4 * Copyright (c) 2002, 2003 Wasabi Systems, Inc.
7 * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
39 * Copyright (c) 1994,1995 Mark Brinicombe.
40 * All rights reserved.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by Mark Brinicombe
53 * 4. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
58 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
59 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
60 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
62 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
63 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
64 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
65 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68 #ifndef _ARM32_PMAP_H_
69 #define _ARM32_PMAP_H_
73 #include <arm/cpuconf.h>
74 #include <arm/arm32/pte.h>
76 #if defined(_KERNEL_OPT)
77 #include "opt_arm32_pmap.h"
79 #include <arm/cpufunc.h>
80 #include <uvm/uvm_object.h>
84 * a pmap describes a processes' 4GB virtual address space. this
85 * virtual address space can be broken up into 4096 1MB regions which
86 * are described by L1 PTEs in the L1 table.
88 * There is a line drawn at KERNEL_BASE. Everything below that line
89 * changes when the VM context is switched. Everything above that line
90 * is the same no matter which VM context is running. This is achieved
91 * by making the L1 PTEs for those slots above KERNEL_BASE reference
94 * The basic layout of the virtual address space thus looks like this:
101 * --------------------
109 * The number of L2 descriptor tables which can be tracked by an l2_dtable.
110 * A bucket size of 16 provides for 16MB of contiguous virtual address
111 * space per l2_dtable. Most processes will, therefore, require only two or
112 * three of these to map their whole working set.
114 #define L2_BUCKET_LOG2 4
115 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
118 * Given the above "L2-descriptors-per-l2_dtable" constant, the number
119 * of l2_dtable structures required to track all possible page descriptors
120 * mappable by an L1 translation table is given by the following constants:
122 #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
123 #define L2_SIZE (1 << L2_LOG2)
126 * tell MI code that the cache is virtually-indexed.
127 * ARMv6 is physically-tagged but all others are virtually-tagged.
130 #define PMAP_CACHE_VIPT
132 #define PMAP_CACHE_VIVT
141 * Track cache/tlb occupancy using the following structure
143 union pmap_cache_state
{
146 u_int8_t csu_cache_b
[2];
151 u_int8_t csu_tlb_b
[2];
157 #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
158 #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
159 #define cs_cache cs_s.cs_cache_u.csu_cache
160 #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
161 #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
162 #define cs_tlb cs_s.cs_tlb_u.csu_tlb
165 * Assigned to cs_all to force cacheops to work for a particular pmap
167 #define PMAP_CACHE_STATE_ALL 0xffffffffu
170 * This structure is used by machine-dependent code to describe
171 * static mappings of devices, created at bootstrap time.
174 vaddr_t pd_va
; /* virtual address */
175 paddr_t pd_pa
; /* physical address */
176 psize_t pd_size
; /* size of region */
177 vm_prot_t pd_prot
; /* protection code */
178 int pd_cache
; /* cache attributes */
182 * The pmap structure itself
188 struct l1_ttable
*pm_l1
;
189 pd_entry_t
*pm_pl1vec
;
191 union pmap_cache_state pm_cstate
;
192 struct uvm_object pm_obj
;
193 #define pm_lock pm_obj.vmobjlock
194 struct l2_dtable
*pm_l2
[L2_SIZE
];
195 struct pmap_statistics pm_stats
;
196 LIST_ENTRY(pmap
) pm_list
;
200 * Physical / virtual address structure. In a number of places (particularly
201 * during bootstrapping) we need to keep track of the physical and virtual
202 * addresses of various pages
204 typedef struct pv_addr
{
205 SLIST_ENTRY(pv_addr
) pv_list
;
210 typedef SLIST_HEAD(, pv_addr
) pv_addrqh_t
;
212 extern pv_addrqh_t pmap_freeq
;
213 extern pv_addr_t kernelpages
;
214 extern pv_addr_t systempage
;
215 extern pv_addr_t kernel_l1pt
;
218 * Determine various modes for PTEs (user vs. kernel, cacheable
219 * vs. non-cacheable).
223 #define PTE_NOCACHE 0
225 #define PTE_PAGETABLE 2
228 * Flags that indicate attributes of pages or mappings of pages.
230 * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
231 * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
232 * pv_entry's for each page. They live in the same "namespace" so
233 * that we can clear multiple attributes at a time.
235 * Note the "non-cacheable" flag generally means the page has
236 * multiple mappings in a given address space.
