No empty .Rs/.Re
[netbsd-mini2440.git] / common / lib / libc / gen / ptree.c
blob26ad2bc1f14dc2cf9e47d80310ff4e8d5d6ae006
1 /* $NetBSD: ptree.c,v 1.4 2009/01/18 12:06:14 lukem Exp $ */
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #define _PT_PRIVATE
34 #if defined(PTCHECK) && !defined(PTDEBUG)
35 #define PTDEBUG
36 #endif
38 #if defined(_KERNEL) || defined(_STANDALONE)
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/systm.h>
42 #include <lib/libkern/libkern.h>
43 __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.4 2009/01/18 12:06:14 lukem Exp $");
44 #else
45 #include <stddef.h>
46 #include <stdint.h>
47 #include <limits.h>
48 #include <stdbool.h>
49 #include <string.h>
50 #ifdef PTDEBUG
51 #include <assert.h>
52 #define KASSERT(e) assert(e)
53 #else
54 #define KASSERT(e) do { } while (/*CONSTCOND*/ 0)
55 #endif
56 __RCSID("$NetBSD: ptree.c,v 1.4 2009/01/18 12:06:14 lukem Exp $");
57 #endif /* _KERNEL || _STANDALONE */
59 #ifdef _LIBC
60 #include "namespace.h"
61 #endif
63 #ifdef PTTEST
64 #include "ptree.h"
65 #else
66 #include <sys/ptree.h>
67 #endif
70 * This is an implementation of a radix / PATRICIA tree. As in a traditional
71 * patricia tree, all the data is at the leaves of the tree. An N-value
72 * tree would have N leaves, N-1 branching nodes, and a root pointer. Each
73 * branching node would have left(0) and right(1) pointers that either point
74 * to another branching node or a leaf node. The root pointer would also
75 * point to either the first branching node or a leaf node. Leaf nodes
76 * have no need for pointers.
78 * However, allocation for these branching nodes is problematic since the
79 * allocation could fail. This would cause insertions to fail for reasons
80 * beyond the users control. So to prevent this, in this implementation
81 * each node has two identities: its leaf identity and its branch identity.
82 * Each is separate from the other. Every branch is tagged as to whether
83 * it points to a leaf or a branch. This is not an attribute of the object
84 * but of the pointer to the object. The low bit of the pointer is used as
85 * the tag to determine whether it points to a leaf or branch identity, with
86 * branch identities having the low bit set.
88 * A node's branch identity has one rule: when traversing the tree from the
89 * root to the node's leaf identity, one of the branches traversed will be via
90 * the node's branch identity. Of course, that has an exception: since to
91 * store N leaves, you need N-1 branches. That one node whose branch identity
92 * isn't used is stored as "oddman"-out in the root.
94 * Branching nodes also has a bit offset and a bit length which determines
95 * which branch slot is used. The bit length can be zero resulting in a
96 * one-way branch. This is happens in two special cases: the root and
97 * interior mask nodes.
99 * To support longest match first lookups, when a mask node (one that only
100 * match the first N bits) has children who first N bits match the mask nodes,
101 * that mask node is converted from being a leaf node to being a one-way
102 * branch-node. The mask becomes fixed in position in the tree. The mask
103 * will always be the longest mask match for its descendants (unless they
104 * traverse an even longer match).
