Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5210 / ar5210_reset.c
blob5af54aa4828f178837e76e56bbd913868095d237
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5210_reset.c,v 1.4 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
28 #include "ah_eeprom_v1.h"
30 typedef struct {
31 uint32_t Offset;
32 uint32_t Value;
33 } REGISTER_VAL;
35 static const REGISTER_VAL ar5k0007_init[] = {
36 #include "ar5210/ar5k_0007.ini"
39 /* Default Power Settings for channels outside of EEPROM range */
40 static const uint8_t ar5k0007_pwrSettings[17] = {
41 /* gain delta pc dac */
42 /* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */
43 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2
47 * The delay, in usecs, between writing AR_RC with a reset
48 * request and waiting for the chip to settle. If this is
49 * too short then the chip does not come out of sleep state.
50 * Note this value was empirically derived and may be dependent
51 * on the host machine (don't know--the problem was identified
52 * on an IBM 570e laptop; 10us delays worked on other systems).
54 #define AR_RC_SETTLE_TIME 20000
56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 uint32_t resetMask, u_int waitTime);
58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
62 * Places the device in and out of reset and then places sane
63 * values in the registers based on EEPROM config, initialization
64 * vectors (as determined by the mode), and station configuration
66 * bChannelChange is used to preserve DMA/PCU registers across
67 * a HW Reset during channel change.
69 HAL_BOOL
70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
73 #define N(a) (sizeof (a) /sizeof (a[0]))
74 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
75 struct ath_hal_5210 *ahp = AH5210(ah);
76 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
77 HAL_CHANNEL_INTERNAL *ichan;
78 HAL_STATUS ecode;
79 uint32_t ledstate;
80 int i, q;
82 HALDEBUG(ah, HAL_DEBUG_RESET,
83 "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
84 opmode, chan->channel, chan->channelFlags,
85 bChannelChange ? "change" : "same");
87 if ((chan->channelFlags & CHANNEL_5GHZ) == 0) {
88 /* Only 11a mode */
89 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5Ghz\n", __func__);
90 FAIL(HAL_EINVAL);
93 * Map public channel to private.
95 ichan = ath_hal_checkchannel(ah, chan);
96 if (ichan == AH_NULL) {
97 HALDEBUG(ah, HAL_DEBUG_ANY,
98 "%s: invalid channel %u/0x%x; no mapping\n",
99 __func__, chan->channel, chan->channelFlags);
100 FAIL(HAL_EINVAL);
102 switch (opmode) {
103 case HAL_M_STA:
104 case HAL_M_IBSS:
105 case HAL_M_HOSTAP:
106 case HAL_M_MONITOR:
107 break;
108 default:
109 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
110 __func__, opmode);
111 FAIL(HAL_EINVAL);
112 break;
115 ledstate = OS_REG_READ(ah, AR_PCICFG) &
116 (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
118 if (!ar5210ChipReset(ah, chan)) {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
120 __func__);
121 FAIL(HAL_EIO);
124 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
125 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
126 ar5210SetOperatingMode(ah, opmode);
128 switch (opmode) {
129 case HAL_M_HOSTAP:
130 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
131 OS_REG_WRITE(ah, AR_PCICFG,
132 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
133 break;
134 case HAL_M_IBSS:
135 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
136 OS_REG_WRITE(ah, AR_PCICFG,
137 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
138 break;
139 case HAL_M_STA:
140 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
141 OS_REG_WRITE(ah, AR_PCICFG,
142 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
143 break;
144 case HAL_M_MONITOR:
145 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
146 OS_REG_WRITE(ah, AR_PCICFG,
147 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
148 break;
151 /* Restore previous led state */
152 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
154 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
155 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
157 OS_REG_WRITE(ah, AR_TXDP0, 0);
158 OS_REG_WRITE(ah, AR_TXDP1, 0);
159 OS_REG_WRITE(ah, AR_RXDP, 0);
162 * Initialize interrupt state.
