Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / arm / arm32 / pmap.c
blob69723ce450715b2fa409e5623a9189d378455488
1 /* $NetBSD: pmap.c,v 1.210 2010/01/01 02:32:28 uebayasi Exp $ */
3 /*
4 * Copyright 2003 Wasabi Systems, Inc.
5 * All rights reserved.
7 * Written by Steve C. Woodford for Wasabi Systems, Inc.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
39 * Copyright (c) 2002-2003 Wasabi Systems, Inc.
40 * Copyright (c) 2001 Richard Earnshaw
41 * Copyright (c) 2001-2002 Christopher Gilbert
42 * All rights reserved.
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. The name of the company nor the name of the author may be used to
50 * endorse or promote products derived from this software without specific
51 * prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
54 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
55 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
57 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
58 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
59 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
66 /*-
67 * Copyright (c) 1999 The NetBSD Foundation, Inc.
68 * All rights reserved.
70 * This code is derived from software contributed to The NetBSD Foundation
71 * by Charles M. Hannum.
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
82 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
83 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
84 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
85 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
86 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
87 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
88 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
91 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
92 * POSSIBILITY OF SUCH DAMAGE.
96 * Copyright (c) 1994-1998 Mark Brinicombe.
97 * Copyright (c) 1994 Brini.
98 * All rights reserved.
100 * This code is derived from software written for Brini by Mark Brinicombe
102 * Redistribution and use in source and binary forms, with or without
103 * modification, are permitted provided that the following conditions
104 * are met:
105 * 1. Redistributions of source code must retain the above copyright
106 * notice, this list of conditions and the following disclaimer.
107 * 2. Redistributions in binary form must reproduce the above copyright
108 * notice, this list of conditions and the following disclaimer in the
109 * documentation and/or other materials provided with the distribution.
110 * 3. All advertising materials mentioning features or use of this software
111 * must display the following acknowledgement:
112 * This product includes software developed by Mark Brinicombe.
113 * 4. The name of the author may not be used to endorse or promote products
114 * derived from this software without specific prior written permission.
116 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
117 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
118 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
119 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
120 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
121 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
122 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
123 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
124 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
126 * RiscBSD kernel project
128 * pmap.c
130 * Machine dependant vm stuff
132 * Created : 20/09/94
136 * armv6 and VIPT cache support by 3am Software Foundry,
137 * Copyright (c) 2007 Microsoft
141 * Performance improvements, UVM changes, overhauls and part-rewrites
142 * were contributed by Neil A. Carson <neil@causality.com>.
146 * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
147 * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
148 * Systems, Inc.
150 * There are still a few things outstanding at this time:
152 * - There are some unresolved issues for MP systems:
154 * o The L1 metadata needs a lock, or more specifically, some places
155 * need to acquire an exclusive lock when modifying L1 translation
156 * table entries.
158 * o When one cpu modifies an L1 entry, and that L1 table is also
159 * being used by another cpu, then the latter will need to be told
160 * that a tlb invalidation may be necessary. (But only if the old
161 * domain number in the L1 entry being over-written is currently
162 * the active domain on that cpu). I guess there are lots more tlb
163 * shootdown issues too...
165 * o If the vector_page is at 0x00000000 instead of 0xffff0000, then
166 * MP systems will lose big-time because of the MMU domain hack.
167 * The only way this can be solved (apart from moving the vector
168 * page to 0xffff0000) is to reserve the first 1MB of user address
169 * space for kernel use only. This would require re-linking all
170 * applications so that the text section starts above this 1MB
171 * boundary.
173 * o Tracking which VM space is resident in the cache/tlb has not yet
174 * been implemented for MP systems.
176 * o Finally, there is a pathological condition where two cpus running
177 * two separate processes (not lwps) which happen to share an L1
178 * can get into a fight over one or more L1 entries. This will result
179 * in a significant slow-down if both processes are in tight loops.
183 * Special compilation symbols
184 * PMAP_DEBUG - Build in pmap_debug_level code
187 /* Include header files */
189 #include "opt_cpuoptions.h"
190 #include "opt_pmap_debug.h"
191 #include "opt_ddb.h"
192 #include "opt_lockdebug.h"
193 #include "opt_multiprocessor.h"
195 #include <sys/param.h>
196 #include <sys/types.h>
197 #include <sys/kernel.h>
198 #include <sys/systm.h>
199 #include <sys/proc.h>
200 #include <sys/malloc.h>
201 #include <sys/pool.h>
202 #include <sys/cdefs.h>
203 #include <sys/cpu.h>
204 #include <sys/sysctl.h>
206 #include <uvm/uvm.h>
208 #include <machine/bus.h>
209 #include <machine/pmap.h>
210 #include <machine/pcb.h>
211 #include <machine/param.h>
212 #include <arm/arm32/katelib.h>
214 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.210 2010/01/01 02:32:28 uebayasi Exp $");
216 #ifdef PMAP_DEBUG
218 /* XXX need to get rid of all refs to this */
219 int pmap_debug_level = 0;
222 * for switching to potentially finer grained debugging
224 #define PDB_FOLLOW 0x0001
225 #define PDB_INIT 0x0002
226 #define PDB_ENTER 0x0004
227 #define PDB_REMOVE 0x0008
228 #define PDB_CREATE 0x0010
229 #define PDB_PTPAGE 0x0020
230 #define PDB_GROWKERN 0x0040
231 #define PDB_BITS 0x0080
232 #define PDB_COLLECT 0x0100
233 #define PDB_PROTECT 0x0200
234 #define PDB_MAP_L1 0x0400
235 #define PDB_BOOTSTRAP 0x1000
236 #define PDB_PARANOIA 0x2000
237 #define PDB_WIRING 0x4000
238 #define PDB_PVDUMP 0x8000
239 #define PDB_VAC 0x10000
240 #define PDB_KENTER 0x20000
241 #define PDB_KREMOVE 0x40000
242 #define PDB_EXEC 0x80000
244 int debugmap = 1;
245 int pmapdebug = 0;
246 #define NPDEBUG(_lev_,_stat_) \
247 if (pmapdebug & (_lev_)) \
248 ((_stat_))
250 #else /* PMAP_DEBUG */
251 #define NPDEBUG(_lev_,_stat_) /* Nothing */
252 #endif /* PMAP_DEBUG */
255 * pmap_kernel() points here
257 static struct pmap kernel_pmap_store;
258 struct pmap *const kernel_pmap_ptr = &kernel_pmap_store;
261 * Which pmap is currently 'live' in the cache
263 * XXXSCW: Fix for SMP ...
265 static pmap_t pmap_recent_user;
268 * Pointer to last active lwp, or NULL if it exited.
270 struct lwp *pmap_previous_active_lwp;
273 * Pool and cache that pmap structures are allocated from.
274 * We use a cache to avoid clearing the pm_l2[] array (1KB)
275 * in pmap_create().
277 static struct pool_cache pmap_cache;
278 static LIST_HEAD(, pmap) pmap_pmaps;
281 * Pool of PV structures
283 static struct pool pmap_pv_pool;
284 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
285 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
286 static struct pool_allocator pmap_bootstrap_pv_allocator = {
287 pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
291 * Pool and cache of l2_dtable structures.
292 * We use a cache to avoid clearing the structures when they're
293 * allocated. (196 bytes)
295 static struct pool_cache pmap_l2dtable_cache;
296 static vaddr_t pmap_kernel_l2dtable_kva;
299 * Pool and cache of L2 page descriptors.
300 * We use a cache to avoid clearing the descriptor table
301 * when they're allocated. (1KB)
303 static struct pool_cache pmap_l2ptp_cache;
304 static vaddr_t pmap_kernel_l2ptp_kva;
305 static paddr_t pmap_kernel_l2ptp_phys;
307 #ifdef PMAPCOUNTERS
308 #define PMAP_EVCNT_INITIALIZER(name) \
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
311 #ifdef PMAP_CACHE_VIPT
312 static struct evcnt pmap_ev_vac_clean_one =
313 PMAP_EVCNT_INITIALIZER("clean page (1 color)");
314 static struct evcnt pmap_ev_vac_flush_one =
315 PMAP_EVCNT_INITIALIZER("flush page (1 color)");
316 static struct evcnt pmap_ev_vac_flush_lots =
317 PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
318 static struct evcnt pmap_ev_vac_flush_lots2 =
319 PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
320 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
321 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
322 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
323 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
325 static struct evcnt pmap_ev_vac_color_new =
326 PMAP_EVCNT_INITIALIZER("new page color");
327 static struct evcnt pmap_ev_vac_color_reuse =
328 PMAP_EVCNT_INITIALIZER("ok first page color");
329 static struct evcnt pmap_ev_vac_color_ok =
330 PMAP_EVCNT_INITIALIZER("ok page color");
331 static struct evcnt pmap_ev_vac_color_blind =
332 PMAP_EVCNT_INITIALIZER("blind page color");
333 static struct evcnt pmap_ev_vac_color_change =
334 PMAP_EVCNT_INITIALIZER("change page color");
335 static struct evcnt pmap_ev_vac_color_erase =
336 PMAP_EVCNT_INITIALIZER("erase page color");
337 static struct evcnt pmap_ev_vac_color_none =
338 PMAP_EVCNT_INITIALIZER("no page color");
339 static struct evcnt pmap_ev_vac_color_restore =
340 PMAP_EVCNT_INITIALIZER("restore page color");
342 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
343 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
344 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
345 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
346 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
347 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
348 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
349 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
350 #endif
352 static struct evcnt pmap_ev_mappings =
353 PMAP_EVCNT_INITIALIZER("pages mapped");
354 static struct evcnt pmap_ev_unmappings =
355 PMAP_EVCNT_INITIALIZER("pages unmapped");
356 static struct evcnt pmap_ev_remappings =
357 PMAP_EVCNT_INITIALIZER("pages remapped");
359 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
360 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
361 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
363 static struct evcnt pmap_ev_kernel_mappings =
364 PMAP_EVCNT_INITIALIZER("kernel pages mapped");
365 static struct evcnt pmap_ev_kernel_unmappings =
366 PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
367 static struct evcnt pmap_ev_kernel_remappings =
368 PMAP_EVCNT_INITIALIZER("kernel pages remapped");
370 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
371 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
372 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
374 static struct evcnt pmap_ev_kenter_mappings =
375 PMAP_EVCNT_INITIALIZER("kenter pages mapped");
376 static struct evcnt pmap_ev_kenter_unmappings =
377 PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
378 static struct evcnt pmap_ev_kenter_remappings =
379 PMAP_EVCNT_INITIALIZER("kenter pages remapped");
380 static struct evcnt pmap_ev_pt_mappings =
381 PMAP_EVCNT_INITIALIZER("page table pages mapped");
383 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
384 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
385 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
386 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
388 #ifdef PMAP_CACHE_VIPT
389 static struct evcnt pmap_ev_exec_mappings =
390 PMAP_EVCNT_INITIALIZER("exec pages mapped");
391 static struct evcnt pmap_ev_exec_cached =
392 PMAP_EVCNT_INITIALIZER("exec pages cached");
394 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
395 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
397 static struct evcnt pmap_ev_exec_synced =
398 PMAP_EVCNT_INITIALIZER("exec pages synced");
399 static struct evcnt pmap_ev_exec_synced_map =
400 PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
401 static struct evcnt pmap_ev_exec_synced_unmap =
402 PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
403 static struct evcnt pmap_ev_exec_synced_remap =
404 PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
405 static struct evcnt pmap_ev_exec_synced_clearbit =
406 PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
407 static struct evcnt pmap_ev_exec_synced_kremove =
408 PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
410 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
411 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
412 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
413 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
414 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
415 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
417 static struct evcnt pmap_ev_exec_discarded_unmap =
418 PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
419 static struct evcnt pmap_ev_exec_discarded_zero =
420 PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
421 static struct evcnt pmap_ev_exec_discarded_copy =
422 PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
423 static struct evcnt pmap_ev_exec_discarded_page_protect =
424 PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
425 static struct evcnt pmap_ev_exec_discarded_clearbit =
426 PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
427 static struct evcnt pmap_ev_exec_discarded_kremove =
428 PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
430 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
431 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
432 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
433 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
434 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
435 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
436 #endif /* PMAP_CACHE_VIPT */
438 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
439 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
440 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
442 EVCNT_ATTACH_STATIC(pmap_ev_updates);
443 EVCNT_ATTACH_STATIC(pmap_ev_collects);
444 EVCNT_ATTACH_STATIC(pmap_ev_activations);
446 #define PMAPCOUNT(x) ((void)(pmap_ev_##x.ev_count++))
447 #else
448 #define PMAPCOUNT(x) ((void)0)
449 #endif
452 * pmap copy/zero page, and mem(5) hook point
454 static pt_entry_t *csrc_pte, *cdst_pte;
455 static vaddr_t csrcp, cdstp;
456 vaddr_t memhook; /* used by mem.c */
457 kmutex_t memlock; /* used by mem.c */
458 void *zeropage; /* used by mem.c */
459 extern void *msgbufaddr;
460 int pmap_kmpages;
462 * Flag to indicate if pmap_init() has done its thing
464 bool pmap_initialized;
467 * Misc. locking data structures
470 #if 0 /* defined(MULTIPROCESSOR) || defined(LOCKDEBUG) */
471 static struct lock pmap_main_lock;
473 #define PMAP_MAP_TO_HEAD_LOCK() \
474 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
475 #define PMAP_MAP_TO_HEAD_UNLOCK() \
476 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
477 #define PMAP_HEAD_TO_MAP_LOCK() \
478 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
479 #define PMAP_HEAD_TO_MAP_UNLOCK() \
480 spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
481 #else
482 #define PMAP_MAP_TO_HEAD_LOCK() /* null */
483 #define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
484 #define PMAP_HEAD_TO_MAP_LOCK() /* null */
485 #define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
486 #endif
488 #define pmap_acquire_pmap_lock(pm) \
489 do { \
490 if ((pm) != pmap_kernel()) \
491 mutex_enter(&(pm)->pm_lock); \
492 } while (/*CONSTCOND*/0)
494 #define pmap_release_pmap_lock(pm) \
495 do { \
496 if ((pm) != pmap_kernel()) \
497 mutex_exit(&(pm)->pm_lock); \
498 } while (/*CONSTCOND*/0)
502 * Metadata for L1 translation tables.
504 struct l1_ttable {
505 /* Entry on the L1 Table list */
506 SLIST_ENTRY(l1_ttable) l1_link;
508 /* Entry on the L1 Least Recently Used list */
509 TAILQ_ENTRY(l1_ttable) l1_lru;
511 /* Track how many domains are allocated from this L1 */
512 volatile u_int l1_domain_use_count;
515 * A free-list of domain numbers for this L1.
516 * We avoid using ffs() and a bitmap to track domains since ffs()
517 * is slow on ARM.
519 u_int8_t l1_domain_first;
520 u_int8_t l1_domain_free[PMAP_DOMAINS];
522 /* Physical address of this L1 page table */
523 paddr_t l1_physaddr;
525 /* KVA of this L1 page table */
526 pd_entry_t *l1_kva;
530 * Convert a virtual address into its L1 table index. That is, the
531 * index used to locate the L2 descriptor table pointer in an L1 table.
532 * This is basically used to index l1->l1_kva[].
534 * Each L2 descriptor table represents 1MB of VA space.
536 #define L1_IDX(va) (((vaddr_t)(va)) >> L1_S_SHIFT)
539 * L1 Page Tables are tracked using a Least Recently Used list.
540 * - New L1s are allocated from the HEAD.
541 * - Freed L1s are added to the TAIl.
542 * - Recently accessed L1s (where an 'access' is some change to one of
543 * the userland pmaps which owns this L1) are moved to the TAIL.
545 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
546 static struct simplelock l1_lru_lock;
549 * A list of all L1 tables
551 static SLIST_HEAD(, l1_ttable) l1_list;
554 * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
556 * This is normally 16MB worth L2 page descriptors for any given pmap.
557 * Reference counts are maintained for L2 descriptors so they can be
558 * freed when empty.
560 struct l2_dtable {
561 /* The number of L2 page descriptors allocated to this l2_dtable */
562 u_int l2_occupancy;
564 /* List of L2 page descriptors */
565 struct l2_bucket {
566 pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
567 paddr_t l2b_phys; /* Physical address of same */
568 u_short l2b_l1idx; /* This L2 table's L1 index */
569 u_short l2b_occupancy; /* How many active descriptors */
570 } l2_bucket[L2_BUCKET_SIZE];
574 * Given an L1 table index, calculate the corresponding l2_dtable index
575 * and bucket index within the l2_dtable.
577 #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
578 (L2_SIZE - 1))
579 #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
582 * Given a virtual address, this macro returns the
583 * virtual address required to drop into the next L2 bucket.
585 #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
588 * L2 allocation.
590 #define pmap_alloc_l2_dtable() \
591 pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
592 #define pmap_free_l2_dtable(l2) \
593 pool_cache_put(&pmap_l2dtable_cache, (l2))
594 #define pmap_alloc_l2_ptp(pap) \
595 ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
596 PR_NOWAIT, (pap)))
599 * We try to map the page tables write-through, if possible. However, not
600 * all CPUs have a write-through cache mode, so on those we have to sync
601 * the cache when we frob page tables.
603 * We try to evaluate this at compile time, if possible. However, it's
604 * not always possible to do that, hence this run-time var.
606 int pmap_needs_pte_sync;
609 * Real definition of pv_entry.
611 struct pv_entry {
612 SLIST_ENTRY(pv_entry) pv_link; /* next pv_entry */
613 pmap_t pv_pmap; /* pmap where mapping lies */
614 vaddr_t pv_va; /* virtual address for mapping */
615 u_int pv_flags; /* flags */
619 * Macro to determine if a mapping might be resident in the
620 * instruction cache and/or TLB
622 #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
623 #define PV_IS_EXEC_P(f) (((f) & PVF_EXEC) != 0)
626 * Macro to determine if a mapping might be resident in the
627 * data cache and/or TLB
629 #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
632 * Local prototypes
634 static int pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t);
635 static void pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
636 pt_entry_t **);
637 static bool pmap_is_current(pmap_t);
638 static bool pmap_is_cached(pmap_t);
639 static void pmap_enter_pv(struct vm_page *, struct pv_entry *,
640 pmap_t, vaddr_t, u_int);
641 static struct pv_entry *pmap_find_pv(struct vm_page *, pmap_t, vaddr_t);
642 static struct pv_entry *pmap_remove_pv(struct vm_page *, pmap_t, vaddr_t);
643 static u_int pmap_modify_pv(struct vm_page *, pmap_t, vaddr_t,
644 u_int, u_int);
646 static void pmap_pinit(pmap_t);
647 static int pmap_pmap_ctor(void *, void *, int);
649 static void pmap_alloc_l1(pmap_t);
650 static void pmap_free_l1(pmap_t);
651 static void pmap_use_l1(pmap_t);
653 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
654 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
655 static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
656 static int pmap_l2ptp_ctor(void *, void *, int);
657 static int pmap_l2dtable_ctor(void *, void *, int);
659 static void pmap_vac_me_harder(struct vm_page *, pmap_t, vaddr_t);
660 #ifdef PMAP_CACHE_VIVT
661 static void pmap_vac_me_kpmap(struct vm_page *, pmap_t, vaddr_t);
662 static void pmap_vac_me_user(struct vm_page *, pmap_t, vaddr_t);
663 #endif
665 static void pmap_clearbit(struct vm_page *, u_int);
666 #ifdef PMAP_CACHE_VIVT
667 static int pmap_clean_page(struct pv_entry *, bool);
668 #endif
669 #ifdef PMAP_CACHE_VIPT
670 static void pmap_syncicache_page(struct vm_page *);
671 enum pmap_flush_op {
672 PMAP_FLUSH_PRIMARY,
673 PMAP_FLUSH_SECONDARY,
674 PMAP_CLEAN_PRIMARY
676 static void pmap_flush_page(struct vm_page *, enum pmap_flush_op);
677 #endif
678 static void pmap_page_remove(struct vm_page *);
680 static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
681 static vaddr_t kernel_pt_lookup(paddr_t);
685 * External function prototypes
687 extern void bzero_page(vaddr_t);
688 extern void bcopy_page(vaddr_t, vaddr_t);
691 * Misc variables
693 vaddr_t virtual_avail;
694 vaddr_t virtual_end;
695 vaddr_t pmap_curmaxkvaddr;
697 paddr_t avail_start;
698 paddr_t avail_end;
700 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
701 pv_addr_t kernelpages;
702 pv_addr_t kernel_l1pt;
703 pv_addr_t systempage;
705 /* Function to set the debug level of the pmap code */
707 #ifdef PMAP_DEBUG
708 void
709 pmap_debug(int level)
711 pmap_debug_level = level;
712 printf("pmap_debug: level=%d\n", pmap_debug_level);
714 #endif /* PMAP_DEBUG */
717 * A bunch of routines to conditionally flush the caches/TLB depending
718 * on whether the specified pmap actually needs to be flushed at any
719 * given time.
721 static inline void
722 pmap_tlb_flushID_SE(pmap_t pm, vaddr_t va)
725 if (pm->pm_cstate.cs_tlb_id)
726 cpu_tlb_flushID_SE(va);
729 static inline void
730 pmap_tlb_flushD_SE(pmap_t pm, vaddr_t va)
733 if (pm->pm_cstate.cs_tlb_d)
734 cpu_tlb_flushD_SE(va);
737 static inline void
738 pmap_tlb_flushID(pmap_t pm)
741 if (pm->pm_cstate.cs_tlb_id) {
742 cpu_tlb_flushID();
743 pm->pm_cstate.cs_tlb = 0;
747 static inline void
748 pmap_tlb_flushD(pmap_t pm)
751 if (pm->pm_cstate.cs_tlb_d) {
752 cpu_tlb_flushD();
753 pm->pm_cstate.cs_tlb_d = 0;
757 #ifdef PMAP_CACHE_VIVT
758 static inline void
759 pmap_idcache_wbinv_range(pmap_t pm, vaddr_t va, vsize_t len)
761 if (pm->pm_cstate.cs_cache_id) {
762 cpu_idcache_wbinv_range(va, len);
766 static inline void
767 pmap_dcache_wb_range(pmap_t pm, vaddr_t va, vsize_t len,
768 bool do_inv, bool rd_only)
771 if (pm->pm_cstate.cs_cache_d) {
772 if (do_inv) {
773 if (rd_only)
774 cpu_dcache_inv_range(va, len);
775 else
776 cpu_dcache_wbinv_range(va, len);
777 } else
778 if (!rd_only)
779 cpu_dcache_wb_range(va, len);
783 static inline void
784 pmap_idcache_wbinv_all(pmap_t pm)
786 if (pm->pm_cstate.cs_cache_id) {
787 cpu_idcache_wbinv_all();
788 pm->pm_cstate.cs_cache = 0;
792 static inline void
793 pmap_dcache_wbinv_all(pmap_t pm)
795 if (pm->pm_cstate.cs_cache_d) {
796 cpu_dcache_wbinv_all();
797 pm->pm_cstate.cs_cache_d = 0;
800 #endif /* PMAP_CACHE_VIVT */
802 static inline bool
803 pmap_is_current(pmap_t pm)
806 if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
807 return true;
809 return false;
812 static inline bool
813 pmap_is_cached(pmap_t pm)
816 if (pm == pmap_kernel() || pmap_recent_user == NULL ||
817 pmap_recent_user == pm)
818 return (true);
820 return false;
824 * PTE_SYNC_CURRENT:
826 * Make sure the pte is written out to RAM.
827 * We need to do this for one of two cases:
828 * - We're dealing with the kernel pmap
829 * - There is no pmap active in the cache/tlb.
830 * - The specified pmap is 'active' in the cache/tlb.