107 #define NODETOITEM(pt, ptn) \
108 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
109 #define NODETOKEY(pt, ptn) \
110 ((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
111 #define ITEMTONODE(pt, ptn) \
112 ((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
114 bool ptree_check(const pt_tree_t *);
115 #if PTCHECK > 1
116 #define PTREE_CHECK(pt) ptree_check(pt)
117 #else
118 #define PTREE_CHECK(pt) do { } while (/*CONSTCOND*/ 0)
119 #endif
121 static inline bool
122 ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
123 const pt_node_t *ptn, pt_bitoff_t max_bitoff,
124 pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
126 return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
127 (ptn != NULL ? NODETOKEY(pt, ptn) : NULL), max_bitoff,
128 bitoff_p, slots_p);
131 static inline pt_slot_t
132 ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
133 const pt_node_t *ptn)
135 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
136 if (bitlen == 0)
137 return PT_SLOT_ROOT;
138 return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
139 PTN_BRANCH_BITOFF(ptn),
140 bitlen);
143 static inline bool
144 ptree_matchkey(const pt_tree_t *pt, const void *key,
145 const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
147 return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
148 bitoff, bitlen);
151 static inline pt_slot_t
152 ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
154 return (*pt->pt_ops->ptto_testkey)(key,
155 PTN_BRANCH_BITOFF(ptn),
156 PTN_BRANCH_BITLEN(ptn));
159 static inline void
160 ptree_set_position(uintptr_t node, pt_slot_t position)
162 if (PT_LEAF_P(node))
163 PTN_SET_LEAF_POSITION(PT_NODE(node), position);
164 else
165 PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
168 void
169 ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, size_t node_offset,
170 size_t key_offset)
172 memset(pt, 0, sizeof(*pt));
173 pt->pt_node_offset = node_offset;
174 pt->pt_key_offset = key_offset;
175 pt->pt_ops = ops;
178 typedef struct {
179 uintptr_t *id_insertp;
180 pt_node_t *id_parent;
181 uintptr_t id_node;
182 pt_slot_t id_parent_slot;
183 pt_bitoff_t id_bitoff;
184 pt_slot_t id_slot;
185 } pt_insertdata_t;
187 typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
190 * Move a branch identify from src to dst. The leaves don't care since
191 * nothing for them has changed.
193 /*ARGSUSED*/
194 static uintptr_t
195 ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
196 const pt_node_t * const src)
198 KASSERT(PTN_BRANCH_BITLEN(src) == 1);
199 /* set branch bitlen and bitoff in one step. */
200 dst->ptn_branchdata = src->ptn_branchdata;
201 PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
202 PTN_COPY_BRANCH_SLOTS(dst, src);
203 return PTN_BRANCH(dst);
206 #ifndef PTNOMASK
207 static inline uintptr_t *
208 ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
210 pt_node_t * const branch = PT_NODE(branch_node);
211 pt_node_t *parent;
213 for (parent = &pt->pt_rootnode;;) {
214 uintptr_t *nodep =
215 &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
216 if (*nodep == branch_node)
217 return nodep;
218 if (PT_LEAF_P(*nodep))
219 return NULL;
220 parent = PT_NODE(*nodep);
224 static bool
225 ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
226 pt_insertdata_t * const id)
228 const uintptr_t target_node = PTN_LEAF(target);
229 const uintptr_t mask_node = id->id_node;
230 pt_node_t * const mask = PT_NODE(mask_node);
231 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
233 KASSERT(PT_LEAF_P(mask_node));
234 KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
235 KASSERT(mask_len <= id->id_bitoff);
236 KASSERT(PTN_ISMASK_P(mask));
237 KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
239 if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
240 KASSERT(id->id_parent != mask);
242 * Nice, mask was an oddman. So just set the oddman to target.
244 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
245 } else {
247 * We need to find out who's pointing to mask's branch
248 * identity. We know that between root and the leaf identity,
249 * we must traverse the node's branch identity.
251 uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
252 KASSERT(mask_nodep != NULL);
253 KASSERT(*mask_nodep == PTN_BRANCH(mask));
254 KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
257 * Alas, mask was used as a branch. Since the mask is becoming
258 * a one-way branch, we need make target take over mask's
259 * branching responsibilities. Only then can we change it.
261 *mask_nodep = ptree_move_branch(pt, target, mask);
264 * However, it's possible that mask's parent is itself. If
265 * that's true, update the insert point to use target since it
266 * has taken over mask's branching duties.
268 if (id->id_parent == mask)
269 id->id_insertp = &PTN_BRANCH_SLOT(target,
270 id->id_parent_slot);
273 PTN_SET_BRANCH_BITLEN(mask, 0);
274 PTN_SET_BRANCH_BITOFF(mask, mask_len);
276 PTN_BRANCH_ROOT_SLOT(mask) = target_node;
277 PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
278 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
279 PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
282 * Now that everything is done, to make target visible we need to
283 * change mask from a leaf to a branch.
