Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / sparc / fpu / fpu.c
blob4908e1af8308e19508b587d147570c6301f5267c
1 /* $NetBSD: fpu.c,v 1.25 2005/11/16 23:24:44 uwe Exp $ */
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * @(#)fpu.c 8.1 (Berkeley) 6/11/93
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.25 2005/11/16 23:24:44 uwe Exp $");
46 #include <sys/param.h>
47 #include <sys/proc.h>
48 #include <sys/signal.h>
49 #include <sys/systm.h>
50 #include <sys/syslog.h>
51 #include <sys/signalvar.h>
53 #include <machine/instr.h>
54 #include <machine/reg.h>
56 #include <sparc/fpu/fpu_emu.h>
57 #include <sparc/fpu/fpu_extern.h>
59 int fpe_debug = 0;
61 #ifdef DEBUG
63 * Dump a `fpn' structure.
65 void
66 fpu_dumpfpn(struct fpn *fp)
68 static const char *class[] = {
69 "SNAN", "QNAN", "ZERO", "NUM", "INF"
72 printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
73 fp->fp_sign ? '-' : ' ',
74 fp->fp_mant[0], fp->fp_mant[1],
75 fp->fp_mant[2], fp->fp_mant[3],
76 fp->fp_exp);
78 #endif
81 * fpu_execute returns the following error numbers (0 = no error):
83 #define FPE 1 /* take a floating point exception */
84 #define NOTFPU 2 /* not an FPU instruction */
87 * Translate current exceptions into `first' exception. The
88 * bits go the wrong way for ffs() (0x10 is most important, etc).
89 * There are only 5, so do it the obvious way.
91 #define X1(x) x
92 #define X2(x) x,x
93 #define X4(x) x,x,x,x
94 #define X8(x) X4(x),X4(x)
95 #define X16(x) X8(x),X8(x)
97 static char cx_to_trapx[] = {
98 X1(FSR_NX),
99 X2(FSR_DZ),
100 X4(FSR_UF),
101 X8(FSR_OF),
102 X16(FSR_NV)
104 static u_char fpu_codes_native[] = {
105 X1(FPE_FLTRES),
106 X2(FPE_FLTDIV),
107 X4(FPE_FLTUND),
108 X8(FPE_FLTOVF),
109 X16(FPE_FLTINV)
111 #if defined(COMPAT_SUNOS)
112 static u_char fpu_codes_sunos[] = {
113 X1(FPE_FLTINEX_TRAP),
114 X2(FPE_FLTDIV_TRAP),
115 X4(FPE_FLTUND_TRAP),
116 X8(FPE_FLTOVF_TRAP),
117 X16(FPE_FLTOPERR_TRAP)
119 extern struct emul emul_sunos;
120 #endif /* SUNOS_COMPAT */
121 /* Note: SVR4(Solaris) FPE_* codes happen to be compatible with ours */
124 * The FPU gave us an exception. Clean up the mess. Note that the
125 * fp queue can only have FPops in it, never load/store FP registers
126 * nor FBfcc instructions. Experiments with `crashme' prove that
127 * unknown FPops do enter the queue, however.
