Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / compat / linux / common / linux_misc.c
blobd38d424d46a603cedace2c0c460b61bad2ca7694
1 /* $NetBSD: linux_misc.c,v 1.212 2009/11/24 10:42:44 njoly Exp $ */
3 /*-
4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
34 * Linux compatibility module. Try to deal with various Linux system calls.
38 * These functions have been moved to multiarch to allow
39 * selection of which machines include them to be
40 * determined by the individual files.linux_<arch> files.
42 * Function in multiarch:
43 * linux_sys_break : linux_break.c
44 * linux_sys_alarm : linux_misc_notalpha.c
45 * linux_sys_getresgid : linux_misc_notalpha.c
46 * linux_sys_nice : linux_misc_notalpha.c
47 * linux_sys_readdir : linux_misc_notalpha.c
48 * linux_sys_setresgid : linux_misc_notalpha.c
49 * linux_sys_time : linux_misc_notalpha.c
50 * linux_sys_utime : linux_misc_notalpha.c
51 * linux_sys_waitpid : linux_misc_notalpha.c
52 * linux_sys_old_mmap : linux_oldmmap.c
53 * linux_sys_oldolduname : linux_oldolduname.c
54 * linux_sys_oldselect : linux_oldselect.c
55 * linux_sys_olduname : linux_olduname.c
56 * linux_sys_pipe : linux_pipe.c
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.212 2009/11/24 10:42:44 njoly Exp $");
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/file.h>
68 #include <sys/stat.h>
69 #include <sys/filedesc.h>
70 #include <sys/ioctl.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/prot.h>
77 #include <sys/reboot.h>
78 #include <sys/resource.h>
79 #include <sys/resourcevar.h>
80 #include <sys/select.h>
81 #include <sys/signal.h>
82 #include <sys/signalvar.h>
83 #include <sys/socket.h>
84 #include <sys/time.h>
85 #include <sys/times.h>
86 #include <sys/vnode.h>
87 #include <sys/uio.h>
88 #include <sys/wait.h>
89 #include <sys/utsname.h>
90 #include <sys/unistd.h>
91 #include <sys/vfs_syscalls.h>
92 #include <sys/swap.h> /* for SWAP_ON */
93 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */
94 #include <sys/kauth.h>
96 #include <sys/ptrace.h>
97 #include <machine/ptrace.h>
99 #include <sys/syscall.h>
100 #include <sys/syscallargs.h>
102 #include <compat/sys/resource.h>
104 #include <compat/linux/common/linux_machdep.h>
105 #include <compat/linux/common/linux_types.h>
106 #include <compat/linux/common/linux_signal.h>
107 #include <compat/linux/common/linux_ipc.h>
108 #include <compat/linux/common/linux_sem.h>
110 #include <compat/linux/linux_syscallargs.h>
112 #include <compat/linux/common/linux_fcntl.h>
113 #include <compat/linux/common/linux_mmap.h>
114 #include <compat/linux/common/linux_dirent.h>
115 #include <compat/linux/common/linux_util.h>
116 #include <compat/linux/common/linux_misc.h>
117 #ifndef COMPAT_LINUX32
118 #include <compat/linux/common/linux_statfs.h>
119 #include <compat/linux/common/linux_limit.h>
120 #endif
121 #include <compat/linux/common/linux_ptrace.h>
122 #include <compat/linux/common/linux_reboot.h>
123 #include <compat/linux/common/linux_emuldata.h>
125 #ifndef COMPAT_LINUX32
126 const int linux_ptrace_request_map[] = {
127 LINUX_PTRACE_TRACEME, PT_TRACE_ME,
128 LINUX_PTRACE_PEEKTEXT, PT_READ_I,
129 LINUX_PTRACE_PEEKDATA, PT_READ_D,
130 LINUX_PTRACE_POKETEXT, PT_WRITE_I,
131 LINUX_PTRACE_POKEDATA, PT_WRITE_D,
132 LINUX_PTRACE_CONT, PT_CONTINUE,
133 LINUX_PTRACE_KILL, PT_KILL,
134 LINUX_PTRACE_ATTACH, PT_ATTACH,
135 LINUX_PTRACE_DETACH, PT_DETACH,
136 # ifdef PT_STEP
137 LINUX_PTRACE_SINGLESTEP, PT_STEP,
138 # endif
139 LINUX_PTRACE_SYSCALL, PT_SYSCALL,
143 const struct linux_mnttypes linux_fstypes[] = {
144 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
145 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
146 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
147 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
148 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
149 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
150 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
151 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
152 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
153 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
154 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
155 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
156 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
157 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
158 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
159 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
160 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
161 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
162 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
163 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
164 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
165 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
166 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC }
168 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
170 # ifdef DEBUG_LINUX
171 #define DPRINTF(a) uprintf a
172 # else
173 #define DPRINTF(a)
174 # endif
176 /* Local linux_misc.c functions: */
177 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
178 const struct linux_sys_mmap_args *);
179 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
180 register_t *, off_t);
184 * The information on a terminated (or stopped) process needs
185 * to be converted in order for Linux binaries to get a valid signal
186 * number out of it.
