2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar2425.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
22 #include "ah_internal.h"
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
28 #include "ah_eeprom_v3.h"
32 #include "ar5212/ar5212.ini"
34 #define N(a) (sizeof(a)/sizeof(a[0]))
37 RF_HAL_FUNCS base
; /* public state, must be first */
38 uint16_t pcdacTable
[PWR_TABLE_SIZE_2413
];
40 uint32_t Bank1Data
[N(ar5212Bank1_2425
)];
41 uint32_t Bank2Data
[N(ar5212Bank2_2425
)];
42 uint32_t Bank3Data
[N(ar5212Bank3_2425
)];
43 uint32_t Bank6Data
[N(ar5212Bank6_2425
)]; /* 2417 is same size */
44 uint32_t Bank7Data
[N(ar5212Bank7_2425
)];
46 #define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
48 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf
, uint32_t reg32
,
49 uint32_t numBits
, uint32_t firstBit
, uint32_t column
);
52 ar2425WriteRegs(struct ath_hal
*ah
, u_int modesIndex
, u_int freqIndex
,
55 HAL_INI_WRITE_ARRAY(ah
, ar5212Modes_2425
, modesIndex
, writes
);
56 HAL_INI_WRITE_ARRAY(ah
, ar5212Common_2425
, 1, writes
);
57 HAL_INI_WRITE_ARRAY(ah
, ar5212BB_RfGain_2425
, freqIndex
, writes
);
60 * for SWAN similar to Condor
61 * Bit 0 enables link to go to L1 when MAC goes to sleep.
62 * Bit 3 enables the loop back the link down to reset.
64 if (IS_PCIE(ah
) && ath_hal_pcieL1SKPEnable
) {
65 OS_REG_WRITE(ah
, AR_PCIE_PMC
,
66 AR_PCIE_PMC_ENA_L1
| AR_PCIE_PMC_ENA_RESET
);
69 * for Standby issue in Swan/Condor.
70 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71 * before last Training Sequence 2 (TS2)
72 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73 * Power Reset along with PCI Reset
75 OS_REG_SET_BIT(ah
, AR_PCIE_PMC
, MAC_WOW_PWR_STATE_MASK_D2
);
80 * Take the MHz channel value and set the Channel value
82 * ASSUMES: Writes enabled to analog bus
85 ar2425SetChannel(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
87 uint32_t channelSel
= 0;
88 uint32_t bModeSynth
= 0;
89 uint32_t aModeRefSel
= 0;
93 OS_MARK(ah
, AH_MARK_SETCHANNEL
, chan
->channel
);
95 if (chan
->channel
< 4800) {
98 channelSel
= chan
->channel
- 2272;
99 channelSel
= ath_hal_reverseBits(channelSel
, 8);
101 txctl
= OS_REG_READ(ah
, AR_PHY_CCK_TX_CTRL
);
102 if (chan
->channel
== 2484) {
103 // Enable channel spreading for channel 14
104 OS_REG_WRITE(ah
, AR_PHY_CCK_TX_CTRL
,
105 txctl
| AR_PHY_CCK_TX_CTRL_JAPAN
);
107 OS_REG_WRITE(ah
, AR_PHY_CCK_TX_CTRL
,
108 txctl
&~ AR_PHY_CCK_TX_CTRL_JAPAN
);
111 } else if (((chan
->channel
% 5) == 2) && (chan
->channel
<= 5435)) {
112 freq
= chan
->channel
- 2; /* Align to even 5MHz raster */
113 channelSel
= ath_hal_reverseBits(
114 (uint32_t)(((freq
- 4800)*10)/25 + 1), 8);
115 aModeRefSel
= ath_hal_reverseBits(0, 2);
116 } else if ((chan
->channel
% 20) == 0 && chan
->channel
>= 5120) {
117 channelSel
= ath_hal_reverseBits(
118 ((chan
->channel
- 4800) / 20 << 2), 8);
119 aModeRefSel
= ath_hal_reverseBits(1, 2);
120 } else if ((chan
->channel
% 10) == 0) {
121 channelSel
= ath_hal_reverseBits(
122 ((chan
->channel
- 4800) / 10 << 1), 8);
123 aModeRefSel
= ath_hal_reverseBits(1, 2);
124 } else if ((chan
->channel
% 5) == 0) {
125 channelSel
= ath_hal_reverseBits(
126 (chan
->channel
- 4800) / 5, 8);
127 aModeRefSel
= ath_hal_reverseBits(1, 2);