130 fpu_cleanup(l, fs)
131 struct lwp *l;
132 #ifndef SUN4U
133 struct fpstate *fs;
134 #else /* SUN4U */
135 struct fpstate64 *fs;
136 #endif /* SUN4U */
138 int i, fsr = fs->fs_fsr, error;
139 struct proc *p = l->l_proc;
140 union instr instr;
141 struct fpemu fe;
142 u_char *fpu_codes;
143 int code = 0;
145 fpu_codes =
146 #ifdef COMPAT_SUNOS
147 (p->p_emul == &emul_sunos) ? fpu_codes_sunos :
148 #endif
149 fpu_codes_native;
151 switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
153 case FSR_TT_NONE:
154 panic("fpu_cleanup: No fault"); /* ??? */
155 break;
157 case FSR_TT_IEEE:
158 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_IEEE\n"));
159 /* XXX missing trap address! */
160 if ((i = fsr & FSR_CX) == 0)
161 panic("fpu ieee trap, but no exception");
162 code = fpu_codes[i - 1];
163 break; /* XXX should return, but queue remains */
165 case FSR_TT_UNFIN:
166 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNFIN\n"));
167 #ifdef SUN4U
168 if (fs->fs_qsize == 0) {
169 printf("fpu_cleanup: unfinished fpop");
170 /* The book sez reexecute or emulate. */
171 return (0);
173 break;
175 #endif /* SUN4U */
176 case FSR_TT_UNIMP:
177 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNIMP\n"));
178 if (fs->fs_qsize == 0)
179 panic("fpu_cleanup: unimplemented fpop");
180 break;
182 case FSR_TT_SEQ:
183 panic("fpu sequence error");
184 /* NOTREACHED */
186 case FSR_TT_HWERR:
187 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_HWERR\n"));
188 log(LOG_ERR, "fpu hardware error (%s[%d])\n",
189 p->p_comm, p->p_pid);
190 uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
191 code = SI_NOINFO;
192 goto out;
194 default:
195 printf("fsr=0x%x\n", fsr);
196 panic("fpu error");
199 /* emulate the instructions left in the queue */
200 fe.fe_fpstate = fs;
201 for (i = 0; i < fs->fs_qsize; i++) {
202 instr.i_int = fs->fs_queue[i].fq_instr;
203 if (instr.i_any.i_op != IOP_reg ||
204 (instr.i_op3.i_op3 != IOP3_FPop1 &&
205 instr.i_op3.i_op3 != IOP3_FPop2))
206 panic("bogus fpu queue");
207 error = fpu_execute(&fe, instr);
208 if (error == 0)
209 continue;
211 switch (error) {
212 case FPE:
213 code = fpu_codes[(fs->fs_fsr & FSR_CX) - 1];
214 break;
216 case NOTFPU:
217 #ifdef SUN4U
218 #ifdef DEBUG
219 printf("fpu_cleanup: not an FPU error -- sending SIGILL\n");
220 #endif
221 #endif /* SUN4U */
222 code = SI_NOINFO;
223 break;
225 default:
226 panic("fpu_cleanup 3");
227 /* NOTREACHED */
229 /* XXX should stop here, but queue remains */
231 out:
232 fs->fs_qsize = 0;
233 return (code);
236 #ifdef notyet
238 * If we have no FPU at all (are there any machines like this out
239 * there!?) we have to emulate each instruction, and we need a pointer
240 * to the trapframe so that we can step over them and do FBfcc's.
241 * We know the `queue' is empty, though; we just want to emulate
242 * the instruction at tf->tf_pc.
244 fpu_emulate(l, tf, fs)
245 struct lwp *l;
246 struct trapframe *tf;
247 #ifndef SUN4U
248 struct fpstate *fs;
249 #else /* SUN4U */
250 struct fpstate64 *fs;
251 #endif /* SUN4U */
254 do {
255 fetch instr from pc
256 decode
257 if (integer instr) {
258 struct pcb *pcb = lwp_getpcb(l);
260 * We do this here, rather than earlier, to avoid
261 * losing even more badly than usual.
263 if (pcb->pcb_uw) {
264 write_user_windows();
265 if (rwindow_save(l))
266 sigexit(l, SIGILL);
268 if (loadstore) {
269 do_it;
270 pc = npc, npc += 4
271 } else if (fbfcc) {
272 do_annul_stuff;
273 } else
274 return;
275 } else if (fpu instr) {
276 fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
277 error = fpu_execute(&fe, fs, instr);
278 switch (error) {
279 etc;
281 } else
282 return;
283 if (want to reschedule)
284 return;
285 } while (error == 0);
287 #endif
290 * Execute an FPU instruction (one that runs entirely in the FPU; not
291 * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
292 * modified to reflect the setting the hardware would have left.
294 * Note that we do not catch all illegal opcodes, so you can, for instance,
295 * multiply two integers this way.
