Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / netinet6 / frag6.c
blob995a0a441bbdf6bd5bdb08632a5762b66a04eaf0
1 /* $NetBSD: frag6.c,v 1.46 2008/05/21 17:08:07 drochner Exp $ */
2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.46 2008/05/21 17:08:07 drochner Exp $");
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/domain.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
49 #include <net/if.h>
50 #include <net/route.h>
52 #include <netinet/in.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/ip6_private.h>
57 #include <netinet/icmp6.h>
59 #include <net/net_osdep.h>
61 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
62 static void frag6_deq(struct ip6asfrag *);
63 static void frag6_insque(struct ip6q *, struct ip6q *);
64 static void frag6_remque(struct ip6q *);
65 static void frag6_freef(struct ip6q *);
67 static int ip6q_locked;
68 u_int frag6_nfragpackets;
69 u_int frag6_nfrags;
70 struct ip6q ip6q; /* ip6 reassemble queue */
72 static inline int ip6q_lock_try(void);
73 static inline void ip6q_unlock(void);
75 static inline int
76 ip6q_lock_try(void)
78 int s;
81 * Use splvm() -- we're bloking things that would cause
82 * mbuf allocation.
84 s = splvm();
85 if (ip6q_locked) {
86 splx(s);
87 return (0);
89 ip6q_locked = 1;
90 splx(s);
91 return (1);
94 static inline void
95 ip6q_unlock(void)
97 int s;
99 s = splvm();
100 ip6q_locked = 0;
101 splx(s);
104 #ifdef DIAGNOSTIC
105 #define IP6Q_LOCK() \
106 do { \
107 if (ip6q_lock_try() == 0) { \
108 printf("%s:%d: ip6q already locked\n", __FILE__, __LINE__); \
109 panic("ip6q_lock"); \
111 } while (/*CONSTCOND*/ 0)
112 #define IP6Q_LOCK_CHECK() \
113 do { \
114 if (ip6q_locked == 0) { \
115 printf("%s:%d: ip6q lock not held\n", __FILE__, __LINE__); \
116 panic("ip6q lock check"); \
118 } while (/*CONSTCOND*/ 0)
119 #else
120 #define IP6Q_LOCK() (void) ip6q_lock_try()
121 #define IP6Q_LOCK_CHECK() /* nothing */
122 #endif
124 #define IP6Q_UNLOCK() ip6q_unlock()
126 #ifndef offsetof /* XXX */
127 #define offsetof(type, member) ((size_t)(&((type *)0)->member))
128 #endif
131 * Initialise reassembly queue and fragment identifier.
133 void
134 frag6_init(void)
137 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
141 * In RFC2460, fragment and reassembly rule do not agree with each other,
142 * in terms of next header field handling in fragment header.
143 * While the sender will use the same value for all of the fragmented packets,
144 * receiver is suggested not to check the consistency.
146 * fragment rule (p20):
147 * (2) A Fragment header containing:
148 * The Next Header value that identifies the first header of
149 * the Fragmentable Part of the original packet.
150 * -> next header field is same for all fragments
152 * reassembly rule (p21):
153 * The Next Header field of the last header of the Unfragmentable
154 * Part is obtained from the Next Header field of the first
155 * fragment's Fragment header.
156 * -> should grab it from the first fragment only
158 * The following note also contradicts with fragment rule - noone is going to
159 * send different fragment with different next header field.
161 * additional note (p22):
162 * The Next Header values in the Fragment headers of different
163 * fragments of the same original packet may differ. Only the value
164 * from the Offset zero fragment packet is used for reassembly.
165 * -> should grab it from the first fragment only
167 * There is no explicit reason given in the RFC. Historical reason maybe?