129 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel %u MHz\n",
130 __func__
, chan
->channel
);
134 reg32
= (channelSel
<< 4) | (aModeRefSel
<< 2) | (bModeSynth
<< 1) |
136 OS_REG_WRITE(ah
, AR_PHY(0x27), reg32
& 0xff);
139 OS_REG_WRITE(ah
, AR_PHY(0x36), reg32
& 0x7f);
141 AH_PRIVATE(ah
)->ah_curchan
= chan
;
146 * Reads EEPROM header info from device structure and programs
149 * REQUIRES: Access to the analog rf device
152 ar2425SetRfRegs(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
, uint16_t modesIndex
, uint16_t *rfXpdGain
)
154 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
156 for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
157 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
159 struct ath_hal_5212
*ahp
= AH5212(ah
);
160 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
161 struct ar2425State
*priv
= AR2425(ah
);
162 uint16_t ob2GHz
= 0, db2GHz
= 0;
165 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
166 "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
167 __func__
, chan
->channel
, chan
->channelFlags
, modesIndex
);
171 /* Setup rf parameters */
172 switch (chan
->channelFlags
& CHANNEL_ALL
) {
174 ob2GHz
= ee
->ee_obFor24
;
175 db2GHz
= ee
->ee_dbFor24
;
179 ob2GHz
= ee
->ee_obFor24g
;
180 db2GHz
= ee
->ee_dbFor24g
;
183 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
184 __func__
, chan
->channelFlags
);
189 RF_BANK_SETUP(priv
, 1, 1);
192 RF_BANK_SETUP(priv
, 2, modesIndex
);
195 RF_BANK_SETUP(priv
, 3, modesIndex
);
198 RF_BANK_SETUP(priv
, 6, modesIndex
);
200 ar5212ModifyRfBuffer(priv
->Bank6Data
, ob2GHz
, 3, 193, 0);
201 ar5212ModifyRfBuffer(priv
->Bank6Data
, db2GHz
, 3, 190, 0);
204 RF_BANK_SETUP(priv
, 7, modesIndex
);
206 /* Write Analog registers */
207 HAL_INI_WRITE_BANK(ah
, ar5212Bank1_2425
, priv
->Bank1Data
, regWrites
);
208 HAL_INI_WRITE_BANK(ah
, ar5212Bank2_2425
, priv
->Bank2Data
, regWrites
);
209 HAL_INI_WRITE_BANK(ah
, ar5212Bank3_2425
, priv
->Bank3Data
, regWrites
);
211 HALASSERT(N(ar5212Bank6_2425
) == N(ar5212Bank6_2417
));
212 HAL_INI_WRITE_BANK(ah
, ar5212Bank6_2417
, priv
->Bank6Data
,
215 HAL_INI_WRITE_BANK(ah
, ar5212Bank6_2425
, priv
->Bank6Data
,
217 HAL_INI_WRITE_BANK(ah
, ar5212Bank7_2425
, priv
->Bank7Data
, regWrites
);
219 /* Now that we have reprogrammed rfgain value, clear the flag. */
220 ahp
->ah_rfgainState
= HAL_RFGAIN_INACTIVE
;
222 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "<==%s\n", __func__
);
228 * Return a reference to the requested RF Bank.
231 ar2425GetRfBank(struct ath_hal
*ah
, int bank
)
233 struct ar2425State
*priv
= AR2425(ah
);
235 HALASSERT(priv
!= AH_NULL
);
237 case 1: return priv
->Bank1Data
;
238 case 2: return priv
->Bank2Data
;
239 case 3: return priv
->Bank3Data
;
240 case 6: return priv
->Bank6Data
;
241 case 7: return priv
->Bank7Data
;
243 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: unknown RF Bank %d requested\n",
249 * Return indices surrounding the value in sorted integer lists.
251 * NB: the input list is assumed to be sorted in ascending order
254 GetLowerUpperIndex(int16_t v
, const uint16_t *lp
, uint16_t listSize
,
255 uint32_t *vlo
, uint32_t *vhi
)
258 const uint16_t *ep
= lp
+listSize
;
262 * Check first and last elements for out-of-bounds conditions.
