys_page * nbpp;
343 VRAM_pages[vram_blocks] = page_count;
344 vram_blocks++;
345 break;
346 case osmemory_TYPE_ROM:
347 ROM_addr[rom_blocks] = phys_page * nbpp;
348 ROM_pages[rom_blocks] = page_count;
349 rom_blocks++;
350 break;
351 case osmemory_TYPE_IO:
352 IO_addr[io_blocks] = phys_page * nbpp;
353 IO_pages[io_blocks] = page_count;
354 io_blocks++;
355 break;
356 default:
357 printf("WARNING : found unknown "
358 "memory object %d ", current_page_type);
359 printf(" at 0x%s",
360 sprint0(8,'0','x', phys_page * nbpp));
361 printf(" for %s k\n",
362 sprint0(5,' ','d', (page_count*nbpp)>>10));
363 break;
365 current_page_type = page;
366 phys_page = loop;
367 page_count = 0;
370 * smallest unit we recognise is one page ... silly
371 * could be upto 64 pages i.e. 256 kb
373 page_count += 1;
374 loop += 1;
375 if ((loop & 31) == 0) twirl();
378 printf(" \n\n");
380 if (VRAM_pages[0] == 0) {
381 /* map DRAM as video memory */
382 display_size =
383 vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
384 #if 0
385 mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
386 videomem_pages = (mapped_screen_memory / nbpp);
387 videomem_start = DRAM_addr[0];
388 DRAM_addr[0] += videomem_pages * nbpp;
389 DRAM_pages[0] -= videomem_pages;
390 #else
391 mapped_screen_memory = display_size;
392 videomem_pages = mapped_screen_memory / nbpp;
393 one_mb_pages = (1024*1024)/nbpp;
396 * OK... we need one Mb at the top for compliance with current
397 * kernel structure. This ought to be abolished one day IMHO.
398 * Also we have to take care that the kernel needs to be in
399 * DRAM0a and even has to start there.
400 * XXX one Mb simms are the smallest supported XXX
402 top_bank = dram_blocks-1;
403 video_bank = top_bank;
404 if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
406 if (DRAM_pages[video_bank] < videomem_pages)
407 panic("Weird memory configuration found; please "
408 "contact acorn32 portmaster.");
410 /* split off the top 1Mb */
411 DRAM_addr [top_bank+1] = DRAM_addr[top_bank] +
412 (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
413 DRAM_pages[top_bank+1] = one_mb_pages;
414 DRAM_pages[top_bank ] -= one_mb_pages;
415 dram_blocks++;
417 /* Map video memory at the end of the choosen DIMM */
418 videomem_start = DRAM_addr[video_bank] +
419 (DRAM_pages[video_bank] - videomem_pages)*nbpp;
420 DRAM_pages[video_bank] -= videomem_pages;
422 /* sanity */
423 if (DRAM_pages[top_bank] == 0) {
424 DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
425 DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
426 dram_blocks--;
428 #endif
429 } else {
430 /* use VRAM */
431 mapped_screen_memory = 0;
432 videomem_start = VRAM_addr[0];
433 videomem_pages = VRAM_pages[0];
434 display_size = videomem_pages * nbpp;
437 if (mapped_screen_memory) {
438 printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
439 printf("at 0x%s for video memory\n",
440 sprint0(8,'0','x', videomem_start));
443 /* find top of (PO)DRAM pages */
444 top_physdram = 0;
445 for (loop = 0; loop < podram_blocks; loop++) {
446 top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
447 if (top > top_physdram) top_physdram = top;
449 for (loop = 0; loop < dram_blocks; loop++) {
450 top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
451 if (top > top_physdram) top_physdram = top;
453 if (top_physdram == 0)
454 panic("reality check: No DRAM in this machine?");
455 if (((top_physdram >> 20) << 20) != top_physdram)
456 panic("Top is not not aligned on a Mb; "
457 "remove very small DIMMS?");
459 /* pretty print the individual page types */
460 for (count = 0; count < rom_blocks; count++) {
461 printf("Found ROM (%d)", count);
462 printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
463 printf(" for %s k\n",
464 sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
467 for (count = 0; count < io_blocks; count++) {
468 printf("Found I/O (%d)", count);
469 printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
470 printf(" for %s k\n",
471 sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
474 /* for DRAM/VRAM also count the number of pages */
475 total_dram_pages = 0;
476 for (count = 0; count < dram_blocks; count++) {
477 total_dram_pages += DRAM_pages[count];
478 printf("Found DRAM (%d)", count);
479 printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
480 printf(" for %s k\n",
481 sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
484 total_vram_pages = 0;
485 for (count = 0; count < vram_blocks; count++) {
486 total_vram_pages += VRAM_pages[count];
487 printf("Found VRAM (%d)", count);