298 fpu_execute(struct fpemu *fe, union instr instr)
300 struct fpn *fp;
301 #ifndef SUN4U
302 int opf, rs1, rs2, rd, type, mask, fsr, cx;
303 struct fpstate *fs;
304 #else /* SUN4U */
305 int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
306 struct fpstate64 *fs;
307 #endif /* SUN4U */
308 u_int space[4];
311 * `Decode' and execute instruction. Start with no exceptions.
312 * The type of any i_opf opcode is in the bottom two bits, so we
313 * squish them out here.
315 opf = instr.i_opf.i_opf;
317 * The low two bits of the opf field for floating point insns usually
318 * correspond to the operation width:
320 * 0: Invalid
321 * 1: Single precision float
322 * 2: Double precision float
323 * 3: Quad precision float
325 * The exceptions are the integer to float conversion instructions.
327 * For double and quad precision, the low bit if the rs or rd field
328 * is actually the high bit of the register number.
331 type = opf & 3;
332 mask = 0x3 >> (3 - type);
334 rs1 = instr.i_opf.i_rs1;
335 rs1 = (rs1 & ~mask) | ((rs1 & mask & 0x1) << 5);
336 rs2 = instr.i_opf.i_rs2;
337 rs2 = (rs2 & ~mask) | ((rs2 & mask & 0x1) << 5);
338 rd = instr.i_opf.i_rd;
339 rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
340 #ifdef DIAGNOSTIC
341 if ((rs1 | rs2 | rd) & mask)
342 /* This may be an FPU insn but it is illegal. */
343 return (NOTFPU);
344 #endif
345 fs = fe->fe_fpstate;
346 fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
347 fe->fe_cx = 0;
348 #ifdef SUN4U
350 * Check to see if we're dealing with a fancy cmove and handle
351 * it first.
353 if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
354 switch (opf >>= 2) {
355 case FMVFC0 >> 2:
356 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC0\n"));
357 cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
358 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
359 rs1 = fs->fs_regs[rs2];
360 goto mov;
361 case FMVFC1 >> 2:
362 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC1\n"));
363 cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
364 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
365 rs1 = fs->fs_regs[rs2];
366 goto mov;
367 case FMVFC2 >> 2:
368 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC2\n"));
369 cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
370 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
371 rs1 = fs->fs_regs[rs2];
372 goto mov;
373 case FMVFC3 >> 2:
374 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC3\n"));
375 cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
376 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
377 rs1 = fs->fs_regs[rs2];
378 goto mov;
379 case FMVIC >> 2:
380 /* Presume we're curlwp */
381 DPRINTF(FPE_INSN, ("fpu_execute: FMVIC\n"));
382 cond = (curlwp->l_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
383 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
384 rs1 = fs->fs_regs[rs2];
385 goto mov;
386 case FMVXC >> 2:
387 /* Presume we're curlwp */
388 DPRINTF(FPE_INSN, ("fpu_execute: FMVXC\n"));
389 cond = (curlwp->l_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
390 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
391 rs1 = fs->fs_regs[rs2];
392 goto mov;
393 case FMVRZ >> 2:
394 /* Presume we're curlwp */
395 DPRINTF(FPE_INSN, ("fpu_execute: FMVRZ\n"));
396 rs1 = instr.i_fmovr.i_rs1;
397 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] != 0)
398 return (0); /* success */
399 rs1 = fs->fs_regs[rs2];
400 goto mov;
401 case FMVRLEZ >> 2:
402 /* Presume we're curlwp */
403 DPRINTF(FPE_INSN, ("fpu_execute: FMVRLEZ\n"));
404 rs1 = instr.i_fmovr.i_rs1;
