Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / arm / xscale / ixp425_if_npe.c
bloba34358e14d9b607350a8fd77f26c874bb1e5d957
1 /* $NetBSD: ixp425_if_npe.c,v 1.16 2009/03/11 16:30:20 msaitoh Exp $ */
3 /*-
4 * Copyright (c) 2006 Sam Leffler. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.16 2009/03/11 16:30:20 msaitoh Exp $");
34 * Intel XScale NPE Ethernet driver.
36 * This driver handles the two ports present on the IXP425.
37 * Packet processing is done by the Network Processing Engines
38 * (NPE's) that work together with a MAC and PHY. The MAC
39 * is also mapped to the XScale cpu; the PHY is accessed via
40 * the MAC. NPE-XScale communication happens through h/w
41 * queues managed by the Q Manager block.
43 * The code here replaces the ethAcc, ethMii, and ethDB classes
44 * in the Intel Access Library (IAL) and the OS-specific driver.
46 * XXX add vlan support
47 * XXX NPE-C port doesn't work yet
50 #include "bpfilter.h"
51 #include "rnd.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/device.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/socket.h>
61 #include <sys/endian.h>
62 #include <sys/ioctl.h>
63 #include <sys/syslog.h>
65 #include <machine/bus.h>
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
76 #if NRND > 0
77 #include <sys/rnd.h>
78 #endif
80 #include <arm/xscale/ixp425reg.h>
81 #include <arm/xscale/ixp425var.h>
82 #include <arm/xscale/ixp425_qmgr.h>
83 #include <arm/xscale/ixp425_npevar.h>
84 #include <arm/xscale/ixp425_if_npereg.h>
86 #include <dev/mii/miivar.h>
88 #include "locators.h"
90 struct npebuf {
91 struct npebuf *ix_next; /* chain to next buffer */
92 void *ix_m; /* backpointer to mbuf */
93 bus_dmamap_t ix_map; /* bus dma map for associated data */
94 struct npehwbuf *ix_hw; /* associated h/w block */
95 uint32_t ix_neaddr; /* phys address of ix_hw */
98 struct npedma {
99 const char* name;
100 int nbuf; /* # npebuf's allocated */
101 bus_dmamap_t m_map;
102 struct npehwbuf *hwbuf; /* NPE h/w buffers */
103 bus_dmamap_t buf_map;
104 bus_addr_t buf_phys; /* phys addr of buffers */
105 struct npebuf *buf; /* s/w buffers (1-1 w/ h/w) */
108 struct npe_softc {
109 struct device sc_dev;
110 struct ethercom sc_ethercom;
111 uint8_t sc_enaddr[ETHER_ADDR_LEN];
112 struct mii_data sc_mii;
113 bus_space_tag_t sc_iot;
114 bus_dma_tag_t sc_dt;
115 bus_space_handle_t sc_ioh; /* MAC register window */
116 bus_space_handle_t sc_miih; /* MII register window */
117 struct ixpnpe_softc *sc_npe; /* NPE support */
118 int sc_unit;
119 int sc_phy;
120 struct callout sc_tick_ch; /* Tick callout */
121 struct npedma txdma;
122 struct npebuf *tx_free; /* list of free tx buffers */
123 struct npedma rxdma;
124 int rx_qid; /* rx qid */
125 int rx_freeqid; /* rx free buffers qid */
126 int tx_qid; /* tx qid */
127 int tx_doneqid; /* tx completed qid */
128 struct npestats *sc_stats;
129 bus_dmamap_t sc_stats_map;
130 bus_addr_t sc_stats_phys; /* phys addr of sc_stats */
131 int sc_if_flags; /* keep last if_flags */
132 #if NRND > 0
133 rndsource_element_t rnd_source; /* random source */
134 #endif
138 * Per-unit static configuration for IXP425. The tx and
139 * rx free Q id's are fixed by the NPE microcode. The
140 * rx Q id's are programmed to be separate to simplify
141 * multi-port processing. It may be better to handle
142 * all traffic through one Q (as done by the Intel drivers).
144 * Note that the PHY's are accessible only from MAC A
145 * on the IXP425. This and other platform-specific
146 * assumptions probably need to be handled through hints.