832 #ifdef PMAP_INCLUDE_PTE_SYNC
833 #define PTE_SYNC_CURRENT(pm, ptep) \
834 do { \
835 if (PMAP_NEEDS_PTE_SYNC && \
836 pmap_is_cached(pm)) \
837 PTE_SYNC(ptep); \
838 } while (/*CONSTCOND*/0)
839 #else
840 #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */
841 #endif
844 * main pv_entry manipulation functions:
845 * pmap_enter_pv: enter a mapping onto a vm_page list
846 * pmap_remove_pv: remove a mappiing from a vm_page list
848 * NOTE: pmap_enter_pv expects to lock the pvh itself
849 * pmap_remove_pv expects te caller to lock the pvh before calling
853 * pmap_enter_pv: enter a mapping onto a vm_page lst
855 * => caller should hold the proper lock on pmap_main_lock
856 * => caller should have pmap locked
857 * => we will gain the lock on the vm_page and allocate the new pv_entry
858 * => caller should adjust ptp's wire_count before calling
859 * => caller should not adjust pmap's wire_count
861 static void
862 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pv, pmap_t pm,
863 vaddr_t va, u_int flags)
865 struct pv_entry **pvp;
867 NPDEBUG(PDB_PVDUMP,
868 printf("pmap_enter_pv: pm %p, pg %p, flags 0x%x\n", pm, pg, flags));
870 pv->pv_pmap = pm;
871 pv->pv_va = va;
872 pv->pv_flags = flags;
874 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
875 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
876 #ifdef PMAP_CACHE_VIPT
878 * Insert unmanaged entries, writeable first, at the head of
879 * the pv list.
881 if (__predict_true((flags & PVF_KENTRY) == 0)) {
882 while (*pvp != NULL && (*pvp)->pv_flags & PVF_KENTRY)
883 pvp = &SLIST_NEXT(*pvp, pv_link);
884 } else if ((flags & PVF_WRITE) == 0) {
885 while (*pvp != NULL && (*pvp)->pv_flags & PVF_WRITE)
886 pvp = &SLIST_NEXT(*pvp, pv_link);
888 #endif
889 SLIST_NEXT(pv, pv_link) = *pvp; /* add to ... */
890 *pvp = pv; /* ... locked list */
891 pg->mdpage.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
892 #ifdef PMAP_CACHE_VIPT
893 if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
894 pg->mdpage.pvh_attrs |= PVF_KMOD;
895 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
896 pg->mdpage.pvh_attrs |= PVF_DIRTY;
897 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
898 #endif
899 if (pm == pmap_kernel()) {
900 PMAPCOUNT(kernel_mappings);
901 if (flags & PVF_WRITE)
902 pg->mdpage.krw_mappings++;
903 else
904 pg->mdpage.kro_mappings++;
905 } else {
906 if (flags & PVF_WRITE)
907 pg->mdpage.urw_mappings++;
908 else
909 pg->mdpage.uro_mappings++;
912 #ifdef PMAP_CACHE_VIPT
914 * If this is an exec mapping and its the first exec mapping
915 * for this page, make sure to sync the I-cache.
917 if (PV_IS_EXEC_P(flags)) {
918 if (!PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
919 pmap_syncicache_page(pg);
920 PMAPCOUNT(exec_synced_map);
922 PMAPCOUNT(exec_mappings);
924 #endif
926 PMAPCOUNT(mappings);
927 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
929 if (pv->pv_flags & PVF_WIRED)
930 ++pm->pm_stats.wired_count;
935 * pmap_find_pv: Find a pv entry
937 * => caller should hold lock on vm_page
939 static inline struct pv_entry *
940 pmap_find_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
942 struct pv_entry *pv;
944 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
945 if (pm == pv->pv_pmap && va == pv->pv_va)
946 break;
949 return (pv);
953 * pmap_remove_pv: try to remove a mapping from a pv_list
955 * => caller should hold proper lock on pmap_main_lock
956 * => pmap should be locked
957 * => caller should hold lock on vm_page [so that attrs can be adjusted]
958 * => caller should adjust ptp's wire_count and free PTP if needed
959 * => caller should NOT adjust pmap's wire_count
960 * => we return the removed pv
962 static struct pv_entry *
963 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vaddr_t va)
965 struct pv_entry *pv, **prevptr;
967 NPDEBUG(PDB_PVDUMP,
968 printf("pmap_remove_pv: pm %p, pg %p, va 0x%08lx\n", pm, pg, va));
970 prevptr = &SLIST_FIRST(&pg->mdpage.pvh_list); /* prev pv_entry ptr */
971 pv = *prevptr;
973 while (pv) {
974 if (pv->pv_pmap == pm && pv->pv_va == va) { /* match? */
975 NPDEBUG(PDB_PVDUMP, printf("pmap_remove_pv: pm %p, pg "
976 "%p, flags 0x%x\n", pm, pg, pv->pv_flags));
977 if (pv->pv_flags & PVF_WIRED) {
978 --pm->pm_stats.wired_count;
980 *prevptr = SLIST_NEXT(pv, pv_link); /* remove it! */
981 if (pm == pmap_kernel()) {
982 PMAPCOUNT(kernel_unmappings);
983 if (pv->pv_flags & PVF_WRITE)
984 pg->mdpage.krw_mappings--;
985 else
986 pg->mdpage.kro_mappings--;
987 } else {
988 if (pv->pv_flags & PVF_WRITE)
989 pg->mdpage.urw_mappings--;
990 else
991 pg->mdpage.uro_mappings--;
994 PMAPCOUNT(unmappings);
995 #ifdef PMAP_CACHE_VIPT
996 if (!(pv->pv_flags & PVF_WRITE))
997 break;
999 * If this page has had an exec mapping, then if
1000 * this was the last mapping, discard the contents,
1001 * otherwise sync the i-cache for this page.
1003 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
1004 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
1005 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
1006 PMAPCOUNT(exec_discarded_unmap);
1007 } else {
1008 pmap_syncicache_page(pg);
1009 PMAPCOUNT(exec_synced_unmap);
1012 #endif /* PMAP_CACHE_VIPT */
1013 break;
1015 prevptr = &SLIST_NEXT(pv, pv_link); /* previous pointer */
1016 pv = *prevptr; /* advance */
1019 #ifdef PMAP_CACHE_VIPT
1021 * If we no longer have a WRITEABLE KENTRY at the head of list,
1022 * clear the KMOD attribute from the page.
1024 if (SLIST_FIRST(&pg->mdpage.pvh_list) == NULL
1025 || (SLIST_FIRST(&pg->mdpage.pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
1026 pg->mdpage.pvh_attrs &= ~PVF_KMOD;
1029 * If this was a writeable page and there are no more writeable
1030 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
1031 * the contents to memory.
1033 if (pg->mdpage.krw_mappings + pg->mdpage.urw_mappings == 0)
1034 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1035 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1036 #endif /* PMAP_CACHE_VIPT */
1038 return(pv); /* return removed pv */
1043 * pmap_modify_pv: Update pv flags
1045 * => caller should hold lock on vm_page [so that attrs can be adjusted]
1046 * => caller should NOT adjust pmap's wire_count
1047 * => caller must call pmap_vac_me_harder() if writable status of a page
1048 * may have changed.
1049 * => we return the old flags
1051 * Modify a physical-virtual mapping in the pv table
1053 static u_int
1054 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vaddr_t va,
1055 u_int clr_mask, u_int set_mask)
1057 struct pv_entry *npv;
1058 u_int flags, oflags;
1060 KASSERT((clr_mask & PVF_KENTRY) == 0);
1061 KASSERT((set_mask & PVF_KENTRY) == 0);
1063 if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
1064 return (0);
1066 NPDEBUG(PDB_PVDUMP,
1067 printf("pmap_modify_pv: pm %p, pg %p, clr 0x%x, set 0x%x, flags 0x%x\n", pm, pg, clr_mask, set_mask, npv->pv_flags));
1070 * There is at least one VA mapping this page.
1073 if (clr_mask & (PVF_REF | PVF_MOD)) {
1074 pg->mdpage.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
1075 #ifdef PMAP_CACHE_VIPT
1076 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
1077 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1078 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1079 #endif
1082 oflags = npv->pv_flags;
1083 npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
1085 if ((flags ^ oflags) & PVF_WIRED) {
1086 if (flags & PVF_WIRED)
1087 ++pm->pm_stats.wired_count;
1088 else
1089 --pm->pm_stats.wired_count;
1092 if ((flags ^ oflags) & PVF_WRITE) {
1093 if (pm == pmap_kernel()) {
1094 if (flags & PVF_WRITE) {
1095 pg->mdpage.krw_mappings++;
1096 pg->mdpage.kro_mappings--;
1097 } else {
1098 pg->mdpage.kro_mappings++;
1099 pg->mdpage.krw_mappings--;
1101 } else {
1102 if (flags & PVF_WRITE) {
1103 pg->mdpage.urw_mappings++;
1104 pg->mdpage.uro_mappings--;
1105 } else {
1106 pg->mdpage.uro_mappings++;
1107 pg->mdpage.urw_mappings--;
1111 #ifdef PMAP_CACHE_VIPT
1112 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
1113 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1115 * We have two cases here: the first is from enter_pv (new exec
1116 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
1117 * Since in latter, pmap_enter_pv won't do anything, we just have
1118 * to do what pmap_remove_pv would do.
1120 if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
1121 || (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)
1122 || (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
1123 pmap_syncicache_page(pg);
1124 PMAPCOUNT(exec_synced_remap);
1126 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1127 #endif
1129 PMAPCOUNT(remappings);
1131 return (oflags);
1135 * Allocate an L1 translation table for the specified pmap.
1136 * This is called at pmap creation time.
1138 static void
1139 pmap_alloc_l1(pmap_t pm)
1141 struct l1_ttable *l1;
1142 u_int8_t domain;
1145 * Remove the L1 at the head of the LRU list
1147 simple_lock(&l1_lru_lock);
1148 l1 = TAILQ_FIRST(&l1_lru_list);
1149 KDASSERT(l1 != NULL);
1150 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1153 * Pick the first available domain number, and update
1154 * the link to the next number.
1156 domain = l1->l1_domain_first;
1157 l1->l1_domain_first = l1->l1_domain_free[domain];
1160 * If there are still free domain numbers in this L1,
1161 * put it back on the TAIL of the LRU list.
1163 if (++l1->l1_domain_use_count < PMAP_DOMAINS)
1164 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1166 simple_unlock(&l1_lru_lock);
1169 * Fix up the relevant bits in the pmap structure
1171 pm->pm_l1 = l1;
1172 pm->pm_domain = domain;
1176 * Free an L1 translation table.
1177 * This is called at pmap destruction time.
1179 static void
1180 pmap_free_l1(pmap_t pm)
1182 struct l1_ttable *l1 = pm->pm_l1;
1184 simple_lock(&l1_lru_lock);
1187 * If this L1 is currently on the LRU list, remove it.
1189 if (l1->l1_domain_use_count < PMAP_DOMAINS)
1190 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1193 * Free up the domain number which was allocated to the pmap
1195 l1->l1_domain_free[pm->pm_domain] = l1->l1_domain_first;
1196 l1->l1_domain_first = pm->pm_domain;
1197 l1->l1_domain_use_count--;
1200 * The L1 now must have at least 1 free domain, so add
1201 * it back to the LRU list. If the use count is zero,
1202 * put it at the head of the list, otherwise it goes
1203 * to the tail.
1205 if (l1->l1_domain_use_count == 0)
1206 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
1207 else
1208 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1210 simple_unlock(&l1_lru_lock);
1213 static inline void
1214 pmap_use_l1(pmap_t pm)
1216 struct l1_ttable *l1;
1219 * Do nothing if we're in interrupt context.
1220 * Access to an L1 by the kernel pmap must not affect
1221 * the LRU list.
1223 if (cpu_intr_p() || pm == pmap_kernel())
1224 return;
1226 l1 = pm->pm_l1;
1229 * If the L1 is not currently on the LRU list, just return
1231 if (l1->l1_domain_use_count == PMAP_DOMAINS)
1232 return;
1234 simple_lock(&l1_lru_lock);
1237 * Check the use count again, now that we've acquired the lock
1239 if (l1->l1_domain_use_count == PMAP_DOMAINS) {
1240 simple_unlock(&l1_lru_lock);
1241 return;
1245 * Move the L1 to the back of the LRU list
1247 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
1248 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
1250 simple_unlock(&l1_lru_lock);
1254 * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
1256 * Free an L2 descriptor table.
1258 static inline void
1259 #ifndef PMAP_INCLUDE_PTE_SYNC
1260 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
1261 #else
1262 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
1263 #endif
1265 #ifdef PMAP_INCLUDE_PTE_SYNC
1266 #ifdef PMAP_CACHE_VIVT
1268 * Note: With a write-back cache, we may need to sync this
1269 * L2 table before re-using it.
1270 * This is because it may have belonged to a non-current
1271 * pmap, in which case the cache syncs would have been
1272 * skipped for the pages that were being unmapped. If the
1273 * L2 table were then to be immediately re-allocated to
1274 * the *current* pmap, it may well contain stale mappings
1275 * which have not yet been cleared by a cache write-back
1276 * and so would still be visible to the mmu.
1278 if (need_sync)
1279 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1280 #endif /* PMAP_CACHE_VIVT */
1281 #endif /* PMAP_INCLUDE_PTE_SYNC */
1282 pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
1286 * Returns a pointer to the L2 bucket associated with the specified pmap
1287 * and VA, or NULL if no L2 bucket exists for the address.
1289 static inline struct l2_bucket *
1290 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
1292 struct l2_dtable *l2;
1293 struct l2_bucket *l2b;
1294 u_short l1idx;
1296 l1idx = L1_IDX(va);
1298 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
1299 (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
1300 return (NULL);
1302 return (l2b);
1306 * Returns a pointer to the L2 bucket associated with the specified pmap
1307 * and VA.
1309 * If no L2 bucket exists, perform the necessary allocations to put an L2
1310 * bucket/page table in place.
1312 * Note that if a new L2 bucket/page was allocated, the caller *must*
1313 * increment the bucket occupancy counter appropriately *before*
1314 * releasing the pmap's lock to ensure no other thread or cpu deallocates
1315 * the bucket/page in the meantime.
1317 static struct l2_bucket *
1318 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
1320 struct l2_dtable *l2;
1321 struct l2_bucket *l2b;
1322 u_short l1idx;
1324 l1idx = L1_IDX(va);
1326 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
1328 * No mapping at this address, as there is
1329 * no entry in the L1 table.
1330 * Need to allocate a new l2_dtable.
1332 if ((l2 = pmap_alloc_l2_dtable()) == NULL)
1333 return (NULL);
1336 * Link it into the parent pmap
1338 pm->pm_l2[L2_IDX(l1idx)] = l2;
1341 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
1344 * Fetch pointer to the L2 page table associated with the address.
1346 if (l2b->l2b_kva == NULL) {
1347 pt_entry_t *ptep;
1350 * No L2 page table has been allocated. Chances are, this
1351 * is because we just allocated the l2_dtable, above.
1353 if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_phys)) == NULL) {
1355 * Oops, no more L2 page tables available at this
1356 * time. We may need to deallocate the l2_dtable
1357 * if we allocated a new one above.
1359 if (l2->l2_occupancy == 0) {
1360 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1361 pmap_free_l2_dtable(l2);
1363 return (NULL);
1366 l2->l2_occupancy++;
1367 l2b->l2b_kva = ptep;
1368 l2b->l2b_l1idx = l1idx;
1371 return (l2b);
1375 * One or more mappings in the specified L2 descriptor table have just been
1376 * invalidated.
1378 * Garbage collect the metadata and descriptor table itself if necessary.
1380 * The pmap lock must be acquired when this is called (not necessary
1381 * for the kernel pmap).
1383 static void
1384 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
1386 struct l2_dtable *l2;
1387 pd_entry_t *pl1pd, l1pd;
1388 pt_entry_t *ptep;
1389 u_short l1idx;
1391 KDASSERT(count <= l2b->l2b_occupancy);
1394 * Update the bucket's reference count according to how many
1395 * PTEs the caller has just invalidated.
1397 l2b->l2b_occupancy -= count;
1400 * Note:
1402 * Level 2 page tables allocated to the kernel pmap are never freed
1403 * as that would require checking all Level 1 page tables and
1404 * removing any references to the Level 2 page table. See also the
1405 * comment elsewhere about never freeing bootstrap L2 descriptors.
1407 * We make do with just invalidating the mapping in the L2 table.
1409 * This isn't really a big deal in practice and, in fact, leads
1410 * to a performance win over time as we don't need to continually
1411 * alloc/free.
1413 if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
1414 return;
1417 * There are no more valid mappings in this level 2 page table.
1418 * Go ahead and NULL-out the pointer in the bucket, then
1419 * free the page table.
1421 l1idx = l2b->l2b_l1idx;
1422 ptep = l2b->l2b_kva;
1423 l2b->l2b_kva = NULL;
1425 pl1pd = &pm->pm_l1->l1_kva[l1idx];
1428 * If the L1 slot matches the pmap's domain
1429 * number, then invalidate it.
1431 l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
1432 if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
1433 *pl1pd = 0;
1434 PTE_SYNC(pl1pd);
1438 * Release the L2 descriptor table back to the pool cache.
1440 #ifndef PMAP_INCLUDE_PTE_SYNC
1441 pmap_free_l2_ptp(ptep, l2b->l2b_phys);
1442 #else
1443 pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_phys);
1444 #endif
1447 * Update the reference count in the associated l2_dtable
1449 l2 = pm->pm_l2[L2_IDX(l1idx)];
1450 if (--l2->l2_occupancy > 0)
1451 return;
1454 * There are no more valid mappings in any of the Level 1
1455 * slots managed by this l2_dtable. Go ahead and NULL-out
1456 * the pointer in the parent pmap and free the l2_dtable.
1458 pm->pm_l2[L2_IDX(l1idx)] = NULL;
1459 pmap_free_l2_dtable(l2);
1463 * Pool cache constructors for L2 descriptor tables, metadata and pmap
1464 * structures.
1466 static int
1467 pmap_l2ptp_ctor(void *arg, void *v, int flags)
1469 #ifndef PMAP_INCLUDE_PTE_SYNC
1470 struct l2_bucket *l2b;
1471 pt_entry_t *ptep, pte;
1472 vaddr_t va = (vaddr_t)v & ~PGOFSET;
1475 * The mappings for these page tables were initially made using
1476 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
1477 * mode will not be right for page table mappings. To avoid
1478 * polluting the pmap_kenter_pa() code with a special case for
1479 * page tables, we simply fix up the cache-mode here if it's not
1480 * correct.
1482 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
1483 KDASSERT(l2b != NULL);
1484 ptep = &l2b->l2b_kva[l2pte_index(va)];
1485 pte = *ptep;
1487 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
1489 * Page tables must have the cache-mode set to Write-Thru.
1491 *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
1492 PTE_SYNC(ptep);
1493 cpu_tlb_flushD_SE(va);
1494 cpu_cpwait();
1496 #endif
1498 memset(v, 0, L2_TABLE_SIZE_REAL);
1499 PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
1500 return (0);
1503 static int
1504 pmap_l2dtable_ctor(void *arg, void *v, int flags)
1507 memset(v, 0, sizeof(struct l2_dtable));
1508 return (0);
1511 static int
1512 pmap_pmap_ctor(void *arg, void *v, int flags)
1515 memset(v, 0, sizeof(struct pmap));
1516 return (0);
1519 static void
1520 pmap_pinit(pmap_t pm)
1522 struct l2_bucket *l2b;
1524 if (vector_page < KERNEL_BASE) {
1526 * Map the vector page.
1528 pmap_enter(pm, vector_page, systempage.pv_pa,
1529 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1530 pmap_update(pm);
1532 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
1533 l2b = pmap_get_l2_bucket(pm, vector_page);
1534 KDASSERT(l2b != NULL);
1535 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
1536 L1_C_DOM(pm->pm_domain);
1537 } else
1538 pm->pm_pl1vec = NULL;
1541 #ifdef PMAP_CACHE_VIVT
1543 * Since we have a virtually indexed cache, we may need to inhibit caching if
1544 * there is more than one mapping and at least one of them is writable.
1545 * Since we purge the cache on every context switch, we only need to check for
1546 * other mappings within the same pmap, or kernel_pmap.
1547 * This function is also called when a page is unmapped, to possibly reenable
1548 * caching on any remaining mappings.
1550 * The code implements the following logic, where:
1552 * KW = # of kernel read/write pages
1553 * KR = # of kernel read only pages
1554 * UW = # of user read/write pages
1555 * UR = # of user read only pages
1557 * KC = kernel mapping is cacheable
1558 * UC = user mapping is cacheable
1560 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
1561 * +---------------------------------------------
1562 * UW=0,UR=0 | --- KC=1 KC=1 KC=0
1563 * UW=0,UR>0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
1564 * UW=1,UR=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1565 * UW>1,UR>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
1568 static const int pmap_vac_flags[4][4] = {
1569 {-1, 0, 0, PVF_KNC},
1570 {0, 0, PVF_NC, PVF_NC},
1571 {0, PVF_NC, PVF_NC, PVF_NC},
1572 {PVF_UNC, PVF_NC, PVF_NC, PVF_NC}
1575 static inline int
1576 pmap_get_vac_flags(const struct vm_page *pg)
1578 int kidx, uidx;
1580 kidx = 0;
1581 if (pg->mdpage.kro_mappings || pg->mdpage.krw_mappings > 1)
1582 kidx |= 1;
1583 if (pg->mdpage.krw_mappings)
1584 kidx |= 2;
1586 uidx = 0;
1587 if (pg->mdpage.uro_mappings || pg->mdpage.urw_mappings > 1)
1588 uidx |= 1;
1589 if (pg->mdpage.urw_mappings)
1590 uidx |= 2;
1592 return (pmap_vac_flags[uidx][kidx]);
1595 static inline void
1596 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1598 int nattr;
1600 nattr = pmap_get_vac_flags(pg);
1602 if (nattr < 0) {
1603 pg->mdpage.pvh_attrs &= ~PVF_NC;
1604 return;
1607 if (nattr == 0 && (pg->mdpage.pvh_attrs & PVF_NC) == 0)
1608 return;
1610 if (pm == pmap_kernel())
1611 pmap_vac_me_kpmap(pg, pm, va);
1612 else
1613 pmap_vac_me_user(pg, pm, va);
1615 pg->mdpage.pvh_attrs = (pg->mdpage.pvh_attrs & ~PVF_NC) | nattr;
1618 static void
1619 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vaddr_t va)
1621 u_int u_cacheable, u_entries;
1622 struct pv_entry *pv;
1623 pmap_t last_pmap = pm;
1626 * Pass one, see if there are both kernel and user pmaps for
1627 * this page. Calculate whether there are user-writable or
1628 * kernel-writable pages.
1630 u_cacheable = 0;
1631 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1632 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
1633 u_cacheable++;
1636 u_entries = pg->mdpage.urw_mappings + pg->mdpage.uro_mappings;
1639 * We know we have just been updating a kernel entry, so if
1640 * all user pages are already cacheable, then there is nothing
1641 * further to do.
1643 if (pg->mdpage.k_mappings == 0 && u_cacheable == u_entries)
1644 return;
1646 if (u_entries) {
1648 * Scan over the list again, for each entry, if it
1649 * might not be set correctly, call pmap_vac_me_user
1650 * to recalculate the settings.
1652 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1654 * We know kernel mappings will get set
1655 * correctly in other calls. We also know
1656 * that if the pmap is the same as last_pmap
1657 * then we've just handled this entry.
1659 if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
1660 continue;
1663 * If there are kernel entries and this page
1664 * is writable but non-cacheable, then we can
1665 * skip this entry also.
1667 if (pg->mdpage.k_mappings &&
1668 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
1669 (PVF_NC | PVF_WRITE))
1670 continue;
1673 * Similarly if there are no kernel-writable
1674 * entries and the page is already
1675 * read-only/cacheable.
1677 if (pg->mdpage.krw_mappings == 0 &&
1678 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
1679 continue;
1682 * For some of the remaining cases, we know
1683 * that we must recalculate, but for others we
1684 * can't tell if they are correct or not, so
1685 * we recalculate anyway.
1687 pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
1690 if (pg->mdpage.k_mappings == 0)
1691 return;
1694 pmap_vac_me_user(pg, pm, va);
1697 static void
1698 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vaddr_t va)
1700 pmap_t kpmap = pmap_kernel();
1701 struct pv_entry *pv, *npv = NULL;
1702 struct l2_bucket *l2b;
1703 pt_entry_t *ptep, pte;
1704 u_int entries = 0;
1705 u_int writable = 0;
1706 u_int cacheable_entries = 0;
1707 u_int kern_cacheable = 0;
1708 u_int other_writable = 0;
1711 * Count mappings and writable mappings in this pmap.
1712 * Include kernel mappings as part of our own.