285 *id->id_insertp = PTN_BRANCH(mask);
286 PTREE_CHECK(pt);
287 return true;
290 /*ARGSUSED*/
291 static bool
292 ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
293 pt_insertdata_t * const id)
295 const uintptr_t node = id->id_node;
296 pt_node_t * const ptn = PT_NODE(node);
297 const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
298 const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
300 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
301 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
302 KASSERT(PTN_ISMASK_P(target));
305 * If the node we are placing ourself in front is a mask with the
306 * same mask length as us, return failure.
308 if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
309 return false;
311 PTN_SET_BRANCH_BITLEN(target, 0);
312 PTN_SET_BRANCH_BITOFF(target, mask_len);
314 PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
315 *id->id_insertp = PTN_BRANCH(target);
317 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
318 ptree_set_position(node, PT_SLOT_ROOT);
320 PTREE_CHECK(pt);
321 return true;
323 #endif /* !PTNOMASK */
325 /*ARGSUSED*/
326 static bool
327 ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
328 pt_insertdata_t * const id)
330 const uintptr_t target_node = PTN_LEAF(target);
331 const uintptr_t node = id->id_node;
332 const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
334 KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
335 KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
336 KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
337 #ifndef PTNOMASK
338 KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
339 #endif
340 KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
342 PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
343 PTN_SET_BRANCH_BITLEN(target, 1);
345 PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
346 PTN_BRANCH_SLOT(target, other_slot) = node;
347 *id->id_insertp = PTN_BRANCH(target);
349 PTN_SET_LEAF_POSITION(target, id->id_slot);
350 ptree_set_position(node, other_slot);
352 PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
353 PTREE_CHECK(pt);
354 return true;
357 static bool
358 ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
359 pt_insertdata_t * const id)
361 const uintptr_t leaf_node = id->id_node;
362 pt_node_t * const leaf = PT_NODE(leaf_node);
363 #ifdef PTNOMASK
364 const bool inserting_mask = false;
365 const bool at_mask = false;
366 #else
367 const bool inserting_mask = PTN_ISMASK_P(target);
368 const bool at_mask = PTN_ISMASK_P(leaf);
369 const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
370 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
371 #endif
372 pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
373 bool matched;
376 * In all likelyhood we are going simply going to insert a branch
377 * where this leaf is which will point to the old and new leaves.
379 KASSERT(PT_LEAF_P(leaf_node));
380 KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
381 matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
382 &id->id_bitoff, &id->id_slot);
383 if (__predict_false(!inserting_mask)) {
385 * We aren't inserting a mask nor is the leaf a mask, which
386 * means we are trying to insert a duplicate leaf. Can't do
387 * that.
389 if (!at_mask && matched)
390 return false;
392 #ifndef PTNOMASK
394 * We are at a mask and the leaf we are about to insert
395 * is at or beyond the mask, we need to convert the mask
396 * from a leaf to a one-way branch interior mask.
398 if (at_mask && id->id_bitoff >= leaf_masklen)
399 insertfunc = ptree_insert_leaf_after_mask;
400 #endif /* PTNOMASK */
402 #ifndef PTNOMASK
403 else {
405 * We are inserting a mask.
407 if (matched) {
409 * If the leaf isn't a mask, we obviously have to
410 * insert the new mask before non-mask leaf. If the
411 * leaf is a mask, and the new node has a LEQ mask
412 * length it too needs to inserted before leaf (*).
414 * In other cases, we place the new mask as leaf after
415 * leaf mask. Which mask comes first will be a one-way
416 * branch interior mask node which has the other mask
417 * node as a child.
419 * (*) ptree_insert_mask_before_node can detect a
420 * duplicate mask and return failure if needed.
422 if (!at_mask || target_masklen <= leaf_masklen)
423 insertfunc = ptree_insert_mask_before_node;
424 else
425 insertfunc = ptree_insert_leaf_after_mask;
426 } else if (at_mask && id->id_bitoff >= leaf_masklen) {
428 * If the new mask has a bit offset GEQ than the leaf's
429 * mask length, convert the left to a one-way branch
430 * interior mask and make that point to the new [leaf]
431 * mask.
433 insertfunc = ptree_insert_leaf_after_mask;
434 } else {
436 * The new mask has a bit offset less than the leaf's
437 * mask length or if the leaf isn't a mask at all, the
438 * new mask deserves to be its own leaf so we use the
439 * default insertfunc to do that.