164 (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */
165 OS_REG_WRITE(ah, AR_IMR, 0);
166 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
167 ahp->ah_maskReg = 0;
169 (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */
170 OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
171 OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
173 OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */
174 OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */
175 OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */
176 OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */
178 OS_REG_WRITE(ah, AR_SFR, 0);
179 OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */
180 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
181 OS_REG_WRITE(ah, AR_CFP_DUR, 0);
183 ar5210SetRxFilter(ah, 0); /* nothing for now */
184 OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */
185 OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */
187 OS_REG_WRITE(ah, AR_TX_MASK0, 0);
188 OS_REG_WRITE(ah, AR_TX_MASK1, 0);
189 OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
190 OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */
192 OS_REG_WRITE(ah, AR_DIAG_SW, 0);
194 OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
195 OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */
196 OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */
197 OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */
198 OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */
199 OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */
201 /* Write the INI values for PHYreg initialization */
202 for (i = 0; i < N(ar5k0007_init); i++) {
203 uint32_t reg = ar5k0007_init[i].Offset;
204 /* On channel change, don't reset the PCU registers */
205 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
206 OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
209 /* Setup the transmit power values for cards since 0x0[0-2]05 */
210 if (!ar5210SetTransmitPower(ah, chan)) {
211 HALDEBUG(ah, HAL_DEBUG_ANY,
212 "%s: error init'ing transmit power\n", __func__);
213 FAIL(HAL_EIO);
216 OS_REG_WRITE(ah, AR_PHY(10),
217 (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
218 (ee->ee_xlnaOn << 8));
219 OS_REG_WRITE(ah, AR_PHY(13),
220 (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
221 (ee->ee_xpaOn << 8) | ee->ee_xpaOn);
222 OS_REG_WRITE(ah, AR_PHY(17),
223 (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
224 ((ee->ee_antenna >> 1) & 0x3F80));
225 OS_REG_WRITE(ah, AR_PHY(18),
226 (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
227 ((ee->ee_antenna << 10) & 0x3F000));
228 OS_REG_WRITE(ah, AR_PHY(25),
229 (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
230 ((ee->ee_thresh62 << 12) & 0x7F000));
231 OS_REG_WRITE(ah, AR_PHY(68),
232 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
233 (ee->ee_antenna & 0x3));
235 if (!ar5210SetChannel(ah, ichan)) {
236 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
237 __func__);
238 FAIL(HAL_EIO);
240 if (bChannelChange) {
241 if (!(ichan->privFlags & CHANNEL_DFS))
242 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
243 chan->channelFlags = ichan->channelFlags;
244 chan->privFlags = ichan->privFlags;
247 /* Activate the PHY */
248 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
250 OS_DELAY(1000); /* Wait a bit (1 msec) */
252 /* calibrate the HW and poll the bit going to 0 for completion */
253 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
254 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
255 (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
257 /* Perform noise floor calibration and set status */
258 if (!ar5210CalNoiseFloor(ah, ichan)) {
259 chan->channelFlags |= CHANNEL_CW_INT;
260 HALDEBUG(ah, HAL_DEBUG_ANY,
261 "%s: noise floor calibration failed\n", __func__);
262 FAIL(HAL_EIO);
265 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
266 ar5210ResetTxQueue(ah, q);
268 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
269 ar5210EnableRfKill(ah);
272 * Writing to AR_BEACON will start timers. Hence it should be
273 * the last register to be written. Do not reset tsf, do not
274 * enable beacons at this point, but preserve other values
275 * like beaconInterval.
