Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / atari / dev / zs.c
blob9fb273f53abe22ed256394f663bfe5184fe01162
1 /* $NetBSD: zs.c,v 1.63 2009/07/19 05:43:23 tsutsui Exp $ */
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * @(#)zs.c 8.1 (Berkeley) 7/19/93
44 /*-
45 * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46 * All rights reserved.
48 * This code is derived from software contributed to The NetBSD Foundation
49 * by Leo Weppelman.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
60 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
74 * Zilog Z8530 (ZSCC) driver.
76 * Runs two tty ports (modem2 and serial2) on zs0.
78 * This driver knows far too much about chip to usage mappings.
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.63 2009/07/19 05:43:23 tsutsui Exp $");
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106 #include "zs.h"
107 #if NZS > 1
108 #error "This driver supports only 1 85C30!"
109 #endif
111 #if NZS > 0
113 #define PCLK (8053976) /* PCLK pin input clock rate */
114 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */
116 #define splzs spl5
119 * Software state per found chip.
121 struct zs_softc {
122 struct device zi_dev; /* base device */
123 volatile struct zsdevice *zi_zs; /* chip registers */
124 struct zs_chanstate zi_cs[2]; /* chan A and B software state */
127 static void *zs_softint_cookie; /* for callback */
129 * Define the registers for a closed port
131 static u_char zs_init_regs[16] = {
132 /* 0 */ 0,
133 /* 1 */ 0,
134 /* 2 */ 0x60,
135 /* 3 */ 0,
136 /* 4 */ 0,
137 /* 5 */ 0,
138 /* 6 */ 0,
139 /* 7 */ 0,
140 /* 8 */ 0,
141 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 /* 10 */ ZSWR10_NRZ,
143 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 /* 12 */ 0,
145 /* 13 */ 0,
146 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 /* 15 */ 0
151 * Define the machine dependant clock frequencies
152 * If BRgen feeds sender/receiver we always use a
153 * divisor 16, therefor the division by 16 can as
154 * well be done here.
156 static u_long zs_freqs_tt[] = {
158 * Atari TT, RTxCB is generated by TT-MFP timer C,
159 * which is set to 307.2 kHz during initialisation
160 * and never changed afterwards.
162 PCLK/16, /* BRgen, PCLK, divisor 16 */
163 229500, /* BRgen, RTxCA, divisor 16 */
164 3672000, /* RTxCA, from PCLK4 */
165 0, /* TRxCA, external */
167 PCLK/16, /* BRgen, PCLK, divisor 16 */
168 19200, /* BRgen, RTxCB, divisor 16 */
169 307200, /* RTxCB, from TT-MFP TCO */
170 2457600 /* TRxCB, from BCLK */
173 static u_long zs_freqs_falcon[] = {
175 * Atari Falcon, XXX no specs available, this might be wrong
177 PCLK/16, /* BRgen, PCLK, divisor 16 */
178 229500, /* BRgen, RTxCA, divisor 16 */
179 3672000, /* RTxCA, ??? */
180 0, /* TRxCA, external */
182 PCLK/16, /* BRgen, PCLK, divisor 16 */
183 229500, /* BRgen, RTxCB, divisor 16 */
184 3672000, /* RTxCB, ??? */
185 2457600 /* TRxCB, ??? */
188 static u_long zs_freqs_hades[] = {
190 * XXX: Channel-A unchecked!!!!!