189 bsd_to_linux_wstat(int st)
192 int sig;
194 if (WIFSIGNALED(st)) {
195 sig = WTERMSIG(st);
196 if (sig >= 0 && sig < NSIG)
197 st= (st & ~0177) | native_to_linux_signo[sig];
198 } else if (WIFSTOPPED(st)) {
199 sig = WSTOPSIG(st);
200 if (sig >= 0 && sig < NSIG)
201 st = (st & ~0xff00) |
202 (native_to_linux_signo[sig] << 8);
204 return st;
208 * wait4(2). Passed on to the NetBSD call, surrounded by code to
209 * reserve some space for a NetBSD-style wait status, and converting
210 * it to what Linux wants.
213 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
215 /* {
216 syscallarg(int) pid;
217 syscallarg(int *) status;
218 syscallarg(int) options;
219 syscallarg(struct rusage50 *) rusage;
220 } */
221 int error, status, options, linux_options, pid = SCARG(uap, pid);
222 struct rusage50 ru50;
223 struct rusage ru;
224 proc_t *p;
226 linux_options = SCARG(uap, options);
227 options = WOPTSCHECKED;
228 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
229 return (EINVAL);
231 if (linux_options & LINUX_WAIT4_WNOHANG)
232 options |= WNOHANG;
233 if (linux_options & LINUX_WAIT4_WUNTRACED)
234 options |= WUNTRACED;
235 if (linux_options & LINUX_WAIT4_WALL)
236 options |= WALLSIG;
237 if (linux_options & LINUX_WAIT4_WCLONE)
238 options |= WALTSIG;
239 # ifdef DIAGNOSTIC
240 if (linux_options & LINUX_WAIT4_WNOTHREAD)
241 printf("WARNING: %s: linux process %d.%d called "
242 "waitpid with __WNOTHREAD set!",
243 __FILE__, l->l_proc->p_pid, l->l_lid);
245 # endif
247 error = do_sys_wait(&pid, &status, options,
248 SCARG(uap, rusage) != NULL ? &ru : NULL);
250 retval[0] = pid;
251 if (pid == 0)
252 return error;
254 p = curproc;
255 mutex_enter(p->p_lock);
256 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
257 mutex_exit(p->p_lock);
259 if (SCARG(uap, rusage) != NULL) {
260 rusage_to_rusage50(&ru, &ru50);
261 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
264 if (error == 0 && SCARG(uap, status) != NULL) {
265 status = bsd_to_linux_wstat(status);
266 error = copyout(&status, SCARG(uap, status), sizeof status);
269 return error;
273 * Linux brk(2). The check if the new address is >= the old one is
274 * done in the kernel in Linux. NetBSD does it in the library.
277 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
279 /* {
280 syscallarg(char *) nsize;
281 } */
282 struct proc *p = l->l_proc;
283 char *nbrk = SCARG(uap, nsize);
284 struct sys_obreak_args oba;
285 struct vmspace *vm = p->p_vmspace;
286 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
288 SCARG(&oba, nsize) = nbrk;
290 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
291 ed->s->p_break = (char*)nbrk;
292 else
293 nbrk = ed->s->p_break;
295 retval[0] = (register_t)nbrk;
297 return 0;
301 * Implement the fs stat functions. Straightforward.