1713 * Keep a pointer to the first one.
1715 npv = NULL;
1716 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
1717 /* Count mappings in the same pmap */
1718 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
1719 if (entries++ == 0)
1720 npv = pv;
1722 /* Cacheable mappings */
1723 if ((pv->pv_flags & PVF_NC) == 0) {
1724 cacheable_entries++;
1725 if (kpmap == pv->pv_pmap)
1726 kern_cacheable++;
1729 /* Writable mappings */
1730 if (pv->pv_flags & PVF_WRITE)
1731 ++writable;
1732 } else
1733 if (pv->pv_flags & PVF_WRITE)
1734 other_writable = 1;
1738 * Enable or disable caching as necessary.
1739 * Note: the first entry might be part of the kernel pmap,
1740 * so we can't assume this is indicative of the state of the
1741 * other (maybe non-kpmap) entries.
1743 if ((entries > 1 && writable) ||
1744 (entries > 0 && pm == kpmap && other_writable)) {
1745 if (cacheable_entries == 0)
1746 return;
1748 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1749 if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
1750 (pv->pv_flags & PVF_NC))
1751 continue;
1753 pv->pv_flags |= PVF_NC;
1755 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1756 KDASSERT(l2b != NULL);
1757 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1758 pte = *ptep & ~L2_S_CACHE_MASK;
1760 if ((va != pv->pv_va || pm != pv->pv_pmap) &&
1761 l2pte_valid(pte)) {
1762 if (PV_BEEN_EXECD(pv->pv_flags)) {
1763 #ifdef PMAP_CACHE_VIVT
1764 pmap_idcache_wbinv_range(pv->pv_pmap,
1765 pv->pv_va, PAGE_SIZE);
1766 #endif
1767 pmap_tlb_flushID_SE(pv->pv_pmap,
1768 pv->pv_va);
1769 } else
1770 if (PV_BEEN_REFD(pv->pv_flags)) {
1771 #ifdef PMAP_CACHE_VIVT
1772 pmap_dcache_wb_range(pv->pv_pmap,
1773 pv->pv_va, PAGE_SIZE, true,
1774 (pv->pv_flags & PVF_WRITE) == 0);
1775 #endif
1776 pmap_tlb_flushD_SE(pv->pv_pmap,
1777 pv->pv_va);
1781 *ptep = pte;
1782 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1784 cpu_cpwait();
1785 } else
1786 if (entries > cacheable_entries) {
1788 * Turn cacheing back on for some pages. If it is a kernel
1789 * page, only do so if there are no other writable pages.
1791 for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
1792 if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
1793 (kpmap != pv->pv_pmap || other_writable)))
1794 continue;
1796 pv->pv_flags &= ~PVF_NC;
1798 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
1799 KDASSERT(l2b != NULL);
1800 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
1801 pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
1803 if (l2pte_valid(pte)) {
1804 if (PV_BEEN_EXECD(pv->pv_flags)) {
1805 pmap_tlb_flushID_SE(pv->pv_pmap,
1806 pv->pv_va);
1807 } else
1808 if (PV_BEEN_REFD(pv->pv_flags)) {
1809 pmap_tlb_flushD_SE(pv->pv_pmap,
1810 pv->pv_va);
1814 *ptep = pte;
1815 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
1819 #endif
1821 #ifdef PMAP_CACHE_VIPT
1822 static void
1823 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vaddr_t va)
1825 struct pv_entry *pv;
1826 vaddr_t tst_mask;
1827 bool bad_alias;
1828 struct l2_bucket *l2b;
1829 pt_entry_t *ptep, pte, opte;
1830 const u_int
1831 rw_mappings = pg->mdpage.urw_mappings + pg->mdpage.krw_mappings,
1832 ro_mappings = pg->mdpage.uro_mappings + pg->mdpage.kro_mappings;
1834 /* do we need to do anything? */
1835 if (arm_cache_prefer_mask == 0)
1836 return;
1838 NPDEBUG(PDB_VAC, printf("pmap_vac_me_harder: pg=%p, pmap=%p va=%08lx\n",
1839 pg, pm, va));
1841 KASSERT(!va || pm);
1842 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1844 /* Already a conflict? */
1845 if (__predict_false(pg->mdpage.pvh_attrs & PVF_NC)) {
1846 /* just an add, things are already non-cached */
1847 KASSERT(!(pg->mdpage.pvh_attrs & PVF_DIRTY));
1848 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
1849 bad_alias = false;
1850 if (va) {
1851 PMAPCOUNT(vac_color_none);
1852 bad_alias = true;
1853 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1854 goto fixup;
1856 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1857 /* the list can't be empty because it would be cachable */
1858 if (pg->mdpage.pvh_attrs & PVF_KMPAGE) {
1859 tst_mask = pg->mdpage.pvh_attrs;
1860 } else {
1861 KASSERT(pv);
1862 tst_mask = pv->pv_va;
1863 pv = SLIST_NEXT(pv, pv_link);
1866 * Only check for a bad alias if we have writable mappings.
1868 tst_mask &= arm_cache_prefer_mask;
1869 if (rw_mappings > 0 && arm_cache_prefer_mask) {
1870 for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
1871 /* if there's a bad alias, stop checking. */
1872 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
1873 bad_alias = true;
1875 pg->mdpage.pvh_attrs |= PVF_WRITE;
1876 if (!bad_alias)
1877 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1878 } else {
1880 * We have only read-only mappings. Let's see if there
1881 * are multiple colors in use or if we mapped a KMPAGE.
1882 * If the latter, we have a bad alias. If the former,
1883 * we need to remember that.
1885 for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
1886 if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
1887 if (pg->mdpage.pvh_attrs & PVF_KMPAGE)
1888 bad_alias = true;
1889 break;
1892 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1894 * No KMPAGE and we exited early, so we must have
1895 * multiple color mappings.
1897 if (!bad_alias && pv != NULL)
1898 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
1901 /* If no conflicting colors, set everything back to cached */
1902 if (!bad_alias) {
1903 #ifdef DEBUG
1904 if ((pg->mdpage.pvh_attrs & PVF_WRITE)
1905 || ro_mappings < 2) {
1906 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1907 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1909 #endif
1910 pg->mdpage.pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
1911 pg->mdpage.pvh_attrs |= tst_mask | PVF_COLORED;
1913 * Restore DIRTY bit if page is modified
1915 if (pg->mdpage.pvh_attrs & PVF_DMOD)
1916 pg->mdpage.pvh_attrs |= PVF_DIRTY;
1917 PMAPCOUNT(vac_color_restore);
1918 } else {
1919 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
1920 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
1922 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1923 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1924 } else if (!va) {
1925 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(pg));
1926 KASSERT(!(pg->mdpage.pvh_attrs & PVF_WRITE)
1927 || (pg->mdpage.pvh_attrs & PVF_DIRTY));
1928 if (rw_mappings == 0) {
1929 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
1930 if (ro_mappings == 1
1931 && (pg->mdpage.pvh_attrs & PVF_MULTCLR)) {
1933 * If this is the last readonly mapping
1934 * but it doesn't match the current color
1935 * for the page, change the current color
1936 * to match this last readonly mapping.
1938 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
1939 tst_mask = (pg->mdpage.pvh_attrs ^ pv->pv_va)
1940 & arm_cache_prefer_mask;
1941 if (tst_mask) {
1942 pg->mdpage.pvh_attrs ^= tst_mask;
1943 PMAPCOUNT(vac_color_change);
1947 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1948 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1949 return;
1950 } else if (!pmap_is_page_colored_p(pg)) {
1951 /* not colored so we just use its color */
1952 KASSERT(pg->mdpage.pvh_attrs & (PVF_WRITE|PVF_DIRTY));
1953 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
1954 PMAPCOUNT(vac_color_new);
1955 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
1956 pg->mdpage.pvh_attrs |= PVF_COLORED
1957 | (va & arm_cache_prefer_mask)
1958 | (rw_mappings > 0 ? PVF_WRITE : 0);
1959 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
1960 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
1961 return;
1962 } else if (((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
1963 bad_alias = false;
1964 if (rw_mappings > 0) {
1966 * We now have writeable mappings and if we have
1967 * readonly mappings in more than once color, we have
1968 * an aliasing problem. Regardless mark the page as
1969 * writeable.
1971 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
1972 if (ro_mappings < 2) {
1974 * If we only have less than two
1975 * read-only mappings, just flush the
1976 * non-primary colors from the cache.
1978 pmap_flush_page(pg,
1979 PMAP_FLUSH_SECONDARY);
1980 } else {
1981 bad_alias = true;
1984 pg->mdpage.pvh_attrs |= PVF_WRITE;
1986 /* If no conflicting colors, set everything back to cached */
1987 if (!bad_alias) {
1988 #ifdef DEBUG
1989 if (rw_mappings > 0
1990 || (pg->mdpage.pvh_attrs & PMAP_KMPAGE)) {
1991 tst_mask = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
1992 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link)
1993 KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
1995 #endif
1996 if (SLIST_EMPTY(&pg->mdpage.pvh_list))
1997 PMAPCOUNT(vac_color_reuse);
1998 else
1999 PMAPCOUNT(vac_color_ok);
2001 /* matching color, just return */
2002 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2003 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2004 return;
2006 KASSERT(SLIST_FIRST(&pg->mdpage.pvh_list) != NULL);
2007 KASSERT(SLIST_NEXT(SLIST_FIRST(&pg->mdpage.pvh_list), pv_link) != NULL);
2009 /* color conflict. evict from cache. */
2011 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2012 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2013 pg->mdpage.pvh_attrs |= PVF_NC;
2014 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2015 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
2016 PMAPCOUNT(vac_color_erase);
2017 } else if (rw_mappings == 0
2018 && (pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2019 KASSERT((pg->mdpage.pvh_attrs & PVF_WRITE) == 0);
2022 * If the page has dirty cache lines, clean it.
2024 if (pg->mdpage.pvh_attrs & PVF_DIRTY)
2025 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
2028 * If this is the first remapping (we know that there are no
2029 * writeable mappings), then this is a simple color change.
2030 * Otherwise this is a seconary r/o mapping, which means
2031 * we don't have to do anything.
2033 if (ro_mappings == 1) {
2034 KASSERT(((pg->mdpage.pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
2035 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2036 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2037 PMAPCOUNT(vac_color_change);
2038 } else {
2039 PMAPCOUNT(vac_color_blind);
2041 pg->mdpage.pvh_attrs |= PVF_MULTCLR;
2042 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2043 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2044 return;
2045 } else {
2046 if (rw_mappings > 0)
2047 pg->mdpage.pvh_attrs |= PVF_WRITE;
2049 /* color conflict. evict from cache. */
2050 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
2052 /* the list can't be empty because this was a enter/modify */
2053 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2054 if ((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0) {
2055 KASSERT(pv);
2057 * If there's only one mapped page, change color to the
2058 * page's new color and return. Restore the DIRTY bit
2059 * that was erased by pmap_flush_page.
2061 if (SLIST_NEXT(pv, pv_link) == NULL) {
2062 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
2063 pg->mdpage.pvh_attrs |= (va & arm_cache_prefer_mask);
2064 if (pg->mdpage.pvh_attrs & PVF_DMOD)
2065 pg->mdpage.pvh_attrs |= PVF_DIRTY;
2066 PMAPCOUNT(vac_color_change);
2067 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2068 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2069 KASSERT(!(pg->mdpage.pvh_attrs & PVF_MULTCLR));
2070 return;
2073 bad_alias = true;
2074 pg->mdpage.pvh_attrs &= ~PVF_COLORED;
2075 pg->mdpage.pvh_attrs |= PVF_NC;
2076 PMAPCOUNT(vac_color_erase);
2077 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
2080 fixup:
2081 KASSERT((rw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2084 * Turn cacheing on/off for all pages.
2086 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2087 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
2088 KDASSERT(l2b != NULL);
2089 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2090 opte = *ptep;
2091 pte = opte & ~L2_S_CACHE_MASK;
2092 if (bad_alias) {
2093 pv->pv_flags |= PVF_NC;
2094 } else {
2095 pv->pv_flags &= ~PVF_NC;
2096 pte |= pte_l2_s_cache_mode;
2099 if (opte == pte) /* only update is there's a change */
2100 continue;
2102 if (l2pte_valid(pte)) {
2103 if (PV_BEEN_EXECD(pv->pv_flags)) {
2104 pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va);
2105 } else if (PV_BEEN_REFD(pv->pv_flags)) {
2106 pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va);
2110 *ptep = pte;
2111 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
2114 #endif /* PMAP_CACHE_VIPT */
2118 * Modify pte bits for all ptes corresponding to the given physical address.
2119 * We use `maskbits' rather than `clearbits' because we're always passing
2120 * constants and the latter would require an extra inversion at run-time.
2122 static void
2123 pmap_clearbit(struct vm_page *pg, u_int maskbits)
2125 struct l2_bucket *l2b;
2126 struct pv_entry *pv;
2127 pt_entry_t *ptep, npte, opte;
2128 pmap_t pm;
2129 vaddr_t va;
2130 u_int oflags;
2131 #ifdef PMAP_CACHE_VIPT
2132 const bool want_syncicache = PV_IS_EXEC_P(pg->mdpage.pvh_attrs);
2133 bool need_syncicache = false;
2134 bool did_syncicache = false;
2135 bool need_vac_me_harder = false;
2136 #endif
2138 NPDEBUG(PDB_BITS,
2139 printf("pmap_clearbit: pg %p (0x%08lx) mask 0x%x\n",
2140 pg, VM_PAGE_TO_PHYS(pg), maskbits));
2142 PMAP_HEAD_TO_MAP_LOCK();
2143 simple_lock(&pg->mdpage.pvh_slock);
2145 #ifdef PMAP_CACHE_VIPT
2147 * If we might want to sync the I-cache and we've modified it,
2148 * then we know we definitely need to sync or discard it.
2150 if (want_syncicache)
2151 need_syncicache = pg->mdpage.pvh_attrs & PVF_MOD;
2152 #endif
2154 * Clear saved attributes (modify, reference)
2156 pg->mdpage.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
2158 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
2159 #ifdef PMAP_CACHE_VIPT
2160 if (need_syncicache) {
2162 * No one has it mapped, so just discard it. The next
2163 * exec remapping will cause it to be synced.
2165 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2166 PMAPCOUNT(exec_discarded_clearbit);
2168 #endif
2169 simple_unlock(&pg->mdpage.pvh_slock);
2170 PMAP_HEAD_TO_MAP_UNLOCK();
2171 return;
2175 * Loop over all current mappings setting/clearing as appropos
2177 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
2178 va = pv->pv_va;
2179 pm = pv->pv_pmap;
2180 oflags = pv->pv_flags;
2182 * Kernel entries are unmanaged and as such not to be changed.
2184 if (oflags & PVF_KENTRY)
2185 continue;
2186 pv->pv_flags &= ~maskbits;
2188 pmap_acquire_pmap_lock(pm);
2190 l2b = pmap_get_l2_bucket(pm, va);
2191 KDASSERT(l2b != NULL);
2193 ptep = &l2b->l2b_kva[l2pte_index(va)];
2194 npte = opte = *ptep;
2196 NPDEBUG(PDB_BITS,
2197 printf(
2198 "pmap_clearbit: pv %p, pm %p, va 0x%08lx, flag 0x%x\n",
2199 pv, pv->pv_pmap, pv->pv_va, oflags));
2201 if (maskbits & (PVF_WRITE|PVF_MOD)) {
2202 #ifdef PMAP_CACHE_VIVT
2203 if ((pv->pv_flags & PVF_NC)) {
2205 * Entry is not cacheable:
2207 * Don't turn caching on again if this is a
2208 * modified emulation. This would be
2209 * inconsitent with the settings created by
2210 * pmap_vac_me_harder(). Otherwise, it's safe
2211 * to re-enable cacheing.
2213 * There's no need to call pmap_vac_me_harder()
2214 * here: all pages are losing their write
2215 * permission.
2217 if (maskbits & PVF_WRITE) {
2218 npte |= pte_l2_s_cache_mode;
2219 pv->pv_flags &= ~PVF_NC;
2221 } else
2222 if (opte & L2_S_PROT_W) {
2224 * Entry is writable/cacheable: check if pmap
2225 * is current if it is flush it, otherwise it
2226 * won't be in the cache
2228 if (PV_BEEN_EXECD(oflags))
2229 pmap_idcache_wbinv_range(pm, pv->pv_va,
2230 PAGE_SIZE);
2231 else
2232 if (PV_BEEN_REFD(oflags))
2233 pmap_dcache_wb_range(pm, pv->pv_va,
2234 PAGE_SIZE,
2235 (maskbits & PVF_REF) != 0, false);
2237 #endif
2239 /* make the pte read only */
2240 npte &= ~L2_S_PROT_W;
2242 if (maskbits & oflags & PVF_WRITE) {
2244 * Keep alias accounting up to date
2246 if (pv->pv_pmap == pmap_kernel()) {
2247 pg->mdpage.krw_mappings--;
2248 pg->mdpage.kro_mappings++;
2249 } else {
2250 pg->mdpage.urw_mappings--;
2251 pg->mdpage.uro_mappings++;
2253 #ifdef PMAP_CACHE_VIPT
2254 if (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0)
2255 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2256 if (want_syncicache)
2257 need_syncicache = true;
2258 need_vac_me_harder = true;
2259 #endif
2263 if (maskbits & PVF_REF) {
2264 if ((pv->pv_flags & PVF_NC) == 0 &&
2265 (maskbits & (PVF_WRITE|PVF_MOD)) == 0 &&
2266 l2pte_valid(npte)) {
2267 #ifdef PMAP_CACHE_VIVT
2269 * Check npte here; we may have already
2270 * done the wbinv above, and the validity
2271 * of the PTE is the same for opte and
2272 * npte.
2274 /* XXXJRT need idcache_inv_range */
2275 if (PV_BEEN_EXECD(oflags))
2276 pmap_idcache_wbinv_range(pm,
2277 pv->pv_va, PAGE_SIZE);
2278 else
2279 if (PV_BEEN_REFD(oflags))
2280 pmap_dcache_wb_range(pm,
2281 pv->pv_va, PAGE_SIZE,
2282 true, true);
2283 #endif
2287 * Make the PTE invalid so that we will take a
2288 * page fault the next time the mapping is
2289 * referenced.
2291 npte &= ~L2_TYPE_MASK;
2292 npte |= L2_TYPE_INV;
2295 if (npte != opte) {
2296 *ptep = npte;
2297 PTE_SYNC(ptep);
2298 /* Flush the TLB entry if a current pmap. */
2299 if (PV_BEEN_EXECD(oflags))
2300 pmap_tlb_flushID_SE(pm, pv->pv_va);
2301 else
2302 if (PV_BEEN_REFD(oflags))
2303 pmap_tlb_flushD_SE(pm, pv->pv_va);
2306 pmap_release_pmap_lock(pm);
2308 NPDEBUG(PDB_BITS,
2309 printf("pmap_clearbit: pm %p va 0x%lx opte 0x%08x npte 0x%08x\n",
2310 pm, va, opte, npte));
2313 #ifdef PMAP_CACHE_VIPT
2315 * If we need to sync the I-cache and we haven't done it yet, do it.
2317 if (need_syncicache && !did_syncicache) {
2318 pmap_syncicache_page(pg);
2319 PMAPCOUNT(exec_synced_clearbit);
2322 * If we are changing this to read-only, we need to call vac_me_harder
2323 * so we can change all the read-only pages to cacheable. We pretend
2324 * this as a page deletion.
2326 if (need_vac_me_harder) {
2327 if (pg->mdpage.pvh_attrs & PVF_NC)
2328 pmap_vac_me_harder(pg, NULL, 0);
2330 #endif
2332 simple_unlock(&pg->mdpage.pvh_slock);
2333 PMAP_HEAD_TO_MAP_UNLOCK();
2337 * pmap_clean_page()
2339 * This is a local function used to work out the best strategy to clean
2340 * a single page referenced by its entry in the PV table. It's used by
2341 * pmap_copy_page, pmap_zero page and maybe some others later on.
2343 * Its policy is effectively:
2344 * o If there are no mappings, we don't bother doing anything with the cache.
2345 * o If there is one mapping, we clean just that page.
2346 * o If there are multiple mappings, we clean the entire cache.
2348 * So that some functions can be further optimised, it returns 0 if it didn't
2349 * clean the entire cache, or 1 if it did.
2351 * XXX One bug in this routine is that if the pv_entry has a single page
2352 * mapped at 0x00000000 a whole cache clean will be performed rather than
2353 * just the 1 page. Since this should not occur in everyday use and if it does
2354 * it will just result in not the most efficient clean for the page.
2356 #ifdef PMAP_CACHE_VIVT
2357 static int
2358 pmap_clean_page(struct pv_entry *pv, bool is_src)
2360 pmap_t pm_to_clean = NULL;
2361 struct pv_entry *npv;
2362 u_int cache_needs_cleaning = 0;
2363 u_int flags = 0;
2364 vaddr_t page_to_clean = 0;
2366 if (pv == NULL) {
2367 /* nothing mapped in so nothing to flush */
2368 return (0);
2372 * Since we flush the cache each time we change to a different
2373 * user vmspace, we only need to flush the page if it is in the
2374 * current pmap.
2377 for (npv = pv; npv; npv = SLIST_NEXT(npv, pv_link)) {
2378 if (pmap_is_current(npv->pv_pmap)) {
2379 flags |= npv->pv_flags;
2381 * The page is mapped non-cacheable in
2382 * this map. No need to flush the cache.
2384 if (npv->pv_flags & PVF_NC) {
2385 #ifdef DIAGNOSTIC
2386 if (cache_needs_cleaning)
2387 panic("pmap_clean_page: "
2388 "cache inconsistency");
2389 #endif
2390 break;
2391 } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
2392 continue;
2393 if (cache_needs_cleaning) {
2394 page_to_clean = 0;
2395 break;
2396 } else {
2397 page_to_clean = npv->pv_va;
2398 pm_to_clean = npv->pv_pmap;
2400 cache_needs_cleaning = 1;
2404 if (page_to_clean) {
2405 if (PV_BEEN_EXECD(flags))
2406 pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
2407 PAGE_SIZE);
2408 else
2409 pmap_dcache_wb_range(pm_to_clean, page_to_clean,
2410 PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
2411 } else if (cache_needs_cleaning) {
2412 pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
2414 if (PV_BEEN_EXECD(flags))
2415 pmap_idcache_wbinv_all(pm);
2416 else
2417 pmap_dcache_wbinv_all(pm);
2418 return (1);
2420 return (0);
2422 #endif
2424 #ifdef PMAP_CACHE_VIPT
2426 * Sync a page with the I-cache. Since this is a VIPT, we must pick the
2427 * right cache alias to make sure we flush the right stuff.
2429 void
2430 pmap_syncicache_page(struct vm_page *pg)
2432 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2433 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
2435 NPDEBUG(PDB_EXEC, printf("pmap_syncicache_page: pg=%p (attrs=%#x)\n",
2436 pg, pg->mdpage.pvh_attrs));
2438 * No need to clean the page if it's non-cached.
2440 if (pg->mdpage.pvh_attrs & PVF_NC)
2441 return;
2442 KASSERT(arm_cache_prefer_mask == 0 || pg->mdpage.pvh_attrs & PVF_COLORED);
2444 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2446 * Set up a PTE with the right coloring to flush existing cache lines.
2448 *ptep = L2_S_PROTO |
2449 VM_PAGE_TO_PHYS(pg)
2450 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2451 | pte_l2_s_cache_mode;
2452 PTE_SYNC(ptep);
2455 * Flush it.
2457 cpu_icache_sync_range(cdstp + va_offset, PAGE_SIZE);
2459 * Unmap the page.
2461 *ptep = 0;
2462 PTE_SYNC(ptep);
2463 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2465 pg->mdpage.pvh_attrs |= PVF_EXEC;
2466 PMAPCOUNT(exec_synced);
2469 void
2470 pmap_flush_page(struct vm_page *pg, enum pmap_flush_op flush)
2472 vsize_t va_offset, end_va;
2473 void (*cf)(vaddr_t, vsize_t);
2475 if (arm_cache_prefer_mask == 0)
2476 return;
2478 switch (flush) {
2479 case PMAP_FLUSH_PRIMARY:
2480 if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
2481 va_offset = 0;
2482 end_va = arm_cache_prefer_mask;
2483 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2484 PMAPCOUNT(vac_flush_lots);
2485 } else {
2486 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2487 end_va = va_offset;
2488 PMAPCOUNT(vac_flush_one);
2491 * Mark that the page is no longer dirty.
