Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / arch / sparc / stand / ofwboot / loadfile_machdep.c
blob98bd099fcf2799bbef69f1c4dd2102075ed93c71
1 /* $NetBSD: loadfile_machdep.c,v 1.6 2008/08/25 22:31:12 martin Exp $ */
3 /*-
4 * Copyright (c) 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This work is based on the code contributed by Robert Drehmel to the
8 * FreeBSD project.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <lib/libsa/stand.h>
34 #include <machine/pte.h>
35 #include <machine/cpu.h>
36 #include <machine/ctlreg.h>
37 #include <machine/vmparam.h>
38 #include <machine/promlib.h>
40 #include "boot.h"
41 #include "openfirm.h"
44 #define MAXSEGNUM 50
45 #define hi(val) ((uint32_t)(((val) >> 32) & (uint32_t)-1))
46 #define lo(val) ((uint32_t)((val) & (uint32_t)-1))
48 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1)))
51 typedef int phandle_t;
53 extern void itlb_enter(vaddr_t, uint32_t, uint32_t);
54 extern void dtlb_enter(vaddr_t, uint32_t, uint32_t);
55 extern void dtlb_replace(vaddr_t, uint32_t, uint32_t);
56 extern vaddr_t itlb_va_to_pa(vaddr_t);
57 extern vaddr_t dtlb_va_to_pa(vaddr_t);
59 static void tlb_init(void);
61 static int mmu_mapin(vaddr_t, vsize_t);
62 static ssize_t mmu_read(int, void *, size_t);
63 static void* mmu_memcpy(void *, const void *, size_t);
64 static void* mmu_memset(void *, int, size_t);
65 static void mmu_freeall(void);
67 static int ofw_mapin(vaddr_t, vsize_t);
68 static ssize_t ofw_read(int, void *, size_t);
69 static void* ofw_memcpy(void *, const void *, size_t);
70 static void* ofw_memset(void *, int, size_t);
71 static void ofw_freeall(void);
73 static int nop_mapin(vaddr_t, vsize_t);
74 static ssize_t nop_read(int, void *, size_t);
75 static void* nop_memcpy(void *, const void *, size_t);
76 static void* nop_memset(void *, int, size_t);
77 static void nop_freeall(void);
80 struct tlb_entry *dtlb_store = 0;
81 struct tlb_entry *itlb_store = 0;
83 int dtlb_slot;
84 int itlb_slot;
85 int dtlb_slot_max;
86 int itlb_slot_max;
88 static struct kvamap {
89 uint64_t start;
90 uint64_t end;
91 } kvamap[MAXSEGNUM];
93 static struct memsw {
94 ssize_t (* read)(int f, void *addr, size_t size);
95 void* (* memcpy)(void *dst, const void *src, size_t size);
96 void* (* memset)(void *dst, int c, size_t size);
97 void (* freeall)(void);
98 } memswa[] = {
99 { nop_read, nop_memcpy, nop_memset, nop_freeall },
100 { ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
101 { mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
104 static struct memsw *memsw = &memswa[0];
108 * Check if a memory region is already mapped. Return length and virtual
109 * address of unmapped sub-region, if any.
111 static uint64_t
112 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
114 int i;
116 *new_va = va;
117 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
118 if (kvamap[i].start == NULL)
119 break;
120 if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
121 uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
122 len = (va_len < len) ? len - va_len : 0;
123 *new_va = kvamap[i].end;
127 return (len);
131 * Record new kernel mapping.
133 static void
134 kvamap_enter(uint64_t va, uint64_t len)
136 int i;
138 DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
139 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
140 if (kvamap[i].start == NULL) {
141 kvamap[i].start = va;
142 kvamap[i].end = va + len;
143 break;
147 if (i == MAXSEGNUM) {
148 panic("Too many allocations requested.");
153 * Initialize TLB as required by MMU mapping functions.