304 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
306 /* {
307 syscallarg(const char *) path;
308 syscallarg(struct linux_statfs *) sp;
309 } */
310 struct statvfs *sb;
311 struct linux_statfs ltmp;
312 int error;
314 sb = STATVFSBUF_GET();
315 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
316 if (error == 0) {
317 bsd_to_linux_statfs(sb, &ltmp);
318 error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
320 STATVFSBUF_PUT(sb);
322 return error;
326 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
328 /* {
329 syscallarg(int) fd;
330 syscallarg(struct linux_statfs *) sp;
331 } */
332 struct statvfs *sb;
333 struct linux_statfs ltmp;
334 int error;
336 sb = STATVFSBUF_GET();
337 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
338 if (error == 0) {
339 bsd_to_linux_statfs(sb, &ltmp);
340 error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
342 STATVFSBUF_PUT(sb);
344 return error;
348 * uname(). Just copy the info from the various strings stored in the
349 * kernel, and put it in the Linux utsname structure. That structure
350 * is almost the same as the NetBSD one, only it has fields 65 characters
351 * long, and an extra domainname field.
354 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
356 /* {
357 syscallarg(struct linux_utsname *) up;
358 } */
359 struct linux_utsname luts;
361 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
362 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
363 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
364 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
365 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
366 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
368 return copyout(&luts, SCARG(uap, up), sizeof(luts));
371 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
372 /* Used indirectly on: arm, i386, m68k */
375 * New type Linux mmap call.
376 * Only called directly on machines with >= 6 free regs.
379 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
381 /* {
382 syscallarg(unsigned long) addr;
383 syscallarg(size_t) len;
384 syscallarg(int) prot;
385 syscallarg(int) flags;
386 syscallarg(int) fd;
387 syscallarg(linux_off_t) offset;
388 } */
390 if (SCARG(uap, offset) & PAGE_MASK)
391 return EINVAL;
393 return linux_mmap(l, uap, retval, SCARG(uap, offset));
397 * Guts of most architectures' mmap64() implementations. This shares
398 * its list of arguments with linux_sys_mmap().
400 * The difference in linux_sys_mmap2() is that "offset" is actually
401 * (offset / pagesize), not an absolute byte count. This translation
402 * to pagesize offsets is done inside glibc between the mmap64() call
403 * point, and the actual syscall.
406 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
408 /* {
409 syscallarg(unsigned long) addr;
410 syscallarg(size_t) len;
411 syscallarg(int) prot;
412 syscallarg(int) flags;
413 syscallarg(int) fd;
414 syscallarg(linux_off_t) offset;
415 } */
417 return linux_mmap(l, uap, retval,
418 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
422 * Massage arguments and call system mmap(2).
424 static int
425 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
427 struct sys_mmap_args cma;
428 int error;
429 size_t mmoff=0;
431 linux_to_bsd_mmap_args(&cma, uap);
432 SCARG(&cma, pos) = offset;
434 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
436 * Request for stack-like memory segment. On linux, this
437 * works by mmap()ping (small) segment, which is automatically
438 * extended when page fault happens below the currently
439 * allocated area. We emulate this by allocating (typically
440 * bigger) segment sized at current stack size limit, and
441 * offsetting the requested and returned address accordingly.
442 * Since physical pages are only allocated on-demand, this
443 * is effectively identical.
