Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / uvm / uvm_amap.c
blob8fb26d347b2219ceda1524c08084b038ae34d38c
1 /* $NetBSD: uvm_amap.c,v 1.87 2009/08/16 11:06:37 yamt Exp $ */
3 /*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 * uvm_amap.c: amap operations
40 * this file contains functions that perform operations on amaps. see
41 * uvm_amap.h for a brief explanation of the role of amaps in uvm.
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: uvm_amap.c,v 1.87 2009/08/16 11:06:37 yamt Exp $");
47 #include "opt_uvmhist.h"
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/atomic.h>
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_swap.h>
61 * cache for allocation of vm_map structures. note that in order to
62 * avoid an endless loop, the amap cache's allocator cannot allocate
63 * memory from an amap (it currently goes through the kernel uobj, so
64 * we are ok).
66 static struct pool_cache uvm_amap_cache;
67 static kmutex_t amap_list_lock;
68 static LIST_HEAD(, vm_amap) amap_list;
71 * local functions
74 static inline void
75 amap_list_insert(struct vm_amap *amap)
78 mutex_enter(&amap_list_lock);
79 LIST_INSERT_HEAD(&amap_list, amap, am_list);
80 mutex_exit(&amap_list_lock);
83 static inline void
84 amap_list_remove(struct vm_amap *amap)
87 mutex_enter(&amap_list_lock);
88 LIST_REMOVE(amap, am_list);
89 mutex_exit(&amap_list_lock);
92 static int
93 amap_roundup_slots(int slots)
96 return kmem_roundup_size(slots * sizeof(int)) / sizeof(int);
99 #ifdef UVM_AMAP_PPREF
101 * what is ppref? ppref is an _optional_ amap feature which is used
102 * to keep track of reference counts on a per-page basis. it is enabled
103 * when UVM_AMAP_PPREF is defined.
105 * when enabled, an array of ints is allocated for the pprefs. this
106 * array is allocated only when a partial reference is added to the
107 * map (either by unmapping part of the amap, or gaining a reference
108 * to only a part of an amap). if the malloc of the array fails
109 * (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate
110 * that we tried to do ppref's but couldn't alloc the array so just
111 * give up (after all, this is an optional feature!).
113 * the array is divided into page sized "chunks." for chunks of length 1,
114 * the chunk reference count plus one is stored in that chunk's slot.
115 * for chunks of length > 1 the first slot contains (the reference count
116 * plus one) * -1. [the negative value indicates that the length is
117 * greater than one.] the second slot of the chunk contains the length
118 * of the chunk. here is an example:
120 * actual REFS: 2 2 2 2 3 1 1 0 0 0 4 4 0 1 1 1
121 * ppref: -3 4 x x 4 -2 2 -1 3 x -5 2 1 -2 3 x
122 * <----------><-><----><-------><----><-><------->
123 * (x = don't care)
125 * this allows us to allow one int to contain the ref count for the whole
126 * chunk. note that the "plus one" part is needed because a reference
127 * count of zero is neither positive or negative (need a way to tell
128 * if we've got one zero or a bunch of them).
130 * here are some in-line functions to help us.
134 * pp_getreflen: get the reference and length for a specific offset
136 * => ppref's amap must be locked
138 static inline void
139 pp_getreflen(int *ppref, int offset, int *refp, int *lenp)
142 if (ppref[offset] > 0) { /* chunk size must be 1 */
143 *refp = ppref[offset] - 1; /* don't forget to adjust */
144 *lenp = 1;
145 } else {
146 *refp = (ppref[offset] * -1) - 1;
147 *lenp = ppref[offset+1];
152 * pp_setreflen: set the reference and length for a specific offset
154 * => ppref's amap must be locked
156 static inline void
157 pp_setreflen(int *ppref, int offset, int ref, int len)
159 if (len == 0)
160 return;
161 if (len == 1) {
162 ppref[offset] = ref + 1;
163 } else {
164 ppref[offset] = (ref + 1) * -1;
165 ppref[offset+1] = len;
168 #endif /* UVM_AMAP_PPREF */
171 * amap_alloc1: internal function that allocates an amap, but does not
172 * init the overlay.
174 * => lock on returned amap is init'd
176 static inline struct vm_amap *
177 amap_alloc1(int slots, int padslots, int waitf)
179 struct vm_amap *amap;
180 int totalslots;
181 km_flag_t kmflags;
183 amap = pool_cache_get(&uvm_amap_cache,
184 ((waitf & UVM_FLAG_NOWAIT) != 0) ? PR_NOWAIT : PR_WAITOK);
185 if (amap == NULL)
186 return(NULL);
188 kmflags = ((waitf & UVM_FLAG_NOWAIT) != 0) ? KM_NOSLEEP : KM_SLEEP;
189 totalslots = amap_roundup_slots(slots + padslots);
190 mutex_init(&amap->am_l, MUTEX_DEFAULT, IPL_NONE);
191 amap->am_ref = 1;
192 amap->am_flags = 0;
193 #ifdef UVM_AMAP_PPREF
194 amap->am_ppref = NULL;
195 #endif
196 amap->am_maxslot = totalslots;
197 amap->am_nslot = slots;
198 amap->am_nused = 0;
200 amap->am_slots = kmem_alloc(totalslots * sizeof(int), kmflags);
201 if (amap->am_slots == NULL)
202 goto fail1;
204 amap->am_bckptr = kmem_alloc(totalslots * sizeof(int), kmflags);
205 if (amap->am_bckptr == NULL)
206 goto fail2;
208 amap->am_anon = kmem_alloc(totalslots * sizeof(struct vm_anon *),
209 kmflags);
210 if (amap->am_anon == NULL)
211 goto fail3;
213 return(amap);
215 fail3:
216 kmem_free(amap->am_bckptr, totalslots * sizeof(int));
217 fail2:
218 kmem_free(amap->am_slots, totalslots * sizeof(int));
219 fail1:
220 mutex_destroy(&amap->am_l);
221 pool_cache_put(&uvm_amap_cache, amap);
224 * XXX hack to tell the pagedaemon how many pages we need,
225 * since we can need more than it would normally free.