170 * Fragment input
173 frag6_input(struct mbuf **mp, int *offp, int proto)
175 struct rtentry *rt;
176 struct mbuf *m = *mp, *t;
177 struct ip6_hdr *ip6;
178 struct ip6_frag *ip6f;
179 struct ip6q *q6;
180 struct ip6asfrag *af6, *ip6af, *af6dwn;
181 int offset = *offp, nxt, i, next;
182 int first_frag = 0;
183 int fragoff, frgpartlen; /* must be larger than u_int16_t */
184 struct ifnet *dstifp;
185 static struct route ro;
186 union {
187 struct sockaddr dst;
188 struct sockaddr_in6 dst6;
189 } u;
191 ip6 = mtod(m, struct ip6_hdr *);
192 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
193 if (ip6f == NULL)
194 return IPPROTO_DONE;
196 dstifp = NULL;
197 /* find the destination interface of the packet. */
198 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
199 if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL)
200 dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp;
202 /* jumbo payload can't contain a fragment header */
203 if (ip6->ip6_plen == 0) {
204 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
205 in6_ifstat_inc(dstifp, ifs6_reass_fail);
206 return IPPROTO_DONE;
210 * check whether fragment packet's fragment length is
211 * multiple of 8 octets.
212 * sizeof(struct ip6_frag) == 8
213 * sizeof(struct ip6_hdr) = 40
215 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
216 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
217 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
218 offsetof(struct ip6_hdr, ip6_plen));
219 in6_ifstat_inc(dstifp, ifs6_reass_fail);
220 return IPPROTO_DONE;
223 IP6_STATINC(IP6_STAT_FRAGMENTS);
224 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
226 /* offset now points to data portion */
227 offset += sizeof(struct ip6_frag);
229 IP6Q_LOCK();
232 * Enforce upper bound on number of fragments.
233 * If maxfrag is 0, never accept fragments.
234 * If maxfrag is -1, accept all fragments without limitation.
236 if (ip6_maxfrags < 0)
238 else if (frag6_nfrags >= (u_int)ip6_maxfrags)
239 goto dropfrag;
241 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
242 if (ip6f->ip6f_ident == q6->ip6q_ident &&
243 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
244 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
245 break;
247 if (q6 == &ip6q) {
249 * the first fragment to arrive, create a reassembly queue.
251 first_frag = 1;
254 * Enforce upper bound on number of fragmented packets
255 * for which we attempt reassembly;
256 * If maxfragpackets is 0, never accept fragments.
257 * If maxfragpackets is -1, accept all fragments without
258 * limitation.
260 if (ip6_maxfragpackets < 0)
262 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
263 goto dropfrag;
264 frag6_nfragpackets++;
265 q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE,
266 M_DONTWAIT);
267 if (q6 == NULL)
268 goto dropfrag;
269 memset(q6, 0, sizeof(*q6));
271 frag6_insque(q6, &ip6q);
273 /* ip6q_nxt will be filled afterwards, from 1st fragment */
274 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
275 #ifdef notyet
276 q6->ip6q_nxtp = (u_char *)nxtp;
277 #endif
278 q6->ip6q_ident = ip6f->ip6f_ident;
279 q6->ip6q_arrive = 0; /* Is it used anywhere? */
280 q6->ip6q_ttl = IPV6_FRAGTTL;
281 q6->ip6q_src = ip6->ip6_src;
282 q6->ip6q_dst = ip6->ip6_dst;
283 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
285 q6->ip6q_nfrag = 0;
289 * If it's the 1st fragment, record the length of the
290 * unfragmentable part and the next header of the fragment header.
292 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
293 if (fragoff == 0) {
294 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
295 sizeof(struct ip6_frag);
296 q6->ip6q_nxt = ip6f->ip6f_nxt;
300 * Check that the reassembled packet would not exceed 65535 bytes
301 * in size.
302 * If it would exceed, discard the fragment and return an ICMP error.
304 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
305 if (q6->ip6q_unfrglen >= 0) {
306 /* The 1st fragment has already arrived. */
307 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
308 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
309 offset - sizeof(struct ip6_frag) +
310 offsetof(struct ip6_frag, ip6f_offlg));
311 IP6Q_UNLOCK();
312 return (IPPROTO_DONE);
314 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
315 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
316 offset - sizeof(struct ip6_frag) +
317 offsetof(struct ip6_frag, ip6f_offlg));
318 IP6Q_UNLOCK();
319 return (IPPROTO_DONE);
322 * If it's the first fragment, do the above check for each
323 * fragment already stored in the reassembly queue.