488 printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
489 printf(" for %s k\n",
490 sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
493 total_podram_pages = 0;
494 for (count = 0; count < podram_blocks; count++) {
495 total_podram_pages += PODRAM_pages[count];
496 printf("Found Processor only (S)DRAM (%d)", count);
497 printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
498 printf(" for %s k\n",
499 sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
504 void
505 get_memory_map(void)
507 struct page_info *page_info;
508 int page, inout;
509 int phys_addr;
511 printf("\nGetting actual memorymapping");
512 for (page = 0, page_info = mem_pages_info;
513 page < totalpages;
514 page++, page_info++) {
515 page_info->pagenumber = 0; /* not used */
516 page_info->logical = (firstpage + page) * nbpp;
517 page_info->physical = 0; /* result comes here */
518 /* to avoid triggering a `bug' in RISC OS 4, page it in */
519 *((int *)page_info->logical) = 0;
521 /* close list */
522 page_info->pagenumber = -1;
524 inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
525 osmemory_RETURN_PHYS_ADDR;
526 osmemory_page_op(inout, mem_pages_info, totalpages);
528 printf(" ; sorting ");
529 qsort(mem_pages_info, totalpages, sizeof(struct page_info),
530 &page_info_cmp);
531 printf(".\n");
534 * get the first DRAM index and show the physical memory
535 * fragments we got
537 printf("\nFound physical memory blocks :\n");
538 first_mapped_DRAM_page_index = -1;
539 first_mapped_PODRAM_page_index = -1;
540 for (page=0; page < totalpages; page++) {
541 phys_addr = mem_pages_info[page].physical;
542 printf("[0x%x", phys_addr);
543 while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
544 if (first_mapped_DRAM_page_index < 0 &&
545 phys_addr >= DRAM_addr[0])
546 first_mapped_DRAM_page_index = page;
547 if (first_mapped_PODRAM_page_index < 0 &&
548 phys_addr >= PODRAM_addr[0])
549 first_mapped_PODRAM_page_index = page;
550 page++;
551 phys_addr = mem_pages_info[page].physical;
553 printf("-0x%x] ", phys_addr + nbpp -1);
555 printf("\n\n");
557 if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
558 panic("Found no (S)DRAM mapped in the bootloader");
559 if (first_mapped_DRAM_page_index < 0)
560 panic("No DRAM mapped in the bootloader");
564 void
565 create_initial_page_tables(void)
567 u_long page, section, addr, kpage;
569 /* mark a section by the following bits and domain 0, AP=01, CB=0 */
570 /* A P C B section
571 domain */
572 section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
573 (0) | (0 << 5);
575 /* first of all a full 1:1 mapping */
576 for (page = 0; page < 4*1024; page++)
577 initial_page_tables[page] = (page<<20) | section;
580 * video memory is mapped 1:1 in the DRAM section or in VRAM
581 * section
583 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
585 top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
587 initial_page_tables[0] = top_1Mb_dram | section;
590 * map 16 Mb of kernel space to KERNEL_BASE
591 * i.e. marks[KERNEL_START]
593 for (page = 0; page < 16; page++) {
594 addr = (kernel_physical_start >> 20) + page;
595 kpage = (marks[MARK_START] >> 20) + page;
596 initial_page_tables[kpage] = (addr << 20) | section;
601 void
602 add_pagetables_at_top(void)
604 int page;
605 u_long src, dst, fragaddr;
607 /* Special : destination must be on a 16 Kb boundary */
608 /* get 4 pages on the top of the physical memory and copy PT's in it */
609 new_L1_pages_phys = top_physdram - 4 * nbpp;
612 * If the L1 page tables are not 16 kb aligned, adjust base
613 * until it is
615 while (new_L1_pages_phys & (16*1024-1))
616 new_L1_pages_phys -= nbpp;
617 if (new_L1_pages_phys & (16*1024-1))
618 panic("Paranoia : L1 pages not on 16Kb boundary");
620 dst = new_L1_pages_phys;
621 src = (u_long)initial_page_tables;
623 for (page = 0; page < 4; page++) {
624 /* get a page for a fragment */
625 fragaddr = get_relocated_page(dst, nbpp)->logical;
626 memcpy((void *)fragaddr, (void *)src, nbpp);
628 src += nbpp;
629 dst += nbpp;
634 void
635 add_initvectors(void)
637 u_long *pos;
638 u_long vectoraddr, count;
640 /* the top 1Mb of the physical DRAM pages is mapped at address 0 */
641 vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
643 /* fill the vectors with `movs pc, lr' opcodes */
644 pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
645 for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
649 * Work out the display's vertical sync rate. One might hope that there
650 * would be a simpler way than by counting vsync interrupts for a second,
651 * but if there is, I can't find it.