192 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
193 229500, /* BRgen, RTxCA, divisor 16 */
194 3672000, /* RTxCA, from PCLK4 */
195 0, /* TRxCA, external */
197 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */
198 235550, /* BRgen, RTxCB, divisor 16 */
199 3768800, /* RTxCB, 3.7688MHz */
200 3768800 /* TRxCB, 3.7688MHz */
203 static u_long zs_freqs_generic[] = {
205 * other machines, assume only PCLK is available
207 PCLK/16, /* BRgen, PCLK, divisor 16 */
208 0, /* BRgen, RTxCA, divisor 16 */
209 0, /* RTxCA, unknown */
210 0, /* TRxCA, unknown */
212 PCLK/16, /* BRgen, PCLK, divisor 16 */
213 0, /* BRgen, RTxCB, divisor 16 */
214 0, /* RTxCB, unknown */
215 0 /* TRxCB, unknown */
217 static u_long *zs_frequencies;
219 /* Definition of the driver for autoconfig. */
220 static int zsmatch(struct device *, struct cfdata *, void *);
221 static void zsattach(struct device *, struct device *, void *);
223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
224 zsmatch, zsattach, NULL, NULL);
226 extern struct cfdriver zs_cd;
228 /* {b,c}devsw[] function prototypes */
229 dev_type_open(zsopen);
230 dev_type_close(zsclose);
231 dev_type_read(zsread);
232 dev_type_write(zswrite);
233 dev_type_ioctl(zsioctl);
234 dev_type_stop(zsstop);
235 dev_type_tty(zstty);
236 dev_type_poll(zspoll);
238 const struct cdevsw zs_cdevsw = {
239 zsopen, zsclose, zsread, zswrite, zsioctl,
240 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
243 /* Interrupt handlers. */
244 int zshard(long);
245 static int zssoft(long);
246 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
247 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
248 static int zssint(struct zs_chanstate *, volatile struct zschan *);
250 static struct zs_chanstate *zslist;
252 /* Routines called from other code. */
253 static void zsstart(struct tty *);
255 /* Routines purely local to this driver. */
256 static void zsoverrun(int, long *, const char *);
257 static int zsparam(struct tty *, struct termios *);
258 static int zsbaudrate(int, int, int *, int *, int *, int *);
259 static int zs_modem(struct zs_chanstate *, int, int);
260 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
261 static void zs_shutdown(struct zs_chanstate *);
263 static int
264 zsmatch(struct device *pdp, struct cfdata *cfp, void *auxp)
266 static int zs_matched = 0;
268 if(strcmp("zs", auxp) || zs_matched)
269 return(0);
270 zs_matched = 1;
271 return(1);
275 * Attach a found zs.
277 static void
278 zsattach(struct device *parent, struct device *dev, void *aux)
280 register struct zs_softc *zi;
281 register struct zs_chanstate *cs;
282 register volatile struct zsdevice *addr;
283 char tmp;
285 addr = (struct zsdevice *)AD_SCC;
286 zi = (struct zs_softc *)dev;
287 zi->zi_zs = addr;
288 cs = zi->zi_cs;
291 * Get the command register into a known state.
293 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
294 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
295 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
296 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
299 * Do a hardware reset.
301 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
302 delay(50000); /*enough ? */
303 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
306 * Initialize both channels
308 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
309 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
311 if(machineid & ATARI_TT) {
313 * ininitialise TT-MFP timer C: 307200Hz
314 * timer C and D share one control register:
315 * bits 0-2 control timer D
316 * bits 4-6 control timer C
318 int cr = MFP2->mf_tcdcr & 7;
319 MFP2->mf_tcdcr = cr; /* stop timer C */
320 MFP2->mf_tcdr = 1; /* counter 1 */
321 cr |= T_Q004 << 4; /* divisor 4 */
322 MFP2->mf_tcdcr = cr; /* start timer C */
324 * enable scc related interrupts
326 SCU->vme_mask |= SCU_SCC;
328 zs_frequencies = zs_freqs_tt;
329 } else if (machineid & ATARI_FALCON) {
330 zs_frequencies = zs_freqs_falcon;
331 } else if (machineid & ATARI_HADES) {
332 zs_frequencies = zs_freqs_hades;
333 } else {
334 zs_frequencies = zs_freqs_generic;
337 /* link into interrupt list with order (A,B) (B=A+1) */
338 cs[0].cs_next = &cs[1];
339 cs[1].cs_next = zslist;
340 zslist = cs;
342 cs->cs_unit = 0;
343 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
344 cs++;
345 cs->cs_unit = 1;
346 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
348 zs_softint_cookie = softint_establish(SOFTINT_SERIAL,
349 (void (*)(void *))zssoft, 0);
351 printf(": serial2 on channel a and modem2 on channel b\n");
355 * Open a zs serial port.
358 zsopen(dev_t dev, int flags, int mode, struct lwp *l)
360 register struct tty *tp;
361 register struct zs_chanstate *cs;
362 struct zs_softc *zi;
363 int unit = ZS_UNIT(dev);
364 int zs = unit >> 1;
365 int error, s;
367 zi = device_lookup_private(&zs_cd, zs);
368 if (zi == NULL)
369 return (ENXIO);
370 cs = &zi->zi_cs[unit & 1];
373 * When port A (ser02) is selected on the TT, make sure
374 * the port is enabled.