443 #endif /* PTNOMASK */
445 return (*insertfunc)(pt, target, id);
448 static bool
449 ptree_insert_node_common(pt_tree_t *pt, void *item)
451 pt_node_t * const target = ITEMTONODE(pt, item);
452 #ifndef PTNOMASK
453 const bool inserting_mask = PTN_ISMASK_P(target);
454 const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
455 #endif
456 pt_insertfunc_t insertfunc;
457 pt_insertdata_t id;
460 * We need a leaf so we can match against. Until we get a leaf
461 * we having nothing to test against.
463 if (__predict_false(PT_NULL_P(pt->pt_root))) {
464 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
465 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
466 PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
467 PTREE_CHECK(pt);
468 return true;
471 id.id_bitoff = 0;
472 id.id_parent = &pt->pt_rootnode;
473 id.id_parent_slot = PT_SLOT_ROOT;
474 id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
475 for (;;) {
476 pt_bitoff_t branch_bitoff;
477 pt_node_t * const ptn = PT_NODE(*id.id_insertp);
478 id.id_node = *id.id_insertp;
481 * If we hit a leaf, try to insert target at leaf. We could
482 * have inlined ptree_insert_leaf here but that would have
483 * made this routine much harder to understand. Trust the
484 * compiler to optimize this properly.
486 if (PT_LEAF_P(id.id_node)) {
487 KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
488 insertfunc = ptree_insert_leaf;
489 break;
493 * If we aren't a leaf, we must be a branch. Make sure we are
494 * in the slot we think we are.
496 KASSERT(PT_BRANCH_P(id.id_node));
497 KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
500 * Where is this branch?
502 branch_bitoff = PTN_BRANCH_BITOFF(ptn);
504 #ifndef PTNOMASK
506 * If this is a one-way mask node, its offset must equal
507 * its mask's bitlen.
509 KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
512 * If we are inserting a mask, and we know that at this point
513 * all bits before the current bit offset match both the target
514 * and the branch. If the target's mask length is LEQ than
515 * this branch's bit offset, then this is where the mask needs
516 * to added to the tree.
518 if (__predict_false(inserting_mask)
519 && (PTN_ISROOT_P(pt, id.id_parent)
520 || id.id_bitoff < target_masklen)
521 && target_masklen <= branch_bitoff) {
523 * We don't know about the bits (if any) between
524 * id.id_bitoff and the target's mask length match
525 * both the target and the branch. If the target's
526 * mask length is greater than the current bit offset
527 * make sure the untested bits match both the target
528 * and the branch.
530 if (target_masklen == id.id_bitoff
531 || ptree_matchnode(pt, target, ptn, target_masklen,
532 &id.id_bitoff, &id.id_slot)) {
534 * The bits matched, so insert the mask as a
535 * one-way branch.
537 insertfunc = ptree_insert_mask_before_node;
538 break;
539 } else if (id.id_bitoff < branch_bitoff) {
541 * They didn't match, so create a normal branch
542 * because this mask needs to a be a new leaf.
544 insertfunc = ptree_insert_branch_at_node;
545 break;
548 #endif /* PTNOMASK */
551 * If we are skipping some bits, verify they match the node.
552 * If they don't match, it means we have a leaf to insert.
553 * Note that if we are advancing bit by bit, we'll skip
554 * doing matchnode and walk the tree bit by bit via testnode.
556 if (id.id_bitoff < branch_bitoff
557 && !ptree_matchnode(pt, target, ptn, branch_bitoff,
558 &id.id_bitoff, &id.id_slot)) {
559 KASSERT(id.id_bitoff < branch_bitoff);
560 insertfunc = ptree_insert_branch_at_node;
561 break;
565 * At this point, all bits before branch_bitoff are known
566 * to match the target.
568 KASSERT(id.id_bitoff >= branch_bitoff);
571 * Decend the tree one level.
573 id.id_parent = ptn;
574 id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
575 id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
576 id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
580 * Do the actual insertion.