445 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
447 if (SCARG(&cma, len) < ssl) {
448 /* Compute the address offset */
449 mmoff = round_page(ssl) - SCARG(uap, len);
451 if (SCARG(&cma, addr))
452 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
454 SCARG(&cma, len) = (size_t) ssl;
458 error = sys_mmap(l, &cma, retval);
459 if (error)
460 return (error);
462 /* Shift the returned address for stack-like segment if necessary */
463 retval[0] += mmoff;
465 return (0);
468 static void
469 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
471 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
473 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
474 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
475 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
476 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
477 /* XXX XAX ERH: Any other flags here? There are more defined... */
479 SCARG(cma, addr) = (void *)SCARG(uap, addr);
480 SCARG(cma, len) = SCARG(uap, len);
481 SCARG(cma, prot) = SCARG(uap, prot);
482 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
483 SCARG(cma, prot) |= VM_PROT_READ;
484 SCARG(cma, flags) = flags;
485 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
486 SCARG(cma, PAD) = 0;
489 #define LINUX_MREMAP_MAYMOVE 1
490 #define LINUX_MREMAP_FIXED 2
493 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
495 /* {
496 syscallarg(void *) old_address;
497 syscallarg(size_t) old_size;
498 syscallarg(size_t) new_size;
499 syscallarg(u_long) flags;
500 } */
502 struct proc *p;
503 struct vm_map *map;
504 vaddr_t oldva;
505 vaddr_t newva;
506 size_t oldsize;
507 size_t newsize;
508 int flags;
509 int uvmflags;
510 int error;
512 flags = SCARG(uap, flags);
513 oldva = (vaddr_t)SCARG(uap, old_address);
514 oldsize = round_page(SCARG(uap, old_size));
515 newsize = round_page(SCARG(uap, new_size));
516 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
517 error = EINVAL;
518 goto done;
520 if ((flags & LINUX_MREMAP_FIXED) != 0) {
521 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
522 error = EINVAL;
523 goto done;
525 #if 0 /* notyet */
526 newva = SCARG(uap, new_address);
527 uvmflags = MAP_FIXED;
528 #else /* notyet */
529 error = EOPNOTSUPP;
530 goto done;
531 #endif /* notyet */
532 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
533 uvmflags = 0;
534 } else {
535 newva = oldva;
536 uvmflags = MAP_FIXED;
538 p = l->l_proc;
539 map = &p->p_vmspace->vm_map;
540 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
541 uvmflags);
543 done:
544 *retval = (error != 0) ? 0 : (register_t)newva;
545 return error;
549 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
551 /* {
552 syscallarg(const void *) start;
553 syscallarg(unsigned long) len;
554 syscallarg(int) prot;
555 } */
556 struct vm_map_entry *entry;
557 struct vm_map *map;
558 struct proc *p;
559 vaddr_t end, start, len, stacklim;
560 int prot, grows;
562 start = (vaddr_t)SCARG(uap, start);
563 len = round_page(SCARG(uap, len));
564 prot = SCARG(uap, prot);
565 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
566 prot &= ~grows;
567 end = start + len;
569 if (start & PAGE_MASK)
570 return EINVAL;
571 if (end < start)
572 return EINVAL;
573 if (end == start)
574 return 0;
576 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
577 return EINVAL;
578 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
579 return EINVAL;
581 p = l->l_proc;
582 map = &p->p_vmspace->vm_map;
583 vm_map_lock(map);
584 # ifdef notdef
585 VM_MAP_RANGE_CHECK(map, start, end);
586 # endif
587 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
588 vm_map_unlock(map);
589 return ENOMEM;
593 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
596 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
597 if (grows & LINUX_PROT_GROWSDOWN) {
598 if (USRSTACK - stacklim <= start && start < USRSTACK) {
599 start = USRSTACK - stacklim;
600 } else {
601 start = entry->start;
603 } else if (grows & LINUX_PROT_GROWSUP) {
604 if (USRSTACK <= end && end < USRSTACK + stacklim) {
605 end = USRSTACK + stacklim;
606 } else {
607 end = entry->end;
610 vm_map_unlock(map);
611 return uvm_map_protect(map, start, end, prot, FALSE);
615 * This code is partly stolen from src/lib/libc/compat-43/times.c
618 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
621 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
623 /* {
624 syscallarg(struct times *) tms;
625 } */
626 struct proc *p = l->l_proc;
627 struct timeval t;
628 int error;
630 if (SCARG(uap, tms)) {
631 struct linux_tms ltms;
632 struct rusage ru;
634 mutex_enter(p->p_lock);
635 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
636 ltms.ltms_utime = CONVTCK(ru.ru_utime);
637 ltms.ltms_stime = CONVTCK(ru.ru_stime);
638 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
639 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
640 mutex_exit(p->p_lock);
642 if ((error = copyout(&ltms, SCARG(uap, tms), sizeof ltms)))
643 return error;
646 getmicrouptime(&t);
648 retval[0] = ((linux_clock_t)(CONVTCK(t)));
649 return 0;
652 #undef CONVTCK
655 * Linux 'readdir' call. This code is mostly taken from the
656 * SunOS getdents call (see compat/sunos/sunos_misc.c), though
657 * an attempt has been made to keep it a little cleaner (failing
658 * miserably, because of the cruft needed if count 1 is passed).
660 * The d_off field should contain the offset of the next valid entry,
661 * but in Linux it has the offset of the entry itself. We emulate
662 * that bug here.