148 static const struct {
149 const char *desc; /* device description */
150 int npeid; /* NPE assignment */
151 int macport; /* Port number of the MAC */
152 uint32_t imageid; /* NPE firmware image id */
153 uint32_t regbase;
154 int regsize;
155 uint32_t miibase;
156 int miisize;
157 uint8_t rx_qid;
158 uint8_t rx_freeqid;
159 uint8_t tx_qid;
160 uint8_t tx_doneqid;
161 } npeconfig[NPE_PORTS_MAX] = {
162 { .desc = "IXP NPE-B",
163 .npeid = NPE_B,
164 .macport = 0x10,
165 .imageid = IXP425_NPE_B_IMAGEID,
166 .regbase = IXP425_MAC_A_HWBASE,
167 .regsize = IXP425_MAC_A_SIZE,
168 .miibase = IXP425_MAC_A_HWBASE,
169 .miisize = IXP425_MAC_A_SIZE,
170 .rx_qid = 4,
171 .rx_freeqid = 27,
172 .tx_qid = 24,
173 .tx_doneqid = 31
175 { .desc = "IXP NPE-C",
176 .npeid = NPE_C,
177 .macport = 0x20,
178 .imageid = IXP425_NPE_C_IMAGEID,
179 .regbase = IXP425_MAC_B_HWBASE,
180 .regsize = IXP425_MAC_B_SIZE,
181 .miibase = IXP425_MAC_A_HWBASE,
182 .miisize = IXP425_MAC_A_SIZE,
183 .rx_qid = 12,
184 .rx_freeqid = 28,
185 .tx_qid = 25,
186 .tx_doneqid = 31
189 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
191 static __inline uint32_t
192 RD4(struct npe_softc *sc, bus_size_t off)
194 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
197 static __inline void
198 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
200 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
203 static int npe_activate(struct npe_softc *);
204 #if 0
205 static void npe_deactivate(struct npe_softc *);
206 #endif
207 static void npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
208 static void npe_setmac(struct npe_softc *sc, const u_char *eaddr);
209 static void npe_getmac(struct npe_softc *sc);
210 static void npe_txdone(int qid, void *arg);
211 static int npe_rxbuf_init(struct npe_softc *, struct npebuf *,
212 struct mbuf *);
213 static void npe_rxdone(int qid, void *arg);
214 static void npeinit_macreg(struct npe_softc *);
215 static int npeinit(struct ifnet *);
216 static void npeinit_resetcb(void *);
217 static void npeinit_locked(void *);
218 static void npestart(struct ifnet *);
219 static void npestop(struct ifnet *, int);
220 static void npewatchdog(struct ifnet *);
221 static int npeioctl(struct ifnet * ifp, u_long, void *);
223 static int npe_setrxqosentry(struct npe_softc *, int classix,
224 int trafclass, int qid);
225 static int npe_updatestats(struct npe_softc *);
226 #if 0
227 static int npe_getstats(struct npe_softc *);
228 static uint32_t npe_getimageid(struct npe_softc *);
229 static int npe_setloopback(struct npe_softc *, int ena);
230 #endif
232 static int npe_miibus_readreg(struct device *, int, int);
233 static void npe_miibus_writereg(struct device *, int, int, int);
234 static void npe_miibus_statchg(struct device *);
236 static int npe_debug;
237 #define DPRINTF(sc, fmt, ...) do { \
238 if (npe_debug) printf(fmt, __VA_ARGS__); \
239 } while (0)
240 #define DPRINTFn(n, sc, fmt, ...) do { \
241 if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
242 } while (0)
244 #define NPE_TXBUF 128
245 #define NPE_RXBUF 64
247 #ifndef ETHER_ALIGN
248 #define ETHER_ALIGN 2 /* XXX: Ditch this */
249 #endif
251 #define MAC2UINT64(addr) (((uint64_t)addr[0] << 40) \
252 + ((uint64_t)addr[1] << 32) \
253 + ((uint64_t)addr[2] << 24) \
254 + ((uint64_t)addr[3] << 16) \
255 + ((uint64_t)addr[4] << 8) \
256 + (uint64_t)addr[5])
258 /* NB: all tx done processing goes through one queue */
259 static int tx_doneqid = -1;
261 void (*npe_getmac_md)(int, uint8_t *);
263 static int npe_match(struct device *, struct cfdata *, void *);
264 static void npe_attach(struct device *, struct device *, void *);
266 CFATTACH_DECL(npe, sizeof(struct npe_softc),
267 npe_match, npe_attach, NULL, NULL);
269 static int
270 npe_match(struct device *parent, struct cfdata *cf, void *arg)
272 struct ixpnpe_attach_args *na = arg;
274 return (na->na_unit == NPE_B || na->na_unit == NPE_C);
277 static void
278 npe_attach(struct device *parent, struct device *self, void *arg)
280 struct npe_softc *sc = (void *)self;
281 struct ixpnpe_attach_args *na = arg;
282 struct ixpnpe_softc *isc = (struct ixpnpe_softc *)parent;
283 struct ifnet *ifp;
285 aprint_naive("\n");
286 aprint_normal(": Ethernet co-processor\n");
288 sc->sc_iot = na->na_iot;
289 sc->sc_dt = na->na_dt;
290 sc->sc_npe = na->na_npe;
291 sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
292 sc->sc_phy = na->na_phy;
294 memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
295 memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
297 callout_init(&sc->sc_tick_ch, 0);
299 if (npe_activate(sc)) {
300 aprint_error("%s: Failed to activate NPE (missing "
301 "microcode?)\n", sc->sc_dev.dv_xname);
302 return;
305 npe_getmac(sc);
306 npeinit_macreg(sc);
308 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
309 ether_sprintf(sc->sc_enaddr));
311 ifp = &sc->sc_ethercom.ec_if;
312 sc->sc_mii.mii_ifp = ifp;
313 sc->sc_mii.mii_readreg = npe_miibus_readreg;
314 sc->sc_mii.mii_writereg = npe_miibus_writereg;
315 sc->sc_mii.mii_statchg = npe_miibus_statchg;
316 sc->sc_ethercom.ec_mii = &sc->sc_mii;
318 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
319 npe_ifmedia_status);
321 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
322 MII_OFFSET_ANY, MIIF_DOPAUSE);
323 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
324 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
325 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
326 } else
327 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
329 ifp->if_softc = sc;
330 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_start = npestart;
333 ifp->if_ioctl = npeioctl;
334 ifp->if_watchdog = npewatchdog;
335 ifp->if_init = npeinit;
336 ifp->if_stop = npestop;
337 IFQ_SET_READY(&ifp->if_snd);
339 /* VLAN capable */
340 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
342 if_attach(ifp);
343 ether_ifattach(ifp, sc->sc_enaddr);
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
349 /* callback function to reset MAC */
350 isc->macresetcbfunc = npeinit_resetcb;
351 isc->macresetcbarg = sc;
355 * Compute and install the multicast filter.