238 #define PVF_MOD 0x01 /* page is modified */
239 #define PVF_REF 0x02 /* page is referenced */
240 #define PVF_WIRED 0x04 /* mapping is wired */
241 #define PVF_WRITE 0x08 /* mapping is writable */
242 #define PVF_EXEC 0x10 /* mapping is executable */
243 #ifdef PMAP_CACHE_VIVT
244 #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
245 #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
246 #define PVF_NC (PVF_UNC|PVF_KNC)
248 #ifdef PMAP_CACHE_VIPT
249 #define PVF_NC 0x20 /* mapping is 'kernel' non-cacheable */
250 #define PVF_MULTCLR 0x40 /* mapping is multi-colored */
252 #define PVF_COLORED 0x80 /* page has or had a color */
253 #define PVF_KENTRY 0x0100 /* page entered via pmap_kenter_pa */
254 #define PVF_KMPAGE 0x0200 /* page is used for kmem */
255 #define PVF_DIRTY 0x0400 /* page may have dirty cache lines */
256 #define PVF_KMOD 0x0800 /* unmanaged page is modified */
257 #define PVF_KWRITE (PVF_KENTRY|PVF_WRITE)
258 #define PVF_DMOD (PVF_MOD|PVF_KMOD|PVF_KMPAGE)
261 * Commonly referenced structures
263 extern int pmap_debug_level
; /* Only exists if PMAP_DEBUG */
266 * Macros that we need to export
268 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
269 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
271 #define pmap_is_modified(pg) \
272 (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
273 #define pmap_is_referenced(pg) \
274 (((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
275 #define pmap_is_page_colored_p(pg) \
276 (((pg)->mdpage.pvh_attrs & PVF_COLORED) != 0)
278 #define pmap_copy(dp, sp, da, l, sa) /* nothing */
280 #define pmap_phys_address(ppn) (arm_ptob((ppn)))
283 * Functions that we need to export
285 void pmap_procwr(struct proc
*, vaddr_t
, int);
286 void pmap_remove_all(pmap_t
);
287 bool pmap_extract(pmap_t
, vaddr_t
, paddr_t
*);
289 #define PMAP_NEED_PROCWR
290 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
291 #define PMAP_ENABLE_PMAP_KMPAGE /* enable the PMAP_KMPAGE flag */
294 #define PMAP_PREFER(hint, vap, sz, td) pmap_prefer((hint), (vap), (td))
295 void pmap_prefer(vaddr_t
, vaddr_t
*, int);
298 void pmap_icache_sync_range(pmap_t
, vaddr_t
, vaddr_t
);
300 /* Functions we use internally. */
301 #ifdef PMAP_STEAL_MEMORY
302 void pmap_boot_pagealloc(psize_t
, psize_t
, psize_t
, pv_addr_t
*);
303 void pmap_boot_pageadd(pv_addr_t
*);
304 vaddr_t
pmap_steal_memory(vsize_t
, vaddr_t
*, vaddr_t
*);
306 void pmap_bootstrap(vaddr_t
, vaddr_t
);
308 void pmap_do_remove(pmap_t
, vaddr_t
, vaddr_t
, int);
309 int pmap_fault_fixup(pmap_t
, vaddr_t
, vm_prot_t
, int);
310 bool pmap_get_pde_pte(pmap_t
, vaddr_t
, pd_entry_t
**, pt_entry_t
**);
311 bool pmap_get_pde(pmap_t
, vaddr_t
, pd_entry_t
**);
312 void pmap_set_pcb_pagedir(pmap_t
, struct pcb
*);
314 void pmap_debug(int);
315 void pmap_postinit(void);
317 void vector_page_setprot(int);
319 const struct pmap_devmap
*pmap_devmap_find_pa(paddr_t
, psize_t
);
320 const struct pmap_devmap
*pmap_devmap_find_va(vaddr_t
, vsize_t
);
322 /* Bootstrapping routines. */
323 void pmap_map_section(vaddr_t
, vaddr_t
, paddr_t
, int, int);
324 void pmap_map_entry(vaddr_t
, vaddr_t
, paddr_t
, int, int);
325 vsize_t
pmap_map_chunk(vaddr_t
, vaddr_t
, paddr_t
, vsize_t
, int, int);
326 void pmap_link_l2pt(vaddr_t
, vaddr_t
, pv_addr_t
*);
327 void pmap_devmap_bootstrap(vaddr_t
, const struct pmap_devmap
*);
328 void pmap_devmap_register(const struct pmap_devmap
*);
331 * Special page zero routine for use by the idle loop (no cache cleans).
333 bool pmap_pageidlezero(paddr_t
);
334 #define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
337 * used by dumpsys to record the PA of the L1 table
339 uint32_t pmap_kernel_L1_addr(void);
341 * The current top of kernel VM
343 extern vaddr_t pmap_curmaxkvaddr
;
346 * Useful macros and constants
349 /* Virtual address to page table entry */
350 static inline pt_entry_t
*
356 if (pmap_get_pde_pte(pmap_kernel(), va
, &pdep
, &ptep
) == false)
362 * Virtual address to physical address
364 static inline paddr_t
369 if (pmap_extract(pmap_kernel(), va
, &pa
) == false)
370 return (0); /* XXXSCW: Panic? */
376 * The new pmap ensures that page-tables are always mapping Write-Thru.