376 if((machineid & ATARI_TT) && !(unit & 1))
377 ym2149_ser2(1);
379 if (cs->cs_rbuf == NULL) {
380 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
381 M_WAITOK);
384 tp = cs->cs_ttyp;
385 if(tp == NULL) {
386 cs->cs_ttyp = tp = ttymalloc();
387 tty_attach(tp);
388 tp->t_dev = dev;
389 tp->t_oproc = zsstart;
390 tp->t_param = zsparam;
393 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
394 return (EBUSY);
396 s = spltty();
399 * Do the following iff this is a first open.
401 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
402 if(tp->t_ispeed == 0) {
403 tp->t_iflag = TTYDEF_IFLAG;
404 tp->t_oflag = TTYDEF_OFLAG;
405 tp->t_cflag = TTYDEF_CFLAG;
406 tp->t_lflag = TTYDEF_LFLAG;
407 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
409 ttychars(tp);
410 ttsetwater(tp);
412 (void)zsparam(tp, &tp->t_termios);
415 * Turn on DTR. We must always do this, even if carrier is not
416 * present, because otherwise we'd have to use TIOCSDTR
417 * immediately after setting CLOCAL, which applications do not
418 * expect. We always assert DTR while the device is open
419 * unless explicitly requested to deassert it.
421 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
422 /* May never get a status intr. if DCD already on. -gwr */
423 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
424 tp->t_state |= TS_CARR_ON;
425 if(cs->cs_softcar)
426 tp->t_state |= TS_CARR_ON;
429 splx(s);
431 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
432 if (error)
433 goto bad;
435 error = tp->t_linesw->l_open(dev, tp);
436 if(error)
437 goto bad;
438 return (0);
440 bad:
441 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
443 * We failed to open the device, and nobody else had it opened.
444 * Clean up the state as appropriate.
446 zs_shutdown(cs);
448 return(error);
452 * Close a zs serial port.
455 zsclose(dev_t dev, int flags, int mode, struct lwp *l)
457 register struct zs_chanstate *cs;
458 register struct tty *tp;
459 struct zs_softc *zi;
460 int unit = ZS_UNIT(dev);
462 zi = device_lookup_private(&zs_cd, unit >> 1);
463 cs = &zi->zi_cs[unit & 1];
464 tp = cs->cs_ttyp;
466 tp->t_linesw->l_close(tp, flags);
467 ttyclose(tp);
469 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
471 * Although we got a last close, the device may still be in
472 * use; e.g. if this was the dialout node, and there are still
473 * processes waiting for carrier on the non-dialout node.
475 zs_shutdown(cs);
477 return (0);
481 * Read/write zs serial port.
484 zsread(dev_t dev, struct uio *uio, int flags)
486 register struct zs_chanstate *cs;
487 register struct zs_softc *zi;
488 register struct tty *tp;
489 int unit;
491 unit = ZS_UNIT(dev);
492 zi = device_lookup_private(&zs_cd, unit >> 1);
493 cs = &zi->zi_cs[unit & 1];
494 tp = cs->cs_ttyp;
496 return(tp->t_linesw->l_read(tp, uio, flags));
500 zswrite(dev_t dev, struct uio *uio, int flags)
502 register struct zs_chanstate *cs;
503 register struct zs_softc *zi;
504 register struct tty *tp;
505 int unit;
507 unit = ZS_UNIT(dev);
508 zi = device_lookup_private(&zs_cd, unit >> 1);
509 cs = &zi->zi_cs[unit & 1];
510 tp = cs->cs_ttyp;
512 return(tp->t_linesw->l_write(tp, uio, flags));
516 zspoll(dev_t dev, int events, struct lwp *l)
518 register struct zs_chanstate *cs;
519 register struct zs_softc *zi;
520 register struct tty *tp;
521 int unit;
523 unit = ZS_UNIT(dev);
524 zi = device_lookup_private(&zs_cd, unit >> 1);
525 cs = &zi->zi_cs[unit & 1];
526 tp = cs->cs_ttyp;
528 return ((*tp->t_linesw->l_poll)(tp, events, l));
531 struct tty *
532 zstty(dev_t dev)
534 register struct zs_chanstate *cs;
535 register struct zs_softc *zi;
536 int unit;
538 unit = ZS_UNIT(dev);
539 zi = device_lookup_private(&zs_cd, unit >> 1);
540 cs = &zi->zi_cs[unit & 1];
541 return(cs->cs_ttyp);
545 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
546 * channels are kept in (A,B) pairs.