277 OS_REG_WRITE(ah, AR_BEACON,
278 (OS_REG_READ(ah, AR_BEACON) &
279 ~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
281 /* Restore user-specified slot time and timeouts */
282 if (ahp->ah_sifstime != (u_int) -1)
283 ar5210SetSifsTime(ah, ahp->ah_sifstime);
284 if (ahp->ah_slottime != (u_int) -1)
285 ar5210SetSlotTime(ah, ahp->ah_slottime);
286 if (ahp->ah_acktimeout != (u_int) -1)
287 ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
288 if (ahp->ah_ctstimeout != (u_int) -1)
289 ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
290 if (AH_PRIVATE(ah)->ah_diagreg != 0)
291 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
293 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
295 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
297 return AH_TRUE;
298 bad:
299 if (*status)
300 *status = ecode;
301 return AH_FALSE;
302 #undef FAIL
303 #undef N
306 static void
307 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
309 struct ath_hal_5210 *ahp = AH5210(ah);
310 uint32_t val;
312 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
313 switch (opmode) {
314 case HAL_M_HOSTAP:
315 OS_REG_WRITE(ah, AR_STA_ID1, val
316 | AR_STA_ID1_AP
317 | AR_STA_ID1_NO_PSPOLL
318 | AR_STA_ID1_DESC_ANTENNA
319 | ahp->ah_staId1Defaults);
320 break;
321 case HAL_M_IBSS:
322 OS_REG_WRITE(ah, AR_STA_ID1, val
323 | AR_STA_ID1_ADHOC
324 | AR_STA_ID1_NO_PSPOLL
325 | AR_STA_ID1_DESC_ANTENNA
326 | ahp->ah_staId1Defaults);
327 break;
328 case HAL_M_STA:
329 OS_REG_WRITE(ah, AR_STA_ID1, val
330 | AR_STA_ID1_NO_PSPOLL
331 | AR_STA_ID1_PWR_SV
332 | ahp->ah_staId1Defaults);
333 break;
334 case HAL_M_MONITOR:
335 OS_REG_WRITE(ah, AR_STA_ID1, val
336 | AR_STA_ID1_NO_PSPOLL
337 | ahp->ah_staId1Defaults);
338 break;
342 void
343 ar5210SetPCUConfig(struct ath_hal *ah)
345 ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
349 * Places the PHY and Radio chips into reset. A full reset
350 * must be called to leave this state. The PCI/MAC/PCU are
351 * not placed into reset as we must receive interrupt to
352 * re-enable the hardware.
354 HAL_BOOL
355 ar5210PhyDisable(struct ath_hal *ah)
357 return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
361 * Places all of hardware into reset
363 HAL_BOOL
364 ar5210Disable(struct ath_hal *ah)
366 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
367 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
368 return AH_FALSE;
371 * Reset the HW - PCI must be reset after the rest of the
372 * device has been reset
374 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
375 return AH_FALSE;
376 OS_DELAY(1000);
377 (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
378 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
380 return AH_TRUE;
381 #undef AR_RC_HW
385 * Places the hardware into reset and then pulls it out of reset
387 HAL_BOOL
388 ar5210ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
390 #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
392 HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
393 chan && IS_CHAN_TURBO(chan) ? "enabled" : "disabled");
395 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
396 return AH_FALSE;
398 /* Place chip in turbo before reset to cleanly reset clocks */
399 OS_REG_WRITE(ah, AR_PHY_FRCTL,
400 chan && IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
403 * Reset the HW.
404 * PCI must be reset after the rest of the device has been reset.
406 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
407 return AH_FALSE;
408 OS_DELAY(1000);
409 if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
410 return AH_FALSE;
411 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
414 * Bring out of sleep mode (AGAIN)
416 * WARNING WARNING WARNING
418 * There is a problem with the chip where it doesn't always indicate
419 * that it's awake, so initializePowerUp() will fail.
421 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
422 return AH_FALSE;
424 /* Clear warm reset reg */
425 return ar5210SetResetReg(ah, 0, 10);
426 #undef AR_RC_HW
429 enum {
430 FIRPWR_M = 0x03fc0000,
431 FIRPWR_S = 18,
432 KCOARSEHIGH_M = 0x003f8000,
433 KCOARSEHIGH_S = 15,
434 KCOARSELOW_M = 0x00007f80,
435 KCOARSELOW_S = 7,
436 ADCSAT_ICOUNT_M = 0x0001f800,
437 ADCSAT_ICOUNT_S = 11,
438 ADCSAT_THRESH_M = 0x000007e0,
439 ADCSAT_THRESH_S = 5
443 * Recalibrate the lower PHY chips to account for temperature/environment
444 * changes.