227 if ((waitf & UVM_FLAG_NOWAIT) != 0) {
228 extern u_int uvm_extrapages;
229 atomic_add_int(&uvm_extrapages,
230 ((sizeof(int) * 2 + sizeof(struct vm_anon *)) *
231 totalslots) >> PAGE_SHIFT);
233 return (NULL);
237 * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
239 * => caller should ensure sz is a multiple of PAGE_SIZE
240 * => reference count to new amap is set to one
241 * => new amap is returned unlocked
244 struct vm_amap *
245 amap_alloc(vaddr_t sz, vaddr_t padsz, int waitf)
247 struct vm_amap *amap;
248 int slots, padslots;
249 UVMHIST_FUNC("amap_alloc"); UVMHIST_CALLED(maphist);
251 AMAP_B2SLOT(slots, sz);
252 AMAP_B2SLOT(padslots, padsz);
254 amap = amap_alloc1(slots, padslots, waitf);
255 if (amap) {
256 memset(amap->am_anon, 0,
257 amap->am_maxslot * sizeof(struct vm_anon *));
258 amap_list_insert(amap);
261 UVMHIST_LOG(maphist,"<- done, amap = 0x%x, sz=%d", amap, sz, 0, 0);
262 return(amap);
266 * uvm_amap_init: initialize the amap system.
268 void
269 uvm_amap_init(void)
272 mutex_init(&amap_list_lock, MUTEX_DEFAULT, IPL_NONE);
274 pool_cache_bootstrap(&uvm_amap_cache, sizeof(struct vm_amap), 0, 0, 0,
275 "amappl", NULL, IPL_NONE, NULL, NULL, NULL);
279 * amap_free: free an amap
281 * => the amap must be unlocked
282 * => the amap should have a zero reference count and be empty
284 void
285 amap_free(struct vm_amap *amap)
287 int slots;
289 UVMHIST_FUNC("amap_free"); UVMHIST_CALLED(maphist);
291 KASSERT(amap->am_ref == 0 && amap->am_nused == 0);
292 KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0);
293 KASSERT(!mutex_owned(&amap->am_l));
294 slots = amap->am_maxslot;
295 kmem_free(amap->am_slots, slots * sizeof(*amap->am_slots));
296 kmem_free(amap->am_bckptr, slots * sizeof(*amap->am_bckptr));
297 kmem_free(amap->am_anon, slots * sizeof(*amap->am_anon));
298 #ifdef UVM_AMAP_PPREF
299 if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
300 kmem_free(amap->am_ppref, slots * sizeof(*amap->am_ppref));
301 #endif
302 mutex_destroy(&amap->am_l);
303 pool_cache_put(&uvm_amap_cache, amap);
304 UVMHIST_LOG(maphist,"<- done, freed amap = 0x%x", amap, 0, 0, 0);
308 * amap_extend: extend the size of an amap (if needed)
310 * => called from uvm_map when we want to extend an amap to cover
311 * a new mapping (rather than allocate a new one)
312 * => amap should be unlocked (we will lock it)
313 * => to safely extend an amap it should have a reference count of
314 * one (thus it can't be shared)
317 amap_extend(struct vm_map_entry *entry, vsize_t addsize, int flags)
319 struct vm_amap *amap = entry->aref.ar_amap;
320 int slotoff = entry->aref.ar_pageoff;
321 int slotmapped, slotadd, slotneed, slotadded, slotalloc;
322 int slotadj, slotspace;
323 int oldnslots;
324 #ifdef UVM_AMAP_PPREF
325 int *newppref, *oldppref;
326 #endif
327 int i, *newsl, *newbck, *oldsl, *oldbck;
328 struct vm_anon **newover, **oldover;
329 const km_flag_t kmflags =
330 (flags & AMAP_EXTEND_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
332 UVMHIST_FUNC("amap_extend"); UVMHIST_CALLED(maphist);
334 UVMHIST_LOG(maphist, " (entry=0x%x, addsize=0x%x, flags=0x%x)",
335 entry, addsize, flags, 0);
338 * first, determine how many slots we need in the amap. don't
339 * forget that ar_pageoff could be non-zero: this means that
340 * there are some unused slots before us in the amap.
343 amap_lock(amap);
344 KASSERT(amap_refs(amap) == 1); /* amap can't be shared */
345 AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */
346 AMAP_B2SLOT(slotadd, addsize); /* slots to add */
347 if (flags & AMAP_EXTEND_FORWARDS) {
348 slotneed = slotoff + slotmapped + slotadd;
349 slotadj = 0;
350 slotspace = 0;
352 else {
353 slotneed = slotadd + slotmapped;
354 slotadj = slotadd - slotoff;
355 slotspace = amap->am_maxslot - slotmapped;
359 * case 1: we already have enough slots in the map and thus
360 * only need to bump the reference counts on the slots we are
361 * adding.
364 if (flags & AMAP_EXTEND_FORWARDS) {
365 if (amap->am_nslot >= slotneed) {
366 #ifdef UVM_AMAP_PPREF
367 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
368 amap_pp_adjref(amap, slotoff + slotmapped,
369 slotadd, 1);
371 #endif
372 amap_unlock(amap);
373 UVMHIST_LOG(maphist,
374 "<- done (case 1f), amap = 0x%x, sltneed=%d",
375 amap, slotneed, 0, 0);
376 return 0;
378 } else {
379 if (slotadj <= 0) {
380 slotoff -= slotadd;
381 entry->aref.ar_pageoff = slotoff;
382 #ifdef UVM_AMAP_PPREF
383 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
384 amap_pp_adjref(amap, slotoff, slotadd, 1);
386 #endif
387 amap_unlock(amap);
388 UVMHIST_LOG(maphist,
389 "<- done (case 1b), amap = 0x%x, sltneed=%d",
390 amap, slotneed, 0, 0);
391 return 0;
396 * case 2: we pre-allocated slots for use and we just need to
397 * bump nslot up to take account for these slots.
400 if (amap->am_maxslot >= slotneed) {
401 if (flags & AMAP_EXTEND_FORWARDS) {
402 #ifdef UVM_AMAP_PPREF
403 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
404 if ((slotoff + slotmapped) < amap->am_nslot)
405 amap_pp_adjref(amap,
406 slotoff + slotmapped,
407 (amap->am_nslot -
408 (slotoff + slotmapped)), 1);
409 pp_setreflen(amap->am_ppref, amap->am_nslot, 1,
410 slotneed - amap->am_nslot);
412 #endif
413 amap->am_nslot = slotneed;
414 amap_unlock(amap);
417 * no need to zero am_anon since that was done at
418 * alloc time and we never shrink an allocation.
421 UVMHIST_LOG(maphist,"<- done (case 2f), amap = 0x%x, "
422 "slotneed=%d", amap, slotneed, 0, 0);
423 return 0;
424 } else {
425 #ifdef UVM_AMAP_PPREF
426 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
428 * Slide up the ref counts on the pages that
429 * are actually in use.