653 static int
654 vsync_rate(void)
656 uint8_t count0;
657 unsigned int time0;
659 count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
660 time0 = os_read_monotonic_time();
661 while (os_read_monotonic_time() - time0 < 100)
662 continue;
663 return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
666 void
667 create_configuration(int argc, char **argv, int start_args)
669 int i, root_specified, id_low, id_high;
670 char *pos;
672 bconfig_new_phys = kernel_free_vm_start - pv_offset;
673 bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
674 bconfig = (struct bootconfig *)(bconfig_page->logical);
675 kernel_free_vm_start += nbpp;
677 /* get some miscelanious info for the bootblock */
678 os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
679 os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
680 os_readsysinfo_superio_features((int *)&superio_flags_basic,
681 (int *)&superio_flags_extra);
682 os_readsysinfo_unique_id(&id_low, &id_high);
684 /* fill in the bootconfig *bconfig structure : generic version II */
685 memset(bconfig, 0, sizeof(*bconfig));
686 bconfig->magic = BOOTCONFIG_MAGIC;
687 bconfig->version = BOOTCONFIG_VERSION;
688 strcpy(bconfig->kernelname, booted_file);
691 * get the kernel base name and update the RiscOS name to a
692 * Unix name
694 i = strlen(booted_file);
695 while (i >= 0 && booted_file[i] != '.') i--;
696 if (i) {
697 strcpy(bconfig->kernelname, "/");
698 strcat(bconfig->kernelname, booted_file+i+1);
701 pos = bconfig->kernelname+1;
702 while (*pos) {
703 if (*pos == '/') *pos = '.';
704 pos++;
707 /* set the machine_id */
708 memcpy(&(bconfig->machine_id), &id_low, 4);
710 /* check if the `root' is specified */
711 root_specified = 0;
712 strcpy(bconfig->args, "");
713 for (i = start_args; i < argc; i++) {
714 if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
715 if (i > start_args)
716 strcat(bconfig->args, " ");
717 strcat(bconfig->args, argv[i]);
719 if (!root_specified) {
720 if (start_args < argc)
721 strcat(bconfig->args, " ");
722 strcat(bconfig->args, "root=");
723 strcat(bconfig->args, DEFAULT_ROOT);
726 /* mark kernel pointers */
727 bconfig->kernvirtualbase = marks[MARK_START];
728 bconfig->kernphysicalbase = kernel_physical_start;
729 bconfig->kernsize = kernel_free_vm_start -
730 marks[MARK_START];
731 bconfig->ksym_start = marks[MARK_SYM];
732 bconfig->ksym_end = marks[MARK_SYM] + marks[MARK_NSYM];
734 /* setup display info */
735 bconfig->display_phys = videomem_start;
736 bconfig->display_start = videomem_start;
737 bconfig->display_size = display_size;
738 bconfig->width = vdu_var(os_MODEVAR_XWIND_LIMIT);
739 bconfig->height = vdu_var(os_MODEVAR_YWIND_LIMIT);
740 bconfig->log2_bpp = vdu_var(os_MODEVAR_LOG2_BPP);
741 bconfig->framerate = vsync_rate();
743 /* fill in memory info */
744 bconfig->pagesize = nbpp;
745 bconfig->drampages = total_dram_pages +
746 total_podram_pages; /* XXX */
747 bconfig->vrampages = total_vram_pages;
748 bconfig->dramblocks = dram_blocks + podram_blocks; /*XXX*/
749 bconfig->vramblocks = vram_blocks;
751 for (i = 0; i < dram_blocks; i++) {
752 bconfig->dram[i].address = DRAM_addr[i];
753 bconfig->dram[i].pages = DRAM_pages[i];
754 bconfig->dram[i].flags = PHYSMEM_TYPE_GENERIC;
756 for (; i < dram_blocks + podram_blocks; i++) {
757 bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
758 bconfig->dram[i].pages = PODRAM_pages[i-dram_blocks];
759 bconfig->dram[i].flags = PHYSMEM_TYPE_PROCESSOR_ONLY;
761 for (i = 0; i < vram_blocks; i++) {
762 bconfig->vram[i].address = VRAM_addr[i];
763 bconfig->vram[i].pages = VRAM_pages[i];
764 bconfig->vram[i].flags = PHYSMEM_TYPE_GENERIC;