446 HAL_BOOL
447 ar5210PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
448 HAL_BOOL longCal, HAL_BOOL *isCalDone)
450 uint32_t regBeacon;
451 uint32_t reg9858, reg985c, reg9868;
452 HAL_CHANNEL_INTERNAL *ichan;
454 ichan = ath_hal_checkchannel(ah, chan);
455 if (ichan == AH_NULL) {
456 HALDEBUG(ah, HAL_DEBUG_ANY,
457 "%s: invalid channel %u/0x%x; no mapping\n",
458 __func__, chan->channel, chan->channelFlags);
459 return AH_FALSE;
461 /* Disable tx and rx */
462 OS_REG_WRITE(ah, AR_DIAG_SW,
463 OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
465 /* Disable Beacon Enable */
466 regBeacon = OS_REG_READ(ah, AR_BEACON);
467 OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
469 /* Delay 4ms to ensure that all tx and rx activity has ceased */
470 OS_DELAY(4000);
472 /* Disable AGC to radio traffic */
473 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
474 /* Wait for the AGC traffic to cease. */
475 OS_DELAY(10);
477 /* Change Channel to relock synth */
478 if (!ar5210SetChannel(ah, ichan))
479 return AH_FALSE;
481 /* wait for the synthesizer lock to stabilize */
482 OS_DELAY(1000);
484 /* Re-enable AGC to radio traffic */
485 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
488 * Configure the AGC so that it is highly unlikely (if not
489 * impossible) for it to send any gain changes to the analog
490 * chip. We store off the current values so that they can
491 * be rewritten below. Setting the following values:
492 * firpwr = -1
493 * Kcoursehigh = -1
494 * Kcourselow = -127
495 * ADCsat_icount = 2
496 * ADCsat_thresh = 12
498 reg9858 = OS_REG_READ(ah, 0x9858);
499 reg985c = OS_REG_READ(ah, 0x985c);
500 reg9868 = OS_REG_READ(ah, 0x9868);
502 OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
503 ((-1 << FIRPWR_S) & FIRPWR_M));
504 OS_REG_WRITE(ah, 0x985c,
505 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
506 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
507 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
508 OS_REG_WRITE(ah, 0x9868,
509 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
510 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
511 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
513 /* Wait for AGC changes to be enacted */
514 OS_DELAY(20);
517 * We disable RF mix/gain stages for the PGA to avoid a
518 * race condition that will occur with receiving a frame
519 * and performing the AGC calibration. This will be
520 * re-enabled at the end of offset cal. We turn off AGC
521 * writes during this write as it will go over the analog bus.
523 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
524 OS_DELAY(10); /* wait for the AGC traffic to cease */
525 OS_REG_WRITE(ah, 0x98D4, 0x21);
526 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
528 /* wait to make sure that additional AGC traffic has quiesced */
529 OS_DELAY(1000);
531 /* AGC calibration (this was added to make the NF threshold check work) */
532 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
533 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
534 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
535 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
536 __func__);
539 /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
540 OS_REG_WRITE(ah, 0x9858, reg9858);
541 OS_REG_WRITE(ah, 0x985c, reg985c);
542 OS_REG_WRITE(ah, 0x9868, reg9868);
544 /* Perform noise floor and set status */
545 if (!ar5210CalNoiseFloor(ah, ichan)) {
547 * Delay 5ms before retrying the noise floor -
548 * just to make sure. We're in an error
549 * condition here
551 HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
552 "%s: Performing 2nd Noise Cal\n", __func__);
553 OS_DELAY(5000);
554 if (!ar5210CalNoiseFloor(ah, ichan))
555 chan->channelFlags |= CHANNEL_CW_INT;
558 /* Clear tx and rx disable bit */
559 OS_REG_WRITE(ah, AR_DIAG_SW,
560 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
562 /* Re-enable Beacons */
563 OS_REG_WRITE(ah, AR_BEACON, regBeacon);
565 *isCalDone = AH_TRUE;
567 return AH_TRUE;
570 HAL_BOOL
571 ar5210PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
573 return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
576 HAL_BOOL
577 ar5210ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
579 return AH_TRUE;
583 * Writes the given reset bit mask into the reset register
585 static HAL_BOOL
586 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int waitTime)
588 uint32_t mask = resetMask ? resetMask : ~0;
589 HAL_BOOL rt;
591 OS_REG_WRITE(ah, AR_RC, resetMask);
592 /* need to wait at least 128 clocks when reseting PCI before read */
593 OS_DELAY(waitTime);
595 resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
596 mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
597 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
598 if ((resetMask & AR_RC_RMAC) == 0) {
599 if (isBigEndian()) {
601 * Set CFG, little-endian for register
602 * and descriptor accesses.