431 memmove(amap->am_ppref + slotspace,
432 amap->am_ppref + slotoff,
433 slotmapped * sizeof(int));
435 * Mark the (adjusted) gap at the front as
436 * referenced/not referenced.
438 pp_setreflen(amap->am_ppref,
439 0, 0, slotspace - slotadd);
440 pp_setreflen(amap->am_ppref,
441 slotspace - slotadd, 1, slotadd);
443 #endif
446 * Slide the anon pointers up and clear out
447 * the space we just made.
449 memmove(amap->am_anon + slotspace,
450 amap->am_anon + slotoff,
451 slotmapped * sizeof(struct vm_anon*));
452 memset(amap->am_anon + slotoff, 0,
453 (slotspace - slotoff) * sizeof(struct vm_anon *));
456 * Slide the backpointers up, but don't bother
457 * wiping out the old slots.
459 memmove(amap->am_bckptr + slotspace,
460 amap->am_bckptr + slotoff,
461 slotmapped * sizeof(int));
464 * Adjust all the useful active slot numbers.
466 for (i = 0; i < amap->am_nused; i++)
467 amap->am_slots[i] += (slotspace - slotoff);
470 * We just filled all the empty space in the
471 * front of the amap by activating a few new
472 * slots.
474 amap->am_nslot = amap->am_maxslot;
475 entry->aref.ar_pageoff = slotspace - slotadd;
476 amap_unlock(amap);
478 UVMHIST_LOG(maphist,"<- done (case 2b), amap = 0x%x, "
479 "slotneed=%d", amap, slotneed, 0, 0);
480 return 0;
485 * case 3: we need to malloc a new amap and copy all the amap
486 * data over from old amap to the new one.
488 * note that the use of a kernel realloc() probably would not
489 * help here, since we wish to abort cleanly if one of the
490 * three (or four) mallocs fails.
493 amap_unlock(amap); /* unlock in case we sleep in malloc */
495 if (slotneed >= UVM_AMAP_LARGE) {
496 return E2BIG;
499 slotalloc = amap_roundup_slots(slotneed);
500 #ifdef UVM_AMAP_PPREF
501 newppref = NULL;
502 if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
503 newppref = kmem_alloc(slotalloc * sizeof(*newppref), kmflags);
504 #endif
505 newsl = kmem_alloc(slotalloc * sizeof(*newsl), kmflags);
506 newbck = kmem_alloc(slotalloc * sizeof(*newbck), kmflags);
507 newover = kmem_alloc(slotalloc * sizeof(*newover), kmflags);
508 if (newsl == NULL || newbck == NULL || newover == NULL) {
509 #ifdef UVM_AMAP_PPREF
510 if (newppref != NULL) {
511 kmem_free(newppref, slotalloc * sizeof(*newppref));
513 #endif
514 if (newsl != NULL) {
515 kmem_free(newsl, slotalloc * sizeof(*newsl));
517 if (newbck != NULL) {
518 kmem_free(newbck, slotalloc * sizeof(*newbck));
520 if (newover != NULL) {
521 kmem_free(newover, slotalloc * sizeof(*newover));
523 return ENOMEM;
525 amap_lock(amap);
526 KASSERT(amap->am_maxslot < slotneed);
529 * now copy everything over to new malloc'd areas...
532 slotadded = slotalloc - amap->am_nslot;
533 if (!(flags & AMAP_EXTEND_FORWARDS))
534 slotspace = slotalloc - slotmapped;
536 /* do am_slots */
537 oldsl = amap->am_slots;
538 if (flags & AMAP_EXTEND_FORWARDS)
539 memcpy(newsl, oldsl, sizeof(int) * amap->am_nused);
540 else
541 for (i = 0; i < amap->am_nused; i++)
542 newsl[i] = oldsl[i] + slotspace - slotoff;
543 amap->am_slots = newsl;
545 /* do am_anon */
546 oldover = amap->am_anon;
547 if (flags & AMAP_EXTEND_FORWARDS) {
548 memcpy(newover, oldover,
549 sizeof(struct vm_anon *) * amap->am_nslot);
550 memset(newover + amap->am_nslot, 0,
551 sizeof(struct vm_anon *) * slotadded);
552 } else {
553 memcpy(newover + slotspace, oldover + slotoff,
554 sizeof(struct vm_anon *) * slotmapped);
555 memset(newover, 0,
556 sizeof(struct vm_anon *) * slotspace);
558 amap->am_anon = newover;
560 /* do am_bckptr */
561 oldbck = amap->am_bckptr;
562 if (flags & AMAP_EXTEND_FORWARDS)
563 memcpy(newbck, oldbck, sizeof(int) * amap->am_nslot);
564 else
565 memcpy(newbck + slotspace, oldbck + slotoff,
566 sizeof(int) * slotmapped);
567 amap->am_bckptr = newbck;
569 #ifdef UVM_AMAP_PPREF
570 /* do ppref */
571 oldppref = amap->am_ppref;
572 if (newppref) {
573 if (flags & AMAP_EXTEND_FORWARDS) {
574 memcpy(newppref, oldppref,
575 sizeof(int) * amap->am_nslot);
576 memset(newppref + amap->am_nslot, 0,
577 sizeof(int) * slotadded);
578 } else {
579 memcpy(newppref + slotspace, oldppref + slotoff,
580 sizeof(int) * slotmapped);
582 amap->am_ppref = newppref;
583 if ((flags & AMAP_EXTEND_FORWARDS) &&
584 (slotoff + slotmapped) < amap->am_nslot)
585 amap_pp_adjref(amap, slotoff + slotmapped,
586 (amap->am_nslot - (slotoff + slotmapped)), 1);
587 if (flags & AMAP_EXTEND_FORWARDS)
588 pp_setreflen(newppref, amap->am_nslot, 1,
589 slotneed - amap->am_nslot);
590 else {
591 pp_setreflen(newppref, 0, 0,
592 slotalloc - slotneed);
593 pp_setreflen(newppref, slotalloc - slotneed, 1,
594 slotneed - slotmapped);
596 } else {
597 if (amap->am_ppref)
598 amap->am_ppref = PPREF_NONE;
600 #endif
602 /* update master values */
603 if (flags & AMAP_EXTEND_FORWARDS)
604 amap->am_nslot = slotneed;
605 else {
606 entry->aref.ar_pageoff = slotspace - slotadd;
607 amap->am_nslot = slotalloc;
609 oldnslots = amap->am_maxslot;
610 amap->am_maxslot = slotalloc;
612 amap_unlock(amap);
613 kmem_free(oldsl, oldnslots * sizeof(*oldsl));
614 kmem_free(oldbck, oldnslots * sizeof(*oldbck));
615 kmem_free(oldover, oldnslots * sizeof(*oldover));
616 #ifdef UVM_AMAP_PPREF
617 if (oldppref && oldppref != PPREF_NONE)
618 kmem_free(oldppref, oldnslots * sizeof(*oldppref));
619 #endif
620 UVMHIST_LOG(maphist,"<- done (case 3), amap = 0x%x, slotneed=%d",
621 amap, slotneed, 0, 0);
622 return 0;
626 * amap_share_protect: change protection of anons in a shared amap
628 * for shared amaps, given the current data structure layout, it is
629 * not possible for us to directly locate all maps referencing the
630 * shared anon (to change the protection). in order to protect data
631 * in shared maps we use pmap_page_protect(). [this is useful for IPC
632 * mechanisms like map entry passing that may want to write-protect
633 * all mappings of a shared amap.] we traverse am_anon or am_slots
634 * depending on the current state of the amap.