357 static void
358 npe_setmcast(struct npe_softc *sc)
360 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
361 uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
362 uint32_t reg;
363 uint32_t msg[2];
364 int i;
366 /* Always use filter. Is here a correct position? */
367 reg = RD4(sc, NPE_MAC_RX_CNTRL1);
368 WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
370 if (ifp->if_flags & IFF_PROMISC) {
371 memset(mask, 0, ETHER_ADDR_LEN);
372 memset(addr, 0, ETHER_ADDR_LEN);
373 } else if (ifp->if_flags & IFF_ALLMULTI) {
374 static const uint8_t allmulti[ETHER_ADDR_LEN] =
375 { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
376 all_multi:
377 memcpy(mask, allmulti, ETHER_ADDR_LEN);
378 memcpy(addr, allmulti, ETHER_ADDR_LEN);
379 } else {
380 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
381 struct ether_multistep step;
382 struct ether_multi *enm;
384 memset(clr, 0, ETHER_ADDR_LEN);
385 memset(set, 0xff, ETHER_ADDR_LEN);
387 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
388 while (enm != NULL) {
389 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
390 ifp->if_flags |= IFF_ALLMULTI;
391 goto all_multi;
394 for (i = 0; i < ETHER_ADDR_LEN; i++) {
395 clr[i] |= enm->enm_addrlo[i];
396 set[i] &= enm->enm_addrlo[i];
399 ETHER_NEXT_MULTI(step, enm);
402 for (i = 0; i < ETHER_ADDR_LEN; i++) {
403 mask[i] = set[i] | ~clr[i];
404 addr[i] = set[i];
409 * Write the mask and address registers.
411 for (i = 0; i < ETHER_ADDR_LEN; i++) {
412 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
413 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
416 msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
417 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
418 msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
419 | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
420 | (addr[5] << 8) | mask[5];
421 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
424 static int
425 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
426 const char *name, int nbuf, int maxseg)
428 bus_dma_segment_t seg;
429 int rseg, error, i;
430 void *hwbuf;
431 size_t size;
433 memset(dma, 0, sizeof(*dma));
435 dma->name = name;
436 dma->nbuf = nbuf;
438 size = nbuf * sizeof(struct npehwbuf);
440 /* XXX COHERENT for now */
441 error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
442 1, &rseg, BUS_DMA_NOWAIT);
443 if (error) {
444 printf("%s: unable to allocate memory for %s h/w buffers, "
445 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
448 error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
449 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
450 if (error) {
451 printf("%s: unable to map memory for %s h/w buffers, "
452 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
453 free_dmamem:
454 bus_dmamem_free(sc->sc_dt, &seg, rseg);
455 return error;
457 dma->hwbuf = (void *)hwbuf;
459 error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
460 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
461 if (error) {
462 printf("%s: unable to create map for %s h/w buffers, "
463 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
464 unmap_dmamem:
465 dma->hwbuf = NULL;
466 bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
467 goto free_dmamem;
470 error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
471 BUS_DMA_NOWAIT);
472 if (error) {
473 printf("%s: unable to load map for %s h/w buffers, "
474 "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
475 destroy_dmamap:
476 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
477 goto unmap_dmamem;
480 /* XXX M_TEMP */
481 dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
482 if (dma->buf == NULL) {
483 printf("%s: unable to allocate memory for %s s/w buffers\n",
484 sc->sc_dev.dv_xname, dma->name);
485 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
486 error = ENOMEM;
487 goto destroy_dmamap;
490 dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
491 for (i = 0; i < dma->nbuf; i++) {
492 struct npebuf *npe = &dma->buf[i];
493 struct npehwbuf *hw = &dma->hwbuf[i];
495 /* calculate offset to shared area */
496 npe->ix_neaddr = dma->buf_phys +
497 ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
498 KASSERT((npe->ix_neaddr & 0x1f) == 0);
499 error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
500 MCLBYTES, 0, 0, &npe->ix_map);
501 if (error != 0) {
502 printf("%s: unable to create dmamap for %s buffer %u, "
503 "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
504 error);
505 /* XXXSCW: Free up maps... */
506 return error;
508 npe->ix_hw = hw;
510 bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
511 BUS_DMASYNC_PREWRITE);
512 return 0;
515 #if 0
516 static void
517 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
519 int i;
521 /* XXXSCW: Clean this up */
523 if (dma->hwbuf != NULL) {
524 for (i = 0; i < dma->nbuf; i++) {
525 struct npebuf *npe = &dma->buf[i];
526 bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
528 bus_dmamap_unload(sc->sc_dt, dma->buf_map);
529 bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
530 bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
532 if (dma->buf != NULL)
533 free(dma->buf, M_TEMP);
534 memset(dma, 0, sizeof(*dma));
536 #endif
538 static int
539 npe_activate(struct npe_softc *sc)
541 bus_dma_segment_t seg;
542 int unit = sc->sc_unit;
543 int error, i, rseg;
544 void *statbuf;
546 /* load NPE firmware and start it running */
547 error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
548 if (error != 0)
549 return error;
551 if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
552 npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
553 printf("%s: Cannot map registers 0x%x:0x%x\n",
554 sc->sc_dev.dv_xname, npeconfig[unit].regbase,
555 npeconfig[unit].regsize);
556 return ENOMEM;
559 if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
561 * The PHY's are only accessible from one MAC (it appears)
562 * so for other MAC's setup an additional mapping for
563 * frobbing the PHY registers.