2493 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2494 cf = cpufuncs.cf_idcache_wbinv_range;
2495 break;
2496 case PMAP_FLUSH_SECONDARY:
2497 va_offset = 0;
2498 end_va = arm_cache_prefer_mask;
2499 cf = cpufuncs.cf_idcache_wbinv_range;
2500 pg->mdpage.pvh_attrs &= ~PVF_MULTCLR;
2501 PMAPCOUNT(vac_flush_lots);
2502 break;
2503 case PMAP_CLEAN_PRIMARY:
2504 va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
2505 end_va = va_offset;
2506 cf = cpufuncs.cf_dcache_wb_range;
2508 * Mark that the page is no longer dirty.
2510 if ((pg->mdpage.pvh_attrs & PVF_DMOD) == 0)
2511 pg->mdpage.pvh_attrs &= ~PVF_DIRTY;
2512 PMAPCOUNT(vac_clean_one);
2513 break;
2514 default:
2515 return;
2518 KASSERT(!(pg->mdpage.pvh_attrs & PVF_NC));
2520 NPDEBUG(PDB_VAC, printf("pmap_flush_page: pg=%p (attrs=%#x)\n",
2521 pg, pg->mdpage.pvh_attrs));
2523 for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
2524 const size_t pte_offset = va_offset >> PGSHIFT;
2525 pt_entry_t * const ptep = &cdst_pte[pte_offset];
2526 const pt_entry_t oldpte = *ptep;
2528 if (flush == PMAP_FLUSH_SECONDARY
2529 && va_offset == (pg->mdpage.pvh_attrs & arm_cache_prefer_mask))
2530 continue;
2532 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2534 * Set up a PTE with the right coloring to flush
2535 * existing cache entries.
2537 *ptep = L2_S_PROTO
2538 | VM_PAGE_TO_PHYS(pg)
2539 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
2540 | pte_l2_s_cache_mode;
2541 PTE_SYNC(ptep);
2544 * Flush it.
2546 (*cf)(cdstp + va_offset, PAGE_SIZE);
2549 * Restore the page table entry since we might have interrupted
2550 * pmap_zero_page or pmap_copy_page which was already using
2551 * this pte.
2553 *ptep = oldpte;
2554 PTE_SYNC(ptep);
2555 pmap_tlb_flushID_SE(pmap_kernel(), cdstp + va_offset);
2558 #endif /* PMAP_CACHE_VIPT */
2561 * Routine: pmap_page_remove
2562 * Function:
2563 * Removes this physical page from
2564 * all physical maps in which it resides.
2565 * Reflects back modify bits to the pager.
2567 static void
2568 pmap_page_remove(struct vm_page *pg)
2570 struct l2_bucket *l2b;
2571 struct pv_entry *pv, *npv, **pvp;
2572 pmap_t pm;
2573 pt_entry_t *ptep;
2574 bool flush;
2575 u_int flags;
2577 NPDEBUG(PDB_FOLLOW,
2578 printf("pmap_page_remove: pg %p (0x%08lx)\n", pg,
2579 VM_PAGE_TO_PHYS(pg)));
2581 PMAP_HEAD_TO_MAP_LOCK();
2582 simple_lock(&pg->mdpage.pvh_slock);
2584 pv = SLIST_FIRST(&pg->mdpage.pvh_list);
2585 if (pv == NULL) {
2586 #ifdef PMAP_CACHE_VIPT
2588 * We *know* the page contents are about to be replaced.
2589 * Discard the exec contents
2591 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2592 PMAPCOUNT(exec_discarded_page_protect);
2593 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2594 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2595 #endif
2596 simple_unlock(&pg->mdpage.pvh_slock);
2597 PMAP_HEAD_TO_MAP_UNLOCK();
2598 return;
2600 #ifdef PMAP_CACHE_VIPT
2601 KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(pg));
2602 #endif
2605 * Clear alias counts
2607 #ifdef PMAP_CACHE_VIVT
2608 pg->mdpage.k_mappings = 0;
2609 #endif
2610 pg->mdpage.urw_mappings = pg->mdpage.uro_mappings = 0;
2612 flush = false;
2613 flags = 0;
2615 #ifdef PMAP_CACHE_VIVT
2616 pmap_clean_page(pv, false);
2617 #endif
2619 pvp = &SLIST_FIRST(&pg->mdpage.pvh_list);
2620 while (pv) {
2621 pm = pv->pv_pmap;
2622 npv = SLIST_NEXT(pv, pv_link);
2623 if (flush == false && pmap_is_current(pm))
2624 flush = true;
2626 if (pm == pmap_kernel()) {
2627 #ifdef PMAP_CACHE_VIPT
2629 * If this was unmanaged mapping, it must be preserved.
2630 * Move it back on the list and advance the end-of-list
2631 * pointer.
2633 if (pv->pv_flags & PVF_KENTRY) {
2634 *pvp = pv;
2635 pvp = &SLIST_NEXT(pv, pv_link);
2636 pv = npv;
2637 continue;
2639 if (pv->pv_flags & PVF_WRITE)
2640 pg->mdpage.krw_mappings--;
2641 else
2642 pg->mdpage.kro_mappings--;
2643 #endif
2644 PMAPCOUNT(kernel_unmappings);
2646 PMAPCOUNT(unmappings);
2648 pmap_acquire_pmap_lock(pm);
2650 l2b = pmap_get_l2_bucket(pm, pv->pv_va);
2651 KDASSERT(l2b != NULL);
2653 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
2656 * Update statistics
2658 --pm->pm_stats.resident_count;
2660 /* Wired bit */
2661 if (pv->pv_flags & PVF_WIRED)
2662 --pm->pm_stats.wired_count;
2664 flags |= pv->pv_flags;
2667 * Invalidate the PTEs.
2669 *ptep = 0;
2670 PTE_SYNC_CURRENT(pm, ptep);
2671 pmap_free_l2_bucket(pm, l2b, 1);
2673 pool_put(&pmap_pv_pool, pv);
2674 pv = npv;
2676 * if we reach the end of the list and there are still
2677 * mappings, they might be able to be cached now.
2679 if (pv == NULL) {
2680 *pvp = NULL;
2681 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
2682 pmap_vac_me_harder(pg, pm, 0);
2684 pmap_release_pmap_lock(pm);
2686 #ifdef PMAP_CACHE_VIPT
2688 * Its EXEC cache is now gone.
2690 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs))
2691 PMAPCOUNT(exec_discarded_page_protect);
2692 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
2693 KASSERT(pg->mdpage.urw_mappings == 0);
2694 KASSERT(pg->mdpage.uro_mappings == 0);
2695 if (pg->mdpage.krw_mappings == 0)
2696 pg->mdpage.pvh_attrs &= ~PVF_WRITE;
2697 KASSERT((pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0) == !(pg->mdpage.pvh_attrs & PVF_WRITE));
2698 #endif
2699 simple_unlock(&pg->mdpage.pvh_slock);
2700 PMAP_HEAD_TO_MAP_UNLOCK();
2702 if (flush) {
2704 * Note: We can't use pmap_tlb_flush{I,}D() here since that
2705 * would need a subsequent call to pmap_update() to ensure
2706 * curpm->pm_cstate.cs_all is reset. Our callers are not
2707 * required to do that (see pmap(9)), so we can't modify
2708 * the current pmap's state.
2710 if (PV_BEEN_EXECD(flags))
2711 cpu_tlb_flushID();
2712 else
2713 cpu_tlb_flushD();
2715 cpu_cpwait();
2719 * pmap_t pmap_create(void)
2721 * Create a new pmap structure from scratch.
2723 pmap_t
2724 pmap_create(void)
2726 pmap_t pm;
2728 pm = pool_cache_get(&pmap_cache, PR_WAITOK);
2730 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
2731 pm->pm_stats.wired_count = 0;
2732 pm->pm_stats.resident_count = 1;
2733 pm->pm_cstate.cs_all = 0;
2734 pmap_alloc_l1(pm);
2737 * Note: The pool cache ensures that the pm_l2[] array is already
2738 * initialised to zero.
2741 pmap_pinit(pm);
2743 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
2745 return (pm);
2749 * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
2750 * u_int flags)
2752 * Insert the given physical page (p) at
2753 * the specified virtual address (v) in the
2754 * target physical map with the protection requested.
2756 * NB: This is the only routine which MAY NOT lazy-evaluate
2757 * or lose information. That is, this routine must actually
2758 * insert this page into the given map NOW.
2761 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2763 struct l2_bucket *l2b;
2764 struct vm_page *pg, *opg;
2765 struct pv_entry *pv;
2766 pt_entry_t *ptep, npte, opte;
2767 u_int nflags;
2768 u_int oflags;
2770 NPDEBUG(PDB_ENTER, printf("pmap_enter: pm %p va 0x%lx pa 0x%lx prot %x flag %x\n", pm, va, pa, prot, flags));
2772 KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
2773 KDASSERT(((va | pa) & PGOFSET) == 0);
2776 * Get a pointer to the page. Later on in this function, we
2777 * test for a managed page by checking pg != NULL.
2779 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2781 nflags = 0;
2782 if (prot & VM_PROT_WRITE)
2783 nflags |= PVF_WRITE;
2784 if (prot & VM_PROT_EXECUTE)
2785 nflags |= PVF_EXEC;
2786 if (flags & PMAP_WIRED)
2787 nflags |= PVF_WIRED;
2789 PMAP_MAP_TO_HEAD_LOCK();
2790 pmap_acquire_pmap_lock(pm);
2793 * Fetch the L2 bucket which maps this page, allocating one if
2794 * necessary for user pmaps.
2796 if (pm == pmap_kernel())
2797 l2b = pmap_get_l2_bucket(pm, va);
2798 else
2799 l2b = pmap_alloc_l2_bucket(pm, va);
2800 if (l2b == NULL) {
2801 if (flags & PMAP_CANFAIL) {
2802 pmap_release_pmap_lock(pm);
2803 PMAP_MAP_TO_HEAD_UNLOCK();
2804 return (ENOMEM);
2806 panic("pmap_enter: failed to allocate L2 bucket");
2808 ptep = &l2b->l2b_kva[l2pte_index(va)];
2809 opte = *ptep;
2810 npte = pa;
2811 oflags = 0;
2813 if (opte) {
2815 * There is already a mapping at this address.
2816 * If the physical address is different, lookup the
2817 * vm_page.
2819 if (l2pte_pa(opte) != pa)
2820 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
2821 else
2822 opg = pg;
2823 } else
2824 opg = NULL;
2826 if (pg) {
2828 * This is to be a managed mapping.
2830 if ((flags & VM_PROT_ALL) ||
2831 (pg->mdpage.pvh_attrs & PVF_REF)) {
2833 * - The access type indicates that we don't need
2834 * to do referenced emulation.
2835 * OR
2836 * - The physical page has already been referenced
2837 * so no need to re-do referenced emulation here.
2839 npte |= L2_S_PROTO;
2841 nflags |= PVF_REF;
2843 if ((prot & VM_PROT_WRITE) != 0 &&
2844 ((flags & VM_PROT_WRITE) != 0 ||
2845 (pg->mdpage.pvh_attrs & PVF_MOD) != 0)) {
2847 * This is a writable mapping, and the
2848 * page's mod state indicates it has
2849 * already been modified. Make it
2850 * writable from the outset.
2852 npte |= L2_S_PROT_W;
2853 nflags |= PVF_MOD;
2855 } else {
2857 * Need to do page referenced emulation.
2859 npte |= L2_TYPE_INV;
2862 npte |= pte_l2_s_cache_mode;
2864 if (pg == opg) {
2866 * We're changing the attrs of an existing mapping.
2868 simple_lock(&pg->mdpage.pvh_slock);
2869 oflags = pmap_modify_pv(pg, pm, va,
2870 PVF_WRITE | PVF_EXEC | PVF_WIRED |
2871 PVF_MOD | PVF_REF, nflags);
2872 simple_unlock(&pg->mdpage.pvh_slock);
2874 #ifdef PMAP_CACHE_VIVT
2876 * We may need to flush the cache if we're
2877 * doing rw-ro...
2879 if (pm->pm_cstate.cs_cache_d &&
2880 (oflags & PVF_NC) == 0 &&
2881 (opte & L2_S_PROT_W) != 0 &&
2882 (prot & VM_PROT_WRITE) == 0)
2883 cpu_dcache_wb_range(va, PAGE_SIZE);
2884 #endif
2885 } else {
2887 * New mapping, or changing the backing page
2888 * of an existing mapping.
2890 if (opg) {
2892 * Replacing an existing mapping with a new one.
2893 * It is part of our managed memory so we
2894 * must remove it from the PV list
2896 simple_lock(&opg->mdpage.pvh_slock);
2897 pv = pmap_remove_pv(opg, pm, va);
2898 pmap_vac_me_harder(opg, pm, 0);
2899 simple_unlock(&opg->mdpage.pvh_slock);
2900 oflags = pv->pv_flags;
2902 #ifdef PMAP_CACHE_VIVT
2904 * If the old mapping was valid (ref/mod
2905 * emulation creates 'invalid' mappings
2906 * initially) then make sure to frob
2907 * the cache.
2909 if ((oflags & PVF_NC) == 0 &&
2910 l2pte_valid(opte)) {
2911 if (PV_BEEN_EXECD(oflags)) {
2912 pmap_idcache_wbinv_range(pm, va,
2913 PAGE_SIZE);
2914 } else
2915 if (PV_BEEN_REFD(oflags)) {
2916 pmap_dcache_wb_range(pm, va,
2917 PAGE_SIZE, true,
2918 (oflags & PVF_WRITE) == 0);
2921 #endif
2922 } else
2923 if ((pv = pool_get(&pmap_pv_pool, PR_NOWAIT)) == NULL){
2924 if ((flags & PMAP_CANFAIL) == 0)
2925 panic("pmap_enter: no pv entries");
2927 if (pm != pmap_kernel())
2928 pmap_free_l2_bucket(pm, l2b, 0);
2929 pmap_release_pmap_lock(pm);
2930 PMAP_MAP_TO_HEAD_UNLOCK();
2931 NPDEBUG(PDB_ENTER,
2932 printf("pmap_enter: ENOMEM\n"));
2933 return (ENOMEM);
2936 pmap_enter_pv(pg, pv, pm, va, nflags);
2938 } else {
2940 * We're mapping an unmanaged page.
2941 * These are always readable, and possibly writable, from
2942 * the get go as we don't need to track ref/mod status.
2944 npte |= L2_S_PROTO;
2945 if (prot & VM_PROT_WRITE)
2946 npte |= L2_S_PROT_W;
2949 * Make sure the vector table is mapped cacheable
2951 if (pm != pmap_kernel() && va == vector_page)
2952 npte |= pte_l2_s_cache_mode;
2954 if (opg) {
2956 * Looks like there's an existing 'managed' mapping
2957 * at this address.
2959 simple_lock(&opg->mdpage.pvh_slock);
2960 pv = pmap_remove_pv(opg, pm, va);
2961 pmap_vac_me_harder(opg, pm, 0);
2962 simple_unlock(&opg->mdpage.pvh_slock);
2963 oflags = pv->pv_flags;
2965 #ifdef PMAP_CACHE_VIVT
2966 if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) {
2967 if (PV_BEEN_EXECD(oflags))
2968 pmap_idcache_wbinv_range(pm, va,
2969 PAGE_SIZE);
2970 else
2971 if (PV_BEEN_REFD(oflags))
2972 pmap_dcache_wb_range(pm, va, PAGE_SIZE,
2973 true, (oflags & PVF_WRITE) == 0);
2975 #endif
2976 pool_put(&pmap_pv_pool, pv);
2981 * Make sure userland mappings get the right permissions
2983 if (pm != pmap_kernel() && va != vector_page)
2984 npte |= L2_S_PROT_U;
2987 * Keep the stats up to date
2989 if (opte == 0) {
2990 l2b->l2b_occupancy++;
2991 pm->pm_stats.resident_count++;
2994 NPDEBUG(PDB_ENTER,
2995 printf("pmap_enter: opte 0x%08x npte 0x%08x\n", opte, npte));
2998 * If this is just a wiring change, the two PTEs will be
2999 * identical, so there's no need to update the page table.
3001 if (npte != opte) {
3002 bool is_cached = pmap_is_cached(pm);
3004 *ptep = npte;
3005 if (is_cached) {
3007 * We only need to frob the cache/tlb if this pmap
3008 * is current
3010 PTE_SYNC(ptep);
3011 if (va != vector_page && l2pte_valid(npte)) {
3013 * This mapping is likely to be accessed as
3014 * soon as we return to userland. Fix up the
3015 * L1 entry to avoid taking another
3016 * page/domain fault.
3018 pd_entry_t *pl1pd, l1pd;
3020 pl1pd = &pm->pm_l1->l1_kva[L1_IDX(va)];
3021 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) |
3022 L1_C_PROTO;
3023 if (*pl1pd != l1pd) {
3024 *pl1pd = l1pd;
3025 PTE_SYNC(pl1pd);
3030 if (PV_BEEN_EXECD(oflags))
3031 pmap_tlb_flushID_SE(pm, va);
3032 else
3033 if (PV_BEEN_REFD(oflags))
3034 pmap_tlb_flushD_SE(pm, va);
3036 NPDEBUG(PDB_ENTER,
3037 printf("pmap_enter: is_cached %d cs 0x%08x\n",
3038 is_cached, pm->pm_cstate.cs_all));
3040 if (pg != NULL) {
3041 simple_lock(&pg->mdpage.pvh_slock);
3042 pmap_vac_me_harder(pg, pm, va);
3043 simple_unlock(&pg->mdpage.pvh_slock);
3046 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
3047 if (pg) {
3048 simple_lock(&pg->mdpage.pvh_slock);
3049 KASSERT((pg->mdpage.pvh_attrs & PVF_DMOD) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3050 KASSERT(((pg->mdpage.pvh_attrs & PVF_WRITE) == 0) == (pg->mdpage.urw_mappings + pg->mdpage.krw_mappings == 0));
3051 simple_unlock(&pg->mdpage.pvh_slock);
3053 #endif
3055 pmap_release_pmap_lock(pm);
3056 PMAP_MAP_TO_HEAD_UNLOCK();
3058 return (0);
3062 * pmap_remove()
3064 * pmap_remove is responsible for nuking a number of mappings for a range
3065 * of virtual address space in the current pmap. To do this efficiently
3066 * is interesting, because in a number of cases a wide virtual address
3067 * range may be supplied that contains few actual mappings. So, the
3068 * optimisations are:
3069 * 1. Skip over hunks of address space for which no L1 or L2 entry exists.
3070 * 2. Build up a list of pages we've hit, up to a maximum, so we can
3071 * maybe do just a partial cache clean. This path of execution is
3072 * complicated by the fact that the cache must be flushed _before_
3073 * the PTE is nuked, being a VAC :-)
3074 * 3. If we're called after UVM calls pmap_remove_all(), we can defer
3075 * all invalidations until pmap_update(), since pmap_remove_all() has
3076 * already flushed the cache.
3077 * 4. Maybe later fast-case a single page, but I don't think this is
3078 * going to make _that_ much difference overall.
3081 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
3083 void
3084 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
3086 struct l2_bucket *l2b;
3087 vaddr_t next_bucket;
3088 pt_entry_t *ptep;
3089 u_int cleanlist_idx, total, cnt;
3090 struct {
3091 vaddr_t va;
3092 pt_entry_t *ptep;
3093 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
3094 u_int mappings, is_exec, is_refd;
3096 NPDEBUG(PDB_REMOVE, printf("pmap_do_remove: pmap=%p sva=%08lx "
3097 "eva=%08lx\n", pm, sva, eva));
3100 * we lock in the pmap => pv_head direction
3102 PMAP_MAP_TO_HEAD_LOCK();
3103 pmap_acquire_pmap_lock(pm);
3105 if (pm->pm_remove_all || !pmap_is_cached(pm)) {
3106 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3107 if (pm->pm_cstate.cs_tlb == 0)
3108 pm->pm_remove_all = true;
3109 } else
3110 cleanlist_idx = 0;
3112 total = 0;
3114 while (sva < eva) {
3116 * Do one L2 bucket's worth at a time.
3118 next_bucket = L2_NEXT_BUCKET(sva);
3119 if (next_bucket > eva)
3120 next_bucket = eva;
3122 l2b = pmap_get_l2_bucket(pm, sva);
3123 if (l2b == NULL) {
3124 sva = next_bucket;
3125 continue;
3128 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3130 for (mappings = 0; sva < next_bucket; sva += PAGE_SIZE, ptep++){
3131 struct vm_page *pg;
3132 pt_entry_t pte;
3133 paddr_t pa;
3135 pte = *ptep;
3137 if (pte == 0) {
3138 /* Nothing here, move along */
3139 continue;
3142 pa = l2pte_pa(pte);
3143 is_exec = 0;
3144 is_refd = 1;
3147 * Update flags. In a number of circumstances,
3148 * we could cluster a lot of these and do a
3149 * number of sequential pages in one go.
3151 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
3152 struct pv_entry *pv;
3153 simple_lock(&pg->mdpage.pvh_slock);
3154 pv = pmap_remove_pv(pg, pm, sva);
3155 pmap_vac_me_harder(pg, pm, 0);
3156 simple_unlock(&pg->mdpage.pvh_slock);
3157 if (pv != NULL) {
3158 if (pm->pm_remove_all == false) {
3159 is_exec =
3160 PV_BEEN_EXECD(pv->pv_flags);
3161 is_refd =
3162 PV_BEEN_REFD(pv->pv_flags);
3164 pool_put(&pmap_pv_pool, pv);
3167 mappings++;
3169 if (!l2pte_valid(pte)) {
3171 * Ref/Mod emulation is still active for this
3172 * mapping, therefore it is has not yet been
3173 * accessed. No need to frob the cache/tlb.
3175 *ptep = 0;
3176 PTE_SYNC_CURRENT(pm, ptep);
3177 continue;
3180 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
3181 /* Add to the clean list. */
3182 cleanlist[cleanlist_idx].ptep = ptep;
3183 cleanlist[cleanlist_idx].va =
3184 sva | (is_exec & 1);
3185 cleanlist_idx++;
3186 } else
3187 if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
3188 /* Nuke everything if needed. */
3189 #ifdef PMAP_CACHE_VIVT
3190 pmap_idcache_wbinv_all(pm);
3191 #endif
3192 pmap_tlb_flushID(pm);
3195 * Roll back the previous PTE list,
3196 * and zero out the current PTE.
3198 for (cnt = 0;
3199 cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
3200 *cleanlist[cnt].ptep = 0;
3201 PTE_SYNC(cleanlist[cnt].ptep);
3203 *ptep = 0;
3204 PTE_SYNC(ptep);
3205 cleanlist_idx++;
3206 pm->pm_remove_all = true;
3207 } else {
3208 *ptep = 0;
3209 PTE_SYNC(ptep);
3210 if (pm->pm_remove_all == false) {
3211 if (is_exec)
3212 pmap_tlb_flushID_SE(pm, sva);
3213 else
3214 if (is_refd)
3215 pmap_tlb_flushD_SE(pm, sva);
3221 * Deal with any left overs
3223 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
3224 total += cleanlist_idx;
3225 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
3226 if (pm->pm_cstate.cs_all != 0) {
3227 vaddr_t clva = cleanlist[cnt].va & ~1;
3228 if (cleanlist[cnt].va & 1) {
3229 #ifdef PMAP_CACHE_VIVT
3230 pmap_idcache_wbinv_range(pm,
3231 clva, PAGE_SIZE);
3232 #endif
3233 pmap_tlb_flushID_SE(pm, clva);
3234 } else {
3235 #ifdef PMAP_CACHE_VIVT
3236 pmap_dcache_wb_range(pm,
3237 clva, PAGE_SIZE, true,
3238 false);
3239 #endif
3240 pmap_tlb_flushD_SE(pm, clva);
3243 *cleanlist[cnt].ptep = 0;
3244 PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
3248 * If it looks like we're removing a whole bunch
3249 * of mappings, it's faster to just write-back
3250 * the whole cache now and defer TLB flushes until
3251 * pmap_update() is called.