548 * Do just a little, then get out; set a software interrupt if more
549 * work is needed.
551 * We deliberately ignore the vectoring Zilog gives us, and match up
552 * only the number of `reset interrupt under service' operations, not
553 * the order.
557 zshard(long sr)
559 register struct zs_chanstate *a;
560 #define b (a + 1)
561 register volatile struct zschan *zc;
562 register int rr3, intflags = 0, v, i;
564 do {
565 intflags &= ~4;
566 for(a = zslist; a != NULL; a = b->cs_next) {
567 rr3 = ZS_READ(a->cs_zc, 3);
568 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
569 intflags |= 4|2;
570 zc = a->cs_zc;
571 i = a->cs_rbput;
572 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
573 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 intflags |= 1;
576 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
577 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
578 intflags |= 1;
580 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
581 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
582 intflags |= 1;
584 a->cs_rbput = i;
586 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
587 intflags |= 4|2;
588 zc = b->cs_zc;
589 i = b->cs_rbput;
590 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
591 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 intflags |= 1;
594 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
595 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
596 intflags |= 1;
598 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
599 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
600 intflags |= 1;
602 b->cs_rbput = i;
605 } while(intflags & 4);
606 #undef b
608 if(intflags & 1)
609 softint_schedule(zs_softint_cookie);
611 return(intflags & 2);
614 static int
615 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
617 register int c;
620 * First read the status, because read of the received char
621 * destroy the status of this char.
623 c = ZS_READ(zc, 1);
624 c |= (zc->zc_data << 8);
626 /* clear receive error & interrupt condition */
627 zc->zc_csr = ZSWR0_RESET_ERRORS;
628 zc->zc_csr = ZSWR0_CLR_INTR;
630 return(ZRING_MAKE(ZRING_RINT, c));
633 static int
634 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
636 register int i = cs->cs_tbc;
638 if(i == 0) {
639 zc->zc_csr = ZSWR0_RESET_TXINT;
640 zc->zc_csr = ZSWR0_CLR_INTR;
641 return(ZRING_MAKE(ZRING_XINT, 0));
643 cs->cs_tbc = i - 1;
644 zc->zc_data = *cs->cs_tba++;
645 zc->zc_csr = ZSWR0_CLR_INTR;
646 return (0);
649 static int
650 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
652 register int rr0;
654 rr0 = zc->zc_csr;
655 zc->zc_csr = ZSWR0_RESET_STATUS;
656 zc->zc_csr = ZSWR0_CLR_INTR;
658 * The chip's hardware flow control is, as noted in zsreg.h,
659 * busted---if the DCD line goes low the chip shuts off the
660 * receiver (!). If we want hardware CTS flow control but do
661 * not have it, and carrier is now on, turn HFC on; if we have
662 * HFC now but carrier has gone low, turn it off.
664 if(rr0 & ZSRR0_DCD) {
665 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
666 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
667 cs->cs_creg[3] |= ZSWR3_HFC;
668 ZS_WRITE(zc, 3, cs->cs_creg[3]);
671 else {
672 if (cs->cs_creg[3] & ZSWR3_HFC) {
673 cs->cs_creg[3] &= ~ZSWR3_HFC;
674 ZS_WRITE(zc, 3, cs->cs_creg[3]);
677 return(ZRING_MAKE(ZRING_SINT, rr0));
681 * Print out a ring or fifo overrun error message.
683 static void
684 zsoverrun(int unit, long *ptime, const char *what)
686 time_t cur_sec = time_second;
688 if(*ptime != cur_sec) {
689 *ptime = cur_sec;
690 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
691 (unit & 1) + 'a', what);
696 * ZS software interrupt. Scan all channels for deferred interrupts.
699 zssoft(long sr)
701 register struct zs_chanstate *cs;
702 register volatile struct zschan *zc;
703 register struct linesw *line;
704 register struct tty *tp;
705 register int get, n, c, cc, unit, s;
706 int retval = 0;
708 s = spltty();
709 for(cs = zslist; cs != NULL; cs = cs->cs_next) {
710 get = cs->cs_rbget;
711 again:
712 n = cs->cs_rbput; /* atomic */
713 if(get == n) /* nothing more on this line */
714 continue;
715 retval = 1;
716 unit = cs->cs_unit; /* set up to handle interrupts */
717 zc = cs->cs_zc;
718 tp = cs->cs_ttyp;
719 line = tp->t_linesw;
721 * Compute the number of interrupts in the receive ring.