155 static void
156 tlb_init(void)
158 phandle_t child;
159 phandle_t root;
160 char buf[128];
161 u_int bootcpu;
162 u_int cpu;
164 if (dtlb_store != NULL) {
165 return;
168 bootcpu = get_cpuid();
170 if ( (root = prom_findroot()) == -1) {
171 panic("tlb_init: prom_findroot()");
174 for (child = prom_firstchild(root); child != 0;
175 child = prom_nextsibling(child)) {
176 if (child == -1) {
177 panic("tlb_init: OF_child");
179 if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
180 strcmp(buf, "cpu") == 0) {
181 if (_prom_getprop(child, "upa-portid", &cpu,
182 sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
183 &cpu, sizeof(cpu)) == -1)
184 panic("tlb_init: prom_getprop");
185 if (cpu == bootcpu)
186 break;
189 if (cpu != bootcpu)
190 panic("tlb_init: no node for bootcpu?!?!");
191 if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
192 sizeof(dtlb_slot_max)) == -1 ||
193 _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
194 sizeof(itlb_slot_max)) == -1)
195 panic("tlb_init: prom_getprop");
196 dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
197 itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
198 if (dtlb_store == NULL || itlb_store == NULL) {
199 panic("tlb_init: malloc");
202 dtlb_slot = itlb_slot = 0;
206 * Map requested memory region with permanent 4MB pages.
208 static int
209 mmu_mapin(vaddr_t rva, vsize_t len)
211 uint64_t data;
212 paddr_t pa;
213 vaddr_t va, mva;
215 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
216 rva &= ~PAGE_MASK_4M;
218 tlb_init();
219 for (pa = (paddr_t)-1; len > 0; rva = va) {
220 if ( (len = kvamap_extract(rva, len, &va)) == 0) {
221 /* The rest is already mapped */
222 break;
225 if (dtlb_va_to_pa(va) == (u_long)-1 ||
226 itlb_va_to_pa(va) == (u_long)-1) {
227 /* Allocate a physical page, claim the virtual area */
228 if (pa == (paddr_t)-1) {
229 pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
230 if (pa == (paddr_t)-1)
231 panic("out of memory");
232 mva = OF_claim_virt(va, PAGE_SIZE_4M);
233 if (mva != va) {
234 panic("can't claim virtual page "
235 "(wanted %#lx, got %#lx)",
236 va, mva);
238 /* The mappings may have changed, be paranoid. */
239 continue;
243 * Actually, we can only allocate two pages less at
244 * most (depending on the kernel TSB size).
246 if (dtlb_slot >= dtlb_slot_max)
247 panic("mmu_mapin: out of dtlb_slots");
248 if (itlb_slot >= itlb_slot_max)
249 panic("mmu_mapin: out of itlb_slots");
251 DPRINTF(("mmu_mapin: %p:%p.%p\n", va, hi(pa), lo(pa)));
253 data = TSB_DATA(0, /* global */
254 PGSZ_4M, /* 4mb page */
255 pa, /* phys.address */
256 1, /* privileged */
257 1, /* write */
258 1, /* cache */
259 1, /* alias */
260 1, /* valid */
261 0 /* endianness */
263 data |= TLB_L | TLB_CV; /* locked, virt.cache */
265 dtlb_store[dtlb_slot].te_pa = pa;
266 dtlb_store[dtlb_slot].te_va = va;
267 dtlb_slot++;
268 dtlb_enter(va, hi(data), lo(data));
269 pa = (paddr_t)-1;
272 kvamap_enter(va, PAGE_SIZE_4M);
274 len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
275 va += PAGE_SIZE_4M;
278 if (pa != (paddr_t)-1) {
279 OF_free_phys(pa, PAGE_SIZE_4M);
282 return (0);
285 static ssize_t
286 mmu_read(int f, void *addr, size_t size)
288 mmu_mapin((vaddr_t)addr, size);
289 return read(f, addr, size);
292 static void*
293 mmu_memcpy(void *dst, const void *src, size_t size)
295 mmu_mapin((vaddr_t)dst, size);
296 return memcpy(dst, src, size);
299 static void*
300 mmu_memset(void *dst, int c, size_t size)
302 mmu_mapin((vaddr_t)dst, size);
303 return memset(dst, c, size);
306 static void
307 mmu_freeall(void)
309 int i;
311 dtlb_slot = itlb_slot = 0;
312 for (i = 0; i < MAXSEGNUM; i++) {
313 /* XXX return all mappings to PROM and unmap the pages! */
314 kvamap[i].start = kvamap[i].end = 0;
319 * Claim requested memory region in OpenFirmware allocation pool.