565 if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
566 npeconfig[unit].miisize, 0, &sc->sc_miih)) {
567 printf("%s: Cannot map MII registers 0x%x:0x%x\n",
568 sc->sc_dev.dv_xname, npeconfig[unit].miibase,
569 npeconfig[unit].miisize);
570 return ENOMEM;
572 } else
573 sc->sc_miih = sc->sc_ioh;
574 error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
575 if (error != 0)
576 return error;
577 error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
578 if (error != 0)
579 return error;
581 /* setup statistics block */
582 error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
583 sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
584 if (error) {
585 printf("%s: unable to allocate memory for stats block, "
586 "error %u\n", sc->sc_dev.dv_xname, error);
587 return error;
590 error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
591 &statbuf, BUS_DMA_NOWAIT);
592 if (error) {
593 printf("%s: unable to map memory for stats block, "
594 "error %u\n", sc->sc_dev.dv_xname, error);
595 return error;
597 sc->sc_stats = (void *)statbuf;
599 error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
600 sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
601 &sc->sc_stats_map);
602 if (error) {
603 printf("%s: unable to create map for stats block, "
604 "error %u\n", sc->sc_dev.dv_xname, error);
605 return error;
608 if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
609 sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
610 printf("%s: unable to load memory for stats block, error %u\n",
611 sc->sc_dev.dv_xname, error);
612 return error;
614 sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
616 /* XXX disable half-bridge LEARNING+FILTERING feature */
619 * Setup h/w rx/tx queues. There are four q's:
620 * rx inbound q of rx'd frames
621 * rx_free pool of ixpbuf's for receiving frames
622 * tx outbound q of frames to send
623 * tx_done q of tx frames that have been processed
625 * The NPE handles the actual tx/rx process and the q manager
626 * handles the queues. The driver just writes entries to the
627 * q manager mailbox's and gets callbacks when there are rx'd
628 * frames to process or tx'd frames to reap. These callbacks
629 * are controlled by the q configurations; e.g. we get a
630 * callback when tx_done has 2 or more frames to process and
631 * when the rx q has at least one frame. These setings can
632 * changed at the time the q is configured.
634 sc->rx_qid = npeconfig[unit].rx_qid;
635 ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0, 1,
636 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
637 sc->rx_freeqid = npeconfig[unit].rx_freeqid;
638 ixpqmgr_qconfig(sc->rx_freeqid, NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
639 /* tell the NPE to direct all traffic to rx_qid */
640 #if 0
641 for (i = 0; i < 8; i++)
642 #else
643 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
644 for (i = 0; i < 4; i++)
645 #endif
646 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
648 sc->tx_qid = npeconfig[unit].tx_qid;
649 sc->tx_doneqid = npeconfig[unit].tx_doneqid;
650 ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
651 if (tx_doneqid == -1) {
652 ixpqmgr_qconfig(sc->tx_doneqid, NPE_TXBUF, 0, 2,
653 IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
654 tx_doneqid = sc->tx_doneqid;
657 KASSERT(npes[npeconfig[unit].npeid] == NULL);
658 npes[npeconfig[unit].npeid] = sc;
660 return 0;
663 #if 0
664 static void
665 npe_deactivate(struct npe_softc *sc);
667 int unit = sc->sc_unit;
669 npes[npeconfig[unit].npeid] = NULL;
671 /* XXX disable q's */
672 if (sc->sc_npe != NULL)
673 ixpnpe_stop(sc->sc_npe);
674 if (sc->sc_stats != NULL) {
675 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
676 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
677 sc->sc_stats_map);
678 bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
680 if (sc->sc_stats_tag != NULL)
681 bus_dma_tag_destroy(sc->sc_stats_tag);
682 npe_dma_destroy(sc, &sc->txdma);
683 npe_dma_destroy(sc, &sc->rxdma);
684 bus_generic_detach(sc->sc_dev);
685 if (sc->sc_mii)
686 device_delete_child(sc->sc_dev, sc->sc_mii);
687 #if 0
688 /* XXX sc_ioh and sc_miih */
689 if (sc->mem_res)
690 bus_release_resource(dev, SYS_RES_IOPORT,
691 rman_get_rid(sc->mem_res), sc->mem_res);
692 sc->mem_res = 0;
693 #endif
695 #endif
698 * Notify the world which media we're using.
700 static void
701 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
703 struct npe_softc *sc = ifp->if_softc;
705 mii_pollstat(&sc->sc_mii);
707 ifmr->ifm_active = sc->sc_mii.mii_media_active;
708 ifmr->ifm_status = sc->sc_mii.mii_media_status;
711 static void
712 npe_addstats(struct npe_softc *sc)
714 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
715 struct npestats *ns = sc->sc_stats;
717 ifp->if_oerrors +=
718 be32toh(ns->dot3StatsInternalMacTransmitErrors)
719 + be32toh(ns->dot3StatsCarrierSenseErrors)
720 + be32toh(ns->TxVLANIdFilterDiscards)
722 ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
723 + be32toh(ns->dot3StatsInternalMacReceiveErrors)
724 + be32toh(ns->RxOverrunDiscards)
725 + be32toh(ns->RxUnderflowEntryDiscards)
727 ifp->if_collisions +=
728 be32toh(ns->dot3StatsSingleCollisionFrames)
729 + be32toh(ns->dot3StatsMultipleCollisionFrames)
733 static void
734 npe_tick(void *xsc)
736 #define ACK (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
737 struct npe_softc *sc = xsc;
738 uint32_t msg[2];
741 * NB: to avoid sleeping with the softc lock held we
742 * split the NPE msg processing into two parts. The
743 * request for statistics is sent w/o waiting for a
744 * reply and then on the next tick we retrieve the
745 * results. This works because npe_tick is the only
746 * code that talks via the mailbox's (except at setup).
747 * This likely can be handled better.
749 if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
750 bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
751 sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
752 npe_addstats(sc);
754 npe_updatestats(sc);
755 mii_tick(&sc->sc_mii);
757 /* schedule next poll */
758 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
759 #undef ACK
762 static void
763 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
766 WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
767 WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
768 WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
769 WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
770 WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
771 WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
774 static void
775 npe_getmac(struct npe_softc *sc)
777 uint8_t *eaddr = sc->sc_enaddr;
779 if (npe_getmac_md != NULL) {
780 (*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
781 } else {
783 * Some system's unicast address appears to be loaded from
784 * EEPROM on reset
786 eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
787 eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
788 eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
789 eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
790 eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
791 eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
795 struct txdone {
796 struct npebuf *head;
797 struct npebuf **tail;
798 int count;
801 static __inline void
802 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
804 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
806 *td->tail = sc->tx_free;
807 sc->tx_free = td->head;
809 * We're no longer busy, so clear the busy flag and call the
810 * start routine to xmit more packets.