582 return (*insertfunc)(pt, target, &id);
585 bool
586 ptree_insert_node(pt_tree_t *pt, void *item)
588 pt_node_t * const target = ITEMTONODE(pt, item);
590 memset(target, 0, sizeof(*target));
591 return ptree_insert_node_common(pt, target);
594 #ifndef PTNOMASK
595 bool
596 ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
598 pt_node_t * const target = ITEMTONODE(pt, item);
599 pt_bitoff_t bitoff = mask_len;
600 pt_slot_t slot;
602 memset(target, 0, sizeof(*target));
603 KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
605 * Only the first <mask_len> bits can be non-zero.
606 * All other bits must be 0.
608 if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
609 return false;
610 PTN_SET_MASK_BITLEN(target, mask_len);
611 PTN_MARK_MASK(target);
612 return ptree_insert_node_common(pt, target);
614 #endif /* !PTNOMASH */
616 void *
617 ptree_find_filtered_node(pt_tree_t *pt, void *key, pt_filter_t filter,
618 void *filter_arg)
620 #ifndef PTNOMASK
621 pt_node_t *mask = NULL;
622 #endif
623 bool at_mask = false;
624 pt_node_t *ptn, *parent;
625 pt_bitoff_t bitoff;
626 pt_slot_t parent_slot;
628 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
629 return NULL;
631 bitoff = 0;
632 parent = &pt->pt_rootnode;
633 parent_slot = PT_SLOT_ROOT;
634 for (;;) {
635 const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
636 const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
637 ptn = PT_NODE(node);
639 if (PT_LEAF_P(node)) {
640 #ifndef PTNOMASK
641 at_mask = PTN_ISMASK_P(ptn);
642 #endif
643 break;
646 if (bitoff < branch_bitoff) {
647 if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
648 #ifndef PTNOMASK
649 if (mask != NULL)
650 return NODETOITEM(pt, mask);
651 #endif
652 return NULL;
654 bitoff = branch_bitoff;
657 #ifndef PTNOMASK
658 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
659 && (!filter
660 || (*filter)(filter_arg, NODETOITEM(pt, ptn),
661 PT_FILTER_MASK)))
662 mask = ptn;
663 #endif
665 parent = ptn;
666 parent_slot = ptree_testkey(pt, key, parent);
667 bitoff += PTN_BRANCH_BITLEN(parent);
670 KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
671 if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
672 #ifndef PTNOMASK
673 if (PTN_ISMASK_P(ptn)) {
674 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
675 if (bitoff == PTN_MASK_BITLEN(ptn))
676 return NODETOITEM(pt, ptn);
677 if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
678 return NODETOITEM(pt, ptn);
679 } else
680 #endif /* !PTNOMASK */
681 if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
682 return NODETOITEM(pt, ptn);
685 #ifndef PTNOMASK
687 * By virtue of how the mask was placed in the tree,
688 * all nodes descended from it will match it. But the bits
689 * before the mask still need to be checked and since the
690 * mask was a branch, that was done implicitly.
692 if (mask != NULL) {
693 KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
694 return NODETOITEM(pt, mask);
696 #endif /* !PTNOMASK */
699 * Nothing matched.
701 return NULL;
704 void *
705 ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
707 const pt_node_t * const target = ITEMTONODE(pt, item);
708 uintptr_t node, next_node;
710 if (direction != PT_ASCENDING && direction != PT_DESCENDING)
711 return NULL;
713 node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
714 if (PT_NULL_P(node))
715 return NULL;
717 if (item == NULL) {
718 pt_node_t * const ptn = PT_NODE(node);
719 if (direction == PT_ASCENDING
720 && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
721 return NODETOITEM(pt, ptn);
722 next_node = node;
723 } else {
724 #ifndef PTNOMASK
725 uintptr_t mask_node = PT_NULL;
726 #endif /* !PTNOMASK */
727 next_node = PT_NULL;
728 while (!PT_LEAF_P(node)) {
729 pt_node_t * const ptn = PT_NODE(node);
730 pt_slot_t slot;
731 #ifndef PTNOMASK
732 if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
733 if (ptn == target)
734 break;
735 if (direction == PT_DESCENDING) {
736 mask_node = node;
737 next_node = PT_NULL;
740 #endif /* !PTNOMASK */
741 slot = ptree_testnode(pt, target, ptn);
742 node = PTN_BRANCH_SLOT(ptn, slot);
743 if (direction == PT_ASCENDING) {
744 if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
745 next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
746 } else {
747 if (slot > 0) {
748 #ifndef PTNOMASK
749 mask_node = PT_NULL;
750 #endif /* !PTNOMASK */
751 next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
755 if (PT_NODE(node) != target)
756 return NULL;
757 #ifndef PTNOMASK
758 if (PT_BRANCH_P(node)) {
759 pt_node_t *ptn = PT_NODE(node);
760 KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
761 if (direction == PT_ASCENDING) {
762 next_node = PTN_BRANCH_ROOT_SLOT(ptn);
763 ptn = PT_NODE(next_node);
767 * When descending, if we countered a mask node then that's
768 * we want to return.