722 * If the count is overlarge, we lost some events, and
723 * must advance to the first valid one. It may get
724 * overwritten if more data are arriving, but this is
725 * too expensive to check and gains nothing (we already
726 * lost out; all we can do at this point is trade one
727 * kind of loss for another).
729 n -= get;
730 if(n > ZLRB_RING_SIZE) {
731 zsoverrun(unit, &cs->cs_rotime, "ring");
732 get += n - ZLRB_RING_SIZE;
733 n = ZLRB_RING_SIZE;
735 while(--n >= 0) {
736 /* race to keep ahead of incoming interrupts */
737 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
738 switch (ZRING_TYPE(c)) {
740 case ZRING_RINT:
741 c = ZRING_VALUE(c);
742 if(c & ZSRR1_DO)
743 zsoverrun(unit, &cs->cs_fotime, "fifo");
744 cc = c >> 8;
745 if(c & ZSRR1_FE)
746 cc |= TTY_FE;
747 if(c & ZSRR1_PE)
748 cc |= TTY_PE;
749 line->l_rint(cc, tp);
750 break;
752 case ZRING_XINT:
754 * Transmit done: change registers and resume,
755 * or clear BUSY.
757 if(cs->cs_heldchange) {
758 int sps;
760 sps = splzs();
761 c = zc->zc_csr;
762 if((c & ZSRR0_DCD) == 0)
763 cs->cs_preg[3] &= ~ZSWR3_HFC;
764 memcpy((void *)cs->cs_creg,
765 (void *)cs->cs_preg, 16);
766 zs_loadchannelregs(zc, cs->cs_creg);
767 splx(sps);
768 cs->cs_heldchange = 0;
769 if(cs->cs_heldtbc
770 && (tp->t_state & TS_TTSTOP) == 0) {
771 cs->cs_tbc = cs->cs_heldtbc - 1;
772 zc->zc_data = *cs->cs_tba++;
773 goto again;
776 tp->t_state &= ~TS_BUSY;
777 if(tp->t_state & TS_FLUSH)
778 tp->t_state &= ~TS_FLUSH;
779 else ndflush(&tp->t_outq,cs->cs_tba
780 - tp->t_outq.c_cf);
781 line->l_start(tp);
782 break;
784 case ZRING_SINT:
786 * Status line change. HFC bit is run in
787 * hardware interrupt, to avoid locking
788 * at splzs here.
790 c = ZRING_VALUE(c);
791 if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
792 cc = (c & ZSRR0_DCD) != 0;
793 if(line->l_modem(tp, cc) == 0)
794 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
795 cc ? DMBIS : DMBIC);
797 cs->cs_rr0 = c;
798 break;
800 default:
801 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
802 unit >> 1, (unit & 1) + 'a', c);
803 break;
806 cs->cs_rbget = get;
807 goto again;
809 splx(s);
810 return (retval);
814 zsioctl(dev_t dev, u_long cmd, void * data, int flag, struct lwp *l)
816 int unit = ZS_UNIT(dev);
817 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
818 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
819 register int error, s;
820 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
822 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
823 if(error != EPASSTHROUGH)
824 return(error);
826 error = ttioctl(tp, cmd, data, flag, l);
827 if(error !=EPASSTHROUGH)
828 return (error);
830 switch (cmd) {
831 case TIOCSBRK:
832 s = splzs();
833 cs->cs_preg[5] |= ZSWR5_BREAK;
834 cs->cs_creg[5] |= ZSWR5_BREAK;
835 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
836 splx(s);
837 break;
838 case TIOCCBRK:
839 s = splzs();
840 cs->cs_preg[5] &= ~ZSWR5_BREAK;
841 cs->cs_creg[5] &= ~ZSWR5_BREAK;
842 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
843 splx(s);
844 break;
845 case TIOCGFLAGS: {
846 int bits = 0;
848 if(cs->cs_softcar)
849 bits |= TIOCFLAG_SOFTCAR;
850 if(cs->cs_creg[15] & ZSWR15_DCD_IE)
851 bits |= TIOCFLAG_CLOCAL;
852 if(cs->cs_creg[3] & ZSWR3_HFC)
853 bits |= TIOCFLAG_CRTSCTS;
854 *(int *)data = bits;
855 break;
857 case TIOCSFLAGS: {
858 int userbits = 0;
860 error = kauth_authorize_device_tty(l->l_cred,
861 KAUTH_DEVICE_TTY_PRIVSET, tp);
862 if(error != 0)
863 return (EPERM);
865 userbits = *(int *)data;
868 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
869 # defaulting to software flow control.