812 ifp->if_opackets += td->count;
813 ifp->if_flags &= ~IFF_OACTIVE;
814 ifp->if_timer = 0;
815 npestart(ifp);
819 * Q manager callback on tx done queue. Reap mbufs
820 * and return tx buffers to the free list. Finally
821 * restart output. Note the microcode has only one
822 * txdone q wired into it so we must use the NPE ID
823 * returned with each npehwbuf to decide where to
824 * send buffers.
826 static void
827 npe_txdone(int qid, void *arg)
829 #define P2V(a, dma) \
830 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
831 struct npe_softc *sc;
832 struct npebuf *npe;
833 struct txdone *td, q[NPE_MAX];
834 uint32_t entry;
836 /* XXX no NPE-A support */
837 q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
838 q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
839 /* XXX max # at a time? */
840 while (ixpqmgr_qread(qid, &entry) == 0) {
841 sc = npes[NPE_QM_Q_NPE(entry)];
842 DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
843 __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
844 #if NRND > 0
845 if (RND_ENABLED(&sc->rnd_source))
846 rnd_add_uint32(&sc->rnd_source, entry);
847 #endif
849 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
850 m_freem(npe->ix_m);
851 npe->ix_m = NULL;
853 td = &q[NPE_QM_Q_NPE(entry)];
854 *td->tail = npe;
855 td->tail = &npe->ix_next;
856 td->count++;
859 if (q[NPE_B].count)
860 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
861 if (q[NPE_C].count)
862 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
863 #undef P2V
866 static __inline struct mbuf *
867 npe_getcl(void)
869 struct mbuf *m;
871 MGETHDR(m, M_DONTWAIT, MT_DATA);
872 if (m != NULL) {
873 MCLGET(m, M_DONTWAIT);
874 if ((m->m_flags & M_EXT) == 0) {
875 m_freem(m);
876 m = NULL;
879 return (m);
882 static int
883 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
885 struct npehwbuf *hw;
886 int error;
888 if (m == NULL) {
889 m = npe_getcl();
890 if (m == NULL)
891 return ENOBUFS;
893 KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
894 m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
895 /* backload payload and align ip hdr */
896 m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
897 - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
898 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
899 BUS_DMA_READ|BUS_DMA_NOWAIT);
900 if (error != 0) {
901 m_freem(m);
902 return error;
904 hw = npe->ix_hw;
905 hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
906 /* NB: NPE requires length be a multiple of 64 */
907 /* NB: buffer length is shifted in word */
908 hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
909 hw->ix_ne[0].next = 0;
910 npe->ix_m = m;
911 /* Flush the memory in the mbuf */
912 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
913 BUS_DMASYNC_PREREAD);
914 return 0;
918 * RX q processing for a specific NPE. Claim entries
919 * from the hardware queue and pass the frames up the
920 * stack. Pass the rx buffers to the free list.
922 static void
923 npe_rxdone(int qid, void *arg)
925 #define P2V(a, dma) \
926 &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
927 struct npe_softc *sc = arg;
928 struct npedma *dma = &sc->rxdma;
929 uint32_t entry;
931 while (ixpqmgr_qread(qid, &entry) == 0) {
932 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
933 struct mbuf *m;
935 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
936 __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
937 #if NRND > 0
938 if (RND_ENABLED(&sc->rnd_source))
939 rnd_add_uint32(&sc->rnd_source, entry);
940 #endif
942 * Allocate a new mbuf to replenish the rx buffer.
943 * If doing so fails we drop the rx'd frame so we
944 * can reuse the previous mbuf. When we're able to
945 * allocate a new mbuf dispatch the mbuf w/ rx'd
946 * data up the stack and replace it with the newly
947 * allocated one.
949 m = npe_getcl();
950 if (m != NULL) {
951 struct mbuf *mrx = npe->ix_m;
952 struct npehwbuf *hw = npe->ix_hw;
953 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
955 /* Flush mbuf memory for rx'd data */
956 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
957 npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
959 /* XXX flush hw buffer; works now 'cuz coherent */
960 /* set m_len etc. per rx frame size */
961 mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
962 mrx->m_pkthdr.len = mrx->m_len;
963 mrx->m_pkthdr.rcvif = ifp;
964 /* Don't add M_HASFCS. See below */
966 #if 1
967 if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
968 log(LOG_INFO, "%s: too short frame (len=%d)\n",
969 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
970 /* Back out "newly allocated" mbuf. */
971 m_freem(m);
972 ifp->if_ierrors++;
973 goto fail;
975 if ((ifp->if_flags & IFF_PROMISC) == 0) {
976 struct ether_header *eh;
979 * Workaround for "Non-Intel XScale Technology
980 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
981 * matches the filter (both unicast and
982 * multicast).
984 eh = mtod(mrx, struct ether_header *);
985 if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
986 /* unicast */
988 if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
989 /* discard it */
990 #if 0
991 printf("discard it\n");
992 #endif
994 * Back out "newly allocated"
995 * mbuf.
997 m_freem(m);
998 goto fail;
1000 } else if (memcmp(eh->ether_dhost,
1001 etherbroadcastaddr, 6) == 0) {
1002 /* Always accept broadcast packet*/
1003 } else {
1004 struct ethercom *ec = &sc->sc_ethercom;
1005 struct ether_multi *enm;
1006 struct ether_multistep step;
1007 int match = 0;
1009 /* multicast */
1011 ETHER_FIRST_MULTI(step, ec, enm);
1012 while (enm != NULL) {
1013 uint64_t lowint, highint, dest;
1015 lowint = MAC2UINT64(enm->enm_addrlo);
1016 highint = MAC2UINT64(enm->enm_addrhi);
1017 dest = MAC2UINT64(eh->ether_dhost);
1018 #if 0
1019 printf("%llx\n", lowint);
1020 printf("%llx\n", dest);
1021 printf("%llx\n", highint);
1022 #endif
1023 if ((lowint <= dest) && (dest <= highint)) {
1024 match = 1;
1025 break;
1027 ETHER_NEXT_MULTI(step, enm);
1029 if (match == 0) {
1030 /* discard it */
1031 #if 0
1032 printf("discard it(M)\n");
1033 #endif
1035 * Back out "newly allocated"
1036 * mbuf.