636 * => entry's map and amap must be locked by the caller
638 void
639 amap_share_protect(struct vm_map_entry *entry, vm_prot_t prot)
641 struct vm_amap *amap = entry->aref.ar_amap;
642 int slots, lcv, slot, stop;
644 KASSERT(mutex_owned(&amap->am_l));
646 AMAP_B2SLOT(slots, (entry->end - entry->start));
647 stop = entry->aref.ar_pageoff + slots;
649 if (slots < amap->am_nused) {
650 /* cheaper to traverse am_anon */
651 for (lcv = entry->aref.ar_pageoff ; lcv < stop ; lcv++) {
652 if (amap->am_anon[lcv] == NULL)
653 continue;
654 if (amap->am_anon[lcv]->an_page != NULL)
655 pmap_page_protect(amap->am_anon[lcv]->an_page,
656 prot);
658 return;
661 /* cheaper to traverse am_slots */
662 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
663 slot = amap->am_slots[lcv];
664 if (slot < entry->aref.ar_pageoff || slot >= stop)
665 continue;
666 if (amap->am_anon[slot]->an_page != NULL)
667 pmap_page_protect(amap->am_anon[slot]->an_page, prot);
672 * amap_wipeout: wipeout all anon's in an amap; then free the amap!
674 * => called from amap_unref when the final reference to an amap is
675 * discarded (i.e. when reference count drops to 0)
676 * => the amap should be locked (by the caller)
679 void
680 amap_wipeout(struct vm_amap *amap)
682 int lcv, slot;
683 struct vm_anon *anon;
684 UVMHIST_FUNC("amap_wipeout"); UVMHIST_CALLED(maphist);
685 UVMHIST_LOG(maphist,"(amap=0x%x)", amap, 0,0,0);
687 KASSERT(amap->am_ref == 0);
689 if (__predict_false((amap->am_flags & AMAP_SWAPOFF) != 0)) {
691 * amap_swap_off will call us again.
693 amap_unlock(amap);
694 return;
696 amap_list_remove(amap);
697 amap_unlock(amap);
699 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
700 int refs;
702 slot = amap->am_slots[lcv];
703 anon = amap->am_anon[slot];
704 KASSERT(anon != NULL && anon->an_ref != 0);
706 mutex_enter(&anon->an_lock);
707 UVMHIST_LOG(maphist," processing anon 0x%x, ref=%d", anon,
708 anon->an_ref, 0, 0);
709 refs = --anon->an_ref;
710 mutex_exit(&anon->an_lock);
711 if (refs == 0) {
714 * we had the last reference to a vm_anon. free it.
717 uvm_anfree(anon);
720 if (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
721 preempt();
725 * now we free the map
728 amap->am_nused = 0;
729 amap_free(amap); /* will unlock and free amap */
730 UVMHIST_LOG(maphist,"<- done!", 0,0,0,0);
734 * amap_copy: ensure that a map entry's "needs_copy" flag is false
735 * by copying the amap if necessary.
737 * => an entry with a null amap pointer will get a new (blank) one.
738 * => the map that the map entry belongs to must be locked by caller.
739 * => the amap currently attached to "entry" (if any) must be unlocked.
740 * => if canchunk is true, then we may clip the entry into a chunk
741 * => "startva" and "endva" are used only if canchunk is true. they are
742 * used to limit chunking (e.g. if you have a large space that you
743 * know you are going to need to allocate amaps for, there is no point
744 * in allowing that to be chunked)
747 void
748 amap_copy(struct vm_map *map, struct vm_map_entry *entry, int flags,
749 vaddr_t startva, vaddr_t endva)
751 struct vm_amap *amap, *srcamap;
752 int slots, lcv;
753 vaddr_t chunksize;
754 const int waitf = (flags & AMAP_COPY_NOWAIT) ? UVM_FLAG_NOWAIT : 0;
755 const bool canchunk = (flags & AMAP_COPY_NOCHUNK) == 0;
756 UVMHIST_FUNC("amap_copy"); UVMHIST_CALLED(maphist);
757 UVMHIST_LOG(maphist, " (map=%p, entry=%p, flags=%d)",
758 map, entry, flags, 0);
760 KASSERT(map != kernel_map); /* we use nointr pool */
763 * is there a map to copy? if not, create one from scratch.
766 if (entry->aref.ar_amap == NULL) {
769 * check to see if we have a large amap that we can
770 * chunk. we align startva/endva to chunk-sized
771 * boundaries and then clip to them.
774 if (canchunk && atop(entry->end - entry->start) >=
775 UVM_AMAP_LARGE) {
776 /* convert slots to bytes */
777 chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT;
778 startva = (startva / chunksize) * chunksize;
779 endva = roundup(endva, chunksize);
780 UVMHIST_LOG(maphist, " chunk amap ==> clip 0x%x->0x%x"
781 "to 0x%x->0x%x", entry->start, entry->end, startva,
782 endva);
783 UVM_MAP_CLIP_START(map, entry, startva, NULL);
784 /* watch out for endva wrap-around! */
785 if (endva >= startva)
786 UVM_MAP_CLIP_END(map, entry, endva, NULL);
789 if ((flags & AMAP_COPY_NOMERGE) == 0 &&
790 uvm_mapent_trymerge(map, entry, UVM_MERGE_COPYING)) {
791 return;
794 UVMHIST_LOG(maphist, "<- done [creating new amap 0x%x->0x%x]",
795 entry->start, entry->end, 0, 0);
796 entry->aref.ar_pageoff = 0;
797 entry->aref.ar_amap = amap_alloc(entry->end - entry->start, 0,
798 waitf);
799 if (entry->aref.ar_amap != NULL)
800 entry->etype &= ~UVM_ET_NEEDSCOPY;
801 return;
805 * first check and see if we are the only map entry
806 * referencing the amap we currently have. if so, then we can
807 * just take it over rather than copying it. note that we are
808 * reading am_ref with the amap unlocked... the value can only
809 * be one if we have the only reference to the amap (via our
810 * locked map). if we are greater than one we fall through to
811 * the next case (where we double check the value).