871 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
872 return(EINVAL);
873 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
874 return(ENODEV);
876 s = splzs();
877 if((userbits & TIOCFLAG_SOFTCAR)) {
878 cs->cs_softcar = 1; /* turn on softcar */
879 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
880 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
881 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
883 else if(userbits & TIOCFLAG_CLOCAL) {
884 cs->cs_softcar = 0; /* turn off softcar */
885 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
886 cs->cs_creg[15] |= ZSWR15_DCD_IE;
887 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
888 tp->t_termios.c_cflag |= CLOCAL;
890 if(userbits & TIOCFLAG_CRTSCTS) {
891 cs->cs_preg[15] |= ZSWR15_CTS_IE;
892 cs->cs_creg[15] |= ZSWR15_CTS_IE;
893 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894 cs->cs_preg[3] |= ZSWR3_HFC;
895 cs->cs_creg[3] |= ZSWR3_HFC;
896 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897 tp->t_termios.c_cflag |= CRTSCTS;
899 else {
900 /* no mdmbuf, so we must want software flow control */
901 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
902 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
903 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
904 cs->cs_preg[3] &= ~ZSWR3_HFC;
905 cs->cs_creg[3] &= ~ZSWR3_HFC;
906 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
907 tp->t_termios.c_cflag &= ~CRTSCTS;
909 splx(s);
910 break;
912 case TIOCSDTR:
913 zs_modem(cs, ZSWR5_DTR, DMBIS);
914 break;
915 case TIOCCDTR:
916 zs_modem(cs, ZSWR5_DTR, DMBIC);
917 break;
918 case TIOCMGET:
919 zs_modem(cs, 0, DMGET);
920 break;
921 case TIOCMSET:
922 case TIOCMBIS:
923 case TIOCMBIC:
924 default:
925 return (EPASSTHROUGH);
927 return (0);
931 * Start or restart transmission.
933 static void
934 zsstart(register struct tty *tp)
936 register struct zs_chanstate *cs;
937 register int s, nch;
938 int unit = ZS_UNIT(tp->t_dev);
939 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
941 cs = &zi->zi_cs[unit & 1];
942 s = spltty();
945 * If currently active or delaying, no need to do anything.
947 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
948 goto out;
951 * If there are sleepers, and output has drained below low
952 * water mark, awaken.
954 ttypull(tp);
956 nch = ndqb(&tp->t_outq, 0); /* XXX */
957 if(nch) {
958 register char *p = tp->t_outq.c_cf;
960 /* mark busy, enable tx done interrupts, & send first byte */
961 tp->t_state |= TS_BUSY;
962 (void) splzs();
963 cs->cs_preg[1] |= ZSWR1_TIE;
964 cs->cs_creg[1] |= ZSWR1_TIE;
965 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966 cs->cs_zc->zc_data = *p;
967 cs->cs_tba = p + 1;
968 cs->cs_tbc = nch - 1;
969 } else {
971 * Nothing to send, turn off transmit done interrupts.
972 * This is useful if something is doing polled output.
974 (void) splzs();
975 cs->cs_preg[1] &= ~ZSWR1_TIE;
976 cs->cs_creg[1] &= ~ZSWR1_TIE;
977 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
979 out:
980 splx(s);
984 * Stop output, e.g., for ^S or output flush.
986 void
987 zsstop(register struct tty *tp, int flag)
989 register struct zs_chanstate *cs;
990 register int s, unit = ZS_UNIT(tp->t_dev);
991 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
993 cs = &zi->zi_cs[unit & 1];
994 s = splzs();
995 if(tp->t_state & TS_BUSY) {
997 * Device is transmitting; must stop it.
999 cs->cs_tbc = 0;
1000 if ((tp->t_state & TS_TTSTOP) == 0)
1001 tp->t_state |= TS_FLUSH;
1003 splx(s);
1006 static void
1007 zs_shutdown(struct zs_chanstate *cs)
1009 struct tty *tp = cs->cs_ttyp;
1010 int s;
1012 s = splzs();
1015 * Hang up if necessary. Wait a bit, so the other side has time to
1016 * notice even if we immediately open the port again.