3253 if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
3254 cleanlist_idx = 0;
3255 else {
3256 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
3257 #ifdef PMAP_CACHE_VIVT
3258 pmap_idcache_wbinv_all(pm);
3259 #endif
3260 pm->pm_remove_all = true;
3264 pmap_free_l2_bucket(pm, l2b, mappings);
3265 pm->pm_stats.resident_count -= mappings;
3268 pmap_release_pmap_lock(pm);
3269 PMAP_MAP_TO_HEAD_UNLOCK();
3272 #ifdef PMAP_CACHE_VIPT
3273 static struct pv_entry *
3274 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
3276 struct pv_entry *pv;
3278 simple_lock(&pg->mdpage.pvh_slock);
3279 KASSERT(arm_cache_prefer_mask == 0 || pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
3280 KASSERT((pg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3282 pv = pmap_remove_pv(pg, pmap_kernel(), va);
3283 KASSERT(pv);
3284 KASSERT(pv->pv_flags & PVF_KENTRY);
3287 * If we are removing a writeable mapping to a cached exec page,
3288 * if it's the last mapping then clear it execness other sync
3289 * the page to the icache.
3291 if ((pg->mdpage.pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
3292 && (pv->pv_flags & PVF_WRITE) != 0) {
3293 if (SLIST_EMPTY(&pg->mdpage.pvh_list)) {
3294 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
3295 PMAPCOUNT(exec_discarded_kremove);
3296 } else {
3297 pmap_syncicache_page(pg);
3298 PMAPCOUNT(exec_synced_kremove);
3301 pmap_vac_me_harder(pg, pmap_kernel(), 0);
3302 simple_unlock(&pg->mdpage.pvh_slock);
3304 return pv;
3306 #endif /* PMAP_CACHE_VIPT */
3309 * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
3311 * We assume there is already sufficient KVM space available
3312 * to do this, as we can't allocate L2 descriptor tables/metadata
3313 * from here.
3315 void
3316 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
3318 struct l2_bucket *l2b;
3319 pt_entry_t *ptep, opte;
3320 #ifdef PMAP_CACHE_VIVT
3321 struct vm_page *pg = (prot & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
3322 #endif
3323 #ifdef PMAP_CACHE_VIPT
3324 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
3325 struct vm_page *opg;
3326 struct pv_entry *pv = NULL;
3327 #endif
3329 NPDEBUG(PDB_KENTER,
3330 printf("pmap_kenter_pa: va 0x%08lx, pa 0x%08lx, prot 0x%x\n",
3331 va, pa, prot));
3333 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3334 KDASSERT(l2b != NULL);
3336 ptep = &l2b->l2b_kva[l2pte_index(va)];
3337 opte = *ptep;
3339 if (opte == 0) {
3340 PMAPCOUNT(kenter_mappings);
3341 l2b->l2b_occupancy++;
3342 } else {
3343 PMAPCOUNT(kenter_remappings);
3344 #ifdef PMAP_CACHE_VIPT
3345 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3346 if (opg) {
3347 KASSERT(opg != pg);
3348 KASSERT((opg->mdpage.pvh_attrs & PVF_KMPAGE) == 0);
3349 KASSERT((prot & PMAP_KMPAGE) == 0);
3350 simple_lock(&opg->mdpage.pvh_slock);
3351 pv = pmap_kremove_pg(opg, va);
3352 simple_unlock(&opg->mdpage.pvh_slock);
3354 #endif
3355 if (l2pte_valid(opte)) {
3356 #ifdef PMAP_CACHE_VIVT
3357 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3358 #endif
3359 cpu_tlb_flushD_SE(va);
3360 cpu_cpwait();
3364 *ptep = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) |
3365 pte_l2_s_cache_mode;
3366 PTE_SYNC(ptep);
3368 if (pg) {
3369 if (prot & PMAP_KMPAGE) {
3370 simple_lock(&pg->mdpage.pvh_slock);
3371 KASSERT(pg->mdpage.urw_mappings == 0);
3372 KASSERT(pg->mdpage.uro_mappings == 0);
3373 KASSERT(pg->mdpage.krw_mappings == 0);
3374 KASSERT(pg->mdpage.kro_mappings == 0);
3375 #ifdef PMAP_CACHE_VIPT
3376 KASSERT(pv == NULL);
3377 KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
3378 KASSERT((pg->mdpage.pvh_attrs & PVF_NC) == 0);
3379 /* if there is a color conflict, evict from cache. */
3380 if (pmap_is_page_colored_p(pg)
3381 && ((va ^ pg->mdpage.pvh_attrs) & arm_cache_prefer_mask)) {
3382 PMAPCOUNT(vac_color_change);
3383 pmap_flush_page(pg, PMAP_FLUSH_PRIMARY);
3384 } else if (pg->mdpage.pvh_attrs & PVF_MULTCLR) {
3386 * If this page has multiple colors, expunge
3387 * them.
3389 PMAPCOUNT(vac_flush_lots2);
3390 pmap_flush_page(pg, PMAP_FLUSH_SECONDARY);
3392 pg->mdpage.pvh_attrs &= PAGE_SIZE - 1;
3393 pg->mdpage.pvh_attrs |= PVF_KMPAGE
3394 | PVF_COLORED | PVF_DIRTY
3395 | (va & arm_cache_prefer_mask);
3396 #endif
3397 #ifdef PMAP_CACHE_VIVT
3398 pg->mdpage.pvh_attrs |= PVF_KMPAGE;
3399 #endif
3400 pmap_kmpages++;
3401 simple_unlock(&pg->mdpage.pvh_slock);
3402 #ifdef PMAP_CACHE_VIPT
3403 } else {
3404 if (pv == NULL) {
3405 pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
3406 KASSERT(pv != NULL);
3408 pmap_enter_pv(pg, pv, pmap_kernel(), va,
3409 PVF_WIRED | PVF_KENTRY
3410 | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
3411 if ((prot & VM_PROT_WRITE)
3412 && !(pg->mdpage.pvh_attrs & PVF_NC))
3413 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3414 KASSERT((prot & VM_PROT_WRITE) == 0 || (pg->mdpage.pvh_attrs & (PVF_DIRTY|PVF_NC)));
3415 simple_lock(&pg->mdpage.pvh_slock);
3416 pmap_vac_me_harder(pg, pmap_kernel(), va);
3417 simple_unlock(&pg->mdpage.pvh_slock);
3418 #endif
3420 #ifdef PMAP_CACHE_VIPT
3421 } else {
3422 if (pv != NULL)
3423 pool_put(&pmap_pv_pool, pv);
3424 #endif
3428 void
3429 pmap_kremove(vaddr_t va, vsize_t len)
3431 struct l2_bucket *l2b;
3432 pt_entry_t *ptep, *sptep, opte;
3433 vaddr_t next_bucket, eva;
3434 u_int mappings;
3435 struct vm_page *opg;
3437 PMAPCOUNT(kenter_unmappings);
3439 NPDEBUG(PDB_KREMOVE, printf("pmap_kremove: va 0x%08lx, len 0x%08lx\n",
3440 va, len));
3442 eva = va + len;
3444 while (va < eva) {
3445 next_bucket = L2_NEXT_BUCKET(va);
3446 if (next_bucket > eva)
3447 next_bucket = eva;
3449 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
3450 KDASSERT(l2b != NULL);
3452 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
3453 mappings = 0;
3455 while (va < next_bucket) {
3456 opte = *ptep;
3457 opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
3458 if (opg) {
3459 if (opg->mdpage.pvh_attrs & PVF_KMPAGE) {
3460 simple_lock(&opg->mdpage.pvh_slock);
3461 KASSERT(opg->mdpage.urw_mappings == 0);
3462 KASSERT(opg->mdpage.uro_mappings == 0);
3463 KASSERT(opg->mdpage.krw_mappings == 0);
3464 KASSERT(opg->mdpage.kro_mappings == 0);
3465 opg->mdpage.pvh_attrs &= ~PVF_KMPAGE;
3466 #ifdef PMAP_CACHE_VIPT
3467 opg->mdpage.pvh_attrs &= ~PVF_WRITE;
3468 #endif
3469 pmap_kmpages--;
3470 simple_unlock(&opg->mdpage.pvh_slock);
3471 #ifdef PMAP_CACHE_VIPT
3472 } else {
3473 pool_put(&pmap_pv_pool,
3474 pmap_kremove_pg(opg, va));
3475 #endif
3478 if (l2pte_valid(opte)) {
3479 #ifdef PMAP_CACHE_VIVT
3480 cpu_dcache_wbinv_range(va, PAGE_SIZE);
3481 #endif
3482 cpu_tlb_flushD_SE(va);
3484 if (opte) {
3485 *ptep = 0;
3486 mappings++;
3488 va += PAGE_SIZE;
3489 ptep++;
3491 KDASSERT(mappings <= l2b->l2b_occupancy);
3492 l2b->l2b_occupancy -= mappings;
3493 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
3495 cpu_cpwait();
3498 bool
3499 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
3501 struct l2_dtable *l2;
3502 pd_entry_t *pl1pd, l1pd;
3503 pt_entry_t *ptep, pte;
3504 paddr_t pa;
3505 u_int l1idx;
3507 pmap_acquire_pmap_lock(pm);
3509 l1idx = L1_IDX(va);
3510 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3511 l1pd = *pl1pd;
3513 if (l1pte_section_p(l1pd)) {
3515 * These should only happen for pmap_kernel()
3517 KDASSERT(pm == pmap_kernel());
3518 pmap_release_pmap_lock(pm);
3519 pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
3520 } else {
3522 * Note that we can't rely on the validity of the L1
3523 * descriptor as an indication that a mapping exists.
3524 * We have to look it up in the L2 dtable.
3526 l2 = pm->pm_l2[L2_IDX(l1idx)];
3528 if (l2 == NULL ||
3529 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
3530 pmap_release_pmap_lock(pm);
3531 return false;
3534 ptep = &ptep[l2pte_index(va)];
3535 pte = *ptep;
3536 pmap_release_pmap_lock(pm);
3538 if (pte == 0)
3539 return false;
3541 switch (pte & L2_TYPE_MASK) {
3542 case L2_TYPE_L:
3543 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3544 break;
3546 default:
3547 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3548 break;
3552 if (pap != NULL)
3553 *pap = pa;
3555 return true;
3558 void
3559 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
3561 struct l2_bucket *l2b;
3562 pt_entry_t *ptep, pte;
3563 vaddr_t next_bucket;
3564 u_int flags;
3565 u_int clr_mask;
3566 int flush;
3568 NPDEBUG(PDB_PROTECT,
3569 printf("pmap_protect: pm %p sva 0x%lx eva 0x%lx prot 0x%x\n",
3570 pm, sva, eva, prot));
3572 if ((prot & VM_PROT_READ) == 0) {
3573 pmap_remove(pm, sva, eva);
3574 return;
3577 if (prot & VM_PROT_WRITE) {
3579 * If this is a read->write transition, just ignore it and let
3580 * uvm_fault() take care of it later.
3582 return;
3585 PMAP_MAP_TO_HEAD_LOCK();
3586 pmap_acquire_pmap_lock(pm);
3588 flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
3589 flags = 0;
3590 clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
3592 while (sva < eva) {
3593 next_bucket = L2_NEXT_BUCKET(sva);
3594 if (next_bucket > eva)
3595 next_bucket = eva;
3597 l2b = pmap_get_l2_bucket(pm, sva);
3598 if (l2b == NULL) {
3599 sva = next_bucket;
3600 continue;
3603 ptep = &l2b->l2b_kva[l2pte_index(sva)];
3605 while (sva < next_bucket) {
3606 pte = *ptep;
3607 if (l2pte_valid(pte) != 0 && (pte & L2_S_PROT_W) != 0) {
3608 struct vm_page *pg;
3609 u_int f;
3611 #ifdef PMAP_CACHE_VIVT
3613 * OK, at this point, we know we're doing
3614 * write-protect operation. If the pmap is
3615 * active, write-back the page.
3617 pmap_dcache_wb_range(pm, sva, PAGE_SIZE,
3618 false, false);
3619 #endif
3621 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
3622 pte &= ~L2_S_PROT_W;
3623 *ptep = pte;
3624 PTE_SYNC(ptep);
3626 if (pg != NULL) {
3627 simple_lock(&pg->mdpage.pvh_slock);
3628 f = pmap_modify_pv(pg, pm, sva,
3629 clr_mask, 0);
3630 pmap_vac_me_harder(pg, pm, sva);
3631 simple_unlock(&pg->mdpage.pvh_slock);
3632 } else
3633 f = PVF_REF | PVF_EXEC;
3635 if (flush >= 0) {
3636 flush++;
3637 flags |= f;
3638 } else
3639 if (PV_BEEN_EXECD(f))
3640 pmap_tlb_flushID_SE(pm, sva);
3641 else
3642 if (PV_BEEN_REFD(f))
3643 pmap_tlb_flushD_SE(pm, sva);
3646 sva += PAGE_SIZE;
3647 ptep++;
3651 pmap_release_pmap_lock(pm);
3652 PMAP_MAP_TO_HEAD_UNLOCK();
3654 if (flush) {
3655 if (PV_BEEN_EXECD(flags))
3656 pmap_tlb_flushID(pm);
3657 else
3658 if (PV_BEEN_REFD(flags))
3659 pmap_tlb_flushD(pm);
3663 void
3664 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
3666 struct l2_bucket *l2b;
3667 pt_entry_t *ptep;
3668 vaddr_t next_bucket;
3669 vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
3671 NPDEBUG(PDB_EXEC,
3672 printf("pmap_icache_sync_range: pm %p sva 0x%lx eva 0x%lx\n",
3673 pm, sva, eva));
3675 PMAP_MAP_TO_HEAD_LOCK();
3676 pmap_acquire_pmap_lock(pm);
3678 while (sva < eva) {
3679 next_bucket = L2_NEXT_BUCKET(sva);
3680 if (next_bucket > eva)
3681 next_bucket = eva;
3683 l2b = pmap_get_l2_bucket(pm, sva);
3684 if (l2b == NULL) {
3685 sva = next_bucket;
3686 continue;
3689 for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
3690 sva < next_bucket;
3691 sva += page_size, ptep++, page_size = PAGE_SIZE) {
3692 if (l2pte_valid(*ptep)) {
3693 cpu_icache_sync_range(sva,
3694 min(page_size, eva - sva));
3699 pmap_release_pmap_lock(pm);
3700 PMAP_MAP_TO_HEAD_UNLOCK();
3703 void
3704 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3707 NPDEBUG(PDB_PROTECT,
3708 printf("pmap_page_protect: pg %p (0x%08lx), prot 0x%x\n",
3709 pg, VM_PAGE_TO_PHYS(pg), prot));
3711 switch(prot) {
3712 case VM_PROT_READ|VM_PROT_WRITE:
3713 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3714 pmap_clearbit(pg, PVF_EXEC);
3715 break;
3716 #endif
3717 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3718 break;
3720 case VM_PROT_READ:
3721 #if defined(PMAP_CHECK_VIPT) && defined(PMAP_APX)
3722 pmap_clearbit(pg, PVF_WRITE|PVF_EXEC);
3723 break;
3724 #endif
3725 case VM_PROT_READ|VM_PROT_EXECUTE:
3726 pmap_clearbit(pg, PVF_WRITE);
3727 break;
3729 default:
3730 pmap_page_remove(pg);
3731 break;
3736 * pmap_clear_modify:
3738 * Clear the "modified" attribute for a page.
3740 bool
3741 pmap_clear_modify(struct vm_page *pg)
3743 bool rv;
3745 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3746 rv = true;
3747 #ifdef PMAP_CACHE_VIPT
3749 * If we are going to clear the modified bit and there are
3750 * no other modified bits set, flush the page to memory and
3751 * mark it clean.
3753 if ((pg->mdpage.pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
3754 pmap_flush_page(pg, PMAP_CLEAN_PRIMARY);
3755 #endif
3756 pmap_clearbit(pg, PVF_MOD);
3757 } else
3758 rv = false;
3760 return (rv);
3764 * pmap_clear_reference:
3766 * Clear the "referenced" attribute for a page.
3768 bool
3769 pmap_clear_reference(struct vm_page *pg)
3771 bool rv;
3773 if (pg->mdpage.pvh_attrs & PVF_REF) {
3774 rv = true;
3775 pmap_clearbit(pg, PVF_REF);
3776 } else
3777 rv = false;
3779 return (rv);
3783 * pmap_is_modified:
3785 * Test if a page has the "modified" attribute.
3787 /* See <arm/arm32/pmap.h> */
3790 * pmap_is_referenced:
3792 * Test if a page has the "referenced" attribute.
3794 /* See <arm/arm32/pmap.h> */
3797 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
3799 struct l2_dtable *l2;
3800 struct l2_bucket *l2b;
3801 pd_entry_t *pl1pd, l1pd;
3802 pt_entry_t *ptep, pte;
3803 paddr_t pa;
3804 u_int l1idx;
3805 int rv = 0;
3807 PMAP_MAP_TO_HEAD_LOCK();
3808 pmap_acquire_pmap_lock(pm);
3810 l1idx = L1_IDX(va);
3813 * If there is no l2_dtable for this address, then the process
3814 * has no business accessing it.
3816 * Note: This will catch userland processes trying to access
3817 * kernel addresses.
3819 l2 = pm->pm_l2[L2_IDX(l1idx)];
3820 if (l2 == NULL)
3821 goto out;
3824 * Likewise if there is no L2 descriptor table
3826 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
3827 if (l2b->l2b_kva == NULL)
3828 goto out;
3831 * Check the PTE itself.
3833 ptep = &l2b->l2b_kva[l2pte_index(va)];
3834 pte = *ptep;
3835 if (pte == 0)
3836 goto out;
3839 * Catch a userland access to the vector page mapped at 0x0
3841 if (user && (pte & L2_S_PROT_U) == 0)
3842 goto out;
3844 pa = l2pte_pa(pte);
3846 if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
3848 * This looks like a good candidate for "page modified"
3849 * emulation...
3851 struct pv_entry *pv;
3852 struct vm_page *pg;
3854 /* Extract the physical address of the page */
3855 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3856 goto out;
3858 /* Get the current flags for this page. */
3859 simple_lock(&pg->mdpage.pvh_slock);
3861 pv = pmap_find_pv(pg, pm, va);
3862 if (pv == NULL) {
3863 simple_unlock(&pg->mdpage.pvh_slock);
3864 goto out;
3868 * Do the flags say this page is writable? If not then it
3869 * is a genuine write fault. If yes then the write fault is
3870 * our fault as we did not reflect the write access in the
3871 * PTE. Now we know a write has occurred we can correct this
3872 * and also set the modified bit
3874 if ((pv->pv_flags & PVF_WRITE) == 0) {
3875 simple_unlock(&pg->mdpage.pvh_slock);
3876 goto out;
3879 NPDEBUG(PDB_FOLLOW,
3880 printf("pmap_fault_fixup: mod emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3881 pm, va, VM_PAGE_TO_PHYS(pg)));
3883 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3884 pv->pv_flags |= PVF_REF | PVF_MOD;
3885 #ifdef PMAP_CACHE_VIPT
3887 * If there are cacheable mappings for this page, mark it dirty.
3889 if ((pg->mdpage.pvh_attrs & PVF_NC) == 0)
3890 pg->mdpage.pvh_attrs |= PVF_DIRTY;
3891 #endif
3892 simple_unlock(&pg->mdpage.pvh_slock);
3895 * Re-enable write permissions for the page. No need to call
3896 * pmap_vac_me_harder(), since this is just a
3897 * modified-emulation fault, and the PVF_WRITE bit isn't
3898 * changing. We've already set the cacheable bits based on
3899 * the assumption that we can write to this page.
3901 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3902 PTE_SYNC(ptep);
3903 rv = 1;
3904 } else
3905 if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
3907 * This looks like a good candidate for "page referenced"
3908 * emulation.
3910 struct pv_entry *pv;
3911 struct vm_page *pg;
3913 /* Extract the physical address of the page */
3914 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3915 goto out;
3917 /* Get the current flags for this page. */
3918 simple_lock(&pg->mdpage.pvh_slock);
3920 pv = pmap_find_pv(pg, pm, va);
3921 if (pv == NULL) {
3922 simple_unlock(&pg->mdpage.pvh_slock);
3923 goto out;
3926 pg->mdpage.pvh_attrs |= PVF_REF;
3927 pv->pv_flags |= PVF_REF;
3928 simple_unlock(&pg->mdpage.pvh_slock);
3930 NPDEBUG(PDB_FOLLOW,
3931 printf("pmap_fault_fixup: ref emul. pm %p, va 0x%08lx, pa 0x%08lx\n",
3932 pm, va, VM_PAGE_TO_PHYS(pg)));
3934 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
3935 PTE_SYNC(ptep);
3936 rv = 1;
3940 * We know there is a valid mapping here, so simply
3941 * fix up the L1 if necessary.
3943 pl1pd = &pm->pm_l1->l1_kva[l1idx];
3944 l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
3945 if (*pl1pd != l1pd) {
3946 *pl1pd = l1pd;
3947 PTE_SYNC(pl1pd);
3948 rv = 1;
3951 #ifdef CPU_SA110
3953 * There are bugs in the rev K SA110. This is a check for one
3954 * of them.
3956 if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
3957 curcpu()->ci_arm_cpurev < 3) {
3958 /* Always current pmap */
3959 if (l2pte_valid(pte)) {
3960 extern int kernel_debug;
3961 if (kernel_debug & 1) {
3962 struct proc *p = curlwp->l_proc;
3963 printf("prefetch_abort: page is already "
3964 "mapped - pte=%p *pte=%08x\n", ptep, pte);
3965 printf("prefetch_abort: pc=%08lx proc=%p "
3966 "process=%s\n", va, p, p->p_comm);
3967 printf("prefetch_abort: far=%08x fs=%x\n",
3968 cpu_faultaddress(), cpu_faultstatus());
3970 #ifdef DDB
3971 if (kernel_debug & 2)
3972 Debugger();
3973 #endif
3974 rv = 1;
3977 #endif /* CPU_SA110 */
3979 #ifdef DEBUG
3981 * If 'rv == 0' at this point, it generally indicates that there is a
3982 * stale TLB entry for the faulting address. This happens when two or
3983 * more processes are sharing an L1. Since we don't flush the TLB on
3984 * a context switch between such processes, we can take domain faults
3985 * for mappings which exist at the same VA in both processes. EVEN IF
3986 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
3987 * example.
3989 * This is extremely likely to happen if pmap_enter() updated the L1
3990 * entry for a recently entered mapping. In this case, the TLB is
3991 * flushed for the new mapping, but there may still be TLB entries for
3992 * other mappings belonging to other processes in the 1MB range
3993 * covered by the L1 entry.
3995 * Since 'rv == 0', we know that the L1 already contains the correct
3996 * value, so the fault must be due to a stale TLB entry.
3998 * Since we always need to flush the TLB anyway in the case where we
3999 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
4000 * stale TLB entries dynamically.
4002 * However, the above condition can ONLY happen if the current L1 is
4003 * being shared. If it happens when the L1 is unshared, it indicates
4004 * that other parts of the pmap are not doing their job WRT managing
4005 * the TLB.
4007 if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
4008 extern int last_fault_code;
4009 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
4010 pm, va, ftype);
4011 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
4012 l2, l2b, ptep, pl1pd);
4013 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
4014 pte, l1pd, last_fault_code);
4015 #ifdef DDB
4016 Debugger();
4017 #endif
4019 #endif
4021 cpu_tlb_flushID_SE(va);
4022 cpu_cpwait();
4024 rv = 1;
4026 out:
4027 pmap_release_pmap_lock(pm);
4028 PMAP_MAP_TO_HEAD_UNLOCK();
4030 return (rv);
4034 * Routine: pmap_procwr
4036 * Function:
4037 * Synchronize caches corresponding to [addr, addr+len) in p.
4040 void
4041 pmap_procwr(struct proc *p, vaddr_t va, int len)
4043 /* We only need to do anything if it is the current process. */
4044 if (p == curproc)
4045 cpu_icache_sync_range(va, len);
4049 * Routine: pmap_unwire
4050 * Function: Clear the wired attribute for a map/virtual-address pair.
4052 * In/out conditions:
4053 * The mapping must already exist in the pmap.