814 if (entry->aref.ar_amap->am_ref == 1) {
815 entry->etype &= ~UVM_ET_NEEDSCOPY;
816 UVMHIST_LOG(maphist, "<- done [ref cnt = 1, took it over]",
817 0, 0, 0, 0);
818 return;
822 * looks like we need to copy the map.
825 UVMHIST_LOG(maphist," amap=%p, ref=%d, must copy it",
826 entry->aref.ar_amap, entry->aref.ar_amap->am_ref, 0, 0);
827 AMAP_B2SLOT(slots, entry->end - entry->start);
828 amap = amap_alloc1(slots, 0, waitf);
829 if (amap == NULL) {
830 UVMHIST_LOG(maphist, " amap_alloc1 failed", 0,0,0,0);
831 return;
833 srcamap = entry->aref.ar_amap;
834 amap_lock(srcamap);
837 * need to double check reference count now that we've got the
838 * src amap locked down. the reference count could have
839 * changed while we were in malloc. if the reference count
840 * dropped down to one we take over the old map rather than
841 * copying the amap.
844 if (srcamap->am_ref == 1) { /* take it over? */
845 entry->etype &= ~UVM_ET_NEEDSCOPY;
846 amap->am_ref--; /* drop final reference to map */
847 amap_free(amap); /* dispose of new (unused) amap */
848 amap_unlock(srcamap);
849 return;
853 * we must copy it now.
856 UVMHIST_LOG(maphist, " copying amap now",0, 0, 0, 0);
857 for (lcv = 0 ; lcv < slots; lcv++) {
858 amap->am_anon[lcv] =
859 srcamap->am_anon[entry->aref.ar_pageoff + lcv];
860 if (amap->am_anon[lcv] == NULL)
861 continue;
862 mutex_enter(&amap->am_anon[lcv]->an_lock);
863 amap->am_anon[lcv]->an_ref++;
864 mutex_exit(&amap->am_anon[lcv]->an_lock);
865 amap->am_bckptr[lcv] = amap->am_nused;
866 amap->am_slots[amap->am_nused] = lcv;
867 amap->am_nused++;
869 memset(&amap->am_anon[lcv], 0,
870 (amap->am_maxslot - lcv) * sizeof(struct vm_anon *));
873 * drop our reference to the old amap (srcamap) and unlock.
874 * we know that the reference count on srcamap is greater than
875 * one (we checked above), so there is no way we could drop
876 * the count to zero. [and no need to worry about freeing it]
879 srcamap->am_ref--;
880 if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0)
881 srcamap->am_flags &= ~AMAP_SHARED; /* clear shared flag */
882 #ifdef UVM_AMAP_PPREF
883 if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
884 amap_pp_adjref(srcamap, entry->aref.ar_pageoff,
885 (entry->end - entry->start) >> PAGE_SHIFT, -1);
887 #endif
889 amap_unlock(srcamap);
891 amap_list_insert(amap);
894 * install new amap.
897 entry->aref.ar_pageoff = 0;
898 entry->aref.ar_amap = amap;
899 entry->etype &= ~UVM_ET_NEEDSCOPY;
900 UVMHIST_LOG(maphist, "<- done",0, 0, 0, 0);
904 * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
906 * called during fork(2) when the parent process has a wired map
907 * entry. in that case we want to avoid write-protecting pages
908 * in the parent's map (e.g. like what you'd do for a COW page)
909 * so we resolve the COW here.
911 * => assume parent's entry was wired, thus all pages are resident.
912 * => assume pages that are loaned out (loan_count) are already mapped
913 * read-only in all maps, and thus no need for us to worry about them
914 * => assume both parent and child vm_map's are locked
915 * => caller passes child's map/entry in to us
916 * => if we run out of memory we will unlock the amap and sleep _with_ the
917 * parent and child vm_map's locked(!). we have to do this since
918 * we are in the middle of a fork(2) and we can't let the parent
919 * map change until we are done copying all the map entrys.
920 * => XXXCDC: out of memory should cause fork to fail, but there is
921 * currently no easy way to do this (needs fix)
922 * => page queues must be unlocked (we may lock them)
925 void
926 amap_cow_now(struct vm_map *map, struct vm_map_entry *entry)
928 struct vm_amap *amap = entry->aref.ar_amap;
929 int lcv, slot;
930 struct vm_anon *anon, *nanon;
931 struct vm_page *pg, *npg;
934 * note that if we unlock the amap then we must ReStart the "lcv" for
935 * loop because some other process could reorder the anon's in the
936 * am_anon[] array on us while the lock is dropped.
939 ReStart:
940 amap_lock(amap);
941 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
944 * get the page
947 slot = amap->am_slots[lcv];
948 anon = amap->am_anon[slot];
949 mutex_enter(&anon->an_lock);
952 * If the anon has only one ref, we must have already copied it.
953 * This can happen if we needed to sleep waiting for memory
954 * in a previous run through this loop. The new page might
955 * even have been paged out, since the new page is not wired.
958 if (anon->an_ref == 1) {
959 KASSERT(anon->an_page != NULL || anon->an_swslot != 0);
960 mutex_exit(&anon->an_lock);
961 continue;
965 * The old page must be resident since the parent is wired.
968 pg = anon->an_page;
969 KASSERT(pg != NULL);
970 KASSERT(pg->wire_count > 0);
973 * If the page is loaned then it must already be mapped
974 * read-only and we don't need to copy it.
977 if (pg->loan_count != 0) {
978 mutex_exit(&anon->an_lock);
979 continue;
981 KASSERT(pg->uanon == anon && pg->uobject == NULL);
984 * if the page is busy then we have to unlock, wait for
985 * it and then restart.