1038 m_freem(m);
1039 goto fail;
1043 if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1044 log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1045 sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
1046 /* Back out "newly allocated" mbuf. */
1047 m_freem(m);
1048 ifp->if_ierrors++;
1049 goto fail;
1051 #endif
1054 * Trim FCS!
1055 * NPE always adds the FCS by this driver's setting,
1056 * so we always trim it here and not add M_HASFCS.
1058 m_adj(mrx, -ETHER_CRC_LEN);
1060 ifp->if_ipackets++;
1061 #if NBPFILTER > 0
1063 * Tap off here if there is a bpf listener.
1065 if (__predict_false(ifp->if_bpf))
1066 bpf_mtap(ifp->if_bpf, mrx);
1067 #endif
1068 ifp->if_input(ifp, mrx);
1069 } else {
1070 fail:
1071 /* discard frame and re-use mbuf */
1072 m = npe->ix_m;
1074 if (npe_rxbuf_init(sc, npe, m) == 0) {
1075 /* return npe buf to rx free list */
1076 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1077 } else {
1078 /* XXX should not happen */
1081 #undef P2V
1084 static void
1085 npe_startxmit(struct npe_softc *sc)
1087 struct npedma *dma = &sc->txdma;
1088 int i;
1090 sc->tx_free = NULL;
1091 for (i = 0; i < dma->nbuf; i++) {
1092 struct npebuf *npe = &dma->buf[i];
1093 if (npe->ix_m != NULL) {
1094 /* NB: should not happen */
1095 printf("%s: %s: free mbuf at entry %u\n",
1096 sc->sc_dev.dv_xname, __func__, i);
1097 m_freem(npe->ix_m);
1099 npe->ix_m = NULL;
1100 npe->ix_next = sc->tx_free;
1101 sc->tx_free = npe;
1105 static void
1106 npe_startrecv(struct npe_softc *sc)
1108 struct npedma *dma = &sc->rxdma;
1109 struct npebuf *npe;
1110 int i;
1112 for (i = 0; i < dma->nbuf; i++) {
1113 npe = &dma->buf[i];
1114 npe_rxbuf_init(sc, npe, npe->ix_m);
1115 /* set npe buf on rx free list */
1116 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1120 static void
1121 npeinit_macreg(struct npe_softc *sc)
1125 * Reset MAC core.
1127 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1128 DELAY(NPE_MAC_RESET_DELAY);
1129 /* configure MAC to generate MDC clock */
1130 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1132 /* disable transmitter and reciver in the MAC */
1133 WR4(sc, NPE_MAC_RX_CNTRL1,
1134 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1135 WR4(sc, NPE_MAC_TX_CNTRL1,
1136 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1139 * Set the MAC core registers.
1141 WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1); /* clock ratio: for ipx4xx */
1142 WR4(sc, NPE_MAC_TX_CNTRL2, 0xf); /* max retries */
1143 WR4(sc, NPE_MAC_RANDOM_SEED, 0x8); /* LFSR back-off seed */
1144 /* thresholds determined by NPE firmware FS */
1145 WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
1146 WR4(sc, NPE_MAC_THRESH_P_FULL, 0x30);
1147 WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1148 /* tx fifo threshold (bytes) */
1149 WR4(sc, NPE_MAC_TX_DEFER, 0x15); /* for single deferral */
1150 WR4(sc, NPE_MAC_RX_DEFER, 0x16); /* deferral on inter-frame gap*/
1151 WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8); /* for 2-part deferral */
1152 WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7); /* for 2-part deferral */
1153 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1154 /* assumes MII mode */
1155 WR4(sc, NPE_MAC_TX_CNTRL1,
1156 NPE_TX_CNTRL1_RETRY /* retry failed xmits */
1157 | NPE_TX_CNTRL1_FCS_EN /* append FCS */
1158 | NPE_TX_CNTRL1_2DEFER /* 2-part deferal */
1159 | NPE_TX_CNTRL1_PAD_EN); /* pad runt frames */
1160 /* XXX pad strip? */
1161 WR4(sc, NPE_MAC_RX_CNTRL1,
1162 NPE_RX_CNTRL1_CRC_EN /* include CRC/FCS */
1163 | NPE_RX_CNTRL1_PAUSE_EN); /* ena pause frame handling */
1164 WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1167 static void
1168 npeinit_resetcb(void *xsc)
1170 struct npe_softc *sc = xsc;
1171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 uint32_t msg[2];
1174 ifp->if_oerrors++;
1175 npeinit_locked(sc);
1177 msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1178 | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1179 msg[1] = 0;
1180 ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1184 * Reset and initialize the chip
1186 static void
1187 npeinit_locked(void *xsc)
1189 struct npe_softc *sc = xsc;
1190 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192 /* Cancel any pending I/O. */
1193 npestop(ifp, 0);
1195 /* Reset the chip to a known state. */
1196 npeinit_macreg(sc);
1197 npe_setmac(sc, CLLADDR(ifp->if_sadl));
1198 ether_mediachange(ifp);
1199 npe_setmcast(sc);
1201 npe_startxmit(sc);
1202 npe_startrecv(sc);
1204 ifp->if_flags |= IFF_RUNNING;
1205 ifp->if_flags &= ~IFF_OACTIVE;
1206 ifp->if_timer = 0; /* just in case */
1208 /* enable transmitter and reciver in the MAC */
1209 WR4(sc, NPE_MAC_RX_CNTRL1,
1210 RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1211 WR4(sc, NPE_MAC_TX_CNTRL1,
1212 RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1214 callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1217 static int
1218 npeinit(struct ifnet *ifp)
1220 struct npe_softc *sc = ifp->if_softc;
1221 int s;
1223 s = splnet();
1224 npeinit_locked(sc);
1225 splx(s);
1227 return (0);
1231 * Defragment an mbuf chain, returning at most maxfrags separate
1232 * mbufs+clusters. If this is not possible NULL is returned and
1233 * the original mbuf chain is left in it's present (potentially
1234 * modified) state. We use two techniques: collapsing consecutive
1235 * mbufs and replacing consecutive mbufs by a cluster.