770 if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
771 KASSERT(PT_NULL_P(next_node));
772 return NODETOITEM(pt, PT_NODE(mask_node));
774 #endif /* !PTNOMASK */
777 node = next_node;
778 if (PT_NULL_P(node))
779 return NULL;
781 while (!PT_LEAF_P(node)) {
782 pt_node_t * const ptn = PT_NODE(node);
783 pt_slot_t slot;
784 if (direction == PT_ASCENDING) {
785 #ifndef PTNOMASK
786 if (PT_BRANCH_P(node)
787 && PTN_ISMASK_P(ptn)
788 && PTN_BRANCH_BITLEN(ptn) == 0)
789 return NODETOITEM(pt, ptn);
790 #endif /* !PTNOMASK */
791 slot = PT_SLOT_LEFT;
792 } else {
793 slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
795 node = PTN_BRANCH_SLOT(ptn, slot);
797 return NODETOITEM(pt, PT_NODE(node));
800 void
801 ptree_remove_node(pt_tree_t *pt, void *item)
803 pt_node_t * const target = ITEMTONODE(pt, item);
804 const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
805 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
806 pt_node_t *ptn, *parent;
807 uintptr_t node;
808 uintptr_t *removep;
809 uintptr_t *nodep;
810 pt_bitoff_t bitoff;
811 pt_slot_t parent_slot;
812 #ifndef PTNOMASK
813 bool at_mask;
814 #endif
816 if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
817 KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
818 return;
821 bitoff = 0;
822 removep = NULL;
823 nodep = NULL;
824 parent = &pt->pt_rootnode;
825 parent_slot = PT_SLOT_ROOT;
826 for (;;) {
827 node = PTN_BRANCH_SLOT(parent, parent_slot);
828 ptn = PT_NODE(node);
829 #ifndef PTNOMASK
830 at_mask = PTN_ISMASK_P(ptn);
831 #endif
833 if (PT_LEAF_P(node))
834 break;
837 * If we are at the target, then we are looking at its branch
838 * identity. We need to remember who's pointing at it so we
839 * stop them from doing that.
841 if (__predict_false(ptn == target)) {
842 KASSERT(nodep == NULL);
843 #ifndef PTNOMASK
845 * Interior mask nodes are trivial to get rid of.
847 if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
848 PTN_BRANCH_SLOT(parent, parent_slot) =
849 PTN_BRANCH_ROOT_SLOT(ptn);
850 KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
851 PTREE_CHECK(pt);
852 return;
854 #endif /* !PTNOMASK */
855 nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
856 KASSERT(*nodep == PTN_BRANCH(target));
859 * We need also need to know who's pointing at our parent.
860 * After we remove ourselves from our parent, he'll only
861 * have one child and that's unacceptable. So we replace
862 * the pointer to the parent with our abadoned sibling.
864 removep = &PTN_BRANCH_SLOT(parent, parent_slot);
867 * Descend into the tree.
869 parent = ptn;
870 parent_slot = ptree_testnode(pt, target, parent);
871 bitoff += PTN_BRANCH_BITLEN(parent);
875 * We better have found that the leaf we are looking for is target.
877 if (target != ptn) {
878 KASSERT(target == ptn);
879 return;
883 * If we didn't encounter target as branch, then target must be the
884 * oddman-out.
886 if (nodep == NULL) {
887 KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
888 KASSERT(nodep == NULL);
889 nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
892 KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
895 * We have to special remove the last leaf from the root since
896 * the only time the tree can a PT_NULL node is when it's empty.