4055 void
4056 pmap_unwire(pmap_t pm, vaddr_t va)
4058 struct l2_bucket *l2b;
4059 pt_entry_t *ptep, pte;
4060 struct vm_page *pg;
4061 paddr_t pa;
4063 NPDEBUG(PDB_WIRING, printf("pmap_unwire: pm %p, va 0x%08lx\n", pm, va));
4065 PMAP_MAP_TO_HEAD_LOCK();
4066 pmap_acquire_pmap_lock(pm);
4068 l2b = pmap_get_l2_bucket(pm, va);
4069 KDASSERT(l2b != NULL);
4071 ptep = &l2b->l2b_kva[l2pte_index(va)];
4072 pte = *ptep;
4074 /* Extract the physical address of the page */
4075 pa = l2pte_pa(pte);
4077 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
4078 /* Update the wired bit in the pv entry for this page. */
4079 simple_lock(&pg->mdpage.pvh_slock);
4080 (void) pmap_modify_pv(pg, pm, va, PVF_WIRED, 0);
4081 simple_unlock(&pg->mdpage.pvh_slock);
4084 pmap_release_pmap_lock(pm);
4085 PMAP_MAP_TO_HEAD_UNLOCK();
4088 void
4089 pmap_activate(struct lwp *l)
4091 extern int block_userspace_access;
4092 pmap_t opm, npm, rpm;
4093 uint32_t odacr, ndacr;
4094 int oldirqstate;
4097 * If activating a non-current lwp or the current lwp is
4098 * already active, just return.
4100 if (l != curlwp ||
4101 l->l_proc->p_vmspace->vm_map.pmap->pm_activated == true)
4102 return;
4104 npm = l->l_proc->p_vmspace->vm_map.pmap;
4105 ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4106 (DOMAIN_CLIENT << (npm->pm_domain * 2));
4109 * If TTB and DACR are unchanged, short-circuit all the
4110 * TLB/cache management stuff.
4112 if (pmap_previous_active_lwp != NULL) {
4113 opm = pmap_previous_active_lwp->l_proc->p_vmspace->vm_map.pmap;
4114 odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
4115 (DOMAIN_CLIENT << (opm->pm_domain * 2));
4117 if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
4118 goto all_done;
4119 } else
4120 opm = NULL;
4122 PMAPCOUNT(activations);
4123 block_userspace_access = 1;
4126 * If switching to a user vmspace which is different to the
4127 * most recent one, and the most recent one is potentially
4128 * live in the cache, we must write-back and invalidate the
4129 * entire cache.
4131 rpm = pmap_recent_user;
4134 * XXXSCW: There's a corner case here which can leave turds in the cache as
4135 * reported in kern/41058. They're probably left over during tear-down and
4136 * switching away from an exiting process. Until the root cause is identified
4137 * and fixed, zap the cache when switching pmaps. This will result in a few
4138 * unnecessary cache flushes, but that's better than silently corrupting data.
4140 #if 0
4141 if (npm != pmap_kernel() && rpm && npm != rpm &&
4142 rpm->pm_cstate.cs_cache) {
4143 rpm->pm_cstate.cs_cache = 0;
4144 #ifdef PMAP_CACHE_VIVT
4145 cpu_idcache_wbinv_all();
4146 #endif
4148 #else
4149 if (rpm) {
4150 rpm->pm_cstate.cs_cache = 0;
4151 if (npm == pmap_kernel())
4152 pmap_recent_user = NULL;
4153 #ifdef PMAP_CACHE_VIVT
4154 cpu_idcache_wbinv_all();
4155 #endif
4157 #endif
4159 /* No interrupts while we frob the TTB/DACR */
4160 oldirqstate = disable_interrupts(IF32_bits);
4163 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
4164 * entry corresponding to 'vector_page' in the incoming L1 table
4165 * before switching to it otherwise subsequent interrupts/exceptions
4166 * (including domain faults!) will jump into hyperspace.
4168 if (npm->pm_pl1vec != NULL) {
4169 cpu_tlb_flushID_SE((u_int)vector_page);
4170 cpu_cpwait();
4171 *npm->pm_pl1vec = npm->pm_l1vec;
4172 PTE_SYNC(npm->pm_pl1vec);
4175 cpu_domains(ndacr);
4177 if (npm == pmap_kernel() || npm == rpm) {
4179 * Switching to a kernel thread, or back to the
4180 * same user vmspace as before... Simply update
4181 * the TTB (no TLB flush required)
4183 __asm volatile("mcr p15, 0, %0, c2, c0, 0" ::
4184 "r"(npm->pm_l1->l1_physaddr));
4185 cpu_cpwait();
4186 } else {
4188 * Otherwise, update TTB and flush TLB
4190 cpu_context_switch(npm->pm_l1->l1_physaddr);
4191 if (rpm != NULL)
4192 rpm->pm_cstate.cs_tlb = 0;
4195 restore_interrupts(oldirqstate);
4197 block_userspace_access = 0;
4199 all_done:
4201 * The new pmap is resident. Make sure it's marked
4202 * as resident in the cache/TLB.
4204 npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4205 if (npm != pmap_kernel())
4206 pmap_recent_user = npm;
4208 /* The old pmap is not longer active */
4209 if (opm != NULL)
4210 opm->pm_activated = false;
4212 /* But the new one is */
4213 npm->pm_activated = true;
4216 void
4217 pmap_deactivate(struct lwp *l)
4221 * If the process is exiting, make sure pmap_activate() does
4222 * a full MMU context-switch and cache flush, which we might
4223 * otherwise skip. See PR port-arm/38950.
4225 if (l->l_proc->p_sflag & PS_WEXIT)
4226 pmap_previous_active_lwp = NULL;
4228 l->l_proc->p_vmspace->vm_map.pmap->pm_activated = false;
4231 void
4232 pmap_update(pmap_t pm)
4235 if (pm->pm_remove_all) {
4237 * Finish up the pmap_remove_all() optimisation by flushing
4238 * the TLB.
4240 pmap_tlb_flushID(pm);
4241 pm->pm_remove_all = false;
4244 if (pmap_is_current(pm)) {
4246 * If we're dealing with a current userland pmap, move its L1
4247 * to the end of the LRU.
4249 if (pm != pmap_kernel())
4250 pmap_use_l1(pm);
4253 * We can assume we're done with frobbing the cache/tlb for
4254 * now. Make sure any future pmap ops don't skip cache/tlb
4255 * flushes.
4257 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4260 PMAPCOUNT(updates);
4263 * make sure TLB/cache operations have completed.
4265 cpu_cpwait();
4268 void
4269 pmap_remove_all(pmap_t pm)
4273 * The vmspace described by this pmap is about to be torn down.
4274 * Until pmap_update() is called, UVM will only make calls
4275 * to pmap_remove(). We can make life much simpler by flushing
4276 * the cache now, and deferring TLB invalidation to pmap_update().
4278 #ifdef PMAP_CACHE_VIVT
4279 pmap_idcache_wbinv_all(pm);
4280 #endif
4281 pm->pm_remove_all = true;
4285 * Retire the given physical map from service.
4286 * Should only be called if the map contains no valid mappings.
4288 void
4289 pmap_destroy(pmap_t pm)
4291 u_int count;
4293 if (pm == NULL)
4294 return;
4296 if (pm->pm_remove_all) {
4297 pmap_tlb_flushID(pm);
4298 pm->pm_remove_all = false;
4302 * Drop reference count
4304 mutex_enter(&pm->pm_lock);
4305 count = --pm->pm_obj.uo_refs;
4306 mutex_exit(&pm->pm_lock);
4307 if (count > 0) {
4308 if (pmap_is_current(pm)) {
4309 if (pm != pmap_kernel())
4310 pmap_use_l1(pm);
4311 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
4313 return;
4317 * reference count is zero, free pmap resources and then free pmap.
4320 if (vector_page < KERNEL_BASE) {
4321 KDASSERT(!pmap_is_current(pm));
4323 /* Remove the vector page mapping */
4324 pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
4325 pmap_update(pm);
4328 LIST_REMOVE(pm, pm_list);
4330 pmap_free_l1(pm);
4332 if (pmap_recent_user == pm)
4333 pmap_recent_user = NULL;
4335 UVM_OBJ_DESTROY(&pm->pm_obj);
4337 /* return the pmap to the pool */
4338 pool_cache_put(&pmap_cache, pm);
4343 * void pmap_reference(pmap_t pm)
4345 * Add a reference to the specified pmap.
4347 void
4348 pmap_reference(pmap_t pm)
4351 if (pm == NULL)
4352 return;
4354 pmap_use_l1(pm);
4356 mutex_enter(&pm->pm_lock);
4357 pm->pm_obj.uo_refs++;
4358 mutex_exit(&pm->pm_lock);
4361 #if ARM_MMU_V6 > 0
4363 static struct evcnt pmap_prefer_nochange_ev =
4364 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
4365 static struct evcnt pmap_prefer_change_ev =
4366 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
4368 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
4369 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
4371 void
4372 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
4374 vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
4375 vaddr_t va = *vap;
4376 vaddr_t diff = (hint - va) & mask;
4377 if (diff == 0) {
4378 pmap_prefer_nochange_ev.ev_count++;
4379 } else {
4380 pmap_prefer_change_ev.ev_count++;
4381 if (__predict_false(td))
4382 va -= mask + 1;
4383 *vap = va + diff;
4386 #endif /* ARM_MMU_V6 */
4389 * pmap_zero_page()
4391 * Zero a given physical page by mapping it at a page hook point.
4392 * In doing the zero page op, the page we zero is mapped cachable, as with
4393 * StrongARM accesses to non-cached pages are non-burst making writing
4394 * _any_ bulk data very slow.
4396 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4397 void
4398 pmap_zero_page_generic(paddr_t phys)
4400 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4401 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4402 #endif
4403 #ifdef PMAP_CACHE_VIPT
4404 /* Choose the last page color it had, if any */
4405 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4406 #else
4407 const vsize_t va_offset = 0;
4408 #endif
4409 pt_entry_t * const ptep = &cdst_pte[va_offset >> PGSHIFT];
4411 #ifdef DEBUG
4412 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4413 panic("pmap_zero_page: page has mappings");
4414 #endif
4416 KDASSERT((phys & PGOFSET) == 0);
4419 * Hook in the page, zero it, and purge the cache for that
4420 * zeroed page. Invalidate the TLB as needed.
4422 *ptep = L2_S_PROTO | phys |
4423 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4424 PTE_SYNC(ptep);
4425 cpu_tlb_flushD_SE(cdstp + va_offset);
4426 cpu_cpwait();
4427 bzero_page(cdstp + va_offset);
4429 * Unmap the page.
4431 *ptep = 0;
4432 PTE_SYNC(ptep);
4433 cpu_tlb_flushD_SE(cdstp + va_offset);
4434 #ifdef PMAP_CACHE_VIVT
4435 cpu_dcache_wbinv_range(cdstp + va_offset, PAGE_SIZE);
4436 #endif
4437 #ifdef PMAP_CACHE_VIPT
4439 * This page is now cache resident so it now has a page color.
4440 * Any contents have been obliterated so clear the EXEC flag.
4442 if (!pmap_is_page_colored_p(pg)) {
4443 PMAPCOUNT(vac_color_new);
4444 pg->mdpage.pvh_attrs |= PVF_COLORED;
4446 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4447 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4448 PMAPCOUNT(exec_discarded_zero);
4450 pg->mdpage.pvh_attrs |= PVF_DIRTY;
4451 #endif
4453 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4455 #if ARM_MMU_XSCALE == 1
4456 void
4457 pmap_zero_page_xscale(paddr_t phys)
4459 #ifdef DEBUG
4460 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
4462 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4463 panic("pmap_zero_page: page has mappings");
4464 #endif
4466 KDASSERT((phys & PGOFSET) == 0);
4469 * Hook in the page, zero it, and purge the cache for that
4470 * zeroed page. Invalidate the TLB as needed.
4472 *cdst_pte = L2_S_PROTO | phys |
4473 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4474 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4475 PTE_SYNC(cdst_pte);
4476 cpu_tlb_flushD_SE(cdstp);
4477 cpu_cpwait();
4478 bzero_page(cdstp);
4479 xscale_cache_clean_minidata();
4481 #endif /* ARM_MMU_XSCALE == 1 */
4483 /* pmap_pageidlezero()
4485 * The same as above, except that we assume that the page is not
4486 * mapped. This means we never have to flush the cache first. Called
4487 * from the idle loop.
4489 bool
4490 pmap_pageidlezero(paddr_t phys)
4492 unsigned int i;
4493 int *ptr;
4494 bool rv = true;
4495 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4496 struct vm_page * const pg = PHYS_TO_VM_PAGE(phys);
4497 #endif
4498 #ifdef PMAP_CACHE_VIPT
4499 /* Choose the last page color it had, if any */
4500 const vsize_t va_offset = pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4501 #else
4502 const vsize_t va_offset = 0;
4503 #endif
4504 pt_entry_t * const ptep = &csrc_pte[va_offset >> PGSHIFT];
4507 #ifdef DEBUG
4508 if (!SLIST_EMPTY(&pg->mdpage.pvh_list))
4509 panic("pmap_pageidlezero: page has mappings");
4510 #endif
4512 KDASSERT((phys & PGOFSET) == 0);
4515 * Hook in the page, zero it, and purge the cache for that
4516 * zeroed page. Invalidate the TLB as needed.
4518 *ptep = L2_S_PROTO | phys |
4519 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4520 PTE_SYNC(ptep);
4521 cpu_tlb_flushD_SE(cdstp + va_offset);
4522 cpu_cpwait();
4524 for (i = 0, ptr = (int *)(cdstp + va_offset);
4525 i < (PAGE_SIZE / sizeof(int)); i++) {
4526 if (sched_curcpu_runnable_p() != 0) {
4528 * A process has become ready. Abort now,
4529 * so we don't keep it waiting while we
4530 * do slow memory access to finish this
4531 * page.
4533 rv = false;
4534 break;
4536 *ptr++ = 0;
4539 #ifdef PMAP_CACHE_VIVT
4540 if (rv)
4542 * if we aborted we'll rezero this page again later so don't
4543 * purge it unless we finished it
4545 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
4546 #elif defined(PMAP_CACHE_VIPT)
4548 * This page is now cache resident so it now has a page color.
4549 * Any contents have been obliterated so clear the EXEC flag.
4551 if (!pmap_is_page_colored_p(pg)) {
4552 PMAPCOUNT(vac_color_new);
4553 pg->mdpage.pvh_attrs |= PVF_COLORED;
4555 if (PV_IS_EXEC_P(pg->mdpage.pvh_attrs)) {
4556 pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4557 PMAPCOUNT(exec_discarded_zero);
4559 #endif
4561 * Unmap the page.
4563 *ptep = 0;
4564 PTE_SYNC(ptep);
4565 cpu_tlb_flushD_SE(cdstp + va_offset);
4567 return (rv);
4571 * pmap_copy_page()
4573 * Copy one physical page into another, by mapping the pages into
4574 * hook points. The same comment regarding cachability as in
4575 * pmap_zero_page also applies here.
4577 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
4578 void
4579 pmap_copy_page_generic(paddr_t src, paddr_t dst)
4581 struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
4582 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
4583 struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
4584 #endif
4585 #ifdef PMAP_CACHE_VIPT
4586 const vsize_t src_va_offset = src_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4587 const vsize_t dst_va_offset = dst_pg->mdpage.pvh_attrs & arm_cache_prefer_mask;
4588 #else
4589 const vsize_t src_va_offset = 0;
4590 const vsize_t dst_va_offset = 0;
4591 #endif
4592 pt_entry_t * const src_ptep = &csrc_pte[src_va_offset >> PGSHIFT];
4593 pt_entry_t * const dst_ptep = &cdst_pte[dst_va_offset >> PGSHIFT];
4595 #ifdef DEBUG
4596 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4597 panic("pmap_copy_page: dst page has mappings");
4598 #endif
4600 #ifdef PMAP_CACHE_VIPT
4601 KASSERT(arm_cache_prefer_mask == 0 || src_pg->mdpage.pvh_attrs & (PVF_COLORED|PVF_NC));
4602 #endif
4603 KDASSERT((src & PGOFSET) == 0);
4604 KDASSERT((dst & PGOFSET) == 0);
4607 * Clean the source page. Hold the source page's lock for
4608 * the duration of the copy so that no other mappings can
4609 * be created while we have a potentially aliased mapping.
4611 simple_lock(&src_pg->mdpage.pvh_slock);
4612 #ifdef PMAP_CACHE_VIVT
4613 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4614 #endif
4617 * Map the pages into the page hook points, copy them, and purge
4618 * the cache for the appropriate page. Invalidate the TLB
4619 * as required.
4621 *src_ptep = L2_S_PROTO
4622 | src
4623 #ifdef PMAP_CACHE_VIPT
4624 | ((src_pg->mdpage.pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
4625 #endif
4626 #ifdef PMAP_CACHE_VIVT
4627 | pte_l2_s_cache_mode
4628 #endif
4629 | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
4630 *dst_ptep = L2_S_PROTO | dst |
4631 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
4632 PTE_SYNC(src_ptep);
4633 PTE_SYNC(dst_ptep);
4634 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4635 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4636 cpu_cpwait();
4637 bcopy_page(csrcp + src_va_offset, cdstp + dst_va_offset);
4638 #ifdef PMAP_CACHE_VIVT
4639 cpu_dcache_inv_range(csrcp + src_va_offset, PAGE_SIZE);
4640 #endif
4641 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4642 #ifdef PMAP_CACHE_VIVT
4643 cpu_dcache_wbinv_range(cdstp + dst_va_offset, PAGE_SIZE);
4644 #endif
4646 * Unmap the pages.
4648 *src_ptep = 0;
4649 *dst_ptep = 0;
4650 PTE_SYNC(src_ptep);
4651 PTE_SYNC(dst_ptep);
4652 cpu_tlb_flushD_SE(csrcp + src_va_offset);
4653 cpu_tlb_flushD_SE(cdstp + dst_va_offset);
4654 #ifdef PMAP_CACHE_VIPT
4656 * Now that the destination page is in the cache, mark it as colored.
4657 * If this was an exec page, discard it.
4659 if (!pmap_is_page_colored_p(dst_pg)) {
4660 PMAPCOUNT(vac_color_new);
4661 dst_pg->mdpage.pvh_attrs |= PVF_COLORED;
4663 if (PV_IS_EXEC_P(dst_pg->mdpage.pvh_attrs)) {
4664 dst_pg->mdpage.pvh_attrs &= ~PVF_EXEC;
4665 PMAPCOUNT(exec_discarded_copy);
4667 dst_pg->mdpage.pvh_attrs |= PVF_DIRTY;
4668 #endif
4670 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
4672 #if ARM_MMU_XSCALE == 1
4673 void
4674 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
4676 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
4677 #ifdef DEBUG
4678 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
4680 if (!SLIST_EMPTY(&dst_pg->mdpage.pvh_list))
4681 panic("pmap_copy_page: dst page has mappings");
4682 #endif
4684 KDASSERT((src & PGOFSET) == 0);
4685 KDASSERT((dst & PGOFSET) == 0);
4688 * Clean the source page. Hold the source page's lock for
4689 * the duration of the copy so that no other mappings can
4690 * be created while we have a potentially aliased mapping.
4692 simple_lock(&src_pg->mdpage.pvh_slock);
4693 #ifdef PMAP_CACHE_VIVT
4694 (void) pmap_clean_page(SLIST_FIRST(&src_pg->mdpage.pvh_list), true);
4695 #endif
4698 * Map the pages into the page hook points, copy them, and purge
4699 * the cache for the appropriate page. Invalidate the TLB
4700 * as required.
4702 *csrc_pte = L2_S_PROTO | src |
4703 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4704 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4705 PTE_SYNC(csrc_pte);
4706 *cdst_pte = L2_S_PROTO | dst |
4707 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
4708 L2_C | L2_XS_T_TEX(TEX_XSCALE_X); /* mini-data */
4709 PTE_SYNC(cdst_pte);
4710 cpu_tlb_flushD_SE(csrcp);
4711 cpu_tlb_flushD_SE(cdstp);
4712 cpu_cpwait();
4713 bcopy_page(csrcp, cdstp);
4714 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
4715 xscale_cache_clean_minidata();
4717 #endif /* ARM_MMU_XSCALE == 1 */
4720 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4722 * Return the start and end addresses of the kernel's virtual space.
4723 * These values are setup in pmap_bootstrap and are updated as pages
4724 * are allocated.
4726 void
4727 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
4729 *start = virtual_avail;
4730 *end = virtual_end;
4734 * Helper function for pmap_grow_l2_bucket()
4736 static inline int
4737 pmap_grow_map(vaddr_t va, pt_entry_t cache_mode, paddr_t *pap)
4739 struct l2_bucket *l2b;
4740 pt_entry_t *ptep;
4741 paddr_t pa;
4743 if (uvm.page_init_done == false) {
4744 #ifdef PMAP_STEAL_MEMORY
4745 pv_addr_t pv;
4746 pmap_boot_pagealloc(PAGE_SIZE,
4747 #ifdef PMAP_CACHE_VIPT
4748 arm_cache_prefer_mask,
4749 va & arm_cache_prefer_mask,
4750 #else
4751 0, 0,
4752 #endif
4753 &pv);
4754 pa = pv.pv_pa;
4755 #else
4756 if (uvm_page_physget(&pa) == false)
4757 return (1);
4758 #endif /* PMAP_STEAL_MEMORY */
4759 } else {
4760 struct vm_page *pg;
4761 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
4762 if (pg == NULL)
4763 return (1);
4764 pa = VM_PAGE_TO_PHYS(pg);
4765 #ifdef PMAP_CACHE_VIPT
4767 * This new page must not have any mappings. Enter it via
4768 * pmap_kenter_pa and let that routine do the hard work.
4770 KASSERT(SLIST_EMPTY(&pg->mdpage.pvh_list));
4771 pmap_kenter_pa(va, pa,
4772 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
4773 #endif
4776 if (pap)
4777 *pap = pa;
4779 PMAPCOUNT(pt_mappings);
4780 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
4781 KDASSERT(l2b != NULL);
4783 ptep = &l2b->l2b_kva[l2pte_index(va)];
4784 *ptep = L2_S_PROTO | pa | cache_mode |
4785 L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
4786 PTE_SYNC(ptep);
4787 memset((void *)va, 0, PAGE_SIZE);
4788 return (0);
4792 * This is the same as pmap_alloc_l2_bucket(), except that it is only
4793 * used by pmap_growkernel().
4795 static inline struct l2_bucket *
4796 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
4798 struct l2_dtable *l2;
4799 struct l2_bucket *l2b;
4800 u_short l1idx;
4801 vaddr_t nva;
4803 l1idx = L1_IDX(va);
4805 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
4807 * No mapping at this address, as there is
4808 * no entry in the L1 table.
4809 * Need to allocate a new l2_dtable.
4811 nva = pmap_kernel_l2dtable_kva;
4812 if ((nva & PGOFSET) == 0) {
4814 * Need to allocate a backing page
4816 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4817 return (NULL);
4820 l2 = (struct l2_dtable *)nva;
4821 nva += sizeof(struct l2_dtable);
4823 if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
4825 * The new l2_dtable straddles a page boundary.
4826 * Map in another page to cover it.
4828 if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
4829 return (NULL);
4832 pmap_kernel_l2dtable_kva = nva;
4835 * Link it into the parent pmap
4837 pm->pm_l2[L2_IDX(l1idx)] = l2;
4840 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
4843 * Fetch pointer to the L2 page table associated with the address.
4845 if (l2b->l2b_kva == NULL) {
4846 pt_entry_t *ptep;
4849 * No L2 page table has been allocated. Chances are, this
4850 * is because we just allocated the l2_dtable, above.