325 if (fragoff == 0) {
326 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
327 af6 = af6dwn) {
328 af6dwn = af6->ip6af_down;
330 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
331 IPV6_MAXPACKET) {
332 struct mbuf *merr = IP6_REASS_MBUF(af6);
333 struct ip6_hdr *ip6err;
334 int erroff = af6->ip6af_offset;
336 /* dequeue the fragment. */
337 frag6_deq(af6);
338 free(af6, M_FTABLE);
340 /* adjust pointer. */
341 ip6err = mtod(merr, struct ip6_hdr *);
344 * Restore source and destination addresses
345 * in the erroneous IPv6 header.
347 ip6err->ip6_src = q6->ip6q_src;
348 ip6err->ip6_dst = q6->ip6q_dst;
350 icmp6_error(merr, ICMP6_PARAM_PROB,
351 ICMP6_PARAMPROB_HEADER,
352 erroff - sizeof(struct ip6_frag) +
353 offsetof(struct ip6_frag, ip6f_offlg));
358 ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE,
359 M_DONTWAIT);
360 if (ip6af == NULL)
361 goto dropfrag;
362 memset(ip6af, 0, sizeof(*ip6af));
363 ip6af->ip6af_head = ip6->ip6_flow;
364 ip6af->ip6af_len = ip6->ip6_plen;
365 ip6af->ip6af_nxt = ip6->ip6_nxt;
366 ip6af->ip6af_hlim = ip6->ip6_hlim;
367 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
368 ip6af->ip6af_off = fragoff;
369 ip6af->ip6af_frglen = frgpartlen;
370 ip6af->ip6af_offset = offset;
371 IP6_REASS_MBUF(ip6af) = m;
373 if (first_frag) {
374 af6 = (struct ip6asfrag *)q6;
375 goto insert;
379 * Find a segment which begins after this one does.
381 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
382 af6 = af6->ip6af_down)
383 if (af6->ip6af_off > ip6af->ip6af_off)
384 break;
386 #if 0
388 * If there is a preceding segment, it may provide some of
389 * our data already. If so, drop the data from the incoming
390 * segment. If it provides all of our data, drop us.
392 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
393 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
394 - ip6af->ip6af_off;
395 if (i > 0) {
396 if (i >= ip6af->ip6af_frglen)
397 goto dropfrag;
398 m_adj(IP6_REASS_MBUF(ip6af), i);
399 ip6af->ip6af_off += i;
400 ip6af->ip6af_frglen -= i;
405 * While we overlap succeeding segments trim them or,
406 * if they are completely covered, dequeue them.
408 while (af6 != (struct ip6asfrag *)q6 &&
409 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
410 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
411 if (i < af6->ip6af_frglen) {
412 af6->ip6af_frglen -= i;
413 af6->ip6af_off += i;
414 m_adj(IP6_REASS_MBUF(af6), i);
415 break;
417 af6 = af6->ip6af_down;
418 m_freem(IP6_REASS_MBUF(af6->ip6af_up));
419 frag6_deq(af6->ip6af_up);
421 #else
423 * If the incoming framgent overlaps some existing fragments in
424 * the reassembly queue, drop it, since it is dangerous to override
425 * existing fragments from a security point of view.
426 * We don't know which fragment is the bad guy - here we trust
427 * fragment that came in earlier, with no real reason.
429 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
430 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
431 - ip6af->ip6af_off;
432 if (i > 0) {
433 #if 0 /* suppress the noisy log */
434 log(LOG_ERR, "%d bytes of a fragment from %s "
435 "overlaps the previous fragment\n",
436 i, ip6_sprintf(&q6->ip6q_src));
437 #endif
438 free(ip6af, M_FTABLE);
439 goto dropfrag;
442 if (af6 != (struct ip6asfrag *)q6) {
443 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
444 if (i > 0) {
445 #if 0 /* suppress the noisy log */
446 log(LOG_ERR, "%d bytes of a fragment from %s "
447 "overlaps the succeeding fragment",
448 i, ip6_sprintf(&q6->ip6q_src));
449 #endif
450 free(ip6af, M_FTABLE);
451 goto dropfrag;
454 #endif
456 insert:
459 * Stick new segment in its place;
460 * check for complete reassembly.