377 * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
380 * Unfortunately, not all CPUs have a write-through cache mode. So we
381 * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
382 * and if there is the chance for PTE syncs to be needed, we define
383 * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
386 extern int pmap_needs_pte_sync
;
387 #if defined(_KERNEL_OPT)
389 * StrongARM SA-1 caches do not have a write-through mode. So, on these,
390 * we need to do PTE syncs. If only SA-1 is configured, then evaluate
391 * this at compile time.
393 #if (ARM_MMU_SA1 + ARM_MMU_V6 != 0) && (ARM_NMMUS == 1)
394 #define PMAP_NEEDS_PTE_SYNC 1
395 #define PMAP_INCLUDE_PTE_SYNC
396 #elif (ARM_MMU_SA1 == 0)
397 #define PMAP_NEEDS_PTE_SYNC 0
399 #endif /* _KERNEL_OPT */
402 * Provide a fallback in case we were not able to determine it at
405 #ifndef PMAP_NEEDS_PTE_SYNC
406 #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
407 #define PMAP_INCLUDE_PTE_SYNC
410 #define PTE_SYNC(pte) \
412 if (PMAP_NEEDS_PTE_SYNC) \
413 cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
414 } while (/*CONSTCOND*/0)
416 #define PTE_SYNC_RANGE(pte, cnt) \
418 if (PMAP_NEEDS_PTE_SYNC) { \
419 cpu_dcache_wb_range((vaddr_t)(pte), \
420 (cnt) << 2); /* * sizeof(pt_entry_t) */ \
422 } while (/*CONSTCOND*/0)
424 #define l1pte_valid(pde) ((pde) != 0)
425 #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
426 #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
427 #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
429 #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
430 #define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
431 #define l2pte_pa(pte) ((pte) & L2_S_FRAME)
432 #define l2pte_minidata(pte) (((pte) & \
433 (L2_B | L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))\
434 == (L2_C | L2_XS_T_TEX(TEX_XSCALE_X)))
436 /* L1 and L2 page table macros */
437 #define pmap_pde_v(pde) l1pte_valid(*(pde))
438 #define pmap_pde_section(pde) l1pte_section_p(*(pde))
439 #define pmap_pde_page(pde) l1pte_page_p(*(pde))
440 #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
442 #define pmap_pte_v(pte) l2pte_valid(*(pte))
443 #define pmap_pte_pa(pte) l2pte_pa(*(pte))
445 /* Size of the kernel part of the L1 page table */
446 #define KERNEL_PD_SIZE \
447 (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t))
449 /************************* ARM MMU configuration *****************************/
451 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
452 void pmap_copy_page_generic(paddr_t
, paddr_t
);
453 void pmap_zero_page_generic(paddr_t
);
455 void pmap_pte_init_generic(void);
456 #if defined(CPU_ARM8)
457 void pmap_pte_init_arm8(void);
459 #if defined(CPU_ARM9)
460 void pmap_pte_init_arm9(void);
461 #endif /* CPU_ARM9 */
462 #if defined(CPU_ARM10)
463 void pmap_pte_init_arm10(void);
464 #endif /* CPU_ARM10 */
465 #if defined(CPU_ARM11)
466 void pmap_pte_init_arm11(void);
467 #endif /* CPU_ARM11 */
468 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
471 void pmap_pte_init_sa1(void);
472 #endif /* ARM_MMU_SA1 == 1 */
474 #if ARM_MMU_XSCALE == 1
475 void pmap_copy_page_xscale(paddr_t
, paddr_t
);
476 void pmap_zero_page_xscale(paddr_t
);
478 void pmap_pte_init_xscale(void);
480 void xscale_setup_minidata(vaddr_t
, vaddr_t
, paddr_t
);
482 #define PMAP_UAREA(va) pmap_uarea(va)
483 void pmap_uarea(vaddr_t
);
484 #endif /* ARM_MMU_XSCALE == 1 */
486 extern pt_entry_t pte_l1_s_cache_mode
;
487 extern pt_entry_t pte_l1_s_cache_mask
;
489 extern pt_entry_t pte_l2_l_cache_mode
;
490 extern pt_entry_t pte_l2_l_cache_mask
;
492 extern pt_entry_t pte_l2_s_cache_mode
;
493 extern pt_entry_t pte_l2_s_cache_mask
;
495 extern pt_entry_t pte_l1_s_cache_mode_pt
;
496 extern pt_entry_t pte_l2_l_cache_mode_pt
;
497 extern pt_entry_t pte_l2_s_cache_mode_pt
;
499 extern pt_entry_t pte_l2_s_prot_u
;
500 extern pt_entry_t pte_l2_s_prot_w
;
501 extern pt_entry_t pte_l2_s_prot_mask
;
503 extern pt_entry_t pte_l1_s_proto
;
504 extern pt_entry_t pte_l1_c_proto
;
505 extern pt_entry_t pte_l2_s_proto
;
507 extern void (*pmap_copy_page_func
)(paddr_t
, paddr_t
);
508 extern void (*pmap_zero_page_func
)(paddr_t
);
510 #endif /* !_LOCORE */
512 /*****************************************************************************/
515 * Definitions for MMU domains
517 #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
518 #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
521 * These macros define the various bit masks in the PTE.