604 mask = INIT_CONFIG_STATUS |
605 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
606 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
607 } else
608 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
610 return rt;
615 * Returns: the pcdac value
617 static uint8_t
618 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
620 int32_t i;
621 int useNextEntry = AH_FALSE;
622 uint32_t interp;
624 for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
625 /* Check for exact entry */
626 if (dBm == AR_I2DBM(i)) {
627 if (pRD->pcdac[i] != 63)
628 return pRD->pcdac[i];
629 useNextEntry = AH_TRUE;
630 } else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
631 /* Interpolate for between entry with a logish scale */
632 if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
633 interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
634 interp = (interp / 1000) + pRD->pcdac[i-1];
635 return interp;
637 useNextEntry = AH_TRUE;
638 } else if (useNextEntry == AH_TRUE) {
639 /* Grab the next lowest */
640 if (pRD->pcdac[i] != 63)
641 return pRD->pcdac[i];
645 /* Return the lowest Entry if we haven't returned */
646 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
647 if (pRD->pcdac[i] != 63)
648 return pRD->pcdac[i];
650 /* No value to return from table */
651 #ifdef AH_DEBUG
652 ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
653 #endif
654 return 1;
658 * Find or interpolates the gainF value from the table ptr.
660 static uint8_t
661 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
662 uint8_t pcdac, uint8_t *dBm)
664 uint32_t interp;
665 int low, high, i;
667 low = high = -1;
669 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
670 if(pRD->pcdac[i] == 63)
671 continue;
672 if (pcdac == pRD->pcdac[i]) {
673 *dBm = AR_I2DBM(i);
674 return pRD->gainF[i]; /* Exact Match */
676 if (pcdac > pRD->pcdac[i])
677 low = i;
678 if (pcdac < pRD->pcdac[i]) {
679 high = i;
680 if (low == -1) {
681 *dBm = AR_I2DBM(i);
682 /* PCDAC is lower than lowest setting */
683 return pRD->gainF[i];
685 break;
688 if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
689 /* No settings were found */
690 #ifdef AH_DEBUG
691 ath_hal_printf(ah,
692 "%s: no valid entries in the pcdac table: %d\n",
693 __func__, pcdac);
694 #endif
695 return 63;
697 if (i >= AR_TP_SCALING_ENTRIES) {
698 /* PCDAC setting was above the max setting in the table */
699 *dBm = AR_I2DBM(low);
700 return pRD->gainF[low];
702 /* Only exact if table has no missing entries */
703 *dBm = (low + high) + 3;
706 * Perform interpolation between low and high values to find gainF
707 * linearly scale the pcdac between low and high
709 interp = ((pcdac - pRD->pcdac[low]) * 1000) /
710 (pRD->pcdac[high] - pRD->pcdac[low]);
712 * Multiply the scale ratio by the gainF difference
713 * (plus a rnd up factor)
715 interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
717 /* Add ratioed gain_f to low gain_f value */
718 return interp + pRD->gainF[low];
721 HAL_BOOL
722 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
724 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
725 /* XXX flush to h/w */
726 return AH_TRUE;
730 * Get TXPower values and set them in the radio
732 static HAL_BOOL
733 setupPowerSettings(struct ath_hal *ah, HAL_CHANNEL *chan, uint8_t cp[17])
735 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
736 uint8_t gainFRD, gainF36, gainF48, gainF54;
737 uint8_t dBmRD = 0, dBm36 = 0, dBm48 = 0, dBm54 = 0, dontcare;
738 uint32_t rd, group;
739 const struct tpcMap *pRD;
741 /* Set OB/DB Values regardless of channel */
742 cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
743 cp[16] = ee->ee_biasCurrents & 0x7;
745 if (chan->channel < 5170 || chan->channel > 5320) {
746 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
747 __func__, chan->channel);
748 return AH_FALSE;