664 * Read in BSD-style entries, convert them, and copy them out.
666 * Note that this doesn't handle union-mounted filesystems.
669 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
671 /* {
672 syscallarg(int) fd;
673 syscallarg(struct linux_dirent *) dent;
674 syscallarg(unsigned int) count;
675 } */
676 struct dirent *bdp;
677 struct vnode *vp;
678 char *inp, *tbuf; /* BSD-format */
679 int len, reclen; /* BSD-format */
680 char *outp; /* Linux-format */
681 int resid, linux_reclen = 0; /* Linux-format */
682 struct file *fp;
683 struct uio auio;
684 struct iovec aiov;
685 struct linux_dirent idb;
686 off_t off; /* true file offset */
687 int buflen, error, eofflag, nbytes, oldcall;
688 struct vattr va;
689 off_t *cookiebuf = NULL, *cookie;
690 int ncookies;
692 /* fd_getvnode() will use the descriptor for us */
693 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
694 return (error);
696 if ((fp->f_flag & FREAD) == 0) {
697 error = EBADF;
698 goto out1;
701 vp = (struct vnode *)fp->f_data;
702 if (vp->v_type != VDIR) {
703 error = ENOTDIR;
704 goto out1;
707 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
708 goto out1;
710 nbytes = SCARG(uap, count);
711 if (nbytes == 1) { /* emulating old, broken behaviour */
712 nbytes = sizeof (idb);
713 buflen = max(va.va_blocksize, nbytes);
714 oldcall = 1;
715 } else {
716 buflen = min(MAXBSIZE, nbytes);
717 if (buflen < va.va_blocksize)
718 buflen = va.va_blocksize;
719 oldcall = 0;
721 tbuf = malloc(buflen, M_TEMP, M_WAITOK);
723 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
724 off = fp->f_offset;
725 again:
726 aiov.iov_base = tbuf;
727 aiov.iov_len = buflen;
728 auio.uio_iov = &aiov;
729 auio.uio_iovcnt = 1;
730 auio.uio_rw = UIO_READ;
731 auio.uio_resid = buflen;
732 auio.uio_offset = off;
733 UIO_SETUP_SYSSPACE(&auio);
735 * First we read into the malloc'ed buffer, then
736 * we massage it into user space, one record at a time.
738 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
739 &ncookies);
740 if (error)
741 goto out;
743 inp = tbuf;
744 outp = (void *)SCARG(uap, dent);
745 resid = nbytes;
746 if ((len = buflen - auio.uio_resid) == 0)
747 goto eof;
749 for (cookie = cookiebuf; len > 0; len -= reclen) {
750 bdp = (struct dirent *)inp;
751 reclen = bdp->d_reclen;
752 if (reclen & 3)
753 panic("linux_readdir");
754 if (bdp->d_fileno == 0) {
755 inp += reclen; /* it is a hole; squish it out */
756 if (cookie)
757 off = *cookie++;
758 else
759 off += reclen;
760 continue;
762 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
763 if (reclen > len || resid < linux_reclen) {
764 /* entry too big for buffer, so just stop */
765 outp++;
766 break;
769 * Massage in place to make a Linux-shaped dirent (otherwise
770 * we have to worry about touching user memory outside of
771 * the copyout() call).
773 idb.d_ino = bdp->d_fileno;
775 * The old readdir() call misuses the offset and reclen fields.
777 if (oldcall) {
778 idb.d_off = (linux_off_t)linux_reclen;
779 idb.d_reclen = (u_short)bdp->d_namlen;
780 } else {
781 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
782 compat_offseterr(vp, "linux_getdents");
783 error = EINVAL;
784 goto out;
786 idb.d_off = (linux_off_t)off;
787 idb.d_reclen = (u_short)linux_reclen;
789 strcpy(idb.d_name, bdp->d_name);
790 if ((error = copyout((void *)&idb, outp, linux_reclen)))
791 goto out;
792 /* advance past this real entry */
793 inp += reclen;
794 if (cookie)
795 off = *cookie++; /* each entry points to itself */
796 else
797 off += reclen;
798 /* advance output past Linux-shaped entry */
799 outp += linux_reclen;
800 resid -= linux_reclen;
801 if (oldcall)
802 break;
805 /* if we squished out the whole block, try again */
806 if (outp == (void *)SCARG(uap, dent))
807 goto again;
808 fp->f_offset = off; /* update the vnode offset */
810 if (oldcall)
811 nbytes = resid + linux_reclen;
813 eof:
814 *retval = nbytes - resid;
815 out:
816 VOP_UNLOCK(vp, 0);
817 if (cookiebuf)
818 free(cookiebuf, M_TEMP);
819 free(tbuf, M_TEMP);
820 out1:
821 fd_putfile(SCARG(uap, fd));
822 return error;
826 * Even when just using registers to pass arguments to syscalls you can
827 * have 5 of them on the i386. So this newer version of select() does
828 * this.