264 if (target
< lp
[0]) {
268 if (target
>= ep
[-1]) {
269 *vlo
= *vhi
= listSize
- 1;
273 /* look for value being near or between 2 values in list */
274 for (tp
= lp
; tp
< ep
; tp
++) {
276 * If value is close to the current value of the list
277 * then target is not between values, it is one of the values
280 *vlo
= *vhi
= tp
- (const uint16_t *) lp
;
284 * Look for value being between current value and next value
285 * if so return these 2 values
287 if (target
< tp
[1]) {
288 *vlo
= tp
- (const uint16_t *) lp
;
296 * Fill the Vpdlist for indices Pmax-Pmin
299 ar2425FillVpdTable(uint32_t pdGainIdx
, int16_t Pmin
, int16_t Pmax
,
300 const int16_t *pwrList
, const uint16_t *VpdList
,
301 uint16_t numIntercepts
,
302 uint16_t retVpdList
[][64])
305 int16_t currPwr
= (int16_t)(2*Pmin
);
306 /* since Pmin is pwr*2 and pwrList is 4*pwr */
307 uint32_t idxL
= 0, idxR
= 0;
312 if (numIntercepts
< 2)
315 while (ii
<= (uint16_t)(Pmax
- Pmin
)) {
316 GetLowerUpperIndex(currPwr
, (const uint16_t *) pwrList
,
317 numIntercepts
, &(idxL
), &(idxR
));
319 idxR
= 1; /* extrapolate below */
320 if (idxL
== (uint32_t)(numIntercepts
- 1))
321 idxL
= numIntercepts
- 2; /* extrapolate above */
322 if (pwrList
[idxL
] == pwrList
[idxR
])
326 (((currPwr
- pwrList
[idxL
])*VpdList
[idxR
]+
327 (pwrList
[idxR
] - currPwr
)*VpdList
[idxL
])/
328 (pwrList
[idxR
] - pwrList
[idxL
]));
329 retVpdList
[pdGainIdx
][ii
] = kk
;
331 currPwr
+= 2; /* half dB steps */
338 * Returns interpolated or the scaled up interpolated value
341 interpolate_signed(uint16_t target
, uint16_t srcLeft
, uint16_t srcRight
,
342 int16_t targetLeft
, int16_t targetRight
)
346 if (srcRight
!= srcLeft
) {
347 rv
= ((target
- srcLeft
)*targetRight
+
348 (srcRight
- target
)*targetLeft
) / (srcRight
- srcLeft
);
356 * Uses the data points read from EEPROM to reconstruct the pdadc power table
357 * Called by ar2425SetPowerTable()
360 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal
*ah
, uint16_t channel
,
361 const RAW_DATA_STRUCT_2413
*pRawDataset
,
362 uint16_t pdGainOverlap_t2
,
363 int16_t *pMinCalPower
, uint16_t pPdGainBoundaries
[],
364 uint16_t pPdGainValues
[], uint16_t pPDADCValues
[])
366 /* Note the items statically allocated below are to reduce stack usage */
368 int32_t ss
;/* potentially -ve index for taking care of pdGainOverlap */
369 uint32_t idxL
= 0, idxR
= 0;
370 uint32_t numPdGainsUsed
= 0;
371 static uint16_t VpdTable_L
[MAX_NUM_PDGAINS_PER_CHANNEL
][MAX_PWR_RANGE_IN_HALF_DB
];
372 /* filled out Vpd table for all pdGains (chanL) */
373 static uint16_t VpdTable_R
[MAX_NUM_PDGAINS_PER_CHANNEL
][MAX_PWR_RANGE_IN_HALF_DB
];
374 /* filled out Vpd table for all pdGains (chanR) */
375 static uint16_t VpdTable_I
[MAX_NUM_PDGAINS_PER_CHANNEL
][MAX_PWR_RANGE_IN_HALF_DB
];
376 /* filled out Vpd table for all pdGains (interpolated) */
378 * If desired to support -ve power levels in future, just
379 * change pwr_I_0 to signed 5-bits.