1237 static __inline struct mbuf *
1238 npe_defrag(struct mbuf *m0)
1240 struct mbuf *m;
1242 MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 if (m == NULL)
1244 return (NULL);
1245 M_COPY_PKTHDR(m, m0);
1247 if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1248 MCLGET(m, M_DONTWAIT);
1249 if ((m->m_flags & M_EXT) == 0) {
1250 m_freem(m);
1251 return (NULL);
1255 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1256 m_freem(m0);
1258 return (m);
1262 * Dequeue packets and place on the h/w transmit queue.
1264 static void
1265 npestart(struct ifnet *ifp)
1267 struct npe_softc *sc = ifp->if_softc;
1268 struct npebuf *npe;
1269 struct npehwbuf *hw;
1270 struct mbuf *m, *n;
1271 bus_dma_segment_t *segs;
1272 int nseg, len, error, i;
1273 uint32_t next;
1275 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1276 return;
1278 while (sc->tx_free != NULL) {
1279 IFQ_DEQUEUE(&ifp->if_snd, m);
1280 if (m == NULL)
1281 break;
1282 npe = sc->tx_free;
1283 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1284 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1285 if (error == EFBIG) {
1286 n = npe_defrag(m);
1287 if (n == NULL) {
1288 printf("%s: %s: too many fragments\n",
1289 sc->sc_dev.dv_xname, __func__);
1290 m_freem(m);
1291 return; /* XXX? */
1293 m = n;
1294 error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1295 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1297 if (error != 0) {
1298 printf("%s: %s: error %u\n",
1299 sc->sc_dev.dv_xname, __func__, error);
1300 m_freem(m);
1301 return; /* XXX? */
1303 sc->tx_free = npe->ix_next;
1305 #if NBPFILTER > 0
1307 * Tap off here if there is a bpf listener.
1309 if (__predict_false(ifp->if_bpf))
1310 bpf_mtap(ifp->if_bpf, m);
1311 #endif
1313 bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1314 npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1316 npe->ix_m = m;
1317 hw = npe->ix_hw;
1318 len = m->m_pkthdr.len;
1319 nseg = npe->ix_map->dm_nsegs;
1320 segs = npe->ix_map->dm_segs;
1321 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1322 for (i = 0; i < nseg; i++) {
1323 hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1324 hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1325 hw->ix_ne[i].next = htobe32(next);
1327 len = 0; /* zero for segments > 1 */
1328 next += sizeof(hw->ix_ne[0]);
1330 hw->ix_ne[i-1].next = 0; /* zero last in chain */
1331 /* XXX flush descriptor instead of using uncached memory */
1333 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1334 __func__, sc->tx_qid, npe->ix_neaddr,
1335 hw->ix_ne[0].data, hw->ix_ne[0].len);
1336 /* stick it on the tx q */
1337 /* XXX add vlan priority */
1338 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1340 ifp->if_timer = 5;
1342 if (sc->tx_free == NULL)
1343 ifp->if_flags |= IFF_OACTIVE;
1346 static void
1347 npe_stopxmit(struct npe_softc *sc)
1349 struct npedma *dma = &sc->txdma;
1350 int i;
1352 /* XXX qmgr */
1353 for (i = 0; i < dma->nbuf; i++) {
1354 struct npebuf *npe = &dma->buf[i];
1356 if (npe->ix_m != NULL) {
1357 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1358 m_freem(npe->ix_m);
1359 npe->ix_m = NULL;
1364 static void
1365 npe_stoprecv(struct npe_softc *sc)
1367 struct npedma *dma = &sc->rxdma;
1368 int i;
1370 /* XXX qmgr */
1371 for (i = 0; i < dma->nbuf; i++) {
1372 struct npebuf *npe = &dma->buf[i];
1374 if (npe->ix_m != NULL) {
1375 bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1376 m_freem(npe->ix_m);
1377 npe->ix_m = NULL;
1383 * Turn off interrupts, and stop the nic.
1385 void
1386 npestop(struct ifnet *ifp, int disable)
1388 struct npe_softc *sc = ifp->if_softc;
1390 /* disable transmitter and reciver in the MAC */
1391 WR4(sc, NPE_MAC_RX_CNTRL1,
1392 RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1393 WR4(sc, NPE_MAC_TX_CNTRL1,
1394 RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1396 callout_stop(&sc->sc_tick_ch);
1398 npe_stopxmit(sc);
1399 npe_stoprecv(sc);
1400 /* XXX go into loopback & drain q's? */
1401 /* XXX but beware of disabling tx above */
1404 * The MAC core rx/tx disable may leave the MAC hardware in an
1405 * unpredictable state. A hw reset is executed before resetting
1406 * all the MAC parameters to a known value.