988 if (pg->flags & PG_BUSY) {
989 pg->flags |= PG_WANTED;
990 amap_unlock(amap);
991 UVM_UNLOCK_AND_WAIT(pg, &anon->an_lock, false,
992 "cownow", 0);
993 goto ReStart;
997 * ok, time to do a copy-on-write to a new anon
1000 nanon = uvm_analloc();
1001 if (nanon) {
1002 npg = uvm_pagealloc(NULL, 0, nanon, 0);
1003 } else
1004 npg = NULL; /* XXX: quiet gcc warning */
1005 if (nanon == NULL || npg == NULL) {
1008 * XXXCDC: we should cause fork to fail, but we can't.
1011 if (nanon) {
1012 nanon->an_ref--;
1013 mutex_exit(&nanon->an_lock);
1014 uvm_anfree(nanon);
1016 mutex_exit(&anon->an_lock);
1017 amap_unlock(amap);
1018 uvm_wait("cownowpage");
1019 goto ReStart;
1023 * got it... now we can copy the data and replace anon
1024 * with our new one...
1027 uvm_pagecopy(pg, npg); /* old -> new */
1028 anon->an_ref--; /* can't drop to zero */
1029 amap->am_anon[slot] = nanon; /* replace */
1032 * drop PG_BUSY on new page ... since we have had its owner
1033 * locked the whole time it can't be PG_RELEASED or PG_WANTED.
1036 mutex_enter(&uvm_pageqlock);
1037 uvm_pageactivate(npg);
1038 mutex_exit(&uvm_pageqlock);
1039 npg->flags &= ~(PG_BUSY|PG_FAKE);
1040 UVM_PAGE_OWN(npg, NULL);
1041 mutex_exit(&nanon->an_lock);
1042 mutex_exit(&anon->an_lock);
1044 amap_unlock(amap);
1048 * amap_splitref: split a single reference into two separate references
1050 * => called from uvm_map's clip routines
1051 * => origref's map should be locked
1052 * => origref->ar_amap should be unlocked (we will lock)
1054 void
1055 amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset)
1057 int leftslots;
1058 struct vm_amap *amap;
1060 KASSERT(splitref->ar_amap == origref->ar_amap);
1061 AMAP_B2SLOT(leftslots, offset);
1062 KASSERT(leftslots != 0);
1064 amap = origref->ar_amap;
1065 amap_lock(amap);
1068 * now: amap is locked and we have a valid am_mapped array.
1070 KASSERT(amap->am_nslot - origref->ar_pageoff - leftslots > 0);
1072 #ifdef UVM_AMAP_PPREF
1074 * establish ppref before we add a duplicate reference to the amap
1076 if (amap->am_ppref == NULL)
1077 amap_pp_establish(amap, origref->ar_pageoff);
1078 #endif
1080 amap->am_ref++; /* not a share reference */
1081 splitref->ar_pageoff = origref->ar_pageoff + leftslots;
1083 amap_unlock(amap);
1086 #ifdef UVM_AMAP_PPREF
1089 * amap_pp_establish: add a ppref array to an amap, if possible
1091 * => amap locked by caller
1093 void
1094 amap_pp_establish(struct vm_amap *amap, vaddr_t offset)
1097 amap->am_ppref = kmem_alloc(amap->am_maxslot * sizeof(*amap->am_ppref),
1098 KM_NOSLEEP);
1101 * if we fail then we just won't use ppref for this amap
1104 if (amap->am_ppref == NULL) {
1105 amap->am_ppref = PPREF_NONE; /* not using it */
1106 return;
1108 memset(amap->am_ppref, 0, sizeof(int) * amap->am_maxslot);
1109 pp_setreflen(amap->am_ppref, 0, 0, offset);
1110 pp_setreflen(amap->am_ppref, offset, amap->am_ref,
1111 amap->am_nslot - offset);
1112 return;
1116 * amap_pp_adjref: adjust reference count to a part of an amap using the
1117 * per-page reference count array.
1119 * => map and amap locked by caller
1120 * => caller must check that ppref != PPREF_NONE before calling
1122 void
1123 amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval)
1125 int stopslot, *ppref, lcv, prevlcv;
1126 int ref, len, prevref, prevlen;
1128 stopslot = curslot + slotlen;
1129 ppref = amap->am_ppref;
1130 prevlcv = 0;
1133 * first advance to the correct place in the ppref array,
1134 * fragment if needed.
1137 for (lcv = 0 ; lcv < curslot ; lcv += len) {
1138 pp_getreflen(ppref, lcv, &ref, &len);
1139 if (lcv + len > curslot) { /* goes past start? */
1140 pp_setreflen(ppref, lcv, ref, curslot - lcv);
1141 pp_setreflen(ppref, curslot, ref, len - (curslot -lcv));
1142 len = curslot - lcv; /* new length of entry @ lcv */
1144 prevlcv = lcv;
1146 if (lcv != 0)
1147 pp_getreflen(ppref, prevlcv, &prevref, &prevlen);
1148 else {
1149 /* Ensure that the "prevref == ref" test below always
1150 * fails, since we're starting from the beginning of
1151 * the ppref array; that is, there is no previous
1152 * chunk.
1154 prevref = -1;
1155 prevlen = 0;
1159 * now adjust reference counts in range. merge the first
1160 * changed entry with the last unchanged entry if possible.
1162 KASSERT(lcv == curslot);
1163 for (/* lcv already set */; lcv < stopslot ; lcv += len) {
1164 pp_getreflen(ppref, lcv, &ref, &len);
1165 if (lcv + len > stopslot) { /* goes past end? */
1166 pp_setreflen(ppref, lcv, ref, stopslot - lcv);
1167 pp_setreflen(ppref, stopslot, ref,
1168 len - (stopslot - lcv));
1169 len = stopslot - lcv;
1171 ref += adjval;
1172 KASSERT(ref >= 0);
1173 if (lcv == prevlcv + prevlen && ref == prevref) {
1174 pp_setreflen(ppref, prevlcv, ref, prevlen + len);
1175 } else {
1176 pp_setreflen(ppref, lcv, ref, len);
1178 if (ref == 0)
1179 amap_wiperange(amap, lcv, len);
1185 * amap_wiperange: wipe out a range of an amap
1186 * [different from amap_wipeout because the amap is kept intact]
1188 * => both map and amap must be locked by caller.
1190 void
1191 amap_wiperange(struct vm_amap *amap, int slotoff, int slots)
1193 int byanon, lcv, stop, curslot, ptr, slotend;
1194 struct vm_anon *anon;
1197 * we can either traverse the amap by am_anon or by am_slots depending
1198 * on which is cheaper. decide now.