770 main(int argc, char **argv)
772 int howto, start_args, ret;
773 int class;
775 printf("\n\n");
776 printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
777 printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
778 printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
779 printf("\n");
781 process_args(argc, argv, &howto, booted_file, &start_args);
783 printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
785 init_datastructures();
786 get_memory_configuration();
787 get_memory_map();
790 * point to the first free DRAM page guaranteed to be in
791 * strict order up
793 if (podram_blocks != 0) {
794 free_relocation_page =
795 mem_pages_info + first_mapped_PODRAM_page_index;
796 kernel_physical_start = PODRAM_addr[0];
797 kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
798 } else {
799 free_relocation_page =
800 mem_pages_info + first_mapped_DRAM_page_index;
801 kernel_physical_start = DRAM_addr[0];
802 kernel_physical_maxsize = DRAM_pages[0] * nbpp;
805 printf("\nLoading %s ", booted_file);
807 /* first count the kernel to get the markers */
808 ret = loadfile(booted_file, marks, COUNT_KERNEL);
809 if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
810 close(ret);
812 if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
814 panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
818 * calculate how much the difference is between physical and
819 * virtual space for the kernel
821 pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
822 /* round on a page */
823 kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
825 /* we seem to be forced to clear the marks[] ? */
826 memset(marks, 0, sizeof(marks));
828 /* really load it ! */
829 ret = loadfile(booted_file, marks, LOAD_KERNEL);
830 if (ret == -1) panic("Kernel load failed");
831 close(ret);
833 /* finish off the relocation information */
834 create_initial_page_tables();
835 add_initvectors();
836 add_pagetables_at_top();
837 create_configuration(argc, argv, start_args);
840 * done relocating and creating information, now update and
841 * check the relocation mechanism
843 compact_relocations();
846 * grab a page to copy the bootstrap code into
848 relocate_code_page = free_relocation_page++;
850 printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
851 printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
852 reloc_instruction_table[0],
853 reloc_instruction_table[1],
854 reloc_instruction_table[2],
855 reloc_instruction_table[3]);
857 printf("Will boot in a few secs due to relocation....\n"
858 "bye bye from RISC OS!");
860 /* dismount all filesystems */
861 xosfscontrol_shutdown();
863 os_readsysinfo_platform_class(&class, NULL, NULL);
864 if (class != osreadsysinfo_Platform_Pace) {
865 /* reset devices, well they try to anyway */
866 service_pre_reset();
869 start_kernel(
870 /* r0 relocation code page (V) */ relocate_code_page->logical,
871 /* r1 relocation pv offset */
872 relocate_code_page->physical-relocate_code_page->logical,
873 /* r2 configuration structure */ bconfig_new_phys,
874 /* r3 relocation table (l) */
875 (int)reloc_instruction_table, /* one piece! */
876 /* r4 L1 page descriptor (P) */ new_L1_pages_phys,
877 /* r5 kernel entry point */ marks[MARK_ENTRY]
879 return 0;
883 ssize_t
884 boot32_read(int f, void *addr, size_t size)
886 void *fragaddr;
887 size_t fragsize;
888 ssize_t bytes_read, total;
890 /* printf("read at %p for %ld bytes\n", addr, size); */
891 total = 0;
892 while (size > 0) {
893 fragsize = nbpp; /* select one page */
894 if (size < nbpp) fragsize = size;/* clip to size left */
896 /* get a page for a fragment */
897 fragaddr = (void *)get_relocated_page((u_long) addr -
