Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / arm / footbridge / footbridge_clock.c
blob8265239ef84b3e6a67c3231742fd38d1fbb593b6
1 /* $NetBSD: footbridge_clock.c,v 1.25 2008/09/20 14:53:37 chris Exp $ */
3 /*
4 * Copyright (c) 1997 Mark Brinicombe.
5 * Copyright (c) 1997 Causality Limited.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Mark Brinicombe
19 * for the NetBSD Project.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: footbridge_clock.c,v 1.25 2008/09/20 14:53:37 chris Exp $");
40 /* Include header files */
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/time.h>
47 #include <sys/timetc.h>
48 #include <sys/device.h>
50 #include <machine/intr.h>
52 #include <arm/cpufunc.h>
54 #include <arm/footbridge/dc21285reg.h>
55 #include <arm/footbridge/footbridgevar.h>
56 #include <arm/footbridge/footbridge.h>
58 extern struct footbridge_softc *clock_sc;
59 extern u_int dc21285_fclk;
61 int clockhandler(void *);
62 int statclockhandler(void *);
63 static int load_timer(int, int);
66 * Statistics clock variance, in usec. Variance must be a
67 * power of two. Since this gives us an even number, not an odd number,
68 * we discard one case and compensate. That is, a variance of 1024 would
69 * give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
70 * This is symmetric about the point 512, or statvar/2, and thus averages
71 * to that value (assuming uniform random numbers).
73 const int statvar = 1024;
74 int statmin; /* minimum stat clock count in ticks */
75 int statcountperusec; /* number of ticks per usec at current stathz */
76 int statprev; /* last value of we set statclock to */
78 void footbridge_tc_init(void);
80 #if 0
81 static int clockmatch(device_t parent, cfdata_t cf, void *aux);
82 static void clockattach(device_t parent, device_t self, void *aux);
84 CFATTACH_DECL_NEW(footbridge_clock, sizeof(struct clock_softc),
85 clockmatch, clockattach, NULL, NULL);
88 * int clockmatch(device_t parent, cfdata_t cf, void *aux);
90 * Just return ok for this if it is device 0
91 */
93 static int
94 clockmatch(device_t parent, cfdata_t cf, void *aux)
96 union footbridge_attach_args *fba = aux;
98 if (strcmp(fba->fba_ca.ca_name, "clk") == 0)
99 return 1;
100 return 0;
105 * void clockattach(device_t parent, device_t self, void *aux)
109 static void
110 clockattach(device_t parent, device_t self, void *aux)
112 struct clock_softc *sc = device_private(self);
113 union footbridge_attach_args *fba = aux;
115 sc->sc_dev = self;
116 sc->sc_iot = fba->fba_ca.ca_iot;
117 sc->sc_ioh = fba->fba_ca.ca_ioh;
119 clock_sc = sc;
121 /* Cannot do anything until cpu_initclocks() has been called */
123 aprint_normal("\n");
125 #endif
128 * int clockhandler(struct clockframe *frame)
130 * Function called by timer 1 interrupts.
131 * This just clears the interrupt condition and calls hardclock().
135 clockhandler(void *aframe)
137 struct clockframe *frame = aframe;
138 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
139 TIMER_1_CLEAR, 0);
140 hardclock(frame);
141 return 0; /* Pass the interrupt on down the chain */
145 * int statclockhandler(struct clockframe *frame)
147 * Function called by timer 2 interrupts.
148 * This just clears the interrupt condition and calls statclock().
152 statclockhandler(void *aframe)
154 struct clockframe *frame = aframe;
155 int newint, r;
156 int currentclock ;
158 /* start the clock off again */
159 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
160 TIMER_2_CLEAR, 0);
162 do {
163 r = random() & (statvar-1);
164 } while (r == 0);
165 newint = statmin + (r * statcountperusec);
167 /* fetch the current count */
168 currentclock = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
169 TIMER_2_VALUE);
172 * work out how much time has run, add another usec for time spent
173 * here
175 r = ((statprev - currentclock) + statcountperusec);
177 if (r < newint) {
178 newint -= r;
179 r = 0;
181 else
182 printf("statclockhandler: Statclock overrun\n");
186 * update the clock to the new counter, this reloads the existing
187 * timer
189 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
190 TIMER_2_LOAD, newint);
191 statprev = newint;
192 statclock(frame);
193 if (r)
195 * We've completely overrun the previous interval,
196 * make sure we report the correct number of ticks.
198 statclock(frame);
200 return 0; /* Pass the interrupt on down the chain */
203 static int
204 load_timer(int base, int herz)
206 unsigned int timer_count;
207 int control;
209 timer_count = dc21285_fclk / herz;
210 if (timer_count > TIMER_MAX_VAL * 16) {
211 control = TIMER_FCLK_256;
212 timer_count >>= 8;
213 } else if (timer_count > TIMER_MAX_VAL) {
214 control = TIMER_FCLK_16;
215 timer_count >>= 4;
216 } else
217 control = TIMER_FCLK;
219 control |= (TIMER_ENABLE | TIMER_MODE_PERIODIC);
220 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
221 base + TIMER_LOAD, timer_count);
222 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
223 base + TIMER_CONTROL, control);
224 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
225 base + TIMER_CLEAR, 0);
226 return timer_count;
230 * void setstatclockrate(int herz)
232 * Set the stat clock rate. The stat clock uses timer2
235 void
236 setstatclockrate(int herz)
238 int statint;
239 int countpersecond;
240 int statvarticks;
242 /* statint == num in counter to drop by desired herz */
243 statint = statprev = clock_sc->sc_statclock_count =
244 load_timer(TIMER_2_BASE, herz);
246 /* Get the total ticks a second */
247 countpersecond = statint * herz;
249 /* now work out how many ticks per usec */
250 statcountperusec = countpersecond / 1000000;
252 /* calculate a variance range of statvar */
253 statvarticks = statcountperusec * statvar;
255 /* minimum is statint - 50% of variant */
256 statmin = statint - (statvarticks / 2);
260 * void cpu_initclocks(void)
262 * Initialise the clocks.