4852 nva = pmap_kernel_l2ptp_kva;
4853 ptep = (pt_entry_t *)nva;
4854 if ((nva & PGOFSET) == 0) {
4856 * Need to allocate a backing page
4858 if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
4859 &pmap_kernel_l2ptp_phys))
4860 return (NULL);
4861 PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
4864 l2->l2_occupancy++;
4865 l2b->l2b_kva = ptep;
4866 l2b->l2b_l1idx = l1idx;
4867 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
4869 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
4870 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
4873 return (l2b);
4876 vaddr_t
4877 pmap_growkernel(vaddr_t maxkvaddr)
4879 pmap_t kpm = pmap_kernel();
4880 struct l1_ttable *l1;
4881 struct l2_bucket *l2b;
4882 pd_entry_t *pl1pd;
4883 int s;
4885 if (maxkvaddr <= pmap_curmaxkvaddr)
4886 goto out; /* we are OK */
4888 NPDEBUG(PDB_GROWKERN,
4889 printf("pmap_growkernel: growing kernel from 0x%lx to 0x%lx\n",
4890 pmap_curmaxkvaddr, maxkvaddr));
4892 KDASSERT(maxkvaddr <= virtual_end);
4895 * whoops! we need to add kernel PTPs
4898 s = splhigh(); /* to be safe */
4899 mutex_enter(&kpm->pm_lock);
4901 /* Map 1MB at a time */
4902 for (; pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE) {
4904 l2b = pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
4905 KDASSERT(l2b != NULL);
4907 /* Distribute new L1 entry to all other L1s */
4908 SLIST_FOREACH(l1, &l1_list, l1_link) {
4909 pl1pd = &l1->l1_kva[L1_IDX(pmap_curmaxkvaddr)];
4910 *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
4911 L1_C_PROTO;
4912 PTE_SYNC(pl1pd);
4917 * flush out the cache, expensive but growkernel will happen so
4918 * rarely
4920 cpu_dcache_wbinv_all();
4921 cpu_tlb_flushD();
4922 cpu_cpwait();
4924 mutex_exit(&kpm->pm_lock);
4925 splx(s);
4927 out:
4928 return (pmap_curmaxkvaddr);
4931 /************************ Utility routines ****************************/
4934 * vector_page_setprot:
4936 * Manipulate the protection of the vector page.
4938 void
4939 vector_page_setprot(int prot)
4941 struct l2_bucket *l2b;
4942 pt_entry_t *ptep;
4944 l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
4945 KDASSERT(l2b != NULL);
4947 ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
4949 *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
4950 PTE_SYNC(ptep);
4951 cpu_tlb_flushD_SE(vector_page);
4952 cpu_cpwait();
4956 * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
4957 * Returns true if the mapping exists, else false.
4959 * NOTE: This function is only used by a couple of arm-specific modules.
4960 * It is not safe to take any pmap locks here, since we could be right
4961 * in the middle of debugging the pmap anyway...
4963 * It is possible for this routine to return false even though a valid
4964 * mapping does exist. This is because we don't lock, so the metadata
4965 * state may be inconsistent.
4967 * NOTE: We can return a NULL *ptp in the case where the L1 pde is
4968 * a "section" mapping.
4970 bool
4971 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
4973 struct l2_dtable *l2;
4974 pd_entry_t *pl1pd, l1pd;
4975 pt_entry_t *ptep;
4976 u_short l1idx;
4978 if (pm->pm_l1 == NULL)
4979 return false;
4981 l1idx = L1_IDX(va);
4982 *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
4983 l1pd = *pl1pd;
4985 if (l1pte_section_p(l1pd)) {
4986 *ptp = NULL;
4987 return true;
4990 if (pm->pm_l2 == NULL)
4991 return false;
4993 l2 = pm->pm_l2[L2_IDX(l1idx)];
4995 if (l2 == NULL ||
4996 (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
4997 return false;
5000 *ptp = &ptep[l2pte_index(va)];
5001 return true;
5004 bool
5005 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
5007 u_short l1idx;
5009 if (pm->pm_l1 == NULL)
5010 return false;
5012 l1idx = L1_IDX(va);
5013 *pdp = &pm->pm_l1->l1_kva[l1idx];
5015 return true;
5018 /************************ Bootstrapping routines ****************************/
5020 static void
5021 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
5023 int i;
5025 l1->l1_kva = l1pt;
5026 l1->l1_domain_use_count = 0;
5027 l1->l1_domain_first = 0;
5029 for (i = 0; i < PMAP_DOMAINS; i++)
5030 l1->l1_domain_free[i] = i + 1;
5033 * Copy the kernel's L1 entries to each new L1.
5035 if (pmap_initialized)
5036 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
5038 if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
5039 &l1->l1_physaddr) == false)
5040 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
5042 SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
5043 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
5047 * pmap_bootstrap() is called from the board-specific initarm() routine
5048 * once the kernel L1/L2 descriptors tables have been set up.
5050 * This is a somewhat convoluted process since pmap bootstrap is, effectively,
5051 * spread over a number of disparate files/functions.
5053 * We are passed the following parameters
5054 * - kernel_l1pt
5055 * This is a pointer to the base of the kernel's L1 translation table.
5056 * - vstart
5057 * 1MB-aligned start of managed kernel virtual memory.
5058 * - vend
5059 * 1MB-aligned end of managed kernel virtual memory.
5061 * We use the first parameter to build the metadata (struct l1_ttable and
5062 * struct l2_dtable) necessary to track kernel mappings.
5064 #define PMAP_STATIC_L2_SIZE 16
5065 void
5066 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
5068 static struct l1_ttable static_l1;
5069 static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
5070 struct l1_ttable *l1 = &static_l1;
5071 struct l2_dtable *l2;
5072 struct l2_bucket *l2b;
5073 pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
5074 pmap_t pm = pmap_kernel();
5075 pd_entry_t pde;
5076 pt_entry_t *ptep;
5077 paddr_t pa;
5078 vaddr_t va;
5079 vsize_t size;
5080 int nptes, l1idx, l2idx, l2next = 0;
5083 * Initialise the kernel pmap object
5085 pm->pm_l1 = l1;
5086 pm->pm_domain = PMAP_DOMAIN_KERNEL;
5087 pm->pm_activated = true;
5088 pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
5089 UVM_OBJ_INIT(&pm->pm_obj, NULL, 1);
5092 * Scan the L1 translation table created by initarm() and create
5093 * the required metadata for all valid mappings found in it.
5095 for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
5096 pde = l1pt[l1idx];
5099 * We're only interested in Coarse mappings.
5100 * pmap_extract() can deal with section mappings without
5101 * recourse to checking L2 metadata.
5103 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
5104 continue;
5107 * Lookup the KVA of this L2 descriptor table
5109 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5110 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5111 if (ptep == NULL) {
5112 panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
5113 (u_int)l1idx << L1_S_SHIFT, pa);
5117 * Fetch the associated L2 metadata structure.
5118 * Allocate a new one if necessary.
5120 if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
5121 if (l2next == PMAP_STATIC_L2_SIZE)
5122 panic("pmap_bootstrap: out of static L2s");
5123 pm->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++];
5127 * One more L1 slot tracked...
5129 l2->l2_occupancy++;
5132 * Fill in the details of the L2 descriptor in the
5133 * appropriate bucket.
5135 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
5136 l2b->l2b_kva = ptep;
5137 l2b->l2b_phys = pa;
5138 l2b->l2b_l1idx = l1idx;
5141 * Establish an initial occupancy count for this descriptor
5143 for (l2idx = 0;
5144 l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
5145 l2idx++) {
5146 if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
5147 l2b->l2b_occupancy++;
5152 * Make sure the descriptor itself has the correct cache mode.
5153 * If not, fix it, but whine about the problem. Port-meisters
5154 * should consider this a clue to fix up their initarm()
5155 * function. :)
5157 if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep)) {
5158 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5159 "L2 pte @ %p\n", ptep);
5164 * Ensure the primary (kernel) L1 has the correct cache mode for
5165 * a page table. Bitch if it is not correctly set.
5167 for (va = (vaddr_t)l1pt;
5168 va < ((vaddr_t)l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
5169 if (pmap_set_pt_cache_mode(l1pt, va))
5170 printf("pmap_bootstrap: WARNING! wrong cache mode for "
5171 "primary L1 @ 0x%lx\n", va);
5174 cpu_dcache_wbinv_all();
5175 cpu_tlb_flushID();
5176 cpu_cpwait();
5179 * now we allocate the "special" VAs which are used for tmp mappings
5180 * by the pmap (and other modules). we allocate the VAs by advancing
5181 * virtual_avail (note that there are no pages mapped at these VAs).
5183 * Managed KVM space start from wherever initarm() tells us.
5185 virtual_avail = vstart;
5186 virtual_end = vend;
5188 #ifdef PMAP_CACHE_VIPT
5190 * If we have a VIPT cache, we need one page/pte per possible alias
5191 * page so we won't violate cache aliasing rules.
5193 virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
5194 nptes = (arm_cache_prefer_mask >> PGSHIFT) + 1;
5195 #else
5196 nptes = 1;
5197 #endif
5198 pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
5199 pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte);
5200 pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
5201 pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte);
5202 pmap_alloc_specials(&virtual_avail, nptes, &memhook, NULL);
5203 pmap_alloc_specials(&virtual_avail, round_page(MSGBUFSIZE) / PAGE_SIZE,
5204 (void *)&msgbufaddr, NULL);
5207 * Allocate a range of kernel virtual address space to be used
5208 * for L2 descriptor tables and metadata allocation in
5209 * pmap_growkernel().
5211 size = ((virtual_end - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
5212 pmap_alloc_specials(&virtual_avail,
5213 round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
5214 &pmap_kernel_l2ptp_kva, NULL);
5216 size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
5217 pmap_alloc_specials(&virtual_avail,
5218 round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
5219 &pmap_kernel_l2dtable_kva, NULL);
5222 * init the static-global locks and global pmap list.
5224 /* spinlockinit(&pmap_main_lock, "pmaplk", 0); */
5227 * We can now initialise the first L1's metadata.
5229 SLIST_INIT(&l1_list);
5230 TAILQ_INIT(&l1_lru_list);
5231 simple_lock_init(&l1_lru_lock);
5232 pmap_init_l1(l1, l1pt);
5234 /* Set up vector page L1 details, if necessary */
5235 if (vector_page < KERNEL_BASE) {
5236 pm->pm_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
5237 l2b = pmap_get_l2_bucket(pm, vector_page);
5238 KDASSERT(l2b != NULL);
5239 pm->pm_l1vec = l2b->l2b_phys | L1_C_PROTO |
5240 L1_C_DOM(pm->pm_domain);
5241 } else
5242 pm->pm_pl1vec = NULL;
5245 * Initialize the pmap cache
5247 pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
5248 "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
5249 LIST_INIT(&pmap_pmaps);
5250 LIST_INSERT_HEAD(&pmap_pmaps, pm, pm_list);
5253 * Initialize the pv pool.
5255 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
5256 &pmap_bootstrap_pv_allocator, IPL_NONE);
5259 * Initialize the L2 dtable pool and cache.
5261 pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
5262 0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
5265 * Initialise the L2 descriptor table pool and cache
5267 pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL, 0,
5268 L2_TABLE_SIZE_REAL, 0, "l2ptppl", NULL, IPL_NONE,
5269 pmap_l2ptp_ctor, NULL, NULL);
5271 cpu_dcache_wbinv_all();
5274 static int
5275 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va)
5277 pd_entry_t *pdep, pde;
5278 pt_entry_t *ptep, pte;
5279 vaddr_t pa;
5280 int rv = 0;
5283 * Make sure the descriptor itself has the correct cache mode
5285 pdep = &kl1[L1_IDX(va)];
5286 pde = *pdep;
5288 if (l1pte_section_p(pde)) {
5289 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
5290 *pdep = (pde & ~L1_S_CACHE_MASK) |
5291 pte_l1_s_cache_mode_pt;
5292 PTE_SYNC(pdep);
5293 cpu_dcache_wbinv_range((vaddr_t)pdep, sizeof(*pdep));
5294 rv = 1;
5296 } else {
5297 pa = (paddr_t)(pde & L1_C_ADDR_MASK);
5298 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
5299 if (ptep == NULL)
5300 panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
5302 ptep = &ptep[l2pte_index(va)];
5303 pte = *ptep;
5304 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
5305 *ptep = (pte & ~L2_S_CACHE_MASK) |
5306 pte_l2_s_cache_mode_pt;
5307 PTE_SYNC(ptep);
5308 cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
5309 rv = 1;
5313 return (rv);
5316 static void
5317 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
5319 vaddr_t va = *availp;
5320 struct l2_bucket *l2b;
5322 if (ptep) {
5323 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5324 if (l2b == NULL)
5325 panic("pmap_alloc_specials: no l2b for 0x%lx", va);
5327 if (ptep)
5328 *ptep = &l2b->l2b_kva[l2pte_index(va)];
5331 *vap = va;
5332 *availp = va + (PAGE_SIZE * pages);
5335 void
5336 pmap_init(void)
5340 * Set the available memory vars - These do not map to real memory
5341 * addresses and cannot as the physical memory is fragmented.
5342 * They are used by ps for %mem calculations.
5343 * One could argue whether this should be the entire memory or just
5344 * the memory that is useable in a user process.
5346 avail_start = ptoa(vm_physmem[0].start);
5347 avail_end = ptoa(vm_physmem[vm_nphysseg - 1].end);
5350 * Now we need to free enough pv_entry structures to allow us to get
5351 * the kmem_map/kmem_object allocated and inited (done after this
5352 * function is finished). to do this we allocate one bootstrap page out
5353 * of kernel_map and use it to provide an initial pool of pv_entry
5354 * structures. we never free this page.
5356 pool_setlowat(&pmap_pv_pool,
5357 (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
5359 mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
5360 zeropage = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5361 UVM_KMF_WIRED|UVM_KMF_ZERO);
5363 pmap_initialized = true;
5366 static vaddr_t last_bootstrap_page = 0;
5367 static void *free_bootstrap_pages = NULL;
5369 static void *
5370 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
5372 extern void *pool_page_alloc(struct pool *, int);
5373 vaddr_t new_page;
5374 void *rv;
5376 if (pmap_initialized)
5377 return (pool_page_alloc(pp, flags));
5379 if (free_bootstrap_pages) {
5380 rv = free_bootstrap_pages;
5381 free_bootstrap_pages = *((void **)rv);
5382 return (rv);
5385 new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
5386 UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
5388 KASSERT(new_page > last_bootstrap_page);
5389 last_bootstrap_page = new_page;
5390 return ((void *)new_page);
5393 static void
5394 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
5396 extern void pool_page_free(struct pool *, void *);
5398 if ((vaddr_t)v <= last_bootstrap_page) {
5399 *((void **)v) = free_bootstrap_pages;
5400 free_bootstrap_pages = v;
5401 return;
5404 if (pmap_initialized) {
5405 pool_page_free(pp, v);
5406 return;
5411 * pmap_postinit()
5413 * This routine is called after the vm and kmem subsystems have been
5414 * initialised. This allows the pmap code to perform any initialisation
5415 * that can only be done one the memory allocation is in place.
5417 void
5418 pmap_postinit(void)
5420 extern paddr_t physical_start, physical_end;
5421 struct l2_bucket *l2b;
5422 struct l1_ttable *l1;
5423 struct pglist plist;
5424 struct vm_page *m;
5425 pd_entry_t *pl1pt;
5426 pt_entry_t *ptep, pte;
5427 vaddr_t va, eva;
5428 u_int loop, needed;
5429 int error;
5431 pool_cache_setlowat(&pmap_l2ptp_cache,
5432 (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
5433 pool_cache_setlowat(&pmap_l2dtable_cache,
5434 (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
5436 needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
5437 needed -= 1;
5439 l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
5441 for (loop = 0; loop < needed; loop++, l1++) {
5442 /* Allocate a L1 page table */
5443 va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
5444 if (va == 0)
5445 panic("Cannot allocate L1 KVM");
5447 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
5448 physical_end, L1_TABLE_SIZE, 0, &plist, 1, M_WAITOK);
5449 if (error)
5450 panic("Cannot allocate L1 physical pages");
5452 m = TAILQ_FIRST(&plist);
5453 eva = va + L1_TABLE_SIZE;
5454 pl1pt = (pd_entry_t *)va;
5456 while (m && va < eva) {
5457 paddr_t pa = VM_PAGE_TO_PHYS(m);
5459 pmap_kenter_pa(va, pa,
5460 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
5463 * Make sure the L1 descriptor table is mapped
5464 * with the cache-mode set to write-through.
5466 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
5467 KDASSERT(l2b != NULL);
5468 ptep = &l2b->l2b_kva[l2pte_index(va)];
5469 pte = *ptep;
5470 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
5471 *ptep = pte;
5472 PTE_SYNC(ptep);
5473 cpu_tlb_flushD_SE(va);
5475 va += PAGE_SIZE;
5476 m = TAILQ_NEXT(m, pageq.queue);
5479 #ifdef DIAGNOSTIC
5480 if (m)
5481 panic("pmap_alloc_l1pt: pglist not empty");
5482 #endif /* DIAGNOSTIC */
5484 pmap_init_l1(l1, pl1pt);
5487 #ifdef DEBUG
5488 printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
5489 needed);
5490 #endif
5494 * Note that the following routines are used by board-specific initialisation
5495 * code to configure the initial kernel page tables.
5497 * If ARM32_NEW_VM_LAYOUT is *not* defined, they operate on the assumption that
5498 * L2 page-table pages are 4KB in size and use 4 L1 slots. This mimics the
5499 * behaviour of the old pmap, and provides an easy migration path for
5500 * initial bring-up of the new pmap on existing ports. Fortunately,
5501 * pmap_bootstrap() compensates for this hackery. This is only a stop-gap and
5502 * will be deprecated.
5504 * If ARM32_NEW_VM_LAYOUT *is* defined, these functions deal with 1KB L2 page
5505 * tables.
5509 * This list exists for the benefit of pmap_map_chunk(). It keeps track
5510 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
5511 * find them as necessary.
5513 * Note that the data on this list MUST remain valid after initarm() returns,
5514 * as pmap_bootstrap() uses it to contruct L2 table metadata.
5516 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
5518 static vaddr_t
5519 kernel_pt_lookup(paddr_t pa)
5521 pv_addr_t *pv;
5523 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
5524 #ifndef ARM32_NEW_VM_LAYOUT
5525 if (pv->pv_pa == (pa & ~PGOFSET))
5526 return (pv->pv_va | (pa & PGOFSET));
5527 #else
5528 if (pv->pv_pa == pa)
5529 return (pv->pv_va);
5530 #endif
5532 return (0);
5536 * pmap_map_section:
5538 * Create a single section mapping.
5540 void
5541 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5543 pd_entry_t *pde = (pd_entry_t *) l1pt;
5544 pd_entry_t fl;
5546 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
5548 switch (cache) {
5549 case PTE_NOCACHE:
5550 default:
5551 fl = 0;
5552 break;
5554 case PTE_CACHE:
5555 fl = pte_l1_s_cache_mode;
5556 break;
5558 case PTE_PAGETABLE:
5559 fl = pte_l1_s_cache_mode_pt;
5560 break;
5563 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5564 L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
5565 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5569 * pmap_map_entry:
5571 * Create a single page mapping.
5573 void
5574 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
5576 pd_entry_t *pde = (pd_entry_t *) l1pt;
5577 pt_entry_t fl;
5578 pt_entry_t *pte;
5580 KASSERT(((va | pa) & PGOFSET) == 0);
5582 switch (cache) {
5583 case PTE_NOCACHE:
5584 default:
5585 fl = 0;
5586 break;
5588 case PTE_CACHE:
5589 fl = pte_l2_s_cache_mode;
5590 break;
5592 case PTE_PAGETABLE:
5593 fl = pte_l2_s_cache_mode_pt;
5594 break;
5597 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5598 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
5600 #ifndef ARM32_NEW_VM_LAYOUT
5601 pte = (pt_entry_t *)
5602 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5603 #else
5604 pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5605 #endif
5606 if (pte == NULL)
5607 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
5609 fl |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
5610 #ifndef ARM32_NEW_VM_LAYOUT
5611 pte += (va >> PGSHIFT) & 0x3ff;
5612 #else
5613 pte += l2pte_index(va);
5614 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
5615 #endif
5616 *pte = fl;
5617 PTE_SYNC(pte);
5621 * pmap_link_l2pt:
5623 * Link the L2 page table specified by "l2pv" into the L1
5624 * page table at the slot for "va".
5626 void
5627 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
5629 pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
5630 u_int slot = va >> L1_S_SHIFT;
5632 #ifndef ARM32_NEW_VM_LAYOUT
5633 KASSERT((va & ((L1_S_SIZE * 4) - 1)) == 0);
5634 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
5635 #endif
5637 proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
5639 pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
5640 #ifdef ARM32_NEW_VM_LAYOUT
5641 PTE_SYNC(&pde[slot]);
5642 #else
5643 pde[slot + 1] = proto | (l2pv->pv_pa + 0x400);
5644 pde[slot + 2] = proto | (l2pv->pv_pa + 0x800);
5645 pde[slot + 3] = proto | (l2pv->pv_pa + 0xc00);
5646 PTE_SYNC_RANGE(&pde[slot + 0], 4);
5647 #endif
5649 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
5653 * pmap_map_chunk:
5655 * Map a chunk of memory using the most efficient mappings
5656 * possible (section, large page, small page) into the
5657 * provided L1 and L2 tables at the specified virtual address.
5659 vsize_t
5660 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
5661 int prot, int cache)
5663 pd_entry_t *pde = (pd_entry_t *) l1pt;
5664 pt_entry_t *pte, f1, f2s, f2l;
5665 vsize_t resid;
5666 int i;
5668 resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
5670 if (l1pt == 0)
5671 panic("pmap_map_chunk: no L1 table provided");
5673 #ifdef VERBOSE_INIT_ARM
5674 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
5675 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
5676 #endif
5678 switch (cache) {
5679 case PTE_NOCACHE:
5680 default:
5681 f1 = 0;
5682 f2l = 0;
5683 f2s = 0;
5684 break;
5686 case PTE_CACHE:
5687 f1 = pte_l1_s_cache_mode;
5688 f2l = pte_l2_l_cache_mode;
5689 f2s = pte_l2_s_cache_mode;
5690 break;
5692 case PTE_PAGETABLE:
5693 f1 = pte_l1_s_cache_mode_pt;
5694 f2l = pte_l2_l_cache_mode_pt;
5695 f2s = pte_l2_s_cache_mode_pt;
5696 break;
5699 size = resid;
5701 while (resid > 0) {
5702 /* See if we can use a section mapping. */
5703 if (L1_S_MAPPABLE_P(va, pa, resid)) {
5704 #ifdef VERBOSE_INIT_ARM
5705 printf("S");
5706 #endif
5707 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
5708 L1_S_PROT(PTE_KERNEL, prot) | f1 |
5709 L1_S_DOM(PMAP_DOMAIN_KERNEL);
5710 PTE_SYNC(&pde[va >> L1_S_SHIFT]);
5711 va += L1_S_SIZE;
5712 pa += L1_S_SIZE;
5713 resid -= L1_S_SIZE;
5714 continue;
5718 * Ok, we're going to use an L2 table. Make sure
5719 * one is actually in the corresponding L1 slot
5720 * for the current VA.
5722 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
5723 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
5725 #ifndef ARM32_NEW_VM_LAYOUT
5726 pte = (pt_entry_t *)
5727 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
5728 #else
5729 pte = (pt_entry_t *) kernel_pt_lookup(
5730 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
5731 #endif
5732 if (pte == NULL)
5733 panic("pmap_map_chunk: can't find L2 table for VA"
5734 "0x%08lx", va);
5736 /* See if we can use a L2 large page mapping. */
5737 if (L2_L_MAPPABLE_P(va, pa, resid)) {
5738 #ifdef VERBOSE_INIT_ARM
5739 printf("L");
5740 #endif
5741 for (i = 0; i < 16; i++) {
5742 #ifndef ARM32_NEW_VM_LAYOUT
5743 pte[((va >> PGSHIFT) & 0x3f0) + i] =
5744 L2_L_PROTO | pa |
5745 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5746 PTE_SYNC(&pte[((va >> PGSHIFT) & 0x3f0) + i]);
5747 #else
5748 pte[l2pte_index(va) + i] =
5749 L2_L_PROTO | pa |
5750 L2_L_PROT(PTE_KERNEL, prot) | f2l;
5751 PTE_SYNC(&pte[l2pte_index(va) + i]);
5752 #endif
5754 va += L2_L_SIZE;
5755 pa += L2_L_SIZE;
5756 resid -= L2_L_SIZE;
5757 continue;
5760 /* Use a small page mapping. */
5761 #ifdef VERBOSE_INIT_ARM
5762 printf("P");
5763 #endif
5764 #ifndef ARM32_NEW_VM_LAYOUT
5765 pte[(va >> PGSHIFT) & 0x3ff] =
5766 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5767 PTE_SYNC(&pte[(va >> PGSHIFT) & 0x3ff]);
5768 #else
5769 pte[l2pte_index(va)] =
5770 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
5771 PTE_SYNC(&pte[l2pte_index(va)]);
5772 #endif
5773 va += PAGE_SIZE;
5774 pa += PAGE_SIZE;
5775 resid -= PAGE_SIZE;
5777 #ifdef VERBOSE_INIT_ARM
5778 printf("\n");
5779 #endif
5780 return (size);
5783 /********************** Static device map routines ***************************/
5785 static const struct pmap_devmap *pmap_devmap_table;
5788 * Register the devmap table. This is provided in case early console
5789 * initialization needs to register mappings created by bootstrap code
5790 * before pmap_devmap_bootstrap() is called.