1201 if (slots < amap->am_nused) {
1202 byanon = true;
1203 lcv = slotoff;
1204 stop = slotoff + slots;
1205 slotend = 0;
1206 } else {
1207 byanon = false;
1208 lcv = 0;
1209 stop = amap->am_nused;
1210 slotend = slotoff + slots;
1213 while (lcv < stop) {
1214 int refs;
1216 if (byanon) {
1217 curslot = lcv++; /* lcv advances here */
1218 if (amap->am_anon[curslot] == NULL)
1219 continue;
1220 } else {
1221 curslot = amap->am_slots[lcv];
1222 if (curslot < slotoff || curslot >= slotend) {
1223 lcv++; /* lcv advances here */
1224 continue;
1226 stop--; /* drop stop, since anon will be removed */
1228 anon = amap->am_anon[curslot];
1231 * remove it from the amap
1234 amap->am_anon[curslot] = NULL;
1235 ptr = amap->am_bckptr[curslot];
1236 if (ptr != (amap->am_nused - 1)) {
1237 amap->am_slots[ptr] =
1238 amap->am_slots[amap->am_nused - 1];
1239 amap->am_bckptr[amap->am_slots[ptr]] =
1240 ptr; /* back ptr. */
1242 amap->am_nused--;
1245 * drop anon reference count
1248 mutex_enter(&anon->an_lock);
1249 refs = --anon->an_ref;
1250 mutex_exit(&anon->an_lock);
1251 if (refs == 0) {
1254 * we just eliminated the last reference to an anon.
1255 * free it.
1258 uvm_anfree(anon);
1263 #endif
1265 #if defined(VMSWAP)
1268 * amap_swap_off: pagein anonymous pages in amaps and drop swap slots.
1270 * => called with swap_syscall_lock held.
1271 * => note that we don't always traverse all anons.
1272 * eg. amaps being wiped out, released anons.
1273 * => return true if failed.
1276 bool
1277 amap_swap_off(int startslot, int endslot)
1279 struct vm_amap *am;
1280 struct vm_amap *am_next;
1281 struct vm_amap marker_prev;
1282 struct vm_amap marker_next;
1283 bool rv = false;
1285 #if defined(DIAGNOSTIC)
1286 memset(&marker_prev, 0, sizeof(marker_prev));
1287 memset(&marker_next, 0, sizeof(marker_next));
1288 #endif /* defined(DIAGNOSTIC) */
1290 mutex_enter(&amap_list_lock);
1291 for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) {
1292 int i;
1294 LIST_INSERT_BEFORE(am, &marker_prev, am_list);
1295 LIST_INSERT_AFTER(am, &marker_next, am_list);
1297 if (!amap_lock_try(am)) {
1298 mutex_exit(&amap_list_lock);
1299 preempt();
1300 mutex_enter(&amap_list_lock);
1301 am_next = LIST_NEXT(&marker_prev, am_list);
1302 if (am_next == &marker_next) {
1303 am_next = LIST_NEXT(am_next, am_list);
1304 } else {
1305 KASSERT(LIST_NEXT(am_next, am_list) ==
1306 &marker_next);
1308 LIST_REMOVE(&marker_prev, am_list);
1309 LIST_REMOVE(&marker_next, am_list);
1310 continue;
1313 mutex_exit(&amap_list_lock);
1315 if (am->am_nused <= 0) {
1316 amap_unlock(am);
1317 goto next;
1320 for (i = 0; i < am->am_nused; i++) {
1321 int slot;
1322 int swslot;
1323 struct vm_anon *anon;
1325 slot = am->am_slots[i];
1326 anon = am->am_anon[slot];
1327 mutex_enter(&anon->an_lock);
1329 swslot = anon->an_swslot;
1330 if (swslot < startslot || endslot <= swslot) {
1331 mutex_exit(&anon->an_lock);
1332 continue;
1335 am->am_flags |= AMAP_SWAPOFF;
1336 amap_unlock(am);
1338 rv = uvm_anon_pagein(anon);
1340 amap_lock(am);
1341 am->am_flags &= ~AMAP_SWAPOFF;
1342 if (amap_refs(am) == 0) {
1343 amap_wipeout(am);
1344 am = NULL;
1345 break;
1347 if (rv) {
1348 break;
1350 i = 0;
1353 if (am) {
1354 amap_unlock(am);
1357 next:
1358 mutex_enter(&amap_list_lock);
1359 KASSERT(LIST_NEXT(&marker_prev, am_list) == &marker_next ||
1360 LIST_NEXT(LIST_NEXT(&marker_prev, am_list), am_list) ==
1361 &marker_next);
1362 am_next = LIST_NEXT(&marker_next, am_list);
1363 LIST_REMOVE(&marker_prev, am_list);
1364 LIST_REMOVE(&marker_next, am_list);
1366 mutex_exit(&amap_list_lock);
1368 return rv;
1371 #endif /* defined(VMSWAP) */
1374 * amap_lookup: look up a page in an amap
1376 * => amap should be locked by caller.
1378 struct vm_anon *
1379 amap_lookup(struct vm_aref *aref, vaddr_t offset)
1381 struct vm_anon *an;
1382 int slot;
1383 struct vm_amap *amap = aref->ar_amap;
1384 UVMHIST_FUNC("amap_lookup"); UVMHIST_CALLED(maphist);
1385 KASSERT(mutex_owned(&amap->am_l));
1387 AMAP_B2SLOT(slot, offset);
1388 slot += aref->ar_pageoff;
1389 KASSERT(slot < amap->am_nslot);
1391 UVMHIST_LOG(maphist, "<- done (amap=0x%x, offset=0x%x, result=0x%x)",
1392 amap, offset, amap->am_anon[slot], 0);
1393 an = amap->am_anon[slot];
1394 KASSERT(an == NULL || an->an_ref != 0);
1395 return an;
1399 * amap_lookups: look up a range of pages in an amap
1401 * => amap should be locked by caller.
1402 * => XXXCDC: this interface is biased toward array-based amaps. fix.