264 * Timer 1 is used for the main system clock (hardclock)
265 * Timer 2 is used for the statistics clock (statclock)
268 void
269 cpu_initclocks(void)
271 /* stathz and profhz should be set to something, we have the timer */
272 if (stathz == 0)
273 stathz = hz;
275 if (profhz == 0)
276 profhz = stathz * 5;
278 /* Report the clock frequencies */
279 aprint_debug("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
281 /* Setup timer 1 and claim interrupt */
282 clock_sc->sc_clock_count = load_timer(TIMER_1_BASE, hz);
285 * Use ticks per 256us for accuracy since ticks per us is often
286 * fractional e.g. @ 66MHz
288 clock_sc->sc_clock_ticks_per_256us =
289 ((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
290 clock_sc->sc_clockintr = footbridge_intr_claim(IRQ_TIMER_1, IPL_CLOCK,
291 "tmr1 hard clk", clockhandler, 0);
293 if (clock_sc->sc_clockintr == NULL)
294 panic("%s: Cannot install timer 1 interrupt handler",
295 device_xname(clock_sc->sc_dev));
297 /* If stathz is non-zero then setup the stat clock */
298 if (stathz) {
299 /* Setup timer 2 and claim interrupt */
300 setstatclockrate(stathz);
301 clock_sc->sc_statclockintr = footbridge_intr_claim(IRQ_TIMER_2, IPL_HIGH,
302 "tmr2 stat clk", statclockhandler, 0);
303 if (clock_sc->sc_statclockintr == NULL)
304 panic("%s: Cannot install timer 2 interrupt handler",
305 device_xname(clock_sc->sc_dev));
308 footbridge_tc_init();
311 static uint32_t
312 fclk_get_count(struct timecounter *tc)
314 return (TIMER_MAX_VAL -
315 bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
316 TIMER_3_VALUE));
319 void
320 footbridge_tc_init(void)
322 static struct timecounter fb_tc = {
323 .tc_get_timecount = fclk_get_count,
324 .tc_counter_mask = TIMER_MAX_VAL,
325 .tc_name = "dc21285_fclk",
326 .tc_quality = 100
328 fb_tc.tc_frequency = dc21285_fclk;
329 tc_init(&fb_tc);
333 * Use a timer to track microseconds, if the footbridge hasn't been setup we
334 * rely on an estimated loop, however footbridge is attached very early on.
337 static int delay_count_per_usec = 0;
339 void
340 calibrate_delay(void)
343 * For all current footbridge hardware, the fclk runs at a
344 * rate that is sufficiently slow enough that we don't need to
345 * use a prescaler. A prescaler would be needed if the fclk
346 * could wrap within 2 hardclock periods (2 * HZ). With
347 * normal values of HZ (100 and higher), this is unlikely to
348 * ever happen.
350 * We let TIMER 3 just run free, at the freqeuncy supplied by
351 * dc21285_fclk.
353 bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_ioh,
354 TIMER_3_BASE + TIMER_CONTROL, TIMER_ENABLE);
355 delay_count_per_usec = dc21285_fclk / 1000000;
356 if (dc21285_fclk % 1000000)
357 delay_count_per_usec += 1;
360 void
361 delay(unsigned n)
363 uint32_t cur, last, delta, usecs;
365 if (n == 0)
366 return;
369 * not calibrated the timer yet, so try to live with this horrible
370 * loop!
372 * Note: a much better solution might be to have the timers
373 * get get calibrated out of mach_init. Of course, the
374 * clock_sc needs to be set up, so we can read/write the clock
375 * registers.
377 if (!delay_count_per_usec)
380 * the loop below has a core of 6 instructions
381 * StrongArms top out at 233Mhz, so one instruction takes
382 * 0.004 us, and 6 take 0.025 us, so we need to loop 40
383 * times to make one usec
385 int delaycount = 40;
386 volatile int i;
388 while (n-- > 0) {
389 for (i = delaycount; --i;);
391 return;
394 last = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
395 TIMER_3_VALUE);
396 delta = usecs = 0;
398 while (n > usecs) {
399 cur = bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_ioh,
400 TIMER_3_VALUE);
401 if (last < cur)
402 /* timer has wrapped */
403 delta += ((TIMER_MAX_VAL - cur) + last);
404 else
405 delta += (last - cur);
407 last = cur;
409 while (delta >= delay_count_per_usec) {
410 delta -= delay_count_per_usec;
411 usecs++;
416 /* End of footbridge_clock.c */