405 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] > 0)
406 return (0); /* success */
407 rs1 = fs->fs_regs[rs2];
408 goto mov;
409 case FMVRLZ >> 2:
410 /* Presume we're curlwp */
411 DPRINTF(FPE_INSN, ("fpu_execute: FMVRLZ\n"));
412 rs1 = instr.i_fmovr.i_rs1;
413 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] >= 0)
414 return (0); /* success */
415 rs1 = fs->fs_regs[rs2];
416 goto mov;
417 case FMVRNZ >> 2:
418 /* Presume we're curlwp */
419 DPRINTF(FPE_INSN, ("fpu_execute: FMVRNZ\n"));
420 rs1 = instr.i_fmovr.i_rs1;
421 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] == 0)
422 return (0); /* success */
423 rs1 = fs->fs_regs[rs2];
424 goto mov;
425 case FMVRGZ >> 2:
426 /* Presume we're curlwp */
427 DPRINTF(FPE_INSN, ("fpu_execute: FMVRGZ\n"));
428 rs1 = instr.i_fmovr.i_rs1;
429 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] <= 0)
430 return (0); /* success */
431 rs1 = fs->fs_regs[rs2];
432 goto mov;
433 case FMVRGEZ >> 2:
434 /* Presume we're curlwp */
435 DPRINTF(FPE_INSN, ("fpu_execute: FMVRGEZ\n"));
436 rs1 = instr.i_fmovr.i_rs1;
437 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] < 0)
438 return (0); /* success */
439 rs1 = fs->fs_regs[rs2];
440 goto mov;
441 default:
442 DPRINTF(FPE_INSN,
443 ("fpu_execute: unknown v9 FP inst %x opf %x\n",
444 instr.i_int, opf));
445 return (NOTFPU);
448 #endif /* SUN4U */
449 switch (opf >>= 2) {
451 default:
452 DPRINTF(FPE_INSN,
453 ("fpu_execute: unknown basic FP inst %x opf %x\n",
454 instr.i_int, opf));
455 return (NOTFPU);
457 case FMOV >> 2: /* these should all be pretty obvious */
458 DPRINTF(FPE_INSN, ("fpu_execute: FMOV\n"));
459 rs1 = fs->fs_regs[rs2];
460 goto mov;
462 case FNEG >> 2:
463 DPRINTF(FPE_INSN, ("fpu_execute: FNEG\n"));
464 rs1 = fs->fs_regs[rs2] ^ (1 << 31);
465 goto mov;
467 case FABS >> 2:
468 DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
469 rs1 = fs->fs_regs[rs2] & ~(1 << 31);
470 mov:
471 #ifndef SUN4U
472 fs->fs_regs[rd] = rs1;
473 #else /* SUN4U */
474 i = 1<<(type-1);
475 fs->fs_regs[rd++] = rs1;
476 while (--i > 0)
477 fs->fs_regs[rd++] = fs->fs_regs[++rs2];
478 #endif /* SUN4U */
479 fs->fs_fsr = fe->fe_fsr;
480 return (0); /* success */
482 case FSQRT >> 2:
483 DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
484 fpu_explode(fe, &fe->fe_f1, type, rs2);
485 fp = fpu_sqrt(fe);
486 break;
488 case FADD >> 2:
489 DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
490 fpu_explode(fe, &fe->fe_f1, type, rs1);
491 fpu_explode(fe, &fe->fe_f2, type, rs2);
492 fp = fpu_add(fe);
493 break;
495 case FSUB >> 2:
496 DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
497 fpu_explode(fe, &fe->fe_f1, type, rs1);
498 fpu_explode(fe, &fe->fe_f2, type, rs2);
499 fp = fpu_sub(fe);
500 break;
502 case FMUL >> 2:
503 DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
504 fpu_explode(fe, &fe->fe_f1, type, rs1);
505 fpu_explode(fe, &fe->fe_f2, type, rs2);
506 fp = fpu_mul(fe);
507 break;
509 case FDIV >> 2:
510 DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
511 fpu_explode(fe, &fe->fe_f1, type, rs1);
512 fpu_explode(fe, &fe->fe_f2, type, rs2);
513 fp = fpu_div(fe);
514 break;
516 case FCMP >> 2:
517 DPRINTF(FPE_INSN, ("fpu_execute: FCMP\n"));
518 fpu_explode(fe, &fe->fe_f1, type, rs1);
519 fpu_explode(fe, &fe->fe_f2, type, rs2);
520 fpu_compare(fe, 0);
521 goto cmpdone;
523 case FCMPE >> 2:
524 DPRINTF(FPE_INSN, ("fpu_execute: FCMPE\n"));
525 fpu_explode(fe, &fe->fe_f1, type, rs1);
526 fpu_explode(fe, &fe->fe_f2, type, rs2);
527 fpu_compare(fe, 1);
528 cmpdone:
530 * The only possible exception here is NV; catch it
531 * early and get out, as there is no result register.