1408 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1409 DELAY(NPE_MAC_RESET_DELAY);
1410 WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1411 WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1413 ifp->if_timer = 0;
1414 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1417 void
1418 npewatchdog(struct ifnet *ifp)
1420 struct npe_softc *sc = ifp->if_softc;
1421 int s;
1423 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1424 s = splnet();
1425 ifp->if_oerrors++;
1426 npeinit_locked(sc);
1427 splx(s);
1430 static int
1431 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1433 struct npe_softc *sc = ifp->if_softc;
1434 struct ifreq *ifr = (struct ifreq *) data;
1435 int s, error = 0;
1437 s = splnet();
1439 switch (cmd) {
1440 case SIOCSIFMEDIA:
1441 case SIOCGIFMEDIA:
1442 #if 0 /* not yet */
1443 /* Flow control requires full-duplex mode. */
1444 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1445 (ifr->ifr_media & IFM_FDX) == 0)
1446 ifr->ifr_media &= ~IFM_ETH_FMASK;
1447 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1448 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1449 /* We can do both TXPAUSE and RXPAUSE. */
1450 ifr->ifr_media |=
1451 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1453 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1455 #endif
1456 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1457 break;
1458 case SIOCSIFFLAGS:
1459 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1461 * If interface is marked down and it is running,
1462 * then stop and disable it.
1464 (*ifp->if_stop)(ifp, 1);
1465 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1467 * If interface is marked up and it is stopped, then
1468 * start it.
1470 error = (*ifp->if_init)(ifp);
1471 } else if ((ifp->if_flags & IFF_UP) != 0) {
1472 int diff;
1474 /* Up (AND RUNNING). */
1476 diff = (ifp->if_flags ^ sc->sc_if_flags)
1477 & (IFF_PROMISC|IFF_ALLMULTI);
1478 if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1480 * If the difference bettween last flag and
1481 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1482 * set multicast filter only (don't reset to
1483 * prevent link down).
1485 npe_setmcast(sc);
1486 } else {
1488 * Reset the interface to pick up changes in
1489 * any other flags that affect the hardware
1490 * state.
1492 error = (*ifp->if_init)(ifp);
1495 sc->sc_if_flags = ifp->if_flags;
1496 break;
1497 default:
1498 error = ether_ioctl(ifp, cmd, data);
1499 if (error == ENETRESET) {
1501 * Multicast list has changed; set the hardware filter
1502 * accordingly.
1504 npe_setmcast(sc);
1505 error = 0;
1509 npestart(ifp);
1511 splx(s);
1512 return error;
1516 * Setup a traffic class -> rx queue mapping.
1518 static int
1519 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1521 int npeid = npeconfig[sc->sc_unit].npeid;
1522 uint32_t msg[2];
1524 msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1525 | classix;
1526 msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1527 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1531 * Update and reset the statistics in the NPE.
1533 static int
1534 npe_updatestats(struct npe_softc *sc)
1536 uint32_t msg[2];
1538 msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1539 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1540 return ixpnpe_sendmsg(sc->sc_npe, msg); /* NB: no recv */
1543 #if 0
1545 * Get the current statistics block.
1547 static int
1548 npe_getstats(struct npe_softc *sc)
1550 uint32_t msg[2];
1552 msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1553 msg[1] = sc->sc_stats_phys; /* physical address of stat block */
1554 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1558 * Query the image id of the loaded firmware.
1560 static uint32_t
1561 npe_getimageid(struct npe_softc *sc)
1563 uint32_t msg[2];
1565 msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1566 msg[1] = 0;
1567 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1571 * Enable/disable loopback.
1573 static int
1574 npe_setloopback(struct npe_softc *sc, int ena)
1576 uint32_t msg[2];
1578 msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1579 msg[1] = 0;
1580 return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1582 #endif
1585 * MII bus support routines.
1587 * NB: ixp425 has one PHY per NPE
1589 static uint32_t
1590 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1592 #define MII_RD4(sc, reg) bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1593 uint32_t v;
1595 /* NB: registers are known to be sequential */
1596 v = (MII_RD4(sc, reg+0) & 0xff) << 0;
1597 v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1598 v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1599 v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1600 return v;
1601 #undef MII_RD4
1604 static void
1605 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1607 #define MII_WR4(sc, reg, v) \
1608 bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1610 /* NB: registers are known to be sequential */
1611 MII_WR4(sc, reg+0, cmd & 0xff);
1612 MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1613 MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1614 MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1615 #undef MII_WR4
1618 static int
1619 npe_mii_mdio_wait(struct npe_softc *sc)
1621 #define MAXTRIES 100 /* XXX */
1622 uint32_t v;
1623 int i;
1625 for (i = 0; i < MAXTRIES; i++) {
1626 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1627 if ((v & NPE_MII_GO) == 0)
1628 return 1;
1630 return 0; /* NB: timeout */
1631 #undef MAXTRIES
1634 static int
1635 npe_miibus_readreg(struct device *self, int phy, int reg)
1637 struct npe_softc *sc = (void *)self;
1638 uint32_t v;
1640 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1641 return 0xffff;
1642 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1643 | NPE_MII_GO;
1644 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1645 if (npe_mii_mdio_wait(sc))
1646 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1647 else
1648 v = 0xffff | NPE_MII_READ_FAIL;
1649 return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1650 #undef MAXTRIES
1653 static void
1654 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1656 struct npe_softc *sc = (void *)self;
1657 uint32_t v;
1659 if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1660 return;
1661 v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1662 | data | NPE_MII_WRITE
1663 | NPE_MII_GO;
1664 npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1665 /* XXX complain about timeout */
1666 (void) npe_mii_mdio_wait(sc);
1669 static void
1670 npe_miibus_statchg(struct device *self)
1672 struct npe_softc *sc = (void *)self;
1673 uint32_t tx1, rx1;
1674 uint32_t randoff;
1676 /* sync MAC duplex state */
1677 tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1678 rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1679 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1680 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1681 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1682 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1683 } else {
1684 struct timeval now;
1685 getmicrotime(&now);
1686 randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1687 & 0x7f;
1688 WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1689 + randoff);
1690 tx1 |= NPE_TX_CNTRL1_DUPLEX;
1691 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1693 WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1694 WR4(sc, NPE_MAC_TX_CNTRL1, tx1);