1018 if(tp->t_cflag & HUPCL) {
1019 zs_modem(cs, 0, DMSET);
1020 (void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1023 /* Clear any break condition set with TIOCSBRK. */
1024 if(cs->cs_creg[5] & ZSWR5_BREAK) {
1025 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1026 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1027 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1031 * Drop all lines and cancel interrupts
1033 zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1034 splx(s);
1038 * Set ZS tty parameters from termios.
1040 * This routine makes use of the fact that only registers
1041 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1043 static int
1044 zsparam(register struct tty *tp, register struct termios *t)
1046 int unit = ZS_UNIT(tp->t_dev);
1047 struct zs_softc *zi = device_lookup_private(&zs_cd, unit >> 1);
1048 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1049 int cdiv = 0, /* XXX gcc4 -Wuninitialized */
1050 clkm = 0, /* XXX gcc4 -Wuninitialized */
1051 brgm = 0, /* XXX gcc4 -Wuninitialized */
1052 tcon = 0; /* XXX gcc4 -Wuninitialized */
1053 register int tmp, tmp5, cflag, s;
1055 tmp = t->c_ospeed;
1056 tmp5 = t->c_ispeed;
1057 if(tmp < 0 || (tmp5 && tmp5 != tmp))
1058 return(EINVAL);
1059 if(tmp == 0) {
1060 /* stty 0 => drop DTR and RTS */
1061 zs_modem(cs, 0, DMSET);
1062 return(0);
1064 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1065 if (tmp < 0)
1066 return(EINVAL);
1067 tp->t_ispeed = tp->t_ospeed = tmp;
1069 cflag = tp->t_cflag = t->c_cflag;
1070 if (cflag & CSTOPB)
1071 cdiv |= ZSWR4_TWOSB;
1072 else
1073 cdiv |= ZSWR4_ONESB;
1074 if (!(cflag & PARODD))
1075 cdiv |= ZSWR4_EVENP;
1076 if (cflag & PARENB)
1077 cdiv |= ZSWR4_PARENB;
1079 switch(cflag & CSIZE) {
1080 case CS5:
1081 tmp = ZSWR3_RX_5;
1082 tmp5 = ZSWR5_TX_5;
1083 break;
1084 case CS6:
1085 tmp = ZSWR3_RX_6;
1086 tmp5 = ZSWR5_TX_6;
1087 break;
1088 case CS7:
1089 tmp = ZSWR3_RX_7;
1090 tmp5 = ZSWR5_TX_7;
1091 break;
1092 case CS8:
1093 default:
1094 tmp = ZSWR3_RX_8;
1095 tmp5 = ZSWR5_TX_8;
1096 break;
1098 tmp |= ZSWR3_RX_ENABLE;
1099 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1102 * Block interrupts so that state will not
1103 * be altered until we are done setting it up.
1105 s = splzs();
1106 cs->cs_preg[4] = cdiv;
1107 cs->cs_preg[11] = clkm;
1108 cs->cs_preg[12] = tcon;
1109 cs->cs_preg[13] = tcon >> 8;
1110 cs->cs_preg[14] = brgm;
1111 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1112 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1113 cs->cs_preg[10] = ZSWR10_NRZ;
1114 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1117 * Output hardware flow control on the chip is horrendous: if
1118 * carrier detect drops, the receiver is disabled. Hence we
1119 * can only do this when the carrier is on.
1121 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1122 tmp |= ZSWR3_HFC;
1123 cs->cs_preg[3] = tmp;
1124 cs->cs_preg[5] = tmp5;
1127 * If nothing is being transmitted, set up new current values,
1128 * else mark them as pending.