461 * Move to front of packet queue, as we are
462 * the most recently active fragmented packet.
464 frag6_enq(ip6af, af6->ip6af_up);
465 frag6_nfrags++;
466 q6->ip6q_nfrag++;
467 #if 0 /* xxx */
468 if (q6 != ip6q.ip6q_next) {
469 frag6_remque(q6);
470 frag6_insque(q6, &ip6q);
472 #endif
473 next = 0;
474 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
475 af6 = af6->ip6af_down) {
476 if (af6->ip6af_off != next) {
477 IP6Q_UNLOCK();
478 return IPPROTO_DONE;
480 next += af6->ip6af_frglen;
482 if (af6->ip6af_up->ip6af_mff) {
483 IP6Q_UNLOCK();
484 return IPPROTO_DONE;
488 * Reassembly is complete; concatenate fragments.
490 ip6af = q6->ip6q_down;
491 t = m = IP6_REASS_MBUF(ip6af);
492 af6 = ip6af->ip6af_down;
493 frag6_deq(ip6af);
494 while (af6 != (struct ip6asfrag *)q6) {
495 af6dwn = af6->ip6af_down;
496 frag6_deq(af6);
497 while (t->m_next)
498 t = t->m_next;
499 t->m_next = IP6_REASS_MBUF(af6);
500 m_adj(t->m_next, af6->ip6af_offset);
501 free(af6, M_FTABLE);
502 af6 = af6dwn;
505 /* adjust offset to point where the original next header starts */
506 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
507 free(ip6af, M_FTABLE);
508 ip6 = mtod(m, struct ip6_hdr *);
509 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
510 ip6->ip6_src = q6->ip6q_src;
511 ip6->ip6_dst = q6->ip6q_dst;
512 nxt = q6->ip6q_nxt;
513 #ifdef notyet
514 *q6->ip6q_nxtp = (u_char)(nxt & 0xff);
515 #endif
518 * Delete frag6 header with as a few cost as possible.
520 if (offset < m->m_len) {
521 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
522 m->m_data += sizeof(struct ip6_frag);
523 m->m_len -= sizeof(struct ip6_frag);
524 } else {
525 /* this comes with no copy if the boundary is on cluster */
526 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
527 frag6_remque(q6);
528 frag6_nfrags -= q6->ip6q_nfrag;
529 free(q6, M_FTABLE);
530 frag6_nfragpackets--;
531 goto dropfrag;
533 m_adj(t, sizeof(struct ip6_frag));
534 m_cat(m, t);
538 * Store NXT to the original.
541 u_int8_t *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
542 *prvnxtp = nxt;
545 frag6_remque(q6);
546 frag6_nfrags -= q6->ip6q_nfrag;
547 free(q6, M_FTABLE);
548 frag6_nfragpackets--;
550 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
551 int plen = 0;
552 for (t = m; t; t = t->m_next)
553 plen += t->m_len;
554 m->m_pkthdr.len = plen;
557 IP6_STATINC(IP6_STAT_REASSEMBLED);
558 in6_ifstat_inc(dstifp, ifs6_reass_ok);
561 * Tell launch routine the next header
564 *mp = m;
565 *offp = offset;
567 IP6Q_UNLOCK();
568 return nxt;
570 dropfrag:
571 in6_ifstat_inc(dstifp, ifs6_reass_fail);
572 IP6_STATINC(IP6_STAT_FRAGDROPPED);
573 m_freem(m);
574 IP6Q_UNLOCK();
575 return IPPROTO_DONE;
579 * Free a fragment reassembly header and all
580 * associated datagrams.