898 pv_offset, fragsize)->logical;
900 bytes_read = read(f, fragaddr, fragsize);
901 if (bytes_read < 0) return bytes_read; /* error! */
902 total += bytes_read; /* account read bytes */
904 if (bytes_read < fragsize)
905 return total; /* does this happen? */
907 size -= fragsize; /* advance */
908 addr += fragsize;
910 return total;
914 void *
915 boot32_memcpy(void *dst, const void *src, size_t size)
917 void *fragaddr;
918 size_t fragsize;
920 /* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
921 while (size > 0) {
922 fragsize = nbpp; /* select one page */
923 if (size < nbpp) fragsize = size;/* clip to size left */
925 /* get a page for a fragment */
926 fragaddr = (void *)get_relocated_page((u_long) dst -
927 pv_offset, fragsize)->logical;
928 memcpy(fragaddr, src, size);
930 src += fragsize; /* account copy */
931 dst += fragsize;
932 size-= fragsize;
934 return dst;
938 void *
939 boot32_memset(void *dst, int c, size_t size)
941 void *fragaddr;
942 size_t fragsize;
944 /* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
945 while (size > 0) {
946 fragsize = nbpp; /* select one page */
947 if (size < nbpp) fragsize = size;/* clip to size left */
949 /* get a page for a fragment */
950 fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
951 fragsize)->logical;
952 memset(fragaddr, c, fragsize);
954 dst += fragsize; /* account memsetting */
955 size-= fragsize;
958 return dst;
962 /* We can rely on the fact that two entries never have identical ->physical */
964 page_info_cmp(const void *a, const void *b)
967 return (((struct page_info *)a)->physical <
968 ((struct page_info *)b)->physical) ? -1 : 1;
971 struct page_info *
972 get_relocated_page(u_long destination, int size)
974 struct page_info *page;
976 /* get a page for a fragment */
977 page = free_relocation_page;
978 if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
979 reloc_entries++;
980 if (reloc_entries >= MAX_RELOCPAGES)
981 panic("\n\nToo many relocations! What are you loading ??");
983 /* record the relocation */
984 if (free_relocation_page->physical & 0x3)
985 panic("\n\nphysical address is not aligned!");
987 if (destination & 0x3)
988 panic("\n\ndestination address is not aligned!");
990 *reloc_pos++ = free_relocation_page->physical;
991 *reloc_pos++ = destination;
992 *reloc_pos++ = size;
993 free_relocation_page++; /* advance */
995 return page;
1000 vdu_var(int var)
1002 int varlist[2], vallist[2];
1004 varlist[0] = var;
1005 varlist[1] = -1;
1006 os_read_vdu_variables(varlist, vallist);
1007 return vallist[0];
1011 void
1012 twirl(void)
1015 printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1016 twirl_cnt++;
1017 twirl_cnt &= 3;
1021 void
1022 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1024 int i, j;
1025 static char filename[80];
1027 *howto = 0;
1028 *file = NULL; *start_args = 1;
1029 for (i = 1; i < argc; i++) {
1030 if (argv[i][0] == '-')
1031 for (j = 1; argv[i][j]; j++)
1032 BOOT_FLAG(argv[i][j], *howto);
1033 else {
1034 if (*file)
1035 *start_args = i;
1036 else {
1037 strcpy(file, argv[i]);
1038 *start_args = i+1;
1040 break;
1043 if (*file == NULL) {
1044 if (*howto & RB_ASKNAME) {
1045 printf("boot: ");
1046 gets(filename);
1047 strcpy(file, filename);
1048 } else
1049 strcpy(file, "netbsd");
1054 char *
1055 sprint0(int width, char prefix, char base, int value)
1057 static char format[50], scrap[50];
1058 char *pos;
1059 int length;
1061 for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1062 *pos++ = '%';
1063 *pos++ = base;
1064 *pos++ = (char) 0;
1066 sprintf(scrap, format, value);
1067 length = strlen(scrap);
1069 return scrap+length-width;