751 HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
752 ee->ee_version < AR_EEPROM_VER3);
754 /* Match regulatory domain */
755 for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
756 if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
757 break;
758 if (rd == AR_REG_DOMAINS_MAX) {
759 #ifdef AH_DEBUG
760 ath_hal_printf(ah,
761 "%s: no calibrated regulatory domain matches the "
762 "current regularly domain (0x%0x)\n", __func__,
763 AH_PRIVATE(ah)->ah_currentRD);
764 #endif
765 return AH_FALSE;
767 group = ((chan->channel - 5170) / 10);
769 if (group > 11) {
770 /* Pull 5.29 into the 5.27 group */
771 group--;
774 /* Integer divide will set group from 0 to 4 */
775 group = group / 3;
776 pRD = &ee->ee_tpc[group];
778 /* Set PC DAC Values */
779 cp[14] = pRD->regdmn[rd];
780 cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36);
781 cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48);
782 cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54);
784 /* Find Corresponding gainF values for RD, 36, 48, 54 */
785 gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
786 gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
787 gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
788 gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
790 /* Power Scale if requested */
791 if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
792 static const uint16_t tpcScaleReductionTable[5] =
793 { 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
794 uint16_t tpScale;
796 tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
797 if (dBmRD < tpScale+3)
798 dBmRD = 3; /* min */
799 else
800 dBmRD -= tpScale;
801 cp[14] = getPcdac(ah, pRD, dBmRD);
802 gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
803 dBm36 = AH_MIN(dBm36, dBmRD);
804 cp[9] = getPcdac(ah, pRD, dBm36);
805 gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
806 dBm48 = AH_MIN(dBm48, dBmRD);
807 cp[8] = getPcdac(ah, pRD, dBm48);
808 gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
809 dBm54 = AH_MIN(dBm54, dBmRD);
810 cp[7] = getPcdac(ah, pRD, dBm54);
811 gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
813 /* Record current dBm at rate 6 */
814 AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
816 cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
818 /* Set GainF Values */
819 cp[0] = gainFRD - gainF54;
820 cp[1] = gainFRD - gainF48;
821 cp[2] = gainFRD - gainF36;
822 /* 9, 12, 18, 24 have no gain_delta from 6 */
823 cp[3] = cp[4] = cp[5] = cp[6] = 0;
824 return AH_TRUE;
828 * Places the device in and out of reset and then places sane
829 * values in the registers based on EEPROM config, initialization
830 * vectors (as determined by the mode), and station configuration
832 HAL_BOOL
833 ar5210SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
835 #define N(a) (sizeof (a) / sizeof (a[0]))
836 static const uint32_t pwr_regs_start[17] = {
837 0x00000000, 0x00000000, 0x00000000,
838 0x00000000, 0x00000000, 0xf0000000,
839 0xcc000000, 0x00000000, 0x00000000,
840 0x00000000, 0x0a000000, 0x000000e2,
841 0x0a000020, 0x01000002, 0x01000018,
842 0x40000000, 0x00000418
844 uint16_t i;
845 uint8_t cp[sizeof(ar5k0007_pwrSettings)];
846 uint32_t pwr_regs[17];
848 OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
849 OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
851 /* Check the EEPROM tx power calibration settings */
852 if (!setupPowerSettings(ah, chan, cp)) {
853 #ifdef AH_DEBUG
854 ath_hal_printf(ah, "%s: unable to setup power settings\n",
855 __func__);
856 #endif
857 return AH_FALSE;
859 if (cp[15] < 1 || cp[15] > 5) {
860 #ifdef AH_DEBUG
861 ath_hal_printf(ah, "%s: OB out of range (%u)\n",
862 __func__, cp[15]);
863 #endif
864 return AH_FALSE;
866 if (cp[16] < 1 || cp[16] > 5) {
867 #ifdef AH_DEBUG
868 ath_hal_printf(ah, "%s: DB out of range (%u)\n",
869 __func__, cp[16]);
870 #endif