582 void
583 frag6_freef(struct ip6q *q6)
585 struct ip6asfrag *af6, *down6;
587 IP6Q_LOCK_CHECK();
589 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
590 af6 = down6) {
591 struct mbuf *m = IP6_REASS_MBUF(af6);
593 down6 = af6->ip6af_down;
594 frag6_deq(af6);
597 * Return ICMP time exceeded error for the 1st fragment.
598 * Just free other fragments.
600 if (af6->ip6af_off == 0) {
601 struct ip6_hdr *ip6;
603 /* adjust pointer */
604 ip6 = mtod(m, struct ip6_hdr *);
606 /* restoure source and destination addresses */
607 ip6->ip6_src = q6->ip6q_src;
608 ip6->ip6_dst = q6->ip6q_dst;
610 icmp6_error(m, ICMP6_TIME_EXCEEDED,
611 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
612 } else
613 m_freem(m);
614 free(af6, M_FTABLE);
616 frag6_remque(q6);
617 frag6_nfrags -= q6->ip6q_nfrag;
618 free(q6, M_FTABLE);
619 frag6_nfragpackets--;
623 * Put an ip fragment on a reassembly chain.
624 * Like insque, but pointers in middle of structure.
626 void
627 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
630 IP6Q_LOCK_CHECK();
632 af6->ip6af_up = up6;
633 af6->ip6af_down = up6->ip6af_down;
634 up6->ip6af_down->ip6af_up = af6;
635 up6->ip6af_down = af6;
639 * To frag6_enq as remque is to insque.
641 void
642 frag6_deq(struct ip6asfrag *af6)
645 IP6Q_LOCK_CHECK();
647 af6->ip6af_up->ip6af_down = af6->ip6af_down;
648 af6->ip6af_down->ip6af_up = af6->ip6af_up;
651 void
652 frag6_insque(struct ip6q *new, struct ip6q *old)
655 IP6Q_LOCK_CHECK();
657 new->ip6q_prev = old;
658 new->ip6q_next = old->ip6q_next;
659 old->ip6q_next->ip6q_prev= new;
660 old->ip6q_next = new;
663 void
664 frag6_remque(struct ip6q *p6)
667 IP6Q_LOCK_CHECK();
669 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
670 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
674 * IPv6 reassembling timer processing;
675 * if a timer expires on a reassembly
676 * queue, discard it.
678 void
679 frag6_slowtimo(void)
681 struct ip6q *q6;
683 mutex_enter(softnet_lock);
684 KERNEL_LOCK(1, NULL);
686 IP6Q_LOCK();
687 q6 = ip6q.ip6q_next;
688 if (q6)
689 while (q6 != &ip6q) {
690 --q6->ip6q_ttl;
691 q6 = q6->ip6q_next;
692 if (q6->ip6q_prev->ip6q_ttl == 0) {
693 IP6_STATINC(IP6_STAT_FRAGTIMEOUT);
694 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
695 frag6_freef(q6->ip6q_prev);
699 * If we are over the maximum number of fragments
700 * (due to the limit being lowered), drain off
701 * enough to get down to the new limit.
703 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
704 ip6q.ip6q_prev) {
705 IP6_STATINC(IP6_STAT_FRAGOVERFLOW);
706 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
707 frag6_freef(ip6q.ip6q_prev);
709 IP6Q_UNLOCK();
711 #if 0
713 * Routing changes might produce a better route than we last used;
714 * make sure we notice eventually, even if forwarding only for one
715 * destination and the cache is never replaced.
717 rtcache_free(&ip6_forward_rt);
718 rtcache_free(&ipsrcchk_rt);
719 #endif
721 KERNEL_UNLOCK_ONE(NULL);
722 mutex_exit(softnet_lock);
726 * Drain off all datagram fragments.
728 void
729 frag6_drain(void)
732 KERNEL_LOCK(1, NULL);
733 if (ip6q_lock_try() != 0) {
734 while (ip6q.ip6q_next != &ip6q) {
735 IP6_STATINC(IP6_STAT_FRAGDROPPED);
736 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
737 frag6_freef(ip6q.ip6q_next);
739 IP6Q_UNLOCK();
741 KERNEL_UNLOCK_ONE(NULL);