1130 if(cs->cs_heldchange == 0) {
1131 if (cs->cs_ttyp->t_state & TS_BUSY) {
1132 cs->cs_heldtbc = cs->cs_tbc;
1133 cs->cs_tbc = 0;
1134 cs->cs_heldchange = 1;
1135 } else {
1136 memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16);
1137 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1140 splx(s);
1141 return (0);
1145 * search for the best matching baudrate
1147 static int
1148 zsbaudrate(int unit, int wanted, int *divisor, int *clockmode, int *brgenmode, int *timeconst)
1150 int bestdiff, bestbps, source;
1152 bestdiff = bestbps = 0;
1153 unit = (unit & 1) << 2;
1154 for (source = 0; source < 4; ++source) {
1155 long freq = zs_frequencies[unit + source];
1156 int diff, bps, div, clkm, brgm, tcon;
1158 bps = div = clkm = brgm = tcon = 0;
1159 switch (source) {
1160 case 0: /* BRgen, PCLK */
1161 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1162 break;
1163 case 1: /* BRgen, RTxC */
1164 brgm = ZSWR14_BAUD_ENA;
1165 break;
1166 case 2: /* RTxC */
1167 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1168 break;
1169 case 3: /* TRxC */
1170 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1171 break;
1173 switch (source) {
1174 case 0:
1175 case 1:
1176 div = ZSWR4_CLK_X16;
1177 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1178 tcon = BPS_TO_TCONST(freq, wanted);
1179 if (tcon < 0)
1180 tcon = 0;
1181 bps = TCONST_TO_BPS(freq, tcon);
1182 break;
1183 case 2:
1184 case 3:
1185 { int b1 = freq / 16, d1 = abs(b1 - wanted);
1186 int b2 = freq / 32, d2 = abs(b2 - wanted);
1187 int b3 = freq / 64, d3 = abs(b3 - wanted);
1189 if (d1 < d2 && d1 < d3) {
1190 div = ZSWR4_CLK_X16;
1191 bps = b1;
1192 } else if (d2 < d3 && d2 < d1) {
1193 div = ZSWR4_CLK_X32;
1194 bps = b2;
1195 } else {
1196 div = ZSWR4_CLK_X64;
1197 bps = b3;
1199 brgm = tcon = 0;
1200 break;
1203 diff = abs(bps - wanted);
1204 if (!source || diff < bestdiff) {
1205 *divisor = div;
1206 *clockmode = clkm;
1207 *brgenmode = brgm;
1208 *timeconst = tcon;
1209 bestbps = bps;
1210 bestdiff = diff;
1211 if (diff == 0)
1212 break;
1215 /* Allow deviations upto 5% */
1216 if (20 * bestdiff > wanted)
1217 return -1;
1218 return bestbps;
1222 * Raise or lower modem control (DTR/RTS) signals. If a character is
1223 * in transmission, the change is deferred.
1225 static int
1226 zs_modem(struct zs_chanstate *cs, int bits, int how)
1228 int s, mbits;
1230 bits &= ZSWR5_DTR | ZSWR5_RTS;
1232 s = splzs();
1233 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS);
1235 switch(how) {
1236 case DMSET:
1237 mbits = bits;
1238 break;
1239 case DMBIS:
1240 mbits |= bits;
1241 break;
1242 case DMBIC:
1243 mbits &= ~bits;
1244 break;
1245 case DMGET:
1246 splx(s);
1247 return(mbits);
1250 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1251 if(cs->cs_heldchange == 0) {
1252 if(cs->cs_ttyp->t_state & TS_BUSY) {
1253 cs->cs_heldtbc = cs->cs_tbc;
1254 cs->cs_tbc = 0;
1255 cs->cs_heldchange = 1;
1257 else {
1258 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1261 splx(s);
1262 return(0);
1266 * Write the given register set to the given zs channel in the proper order.
1267 * The channel must not be transmitting at the time. The receiver will
1268 * be disabled for the time it takes to write all the registers.
1270 static void
1271 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1273 int i;
1275 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1276 i = zc->zc_data; /* drain fifo */
1277 i = zc->zc_data;
1278 i = zc->zc_data;
1279 ZS_WRITE(zc, 4, reg[4]);
1280 ZS_WRITE(zc, 10, reg[10]);
1281 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1282 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1283 ZS_WRITE(zc, 1, reg[1]);
1284 ZS_WRITE(zc, 9, reg[9]);
1285 ZS_WRITE(zc, 11, reg[11]);
1286 ZS_WRITE(zc, 12, reg[12]);
1287 ZS_WRITE(zc, 13, reg[13]);
1288 ZS_WRITE(zc, 14, reg[14]);
1289 ZS_WRITE(zc, 15, reg[15]);
1290 ZS_WRITE(zc, 3, reg[3]);
1291 ZS_WRITE(zc, 5, reg[5]);
1293 #endif /* NZS > 1 */