898 if (__predict_false(PTN_ISROOT_P(pt, parent))) {
899 KASSERT(removep == NULL);
900 KASSERT(parent == &pt->pt_rootnode);
901 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
902 KASSERT(*nodep == PTN_LEAF(target));
903 PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
904 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
905 return;
908 KASSERT((parent == target) == (removep == nodep));
909 if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
911 * The pointer to the parent actually lives in the target's
912 * branch identity. We can't just move the target's branch
913 * identity since that would result in the parent pointing
914 * to its own branch identity and that's fobidden.
916 const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
917 const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
918 const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
920 KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
923 * This gets so confusing. The target's branch identity
924 * points to the branch identity of the parent of the target's
925 * leaf identity:
927 * TB = { X, PB = { TL, Y } }
928 * or TB = { X, PB = { TL } }
930 * So we can't move the target's branch identity to the parent
931 * because that would corrupt the tree.
933 if (__predict_true(parent_bitlen > 0)) {
935 * The parent is a two-way branch. We have to have
936 * do to this chang in two steps to keep internally
937 * consistent. First step is to copy our sibling from
938 * our parent to where we are pointing to parent's
939 * branch identiy. This remove all references to his
940 * branch identity from the tree. We then simply make
941 * the parent assume the target's branching duties.
943 * TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
944 * TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
945 * TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
946 * TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
948 PTN_BRANCH_SLOT(target, slot) =
949 PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
950 *nodep = ptree_move_branch(pt, parent, target);
951 PTREE_CHECK(pt);
952 return;
953 } else {
955 * If parent was a one-way branch, it must have been
956 * mask which pointed to a single leaf which we are
957 * removing. This means we have to convert the
958 * parent back to a leaf node. So in the same
959 * position that target pointed to parent, we place
960 * leaf pointer to parent. In the other position,
961 * we just put the other node from target.
963 * TB = { X, PB = { TL } } --> PB = { X, PL }
965 KASSERT(PTN_ISMASK_P(parent));
966 KASSERT(slot == ptree_testnode(pt, parent, target));
967 PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
968 PTN_BRANCH_SLOT(parent, other_slot) =
969 PTN_BRANCH_SLOT(target, other_slot);
970 PTN_SET_LEAF_POSITION(parent,slot);
971 PTN_SET_BRANCH_BITLEN(parent, 1);
973 PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
974 PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
976 *nodep = PTN_BRANCH(parent);
977 PTREE_CHECK(pt);
978 return;
981 #ifndef PTNOMASK
982 if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
984 * Parent was a one-way branch which is changing back to a leaf.
985 * Since parent is no longer a one-way branch, it can take over
986 * target's branching duties.
988 * GB = { PB = { TL } } --> GB = { PL }
989 * TB = { X, Y } --> PB = { X, Y }
991 KASSERT(PTN_ISMASK_P(parent));
992 KASSERT(parent != target);
993 *removep = PTN_LEAF(parent);
994 } else
995 #endif /* !PTNOMASK */
998 * Now we are the normal removal case. Since after the
999 * target's leaf identity is removed from the its parent,
1000 * that parent will only have one decendent. So we can
1001 * just as easily replace the node that has the parent's
1002 * branch identity with the surviving node. This freeing
1003 * parent from its branching duties which means it can
1004 * take over target's branching duties.
1006 * GB = { PB = { X, TL } } --> GB = { X }
1007 * TB = { V, W } --> PB = { V, W }
1009 const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
1010 uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
1011 const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
1013 *removep = other_node;
1015 ptree_set_position(other_node, target_slot);
1018 * If target's branch identity contained its leaf identity, we
1019 * have nothing left to do. We've already moved 'X' so there
1020 * is no longer anything in the target's branch identiy that
1021 * has to be preserved.
1023 if (parent == target) {
1025 * GB = { TB = { X, TL } } --> GB = { X }
1026 * TB = { X, TL } --> don't care
1028 PTREE_CHECK(pt);
1029 return;
1034 * If target wasn't used as a branch, then it must have been the
1035 * oddman-out of the tree (the one node that doesn't have a branch
1036 * identity). This makes parent the new oddman-out.