533 cx = fe->fe_cx;
534 fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
535 if (cx != 0) {
536 if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
537 fs->fs_fsr = (fsr & ~FSR_FTT) |
538 (FSR_TT_IEEE << FSR_FTT_SHIFT);
539 return (FPE);
541 fsr |= FSR_NV << FSR_AX_SHIFT;
543 fs->fs_fsr = fsr;
544 return (0);
546 case FSMULD >> 2:
547 case FDMULX >> 2:
548 DPRINTF(FPE_INSN, ("fpu_execute: FSMULx\n"));
549 if (type == FTYPE_EXT)
550 return (NOTFPU);
551 fpu_explode(fe, &fe->fe_f1, type, rs1);
552 fpu_explode(fe, &fe->fe_f2, type, rs2);
553 type++; /* single to double, or double to quad */
554 fp = fpu_mul(fe);
555 break;
557 #ifdef SUN4U
558 case FXTOS >> 2:
559 case FXTOD >> 2:
560 case FXTOQ >> 2:
561 DPRINTF(FPE_INSN, ("fpu_execute: FXTOx\n"));
562 type = FTYPE_LNG;
563 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
564 type = opf & 3; /* sneaky; depends on instruction encoding */
565 break;
567 case FTOX >> 2:
568 DPRINTF(FPE_INSN, ("fpu_execute: FTOX\n"));
569 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
570 type = FTYPE_LNG;
571 /* Recalculate destination register */
572 rd = instr.i_opf.i_rd;
573 break;
575 #endif /* SUN4U */
576 case FTOI >> 2:
577 DPRINTF(FPE_INSN, ("fpu_execute: FTOI\n"));
578 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
579 type = FTYPE_INT;
580 /* Recalculate destination register */
581 rd = instr.i_opf.i_rd;
582 break;
584 case FTOS >> 2:
585 case FTOD >> 2:
586 case FTOQ >> 2:
587 DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
588 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
589 /* Recalculate rd with correct type info. */
590 type = opf & 3; /* sneaky; depends on instruction encoding */
591 mask = 0x3 >> (3 - type);
592 rd = instr.i_opf.i_rd;
593 rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
594 break;
598 * ALU operation is complete. Collapse the result and then check
599 * for exceptions. If we got any, and they are enabled, do not
600 * alter the destination register, just stop with an exception.
601 * Otherwise set new current exceptions and accrue.
603 fpu_implode(fe, fp, type, space);
604 cx = fe->fe_cx;
605 fsr = fe->fe_fsr;
606 if (cx != 0) {
607 mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
608 if (cx & mask) {
609 /* not accrued??? */
610 fs->fs_fsr = (fsr & ~FSR_FTT) |
611 (FSR_TT_IEEE << FSR_FTT_SHIFT) |
612 (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
613 return (FPE);
615 fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
617 fs->fs_fsr = fsr;
618 DPRINTF(FPE_REG, ("-> %c%d\n", (type == FTYPE_LNG) ? 'x' :
619 ((type == FTYPE_INT) ? 'i' :
620 ((type == FTYPE_SNG) ? 's' :
621 ((type == FTYPE_DBL) ? 'd' :
622 ((type == FTYPE_EXT) ? 'q' : '?')))),
623 rd));
624 fs->fs_regs[rd] = space[0];
625 if (type >= FTYPE_DBL || type == FTYPE_LNG) {
626 fs->fs_regs[rd + 1] = space[1];
627 if (type > FTYPE_DBL) {
628 fs->fs_regs[rd + 2] = space[2];
629 fs->fs_regs[rd + 3] = space[3];
632 return (0); /* success */