831 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
833 /* {
834 syscallarg(int) nfds;
835 syscallarg(fd_set *) readfds;
836 syscallarg(fd_set *) writefds;
837 syscallarg(fd_set *) exceptfds;
838 syscallarg(struct timeval50 *) timeout;
839 } */
841 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
842 SCARG(uap, writefds), SCARG(uap, exceptfds),
843 (struct linux_timeval *)SCARG(uap, timeout));
847 * Common code for the old and new versions of select(). A couple of
848 * things are important:
849 * 1) return the amount of time left in the 'timeout' parameter
850 * 2) select never returns ERESTART on Linux, always return EINTR
853 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
854 fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
856 struct timespec ts0, ts1, uts, *ts = NULL;
857 struct linux_timeval ltv;
858 int error;
861 * Store current time for computation of the amount of
862 * time left.
864 if (timeout) {
865 if ((error = copyin(timeout, &ltv, sizeof(ltv))))
866 return error;
867 uts.tv_sec = ltv.tv_sec;
868 uts.tv_nsec = ltv.tv_usec * 1000;
869 if (itimespecfix(&uts)) {
871 * The timeval was invalid. Convert it to something
872 * valid that will act as it does under Linux.
874 uts.tv_sec += uts.tv_nsec / 1000000000;
875 uts.tv_nsec %= 1000000000;
876 if (uts.tv_nsec < 0) {
877 uts.tv_sec -= 1;
878 uts.tv_nsec += 1000000000;
880 if (uts.tv_sec < 0)
881 timespecclear(&uts);
883 ts = &uts;
884 nanotime(&ts0);
887 error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
889 if (error) {
891 * See fs/select.c in the Linux kernel. Without this,
892 * Maelstrom doesn't work.
894 if (error == ERESTART)
895 error = EINTR;
896 return error;
899 if (timeout) {
900 if (*retval) {
902 * Compute how much time was left of the timeout,
903 * by subtracting the current time and the time
904 * before we started the call, and subtracting
905 * that result from the user-supplied value.
907 nanotime(&ts1);
908 timespecsub(&ts1, &ts0, &ts1);
909 timespecsub(&uts, &ts1, &uts);
910 if (uts.tv_sec < 0)
911 timespecclear(&uts);
912 } else
913 timespecclear(&uts);
914 ltv.tv_sec = uts.tv_sec;
915 ltv.tv_usec = uts.tv_nsec / 1000;
916 if ((error = copyout(&ltv, timeout, sizeof(ltv))))
917 return error;
920 return 0;
924 * Set the 'personality' (emulation mode) for the current process. Only
925 * accept the Linux personality here (0). This call is needed because
926 * the Linux ELF crt0 issues it in an ugly kludge to make sure that
927 * ELF binaries run in Linux mode, not SVR4 mode.
930 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
932 /* {
933 syscallarg(unsigned long) per;
934 } */
936 switch (SCARG(uap, per)) {
937 case LINUX_PER_LINUX:
938 case LINUX_PER_QUERY:
939 break;
940 default:
941 return EINVAL;
944 retval[0] = LINUX_PER_LINUX;
945 return 0;
949 * We have nonexistent fsuid equal to uid.
950 * If modification is requested, refuse.