1038 if (*nodep == PTN_LEAF(target)) {
1039 KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
1040 PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
1041 PTREE_CHECK(pt);
1042 return;
1046 * Finally move the target's branching duties to the parent.
1048 KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
1049 *nodep = ptree_move_branch(pt, parent, target);
1050 PTREE_CHECK(pt);
1053 #ifdef PTCHECK
1054 static const pt_node_t *
1055 ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
1056 uintptr_t target)
1058 const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
1059 pt_slot_t slot;
1061 for (slot = 0; slot < slots; slot++) {
1062 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1063 if (PTN_BRANCH_SLOT(parent, slot) == node)
1064 return parent;
1066 for (slot = 0; slot < slots; slot++) {
1067 const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
1068 const pt_node_t *branch;
1069 if (!PT_BRANCH_P(node))
1070 continue;
1071 branch = ptree_check_find_node2(pt, PT_NODE(node), target);
1072 if (branch != NULL)
1073 return branch;
1076 return NULL;
1079 static bool
1080 ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
1081 const pt_node_t *ptn)
1083 const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
1084 const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
1085 const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
1086 const uintptr_t leaf_node = PTN_LEAF(ptn);
1087 const bool is_parent_root = (parent == &pt->pt_rootnode);
1088 const bool is_mask = PTN_ISMASK_P(ptn);
1089 bool ok = true;
1091 if (is_parent_root) {
1092 ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
1093 KASSERT(ok);
1094 return ok;
1097 if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
1098 ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
1099 KASSERT(ok);
1100 ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
1101 KASSERT(ok);
1103 ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
1104 KASSERT(ok);
1105 ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
1106 KASSERT(ok);
1107 if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
1108 ok = ok && bitlen > 0;
1109 KASSERT(ok);
1110 ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
1111 KASSERT(ok);
1113 return ok;
1116 static bool
1117 ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
1118 const pt_node_t *ptn)
1120 const bool is_parent_root = (parent == &pt->pt_rootnode);
1121 const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
1122 const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
1123 const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
1124 const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
1125 const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
1126 const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
1127 const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
1128 const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
1129 const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
1130 const pt_bitlen_t slots = 1 << bitlen;
1131 pt_slot_t slot;
1132 bool ok = true;
1134 ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
1135 KASSERT(ok);
1136 ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
1137 KASSERT(ok);
1139 if (is_mask) {
1140 ok = ok && bitoff == mask_len;
1141 KASSERT(ok);
1142 if (is_parent_mask) {
1143 ok = ok && parent_mask_len < mask_len;
1144 KASSERT(ok);
1145 ok = ok && parent_bitoff < bitoff;
1146 KASSERT(ok);
1148 } else {
1149 if (is_parent_mask) {
1150 ok = ok && parent_bitoff <= bitoff;
1151 } else if (!is_parent_root) {
1152 ok = ok && parent_bitoff < bitoff;
1154 KASSERT(ok);
1157 for (slot = 0; slot < slots; slot++) {
1158 const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
1159 pt_bitoff_t tmp_bitoff = 0;
1160 pt_slot_t tmp_slot;
1161 ok = ok && node != PTN_BRANCH(ptn);
1162 KASSERT(ok);
1163 if (bitlen > 0) {
1164 ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
1165 KASSERT(ok);
1166 tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
1167 ok = ok && slot == tmp_slot;
1168 KASSERT(ok);
1170 if (PT_LEAF_P(node))
1171 ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
1172 else
1173 ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
1176 return ok;
1178 #endif /* PTCHECK */
1180 /*ARGSUSED*/
1181 bool
1182 ptree_check(const pt_tree_t *pt)
1184 bool ok = true;
1185 #ifdef PTCHECK
1186 const pt_node_t * const parent = &pt->pt_rootnode;
1187 const uintptr_t node = pt->pt_root;
1188 const pt_node_t * const ptn = PT_NODE(node);
1190 ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
1191 ok = ok && !PTN_ISMASK_P(parent);
1193 if (PT_NULL_P(node))
1194 return ok;
1196 if (PT_LEAF_P(node))
1197 ok = ok && ptree_check_leaf(pt, parent, ptn);
1198 else
1199 ok = ok && ptree_check_branch(pt, parent, ptn);
1200 #endif
1201 return ok;