871 return AH_FALSE;
874 /* reverse bits of the transmit power array */
875 for (i = 0; i < 7; i++)
876 cp[i] = ath_hal_reverseBits(cp[i], 5);
877 for (i = 7; i < 15; i++)
878 cp[i] = ath_hal_reverseBits(cp[i], 6);
880 /* merge transmit power values into the register - quite gross */
881 pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
882 pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
883 ((cp[1] >> 3) & 0x03);
884 pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
885 pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
886 ((cp[4] >> 4) & 0x01);
887 pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
888 pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
889 ((cp[7] >> 5) & 0x01);
890 pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
891 pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
892 pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
893 pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
894 pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
895 pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
897 /* Set OB */
898 pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
899 pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
901 /* Set DB */
902 pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
904 /* Write the registers */
905 for (i = 0; i < N(pwr_regs)-1; i++)
906 OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
907 /* last write is a flush */
908 OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
910 return AH_TRUE;
911 #undef N
915 * Takes the MHz channel value and sets the Channel value
917 * ASSUMES: Writes enabled to analog bus before AGC is active
918 * or by disabling the AGC.
920 static HAL_BOOL
921 ar5210SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
923 uint32_t data;
925 /* Set the Channel */
926 data = ath_hal_reverseBits((chan->channel - 5120)/10, 5);
927 data = (data << 1) | 0x41;
928 OS_REG_WRITE(ah, AR_PHY(0x27), data);
929 OS_REG_WRITE(ah, AR_PHY(0x30), 0);
930 AH_PRIVATE(ah)->ah_curchan = chan;
931 return AH_TRUE;
934 int16_t
935 ar5210GetNoiseFloor(struct ath_hal *ah)
937 int16_t nf;
939 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
940 if (nf & 0x100)
941 nf = 0 - ((nf ^ 0x1ff) + 1);
942 return nf;
945 #define NORMAL_NF_THRESH (-72)
947 * Peform the noisefloor calibration and check for
948 * any constant channel interference
950 * Returns: TRUE for a successful noise floor calibration; else FALSE
952 HAL_BOOL
953 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
955 int32_t nf, nfLoops;
957 /* Calibrate the noise floor */
958 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
959 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
961 /* Do not read noise floor until it has done the first update */
962 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
963 #ifdef ATH_HAL_DEBUG
964 ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
965 OS_REG_READ(ah, AR_PHY_AGCCTL));
966 ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
967 OS_REG_READ(ah, AR_RC));
968 ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
969 OS_REG_READ(ah, AR_PHY_ACTIVE));
970 #endif /* ATH_HAL_DEBUG */
971 return AH_FALSE;
974 nf = 0;
975 /* Keep checking until the floor is below the threshold or the nf is done */
976 for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
977 OS_DELAY(1000); /* Sleep for 1 ms */
978 nf = ar5210GetNoiseFloor(ah);
981 if (nf > NORMAL_NF_THRESH) {
982 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
983 __func__, nf);
984 chan->rawNoiseFloor = 0;
985 return AH_FALSE;
987 chan->rawNoiseFloor = nf;
988 return AH_TRUE;
992 * Adjust NF based on statistical values for 5GHz frequencies.
994 int16_t
995 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
997 return 0;
1000 HAL_RFGAIN
1001 ar5210GetRfgain(struct ath_hal *ah)
1003 return HAL_RFGAIN_INACTIVE;