953 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
955 /* {
956 syscallarg(uid_t) uid;
957 } */
958 uid_t uid;
960 uid = SCARG(uap, uid);
961 if (kauth_cred_getuid(l->l_cred) != uid)
962 return sys_nosys(l, uap, retval);
964 *retval = uid;
965 return 0;
969 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
971 /* {
972 syscallarg(gid_t) gid;
973 } */
974 gid_t gid;
976 gid = SCARG(uap, gid);
977 if (kauth_cred_getgid(l->l_cred) != gid)
978 return sys_nosys(l, uap, retval);
980 *retval = gid;
981 return 0;
985 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
987 /* {
988 syscallarg(uid_t) ruid;
989 syscallarg(uid_t) euid;
990 syscallarg(uid_t) suid;
991 } */
994 * Note: These checks are a little different than the NetBSD
995 * setreuid(2) call performs. This precisely follows the
996 * behavior of the Linux kernel.
999 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1000 SCARG(uap, suid),
1001 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1002 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1003 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1007 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1009 /* {
1010 syscallarg(uid_t *) ruid;
1011 syscallarg(uid_t *) euid;
1012 syscallarg(uid_t *) suid;
1013 } */
1014 kauth_cred_t pc = l->l_cred;
1015 int error;
1016 uid_t uid;
1019 * Linux copies these values out to userspace like so:
1021 * 1. Copy out ruid.
1022 * 2. If that succeeds, copy out euid.
1023 * 3. If both of those succeed, copy out suid.
1025 uid = kauth_cred_getuid(pc);
1026 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1027 return (error);
1029 uid = kauth_cred_geteuid(pc);
1030 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1031 return (error);
1033 uid = kauth_cred_getsvuid(pc);
1035 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1039 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1041 /* {
1042 i386, m68k, powerpc: T=int
1043 alpha, amd64: T=long
1044 syscallarg(T) request;
1045 syscallarg(T) pid;
1046 syscallarg(T) addr;
1047 syscallarg(T) data;
1048 } */
1049 const int *ptr;
1050 int request;
1051 int error;
1053 ptr = linux_ptrace_request_map;
1054 request = SCARG(uap, request);
1055 while (*ptr != -1)
1056 if (*ptr++ == request) {
1057 struct sys_ptrace_args pta;
1059 SCARG(&pta, req) = *ptr;
1060 SCARG(&pta, pid) = SCARG(uap, pid);
1061 SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1062 SCARG(&pta, data) = SCARG(uap, data);
1065 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1066 * to continue where the process left off previously.
1067 * The same thing is achieved by addr == (void *) 1
1068 * on NetBSD, so rewrite 'addr' appropriately.
1070 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1071 SCARG(&pta, addr) = (void *) 1;
1073 error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1074 if (error)
1075 return error;
1076 switch (request) {
1077 case LINUX_PTRACE_PEEKTEXT:
1078 case LINUX_PTRACE_PEEKDATA:
1079 error = copyout (retval,
1080 (void *)SCARG(uap, data),
1081 sizeof *retval);
1082 *retval = SCARG(uap, data);
1083 break;
1084 default:
1085 break;
1087 return error;
1089 else
1090 ptr++;
1092 return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1096 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1098 /* {
1099 syscallarg(int) magic1;
1100 syscallarg(int) magic2;
1101 syscallarg(int) cmd;
1102 syscallarg(void *) arg;
1103 } */
1104 struct sys_reboot_args /* {
1105 syscallarg(int) opt;
1106 syscallarg(char *) bootstr;
1107 } */ sra;
1108 int error;
1110 if ((error = kauth_authorize_system(l->l_cred,
1111 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1112 return(error);
1114 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1115 return(EINVAL);
1116 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1117 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1118 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1119 return(EINVAL);
1121 switch ((unsigned long)SCARG(uap, cmd)) {
1122 case LINUX_REBOOT_CMD_RESTART:
1123 SCARG(&sra, opt) = RB_AUTOBOOT;
1124 break;
1125 case LINUX_REBOOT_CMD_HALT:
1126 SCARG(&sra, opt) = RB_HALT;
1127 break;
1128 case LINUX_REBOOT_CMD_POWER_OFF:
1129 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1130 break;
1131 case LINUX_REBOOT_CMD_RESTART2:
1132 /* Reboot with an argument. */
1133 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1134 SCARG(&sra, bootstr) = SCARG(uap, arg);
1135 break;
1136 case LINUX_REBOOT_CMD_CAD_ON:
1137 return(EINVAL); /* We don't implement ctrl-alt-delete */
1138 case LINUX_REBOOT_CMD_CAD_OFF:
1139 return(0);
1140 default:
1141 return(EINVAL);
1144 return(sys_reboot(l, &sra, retval));
1148 * Copy of compat_12_sys_swapon().