381 static int16_t Pmin_t2
[MAX_NUM_PDGAINS_PER_CHANNEL
];
382 /* to accomodate -ve power levels later on. */
383 static int16_t Pmax_t2
[MAX_NUM_PDGAINS_PER_CHANNEL
];
384 /* to accomodate -ve power levels later on */
388 uint32_t sizeCurrVpdTable
, maxIndex
, tgtIndex
;
390 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "==>%s:\n", __func__
);
392 /* Get upper lower index */
393 GetLowerUpperIndex(channel
, pRawDataset
->pChannels
,
394 pRawDataset
->numChannels
, &(idxL
), &(idxR
));
396 for (ii
= 0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
397 jj
= MAX_NUM_PDGAINS_PER_CHANNEL
- ii
- 1;
398 /* work backwards 'cause highest pdGain for lowest power */
399 numVpd
= pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].numVpd
;
401 pPdGainValues
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pd_gain
;
402 Pmin_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[0];
403 if (Pmin_t2
[numPdGainsUsed
] >pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0]) {
404 Pmin_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0];
406 Pmin_t2
[numPdGainsUsed
] = (int16_t)
407 (Pmin_t2
[numPdGainsUsed
] / 2);
408 Pmax_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1];
409 if (Pmax_t2
[numPdGainsUsed
] > pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1])
410 Pmax_t2
[numPdGainsUsed
] =
411 pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1];
412 Pmax_t2
[numPdGainsUsed
] = (int16_t)(Pmax_t2
[numPdGainsUsed
] / 2);
414 numPdGainsUsed
, Pmin_t2
[numPdGainsUsed
], Pmax_t2
[numPdGainsUsed
],
415 &(pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[0]),
416 &(pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].Vpd
[0]), numVpd
, VpdTable_L
419 numPdGainsUsed
, Pmin_t2
[numPdGainsUsed
], Pmax_t2
[numPdGainsUsed
],
420 &(pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0]),
421 &(pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].Vpd
[0]), numVpd
, VpdTable_R
423 for (kk
= 0; kk
< (uint16_t)(Pmax_t2
[numPdGainsUsed
] - Pmin_t2
[numPdGainsUsed
]); kk
++) {
424 VpdTable_I
[numPdGainsUsed
][kk
] =
426 channel
, pRawDataset
->pChannels
[idxL
], pRawDataset
->pChannels
[idxR
],
427 (int16_t)VpdTable_L
[numPdGainsUsed
][kk
], (int16_t)VpdTable_R
[numPdGainsUsed
][kk
]);
429 /* fill VpdTable_I for this pdGain */
432 /* if this pdGain is used */
435 *pMinCalPower
= Pmin_t2
[0];
436 kk
= 0; /* index for the final table */
437 for (ii
= 0; ii
< numPdGainsUsed
; ii
++) {
438 if (ii
== (numPdGainsUsed
- 1))
439 pPdGainBoundaries
[ii
] = Pmax_t2
[ii
] +
440 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB
;
442 pPdGainBoundaries
[ii
] = (uint16_t)
443 ((Pmax_t2
[ii
] + Pmin_t2
[ii
+1]) / 2 );
445 /* Find starting index for this pdGain */
447 ss
= 0; /* for the first pdGain, start from index 0 */
449 ss
= (pPdGainBoundaries
[ii
-1] - Pmin_t2
[ii
]) -
451 Vpd_step
= (uint16_t)(VpdTable_I
[ii
][1] - VpdTable_I
[ii
][0]);
452 Vpd_step
= (uint16_t)((Vpd_step
< 1) ? 1 : Vpd_step
);
454 *-ve ss indicates need to extrapolate data below for this pdGain
457 tmpVal
= (int16_t)(VpdTable_I
[ii
][0] + ss
*Vpd_step
);
458 pPDADCValues
[kk
++] = (uint16_t)((tmpVal
< 0) ? 0 : tmpVal
);
462 sizeCurrVpdTable
= Pmax_t2
[ii
] - Pmin_t2
[ii
];
463 tgtIndex
= pPdGainBoundaries
[ii
] + pdGainOverlap_t2
- Pmin_t2
[ii
];
464 maxIndex
= (tgtIndex
< sizeCurrVpdTable
) ? tgtIndex
: sizeCurrVpdTable
;
466 while (ss
< (int16_t)maxIndex
)
467 pPDADCValues
[kk
++] = VpdTable_I
[ii
][ss
++];
469 Vpd_step
= (uint16_t)(VpdTable_I
[ii
][sizeCurrVpdTable
-1] -
470 VpdTable_I
[ii
][sizeCurrVpdTable
-2]);
471 Vpd_step
= (uint16_t)((Vpd_step
< 1) ? 1 : Vpd_step
);
473 * for last gain, pdGainBoundary == Pmax_t2, so will
474 * have to extrapolate
476 if (tgtIndex
> maxIndex
) { /* need to extrapolate above */
477 while(ss
< (int16_t)tgtIndex
) {
479 (VpdTable_I
[ii
][sizeCurrVpdTable
-1] +
480 (ss
-maxIndex
)*Vpd_step
);
481 pPDADCValues
[kk
++] = (tmpVal
> 127) ?