5792 void
5793 pmap_devmap_register(const struct pmap_devmap *table)
5796 pmap_devmap_table = table;
5800 * Map all of the static regions in the devmap table, and remember
5801 * the devmap table so other parts of the kernel can look up entries
5802 * later.
5804 void
5805 pmap_devmap_bootstrap(vaddr_t l1pt, const struct pmap_devmap *table)
5807 int i;
5809 pmap_devmap_table = table;
5811 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5812 #ifdef VERBOSE_INIT_ARM
5813 printf("devmap: %08lx -> %08lx @ %08lx\n",
5814 pmap_devmap_table[i].pd_pa,
5815 pmap_devmap_table[i].pd_pa +
5816 pmap_devmap_table[i].pd_size - 1,
5817 pmap_devmap_table[i].pd_va);
5818 #endif
5819 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
5820 pmap_devmap_table[i].pd_pa,
5821 pmap_devmap_table[i].pd_size,
5822 pmap_devmap_table[i].pd_prot,
5823 pmap_devmap_table[i].pd_cache);
5827 const struct pmap_devmap *
5828 pmap_devmap_find_pa(paddr_t pa, psize_t size)
5830 uint64_t endpa;
5831 int i;
5833 if (pmap_devmap_table == NULL)
5834 return (NULL);
5836 endpa = (uint64_t)pa + (uint64_t)(size - 1);
5838 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5839 if (pa >= pmap_devmap_table[i].pd_pa &&
5840 endpa <= (uint64_t)pmap_devmap_table[i].pd_pa +
5841 (uint64_t)(pmap_devmap_table[i].pd_size - 1))
5842 return (&pmap_devmap_table[i]);
5845 return (NULL);
5848 const struct pmap_devmap *
5849 pmap_devmap_find_va(vaddr_t va, vsize_t size)
5851 int i;
5853 if (pmap_devmap_table == NULL)
5854 return (NULL);
5856 for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
5857 if (va >= pmap_devmap_table[i].pd_va &&
5858 va + size - 1 <= pmap_devmap_table[i].pd_va +
5859 pmap_devmap_table[i].pd_size - 1)
5860 return (&pmap_devmap_table[i]);
5863 return (NULL);
5866 /********************** PTE initialization routines **************************/
5869 * These routines are called when the CPU type is identified to set up
5870 * the PTE prototypes, cache modes, etc.
5872 * The variables are always here, just in case modules need to reference
5873 * them (though, they shouldn't).
5876 pt_entry_t pte_l1_s_cache_mode;
5877 pt_entry_t pte_l1_s_cache_mode_pt;
5878 pt_entry_t pte_l1_s_cache_mask;
5880 pt_entry_t pte_l2_l_cache_mode;
5881 pt_entry_t pte_l2_l_cache_mode_pt;
5882 pt_entry_t pte_l2_l_cache_mask;
5884 pt_entry_t pte_l2_s_cache_mode;
5885 pt_entry_t pte_l2_s_cache_mode_pt;
5886 pt_entry_t pte_l2_s_cache_mask;
5888 pt_entry_t pte_l2_s_prot_u;
5889 pt_entry_t pte_l2_s_prot_w;
5890 pt_entry_t pte_l2_s_prot_mask;
5892 pt_entry_t pte_l1_s_proto;
5893 pt_entry_t pte_l1_c_proto;
5894 pt_entry_t pte_l2_s_proto;
5896 void (*pmap_copy_page_func)(paddr_t, paddr_t);
5897 void (*pmap_zero_page_func)(paddr_t);
5899 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
5900 void
5901 pmap_pte_init_generic(void)
5904 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
5905 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
5907 pte_l2_l_cache_mode = L2_B|L2_C;
5908 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
5910 pte_l2_s_cache_mode = L2_B|L2_C;
5911 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
5914 * If we have a write-through cache, set B and C. If
5915 * we have a write-back cache, then we assume setting
5916 * only C will make those pages write-through.
5918 if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
5919 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
5920 pte_l2_l_cache_mode_pt = L2_B|L2_C;
5921 pte_l2_s_cache_mode_pt = L2_B|L2_C;
5922 } else {
5923 #if ARM_MMU_V6 > 1
5924 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; /* arm116 errata 399234 */
5925 pte_l2_l_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5926 pte_l2_s_cache_mode_pt = L2_B|L2_C; /* arm116 errata 399234 */
5927 #else
5928 pte_l1_s_cache_mode_pt = L1_S_C;
5929 pte_l2_l_cache_mode_pt = L2_C;
5930 pte_l2_s_cache_mode_pt = L2_C;
5931 #endif
5934 pte_l2_s_prot_u = L2_S_PROT_U_generic;
5935 pte_l2_s_prot_w = L2_S_PROT_W_generic;
5936 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
5938 pte_l1_s_proto = L1_S_PROTO_generic;
5939 pte_l1_c_proto = L1_C_PROTO_generic;
5940 pte_l2_s_proto = L2_S_PROTO_generic;
5942 pmap_copy_page_func = pmap_copy_page_generic;
5943 pmap_zero_page_func = pmap_zero_page_generic;
5946 #if defined(CPU_ARM8)
5947 void
5948 pmap_pte_init_arm8(void)
5952 * ARM8 is compatible with generic, but we need to use
5953 * the page tables uncached.
5955 pmap_pte_init_generic();
5957 pte_l1_s_cache_mode_pt = 0;
5958 pte_l2_l_cache_mode_pt = 0;
5959 pte_l2_s_cache_mode_pt = 0;
5961 #endif /* CPU_ARM8 */
5963 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
5964 void
5965 pmap_pte_init_arm9(void)
5969 * ARM9 is compatible with generic, but we want to use
5970 * write-through caching for now.
5972 pmap_pte_init_generic();
5974 pte_l1_s_cache_mode = L1_S_C;
5975 pte_l2_l_cache_mode = L2_C;
5976 pte_l2_s_cache_mode = L2_C;
5978 pte_l1_s_cache_mode_pt = L1_S_C;
5979 pte_l2_l_cache_mode_pt = L2_C;
5980 pte_l2_s_cache_mode_pt = L2_C;
5982 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
5983 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
5985 #if defined(CPU_ARM10)
5986 void
5987 pmap_pte_init_arm10(void)
5991 * ARM10 is compatible with generic, but we want to use
5992 * write-through caching for now.
5994 pmap_pte_init_generic();
5996 pte_l1_s_cache_mode = L1_S_B | L1_S_C;
5997 pte_l2_l_cache_mode = L2_B | L2_C;
5998 pte_l2_s_cache_mode = L2_B | L2_C;
6000 pte_l1_s_cache_mode_pt = L1_S_C;
6001 pte_l2_l_cache_mode_pt = L2_C;
6002 pte_l2_s_cache_mode_pt = L2_C;
6005 #endif /* CPU_ARM10 */
6007 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
6008 void
6009 pmap_pte_init_arm11(void)
6013 * ARM11 is compatible with generic, but we want to use
6014 * write-through caching for now.
6016 pmap_pte_init_generic();
6018 pte_l1_s_cache_mode = L1_S_C;
6019 pte_l2_l_cache_mode = L2_C;
6020 pte_l2_s_cache_mode = L2_C;
6022 pte_l1_s_cache_mode_pt = L1_S_C;
6023 pte_l2_l_cache_mode_pt = L2_C;
6024 pte_l2_s_cache_mode_pt = L2_C;
6026 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
6028 #if ARM_MMU_SA1 == 1
6029 void
6030 pmap_pte_init_sa1(void)
6034 * The StrongARM SA-1 cache does not have a write-through
6035 * mode. So, do the generic initialization, then reset
6036 * the page table cache mode to B=1,C=1, and note that
6037 * the PTEs need to be sync'd.
6039 pmap_pte_init_generic();
6041 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
6042 pte_l2_l_cache_mode_pt = L2_B|L2_C;
6043 pte_l2_s_cache_mode_pt = L2_B|L2_C;
6045 pmap_needs_pte_sync = 1;
6047 #endif /* ARM_MMU_SA1 == 1*/
6049 #if ARM_MMU_XSCALE == 1
6050 #if (ARM_NMMUS > 1)
6051 static u_int xscale_use_minidata;
6052 #endif
6054 void
6055 pmap_pte_init_xscale(void)
6057 uint32_t auxctl;
6058 int write_through = 0;
6060 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
6061 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
6063 pte_l2_l_cache_mode = L2_B|L2_C;
6064 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
6066 pte_l2_s_cache_mode = L2_B|L2_C;
6067 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
6069 pte_l1_s_cache_mode_pt = L1_S_C;
6070 pte_l2_l_cache_mode_pt = L2_C;
6071 pte_l2_s_cache_mode_pt = L2_C;
6073 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
6075 * The XScale core has an enhanced mode where writes that
6076 * miss the cache cause a cache line to be allocated. This
6077 * is significantly faster than the traditional, write-through
6078 * behavior of this case.
6080 pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
6081 pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
6082 pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
6083 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
6085 #ifdef XSCALE_CACHE_WRITE_THROUGH
6087 * Some versions of the XScale core have various bugs in
6088 * their cache units, the work-around for which is to run
6089 * the cache in write-through mode. Unfortunately, this
6090 * has a major (negative) impact on performance. So, we
6091 * go ahead and run fast-and-loose, in the hopes that we
6092 * don't line up the planets in a way that will trip the
6093 * bugs.
6095 * However, we give you the option to be slow-but-correct.
6097 write_through = 1;
6098 #elif defined(XSCALE_CACHE_WRITE_BACK)
6099 /* force write back cache mode */
6100 write_through = 0;
6101 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
6103 * Intel PXA2[15]0 processors are known to have a bug in
6104 * write-back cache on revision 4 and earlier (stepping
6105 * A[01] and B[012]). Fixed for C0 and later.
6108 uint32_t id, type;
6110 id = cpufunc_id();
6111 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
6113 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
6114 if ((id & CPU_ID_REVISION_MASK) < 5) {
6115 /* write through for stepping A0-1 and B0-2 */
6116 write_through = 1;
6120 #endif /* XSCALE_CACHE_WRITE_THROUGH */
6122 if (write_through) {
6123 pte_l1_s_cache_mode = L1_S_C;
6124 pte_l2_l_cache_mode = L2_C;
6125 pte_l2_s_cache_mode = L2_C;
6128 #if (ARM_NMMUS > 1)
6129 xscale_use_minidata = 1;
6130 #endif
6132 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
6133 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
6134 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
6136 pte_l1_s_proto = L1_S_PROTO_xscale;
6137 pte_l1_c_proto = L1_C_PROTO_xscale;
6138 pte_l2_s_proto = L2_S_PROTO_xscale;
6140 pmap_copy_page_func = pmap_copy_page_xscale;
6141 pmap_zero_page_func = pmap_zero_page_xscale;
6144 * Disable ECC protection of page table access, for now.
6146 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6147 auxctl &= ~XSCALE_AUXCTL_P;
6148 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6152 * xscale_setup_minidata:
6154 * Set up the mini-data cache clean area. We require the
6155 * caller to allocate the right amount of physically and
6156 * virtually contiguous space.
6158 void
6159 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
6161 extern vaddr_t xscale_minidata_clean_addr;
6162 extern vsize_t xscale_minidata_clean_size; /* already initialized */
6163 pd_entry_t *pde = (pd_entry_t *) l1pt;
6164 pt_entry_t *pte;
6165 vsize_t size;
6166 uint32_t auxctl;
6168 xscale_minidata_clean_addr = va;
6170 /* Round it to page size. */
6171 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
6173 for (; size != 0;
6174 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
6175 #ifndef ARM32_NEW_VM_LAYOUT
6176 pte = (pt_entry_t *)
6177 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
6178 #else
6179 pte = (pt_entry_t *) kernel_pt_lookup(
6180 pde[L1_IDX(va)] & L1_C_ADDR_MASK);
6181 #endif
6182 if (pte == NULL)
6183 panic("xscale_setup_minidata: can't find L2 table for "
6184 "VA 0x%08lx", va);
6185 #ifndef ARM32_NEW_VM_LAYOUT
6186 pte[(va >> PGSHIFT) & 0x3ff] =
6187 #else
6188 pte[l2pte_index(va)] =
6189 #endif
6190 L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
6191 L2_C | L2_XS_T_TEX(TEX_XSCALE_X);
6195 * Configure the mini-data cache for write-back with
6196 * read/write-allocate.
6198 * NOTE: In order to reconfigure the mini-data cache, we must
6199 * make sure it contains no valid data! In order to do that,
6200 * we must issue a global data cache invalidate command!
6202 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
6203 * THIS IS VERY IMPORTANT!
6206 /* Invalidate data and mini-data. */
6207 __asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
6208 __asm volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
6209 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
6210 __asm volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
6214 * Change the PTEs for the specified kernel mappings such that they
6215 * will use the mini data cache instead of the main data cache.
6217 void
6218 pmap_uarea(vaddr_t va)
6220 struct l2_bucket *l2b;
6221 pt_entry_t *ptep, *sptep, pte;
6222 vaddr_t next_bucket, eva;
6224 #if (ARM_NMMUS > 1)
6225 if (xscale_use_minidata == 0)
6226 return;
6227 #endif
6229 eva = va + USPACE;
6231 while (va < eva) {
6232 next_bucket = L2_NEXT_BUCKET(va);
6233 if (next_bucket > eva)
6234 next_bucket = eva;
6236 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
6237 KDASSERT(l2b != NULL);
6239 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
6241 while (va < next_bucket) {
6242 pte = *ptep;
6243 if (!l2pte_minidata(pte)) {
6244 cpu_dcache_wbinv_range(va, PAGE_SIZE);
6245 cpu_tlb_flushD_SE(va);
6246 *ptep = pte & ~L2_B;
6248 ptep++;
6249 va += PAGE_SIZE;
6251 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
6253 cpu_cpwait();
6255 #endif /* ARM_MMU_XSCALE == 1 */
6258 * return the PA of the current L1 table, for use when handling a crash dump
6260 uint32_t pmap_kernel_L1_addr(void)
6262 return pmap_kernel()->pm_l1->l1_physaddr;
6265 #if defined(DDB)
6267 * A couple of ddb-callable functions for dumping pmaps
6269 void pmap_dump_all(void);
6270 void pmap_dump(pmap_t);
6272 void
6273 pmap_dump_all(void)
6275 pmap_t pm;
6277 LIST_FOREACH(pm, &pmap_pmaps, pm_list) {
6278 if (pm == pmap_kernel())
6279 continue;
6280 pmap_dump(pm);
6281 printf("\n");
6285 static pt_entry_t ncptes[64];
6286 static void pmap_dump_ncpg(pmap_t);
6288 void
6289 pmap_dump(pmap_t pm)
6291 struct l2_dtable *l2;
6292 struct l2_bucket *l2b;
6293 pt_entry_t *ptep, pte;
6294 vaddr_t l2_va, l2b_va, va;
6295 int i, j, k, occ, rows = 0;
6297 if (pm == pmap_kernel())
6298 printf("pmap_kernel (%p): ", pm);
6299 else
6300 printf("user pmap (%p): ", pm);
6302 printf("domain %d, l1 at %p\n", pm->pm_domain, pm->pm_l1->l1_kva);
6304 l2_va = 0;
6305 for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
6306 l2 = pm->pm_l2[i];
6308 if (l2 == NULL || l2->l2_occupancy == 0)
6309 continue;
6311 l2b_va = l2_va;
6312 for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
6313 l2b = &l2->l2_bucket[j];
6315 if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
6316 continue;
6318 ptep = l2b->l2b_kva;
6320 for (k = 0; k < 256 && ptep[k] == 0; k++)
6323 k &= ~63;
6324 occ = l2b->l2b_occupancy;
6325 va = l2b_va + (k * 4096);
6326 for (; k < 256; k++, va += 0x1000) {
6327 char ch = ' ';
6328 if ((k % 64) == 0) {
6329 if ((rows % 8) == 0) {
6330 printf(
6331 " |0000 |8000 |10000 |18000 |20000 |28000 |30000 |38000\n");
6333 printf("%08lx: ", va);
6336 ncptes[k & 63] = 0;
6337 pte = ptep[k];
6338 if (pte == 0) {
6339 ch = '.';
6340 } else {
6341 occ--;
6342 switch (pte & 0x0c) {
6343 case 0x00:
6344 ch = 'D'; /* No cache No buff */
6345 break;
6346 case 0x04:
6347 ch = 'B'; /* No cache buff */
6348 break;
6349 case 0x08:
6350 if (pte & 0x40)
6351 ch = 'm';
6352 else
6353 ch = 'C'; /* Cache No buff */
6354 break;
6355 case 0x0c:
6356 ch = 'F'; /* Cache Buff */
6357 break;
6360 if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
6361 ch += 0x20;
6363 if ((pte & 0xc) == 0)
6364 ncptes[k & 63] = pte;
6367 if ((k % 64) == 63) {
6368 rows++;
6369 printf("%c\n", ch);
6370 pmap_dump_ncpg(pm);
6371 if (occ == 0)
6372 break;
6373 } else
6374 printf("%c", ch);
6380 static void
6381 pmap_dump_ncpg(pmap_t pm)
6383 struct vm_page *pg;
6384 struct pv_entry *pv;
6385 int i;
6387 for (i = 0; i < 63; i++) {
6388 if (ncptes[i] == 0)
6389 continue;
6391 pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
6392 if (pg == NULL)
6393 continue;
6395 printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
6396 VM_PAGE_TO_PHYS(pg),
6397 pg->mdpage.krw_mappings, pg->mdpage.kro_mappings,
6398 pg->mdpage.urw_mappings, pg->mdpage.uro_mappings);
6400 SLIST_FOREACH(pv, &pg->mdpage.pvh_list, pv_link) {
6401 printf(" %c va 0x%08lx, flags 0x%x\n",
6402 (pm == pv->pv_pmap) ? '*' : ' ',
6403 pv->pv_va, pv->pv_flags);
6407 #endif
6409 #ifdef PMAP_STEAL_MEMORY
6410 void
6411 pmap_boot_pageadd(pv_addr_t *newpv)
6413 pv_addr_t *pv, *npv;
6415 if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
6416 if (newpv->pv_pa < pv->pv_va) {
6417 KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
6418 if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
6419 newpv->pv_size += pv->pv_size;
6420 SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
6422 pv = NULL;
6423 } else {
6424 for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
6425 pv = npv) {
6426 KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
6427 KASSERT(pv->pv_pa < newpv->pv_pa);
6428 if (newpv->pv_pa > npv->pv_pa)
6429 continue;
6430 if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
6431 pv->pv_size += newpv->pv_size;
6432 return;
6434 if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
6435 break;
6436 newpv->pv_size += npv->pv_size;
6437 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6438 SLIST_REMOVE_AFTER(newpv, pv_list);
6439 return;
6444 if (pv) {
6445 SLIST_INSERT_AFTER(pv, newpv, pv_list);
6446 } else {
6447 SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
6451 void
6452 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
6453 pv_addr_t *rpv)
6455 pv_addr_t *pv, **pvp;
6456 struct vm_physseg *ps;
6457 size_t i;
6459 KASSERT(amount & PGOFSET);
6460 KASSERT((mask & PGOFSET) == 0);
6461 KASSERT((match & PGOFSET) == 0);
6462 KASSERT(amount != 0);
6464 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6465 (pv = *pvp) != NULL;
6466 pvp = &SLIST_NEXT(pv, pv_list)) {
6467 pv_addr_t *newpv;
6468 psize_t off;
6470 * If this entry is too small to satify the request...
6472 KASSERT(pv->pv_size > 0);
6473 if (pv->pv_size < amount)
6474 continue;
6476 for (off = 0; off <= mask; off += PAGE_SIZE) {
6477 if (((pv->pv_pa + off) & mask) == match
6478 && off + amount <= pv->pv_size)
6479 break;
6481 if (off > mask)
6482 continue;
6484 rpv->pv_va = pv->pv_va + off;
6485 rpv->pv_pa = pv->pv_pa + off;
6486 rpv->pv_size = amount;
6487 pv->pv_size -= amount;
6488 if (pv->pv_size == 0) {
6489 KASSERT(off == 0);
6490 KASSERT((vaddr_t) pv == rpv->pv_va);
6491 *pvp = SLIST_NEXT(pv, pv_list);
6492 } else if (off == 0) {
6493 KASSERT((vaddr_t) pv == rpv->pv_va);
6494 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6495 *newpv = *pv;
6496 newpv->pv_pa += amount;
6497 newpv->pv_va += amount;
6498 *pvp = newpv;
6499 } else if (off < pv->pv_size) {
6500 newpv = (pv_addr_t *) (rpv->pv_va + amount);
6501 *newpv = *pv;
6502 newpv->pv_size -= off;
6503 newpv->pv_pa += off + amount;
6504 newpv->pv_va += off + amount;
6506 SLIST_NEXT(pv, pv_list) = newpv;
6507 pv->pv_size = off;
6508 } else {
6509 KASSERT((vaddr_t) pv != rpv->pv_va);
6511 memset((void *)rpv->pv_va, 0, amount);
6512 return;
6515 if (vm_nphysseg == 0)
6516 panic("pmap_boot_pagealloc: couldn't allocate memory");
6518 for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
6519 (pv = *pvp) != NULL;
6520 pvp = &SLIST_NEXT(pv, pv_list)) {
6521 if (SLIST_NEXT(pv, pv_list) == NULL)
6522 break;
6524 KASSERT(mask == 0);
6525 for (ps = vm_physmem, i = 0; i < vm_nphysseg; ps++, i++) {
6526 if (ps->avail_start == atop(pv->pv_pa + pv->pv_size)
6527 && pv->pv_va + pv->pv_size <= ptoa(ps->avail_end)) {
6528 rpv->pv_va = pv->pv_va;
6529 rpv->pv_pa = pv->pv_pa;
6530 rpv->pv_size = amount;
6531 *pvp = NULL;
6532 pmap_map_chunk(kernel_l1pt.pv_va,
6533 ptoa(ps->avail_start) + (pv->pv_va - pv->pv_pa),
6534 ptoa(ps->avail_start),
6535 amount - pv->pv_size,
6536 VM_PROT_READ|VM_PROT_WRITE,
6537 PTE_CACHE);
6538 ps->avail_start += atop(amount - pv->pv_size);
6540 * If we consumed the entire physseg, remove it.
6542 if (ps->avail_start == ps->avail_end) {
6543 for (--vm_nphysseg; i < vm_nphysseg; i++, ps++)
6544 ps[0] = ps[1];
6546 memset((void *)rpv->pv_va, 0, rpv->pv_size);
6547 return;
6551 panic("pmap_boot_pagealloc: couldn't allocate memory");
6554 vaddr_t
6555 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
6557 pv_addr_t pv;
6559 pmap_boot_pagealloc(size, 0, 0, &pv);
6561 return pv.pv_va;
6563 #endif /* PMAP_STEAL_MEMORY */
6565 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
6567 sysctl_createv(clog, 0, NULL, NULL,
6568 CTLFLAG_PERMANENT,
6569 CTLTYPE_NODE, "machdep", NULL,
6570 NULL, 0, NULL, 0,
6571 CTL_MACHDEP, CTL_EOL);
6573 sysctl_createv(clog, 0, NULL, NULL,
6574 CTLFLAG_PERMANENT,
6575 CTLTYPE_INT, "kmpages",
6576 SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
6577 NULL, 0, &pmap_kmpages, 0,
6578 CTL_MACHDEP, CTL_CREATE, CTL_EOL);