1151 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1153 /* {
1154 syscallarg(const char *) name;
1155 } */
1156 struct sys_swapctl_args ua;
1158 SCARG(&ua, cmd) = SWAP_ON;
1159 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1160 SCARG(&ua, misc) = 0; /* priority */
1161 return (sys_swapctl(l, &ua, retval));
1165 * Stop swapping to the file or block device specified by path.
1168 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1170 /* {
1171 syscallarg(const char *) path;
1172 } */
1173 struct sys_swapctl_args ua;
1175 SCARG(&ua, cmd) = SWAP_OFF;
1176 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1177 return (sys_swapctl(l, &ua, retval));
1181 * Copy of compat_09_sys_setdomainname()
1183 /* ARGSUSED */
1185 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1187 /* {
1188 syscallarg(char *) domainname;
1189 syscallarg(int) len;
1190 } */
1191 int name[2];
1193 name[0] = CTL_KERN;
1194 name[1] = KERN_DOMAINNAME;
1195 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1196 SCARG(uap, len), l));
1200 * sysinfo()
1202 /* ARGSUSED */
1204 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1206 /* {
1207 syscallarg(struct linux_sysinfo *) arg;
1208 } */
1209 struct linux_sysinfo si;
1210 struct loadavg *la;
1212 si.uptime = time_uptime;
1213 la = &averunnable;
1214 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1215 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1216 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1217 si.totalram = ctob((u_long)physmem);
1218 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
1219 si.sharedram = 0; /* XXX */
1220 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
1221 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1222 si.freeswap =
1223 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1224 si.procs = nprocs;
1226 /* The following are only present in newer Linux kernels. */
1227 si.totalbig = 0;
1228 si.freebig = 0;
1229 si.mem_unit = 1;
1231 return (copyout(&si, SCARG(uap, arg), sizeof si));
1235 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1237 /* {
1238 syscallarg(int) which;
1239 # ifdef LINUX_LARGEFILE64
1240 syscallarg(struct rlimit *) rlp;
1241 # else
1242 syscallarg(struct orlimit *) rlp;
1243 # endif
1244 } */
1245 # ifdef LINUX_LARGEFILE64
1246 struct rlimit orl;
1247 # else
1248 struct orlimit orl;
1249 # endif
1250 int which;
1252 which = linux_to_bsd_limit(SCARG(uap, which));
1253 if (which < 0)
1254 return -which;
1256 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1258 return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1262 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1264 /* {
1265 syscallarg(int) which;
1266 # ifdef LINUX_LARGEFILE64
1267 syscallarg(struct rlimit *) rlp;
1268 # else
1269 syscallarg(struct orlimit *) rlp;
1270 # endif
1271 } */
1272 struct rlimit rl;
1273 # ifdef LINUX_LARGEFILE64
1274 struct rlimit orl;
1275 # else
1276 struct orlimit orl;
1277 # endif
1278 int error;
1279 int which;
1281 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1282 return error;
1284 which = linux_to_bsd_limit(SCARG(uap, which));
1285 if (which < 0)
1286 return -which;
1288 linux_to_bsd_rlimit(&rl, &orl);
1289 return dosetrlimit(l, l->l_proc, which, &rl);
1292 # if !defined(__mips__) && !defined(__amd64__)
1293 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1295 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1297 return linux_sys_getrlimit(l, (const void *)uap, retval);
1299 # endif
1302 * This gets called for unsupported syscalls. The difference to sys_nosys()
1303 * is that process does not get SIGSYS, the call just returns with ENOSYS.
1304 * This is the way Linux does it and glibc depends on this behaviour.
1307 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1309 return (ENOSYS);
1313 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1315 /* {
1316 syscallarg(int) which;
1317 syscallarg(int) who;
1318 } */
1319 struct sys_getpriority_args bsa;
1320 int error;
1322 SCARG(&bsa, which) = SCARG(uap, which);
1323 SCARG(&bsa, who) = SCARG(uap, who);
1325 if ((error = sys_getpriority(l, &bsa, retval)))
1326 return error;
1328 *retval = NZERO - *retval;
1330 return 0;
1333 #endif /* !COMPAT_LINUX32 */