485 } /* extrapolated above */
486 } /* for all pdGainUsed */
488 while (ii
< MAX_NUM_PDGAINS_PER_CHANNEL
) {
489 pPdGainBoundaries
[ii
] = pPdGainBoundaries
[ii
-1];
493 pPDADCValues
[kk
] = pPDADCValues
[kk
-1];
497 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "<==%s\n", __func__
);
501 /* Same as 2413 set power table */
503 ar2425SetPowerTable(struct ath_hal
*ah
,
504 int16_t *minPower
, int16_t *maxPower
, HAL_CHANNEL_INTERNAL
*chan
,
507 struct ath_hal_5212
*ahp
= AH5212(ah
);
508 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
509 const RAW_DATA_STRUCT_2413
*pRawDataset
= AH_NULL
;
510 uint16_t pdGainOverlap_t2
;
511 int16_t minCalPower2413_t2
;
512 uint16_t *pdadcValues
= ahp
->ah_pcdacTable
;
513 uint16_t gainBoundaries
[4];
514 uint32_t i
, reg32
, regoffset
;
516 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "%s:chan 0x%x flag 0x%x\n",
517 __func__
, chan
->channel
,chan
->channelFlags
);
519 if (IS_CHAN_G(chan
) || IS_CHAN_108G(chan
))
520 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11G
];
521 else if (IS_CHAN_B(chan
))
522 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11B
];
524 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s:illegal mode\n", __func__
);
528 pdGainOverlap_t2
= (uint16_t) SM(OS_REG_READ(ah
, AR_PHY_TPCRG5
),
529 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
);
531 ar2425getGainBoundariesAndPdadcsForPowers(ah
, chan
->channel
,
532 pRawDataset
, pdGainOverlap_t2
,&minCalPower2413_t2
,gainBoundaries
,
533 rfXpdGain
, pdadcValues
);
535 OS_REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
536 (pRawDataset
->pDataPerChannel
[0].numPdGains
- 1));
539 * Note the pdadc table may not start at 0 dBm power, could be
540 * negative or greater than 0. Need to offset the power
541 * values by the amount of minPower for griffin
543 if (minCalPower2413_t2
!= 0)
544 ahp
->ah_txPowerIndexOffset
= (int16_t)(0 - minCalPower2413_t2
);
546 ahp
->ah_txPowerIndexOffset
= 0;
548 /* Finally, write the power values into the baseband power table */
549 regoffset
= 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
550 for (i
= 0; i
< 32; i
++) {
551 reg32
= ((pdadcValues
[4*i
+ 0] & 0xFF) << 0) |
552 ((pdadcValues
[4*i
+ 1] & 0xFF) << 8) |
553 ((pdadcValues
[4*i
+ 2] & 0xFF) << 16) |
554 ((pdadcValues
[4*i
+ 3] & 0xFF) << 24) ;
555 OS_REG_WRITE(ah
, regoffset
, reg32
);
559 OS_REG_WRITE(ah
, AR_PHY_TPCRG5
,
560 SM(pdGainOverlap_t2
, AR_PHY_TPCRG5_PD_GAIN_OVERLAP
) |
561 SM(gainBoundaries
[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
) |
562 SM(gainBoundaries
[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
) |
563 SM(gainBoundaries
[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
) |
564 SM(gainBoundaries
[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
));
570 ar2425GetMinPower(struct ath_hal
*ah
, const RAW_DATA_PER_CHANNEL_2413
*data
)
573 uint16_t Pmin
=0,numVpd
;
575 for (ii
= 0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
576 jj
= MAX_NUM_PDGAINS_PER_CHANNEL
- ii
- 1;
577 /* work backwards 'cause highest pdGain for lowest power */
578 numVpd
= data
->pDataPerPDGain
[jj
].numVpd
;
580 Pmin
= data
->pDataPerPDGain
[jj
].pwr_t4
[0];
588 ar2425GetMaxPower(struct ath_hal
*ah
, const RAW_DATA_PER_CHANNEL_2413
*data
)
591 uint16_t Pmax
=0,numVpd
;
593 for (ii
=0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
594 /* work forwards cuase lowest pdGain for highest power */
595 numVpd
= data
->pDataPerPDGain
[ii
].numVpd