523 * We use these macros since we use different bits on different processor
526 #define L1_S_PROT_U (L1_S_AP(AP_U))
527 #define L1_S_PROT_W (L1_S_AP(AP_W))
528 #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W)
530 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
531 #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XS_TEX(TEX_XSCALE_X))
533 #define L2_L_PROT_U (L2_AP(AP_U))
534 #define L2_L_PROT_W (L2_AP(AP_W))
535 #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W)
537 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
538 #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_L_TEX(TEX_XSCALE_X))
540 #define L2_S_PROT_U_generic (L2_AP(AP_U))
541 #define L2_S_PROT_W_generic (L2_AP(AP_W))
542 #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W)
544 #define L2_S_PROT_U_xscale (L2_AP0(AP_U))
545 #define L2_S_PROT_W_xscale (L2_AP0(AP_W))
546 #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W)
548 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
549 #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XS_T_TEX(TEX_XSCALE_X))
551 #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
552 #define L1_S_PROTO_xscale (L1_TYPE_S)
554 #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
555 #define L1_C_PROTO_xscale (L1_TYPE_C)
557 #define L2_L_PROTO (L2_TYPE_L)
559 #define L2_S_PROTO_generic (L2_TYPE_S)
560 #define L2_S_PROTO_xscale (L2_TYPE_XS)
563 * User-visible names for the ones that vary with MMU class.
567 /* More than one MMU class configured; use variables. */
568 #define L2_S_PROT_U pte_l2_s_prot_u
569 #define L2_S_PROT_W pte_l2_s_prot_w
570 #define L2_S_PROT_MASK pte_l2_s_prot_mask
572 #define L1_S_CACHE_MASK pte_l1_s_cache_mask
573 #define L2_L_CACHE_MASK pte_l2_l_cache_mask
574 #define L2_S_CACHE_MASK pte_l2_s_cache_mask
576 #define L1_S_PROTO pte_l1_s_proto
577 #define L1_C_PROTO pte_l1_c_proto
578 #define L2_S_PROTO pte_l2_s_proto
580 #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
581 #define pmap_zero_page(d) (*pmap_zero_page_func)((d))
582 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0
583 #define L2_S_PROT_U L2_S_PROT_U_generic
584 #define L2_S_PROT_W L2_S_PROT_W_generic
585 #define L2_S_PROT_MASK L2_S_PROT_MASK_generic
587 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
588 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
589 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
591 #define L1_S_PROTO L1_S_PROTO_generic
592 #define L1_C_PROTO L1_C_PROTO_generic
593 #define L2_S_PROTO L2_S_PROTO_generic
595 #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
596 #define pmap_zero_page(d) pmap_zero_page_generic((d))
597 #elif ARM_MMU_XSCALE == 1
598 #define L2_S_PROT_U L2_S_PROT_U_xscale
599 #define L2_S_PROT_W L2_S_PROT_W_xscale
600 #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
602 #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
603 #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
604 #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
606 #define L1_S_PROTO L1_S_PROTO_xscale
607 #define L1_C_PROTO L1_C_PROTO_xscale
608 #define L2_S_PROTO L2_S_PROTO_xscale
610 #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
611 #define pmap_zero_page(d) pmap_zero_page_xscale((d))
612 #endif /* ARM_NMMUS > 1 */
615 * These macros return various bits based on kernel/user and protection.
616 * Note that the compiler will usually fold these at compile time.
618 #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
619 (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
621 #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
622 (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
624 #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
625 (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
628 * Macros to test if a mapping is mappable with an L1 Section mapping
629 * or an L2 Large Page mapping.
631 #define L1_S_MAPPABLE_P(va, pa, size) \
632 ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
634 #define L2_L_MAPPABLE_P(va, pa, size) \
635 ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
638 * Hooks for the pool allocator.
640 #define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
644 #endif /* _ARM32_PMAP_H_ */