321 static int
322 ofw_mapin(vaddr_t rva, vsize_t len)
324 vaddr_t va;
326 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
327 rva &= ~PAGE_MASK_4M;
329 if ( (len = kvamap_extract(rva, len, &va)) != 0) {
330 if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
331 panic("ofw_mapin: Cannot claim memory.");
333 kvamap_enter(va, len);
336 return (0);
339 static ssize_t
340 ofw_read(int f, void *addr, size_t size)
342 ofw_mapin((vaddr_t)addr, size);
343 return read(f, addr, size);
346 static void*
347 ofw_memcpy(void *dst, const void *src, size_t size)
349 ofw_mapin((vaddr_t)dst, size);
350 return memcpy(dst, src, size);
353 static void*
354 ofw_memset(void *dst, int c, size_t size)
356 ofw_mapin((vaddr_t)dst, size);
357 return memset(dst, c, size);
360 static void
361 ofw_freeall(void)
363 int i;
365 dtlb_slot = itlb_slot = 0;
366 for (i = 0; i < MAXSEGNUM; i++) {
367 OF_release((void*)(u_long)kvamap[i].start,
368 (u_int)(kvamap[i].end - kvamap[i].start));
369 kvamap[i].start = kvamap[i].end = 0;
374 * NOP implementation exists solely for kernel header loading sake. Here
375 * we use alloc() interface to allocate memory and avoid doing some dangerous
376 * things.
378 static ssize_t
379 nop_read(int f, void *addr, size_t size)
381 return read(f, addr, size);
384 static void*
385 nop_memcpy(void *dst, const void *src, size_t size)
388 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
389 * right after the highest kernel address which will not be mapped with
390 * nop_XXX operations.
392 return (dst);
395 static void*
396 nop_memset(void *dst, int c, size_t size)
398 return memset(dst, c, size);
401 static void
402 nop_freeall(void)
406 * loadfile() hooks.
408 ssize_t
409 sparc64_read(int f, void *addr, size_t size)
411 return (*memsw->read)(f, addr, size);
414 void*
415 sparc64_memcpy(void *dst, const void *src, size_t size)
417 return (*memsw->memcpy)(dst, src, size);
420 void*
421 sparc64_memset(void *dst, int c, size_t size)
423 return (*memsw->memset)(dst, c, size);
427 * Remove write permissions from text mappings in the dTLB.
428 * Add entries in the iTLB.
430 void
431 sparc64_finalize_tlb(u_long data_va)
433 int i;
434 int64_t data;
435 bool writable_text = false;
437 for (i = 0; i < dtlb_slot; i++) {
438 if (dtlb_store[i].te_va >= data_va) {
440 * If (for whatever reason) the start of the
441 * writable section is right at the start of
442 * the kernel, we need to map it into the ITLB
443 * nevertheless (and don't make it readonly).
445 if (i == 0 && dtlb_store[i].te_va == data_va)
446 writable_text = true;
447 else
448 continue;
451 data = TSB_DATA(0, /* global */
452 PGSZ_4M, /* 4mb page */
453 dtlb_store[i].te_pa, /* phys.address */
454 1, /* privileged */
455 0, /* write */
456 1, /* cache */
457 1, /* alias */
458 1, /* valid */
459 0 /* endianness */
461 data |= TLB_L | TLB_CV; /* locked, virt.cache */
462 if (!writable_text)
463 dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
464 itlb_store[itlb_slot] = dtlb_store[i];
465 itlb_slot++;
466 itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
468 if (writable_text)
469 printf("WARNING: kernel text mapped writable!\n");
473 * Record kernel mappings in bootinfo structure.
475 void
476 sparc64_bi_add(void)
478 int i;
479 int itlb_size, dtlb_size;
480 struct btinfo_count bi_count;
481 struct btinfo_tlb *bi_itlb, *bi_dtlb;
483 bi_count.count = itlb_slot;
484 bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
485 bi_count.count = dtlb_slot;
486 bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
488 itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
489 dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
491 bi_itlb = alloc(itlb_size);
492 bi_dtlb = alloc(dtlb_size);
494 if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
495 panic("Out of memory in sparc64_bi_add.\n");
498 for (i = 0; i < itlb_slot; i++) {
499 bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
500 bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
502 bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
504 for (i = 0; i < dtlb_slot; i++) {
505 bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
506 bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
508 bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
512 * Choose kernel image mapping strategy:
514 * LOADFILE_NOP_ALLOCATOR To load kernel image headers
515 * LOADFILE_OFW_ALLOCATOR To map the kernel by OpenFirmware means
516 * LOADFILE_MMU_ALLOCATOR To use permanent 4MB mappings
518 void
519 loadfile_set_allocator(int type)
521 if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
522 panic("Bad allocator request.\n");
526 * Release all memory claimed by previous allocator and schedule
527 * another allocator for succeeding memory allocation calls.
529 (*memsw->freeall)();
530 memsw = &memswa[type];