;
597 Pmax
= data
->pDataPerPDGain
[ii
].pwr_t4
[numVpd
-1];
606 ar2425GetChannelMaxMinPower(struct ath_hal
*ah
, HAL_CHANNEL
*chan
,
607 int16_t *maxPow
, int16_t *minPow
)
609 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
610 const RAW_DATA_STRUCT_2413
*pRawDataset
= AH_NULL
;
611 const RAW_DATA_PER_CHANNEL_2413
*data
= AH_NULL
;
612 uint16_t numChannels
;
613 int totalD
,totalF
, totalMin
,last
, i
;
617 if (IS_CHAN_G(chan
) || IS_CHAN_108G(chan
))
618 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11G
];
619 else if (IS_CHAN_B(chan
))
620 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11B
];
624 numChannels
= pRawDataset
->numChannels
;
625 data
= pRawDataset
->pDataPerChannel
;
627 /* Make sure the channel is in the range of the TP values
633 if ((chan
->channel
< data
[0].channelValue
) ||
634 (chan
->channel
> data
[numChannels
-1].channelValue
)) {
635 if (chan
->channel
< data
[0].channelValue
) {
636 *maxPow
= ar2425GetMaxPower(ah
, &data
[0]);
637 *minPow
= ar2425GetMinPower(ah
, &data
[0]);
640 *maxPow
= ar2425GetMaxPower(ah
, &data
[numChannels
- 1]);
641 *minPow
= ar2425GetMinPower(ah
, &data
[numChannels
- 1]);
646 /* Linearly interpolate the power value now */
647 for (last
=0,i
=0; (i
<numChannels
) && (chan
->channel
> data
[i
].channelValue
);
649 totalD
= data
[i
].channelValue
- data
[last
].channelValue
;
651 totalF
= ar2425GetMaxPower(ah
, &data
[i
]) - ar2425GetMaxPower(ah
, &data
[last
]);
652 *maxPow
= (int8_t) ((totalF
*(chan
->channel
-data
[last
].channelValue
) +
653 ar2425GetMaxPower(ah
, &data
[last
])*totalD
)/totalD
);
654 totalMin
= ar2425GetMinPower(ah
, &data
[i
]) - ar2425GetMinPower(ah
, &data
[last
]);
655 *minPow
= (int8_t) ((totalMin
*(chan
->channel
-data
[last
].channelValue
) +
656 ar2425GetMinPower(ah
, &data
[last
])*totalD
)/totalD
);
659 if (chan
->channel
== data
[i
].channelValue
) {
660 *maxPow
= ar2425GetMaxPower(ah
, &data
[i
]);
661 *minPow
= ar2425GetMinPower(ah
, &data
[i
]);
669 * Free memory for analog bank scratch buffers
672 ar2425RfDetach(struct ath_hal
*ah
)
674 struct ath_hal_5212
*ahp
= AH5212(ah
);
676 HALASSERT(ahp
->ah_rfHal
!= AH_NULL
);
677 ath_hal_free(ahp
->ah_rfHal
);
678 ahp
->ah_rfHal
= AH_NULL
;
682 * Allocate memory for analog bank scratch buffers
683 * Scratch Buffer will be reinitialized every reset so no need to zero now
686 ar2425RfAttach(struct ath_hal
*ah
, HAL_STATUS
*status
)
688 struct ath_hal_5212
*ahp
= AH5212(ah
);
689 struct ar2425State
*priv
;
691 HALASSERT(ah
->ah_magic
== AR5212_MAGIC
);
693 HALASSERT(ahp
->ah_rfHal
== AH_NULL
);
694 priv
= ath_hal_malloc(sizeof(struct ar2425State
));
695 if (priv
== AH_NULL
) {
696 HALDEBUG(ah
, HAL_DEBUG_ANY
,
697 "%s: cannot allocate private state\n", __func__
);
698 *status
= HAL_ENOMEM
; /* XXX */
701 priv
->base
.rfDetach
= ar2425RfDetach
;
702 priv
->base
.writeRegs
= ar2425WriteRegs
;
703 priv
->base
.getRfBank
= ar2425GetRfBank
;
704 priv
->base
.setChannel
= ar2425SetChannel
;
705 priv
->base
.setRfRegs
= ar2425SetRfRegs
;
706 priv
->base
.setPowerTable
= ar2425SetPowerTable
;
707 priv
->base
.getChannelMaxMinPower
= ar2425GetChannelMaxMinPower
;
708 priv
->base
.getNfAdjust
= ar5212GetNfAdjust
;
710 ahp
->ah_pcdacTable
= priv
->pcdacTable
;
711 ahp
->ah_pcdacTableSize
= sizeof(priv
->pcdacTable
);
712 ahp
->ah_rfHal
= &priv
->base
;
718 ar2425Probe(struct ath_hal
*ah
)
720 return IS_2425(ah
) || IS_2417(ah
);
722 AH_RF(RF2425
, ar2425Probe
, ar2425RfAttach
);