1404 void
1405 amap_lookups(struct vm_aref *aref, vaddr_t offset, struct vm_anon **anons,
1406 int npages)
1408 int slot;
1409 struct vm_amap *amap = aref->ar_amap;
1410 #if defined(DIAGNOSTIC)
1411 int i;
1412 #endif /* defined(DIAGNOSTIC) */
1413 UVMHIST_FUNC("amap_lookups"); UVMHIST_CALLED(maphist);
1414 KASSERT(mutex_owned(&amap->am_l));
1416 AMAP_B2SLOT(slot, offset);
1417 slot += aref->ar_pageoff;
1419 UVMHIST_LOG(maphist, " slot=%d, npages=%d, nslot=%d", slot, npages,
1420 amap->am_nslot, 0);
1422 KASSERT((slot + (npages - 1)) < amap->am_nslot);
1423 memcpy(anons, &amap->am_anon[slot], npages * sizeof(struct vm_anon *));
1425 #if defined(DIAGNOSTIC)
1426 for (i = 0; i < npages; i++) {
1427 struct vm_anon * const an = anons[i];
1429 if (an != NULL && an->an_ref == 0) {
1430 panic("%s: ref=0 anon", __func__);
1433 #endif /* defined(DIAGNOSTIC) */
1434 UVMHIST_LOG(maphist, "<- done", 0, 0, 0, 0);
1435 return;
1439 * amap_add: add (or replace) a page to an amap
1441 * => caller must lock amap.
1442 * => if (replace) caller must lock anon because we might have to call
1443 * pmap_page_protect on the anon's page.
1445 void
1446 amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon,
1447 bool replace)
1449 int slot;
1450 struct vm_amap *amap = aref->ar_amap;
1451 UVMHIST_FUNC("amap_add"); UVMHIST_CALLED(maphist);
1452 KASSERT(mutex_owned(&amap->am_l));
1454 AMAP_B2SLOT(slot, offset);
1455 slot += aref->ar_pageoff;
1456 KASSERT(slot < amap->am_nslot);
1458 if (replace) {
1459 KASSERT(amap->am_anon[slot] != NULL);
1460 if (amap->am_anon[slot]->an_page != NULL &&
1461 (amap->am_flags & AMAP_SHARED) != 0) {
1462 pmap_page_protect(amap->am_anon[slot]->an_page,
1463 VM_PROT_NONE);
1465 * XXX: suppose page is supposed to be wired somewhere?
1468 } else { /* !replace */
1469 KASSERT(amap->am_anon[slot] == NULL);
1470 amap->am_bckptr[slot] = amap->am_nused;
1471 amap->am_slots[amap->am_nused] = slot;
1472 amap->am_nused++;
1474 amap->am_anon[slot] = anon;
1475 UVMHIST_LOG(maphist,
1476 "<- done (amap=0x%x, offset=0x%x, anon=0x%x, rep=%d)",
1477 amap, offset, anon, replace);
1481 * amap_unadd: remove a page from an amap
1483 * => caller must lock amap
1485 void
1486 amap_unadd(struct vm_aref *aref, vaddr_t offset)
1488 int ptr, slot;
1489 struct vm_amap *amap = aref->ar_amap;
1490 UVMHIST_FUNC("amap_unadd"); UVMHIST_CALLED(maphist);
1491 KASSERT(mutex_owned(&amap->am_l));
1493 AMAP_B2SLOT(slot, offset);
1494 slot += aref->ar_pageoff;
1495 KASSERT(slot < amap->am_nslot);
1496 KASSERT(amap->am_anon[slot] != NULL);
1498 amap->am_anon[slot] = NULL;
1499 ptr = amap->am_bckptr[slot];
1501 if (ptr != (amap->am_nused - 1)) { /* swap to keep slots contig? */
1502 amap->am_slots[ptr] = amap->am_slots[amap->am_nused - 1];
1503 amap->am_bckptr[amap->am_slots[ptr]] = ptr; /* back link */
1505 amap->am_nused--;
1506 UVMHIST_LOG(maphist, "<- done (amap=0x%x, slot=0x%x)", amap, slot,0, 0);
1510 * amap_ref: gain a reference to an amap
1512 * => amap must not be locked (we will lock)
1513 * => "offset" and "len" are in units of pages
1514 * => called at fork time to gain the child's reference
1516 void
1517 amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags)
1519 UVMHIST_FUNC("amap_ref"); UVMHIST_CALLED(maphist);
1521 amap_lock(amap);
1522 if (flags & AMAP_SHARED)
1523 amap->am_flags |= AMAP_SHARED;
1524 #ifdef UVM_AMAP_PPREF
1525 if (amap->am_ppref == NULL && (flags & AMAP_REFALL) == 0 &&
1526 len != amap->am_nslot)
1527 amap_pp_establish(amap, offset);
1528 #endif
1529 amap->am_ref++;
1530 #ifdef UVM_AMAP_PPREF
1531 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1532 if (flags & AMAP_REFALL)
1533 amap_pp_adjref(amap, 0, amap->am_nslot, 1);
1534 else
1535 amap_pp_adjref(amap, offset, len, 1);
1537 #endif
1538 amap_unlock(amap);
1539 UVMHIST_LOG(maphist,"<- done! amap=0x%x", amap, 0, 0, 0);
1543 * amap_unref: remove a reference to an amap
1545 * => caller must remove all pmap-level references to this amap before
1546 * dropping the reference
1547 * => called from uvm_unmap_detach [only] ... note that entry is no
1548 * longer part of a map and thus has no need for locking
1549 * => amap must be unlocked (we will lock it).
1551 void
1552 amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, bool all)
1554 UVMHIST_FUNC("amap_unref"); UVMHIST_CALLED(maphist);
1557 * lock it
1559 amap_lock(amap);
1560 UVMHIST_LOG(maphist," amap=0x%x refs=%d, nused=%d",
1561 amap, amap->am_ref, amap->am_nused, 0);
1563 KASSERT(amap_refs(amap) > 0);
1566 * if we are the last reference, free the amap and return.
1569 amap->am_ref--;
1571 if (amap_refs(amap) == 0) {
1572 amap_wipeout(amap); /* drops final ref and frees */
1573 UVMHIST_LOG(maphist,"<- done (was last ref)!", 0, 0, 0, 0);
1574 return; /* no need to unlock */
1578 * otherwise just drop the reference count(s)
1581 if (amap_refs(amap) == 1 && (amap->am_flags & AMAP_SHARED) != 0)
1582 amap->am_flags &= ~AMAP_SHARED; /* clear shared flag */
1583 #ifdef UVM_AMAP_PPREF
1584 if (amap->am_ppref == NULL && all == 0 && len != amap->am_nslot)
1585 amap_pp_establish(amap, offset);
1586 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1587 if (all)
1588 amap_pp_adjref(amap, 0, amap->am_nslot, -1);
1589 else
1590 amap_pp_adjref(amap, offset, len, -1);
1592 #endif
1593 amap_unlock(amap);
1595 UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);