No empty .Rs/.Re
[netbsd-mini2440.git] / common / lib / libc / hash / sha2 / sha2.c
bloba5acaf30c5d7f40073dddb47fcd1982029bc665c
1 /* $NetBSD: sha2.c,v 1.19 2009/08/21 09:40:51 skrll Exp $ */
2 /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */
4 /*
5 * sha2.c
7 * Version 1.0.0beta1
9 * Written by Aaron D. Gifford <me@aarongifford.com>
11 * Copyright 2000 Aaron D. Gifford. All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the copyright holder nor the names of contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
39 #if HAVE_NBTOOL_CONFIG_H
40 #include "nbtool_config.h"
41 #endif
43 #include <sys/cdefs.h>
45 #if defined(_KERNEL) || defined(_STANDALONE)
46 __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.19 2009/08/21 09:40:51 skrll Exp $");
48 #include <sys/param.h> /* XXX: to pull <machine/macros.h> for vax memset(9) */
49 #include <lib/libkern/libkern.h>
51 #else
53 #if defined(LIBC_SCCS) && !defined(lint)
54 __RCSID("$NetBSD: sha2.c,v 1.19 2009/08/21 09:40:51 skrll Exp $");
55 #endif /* LIBC_SCCS and not lint */
57 #include "namespace.h"
58 #include <string.h>
60 #endif
62 #include <sys/types.h>
63 #include <sys/sha2.h>
65 #if HAVE_NBTOOL_CONFIG_H
66 # if HAVE_SYS_ENDIAN_H
67 # include <sys/endian.h>
68 # else
69 # undef htobe32
70 # undef htobe64
71 # undef be32toh
72 # undef be64toh
74 static uint32_t
75 htobe32(uint32_t x)
77 uint8_t p[4];
78 memcpy(p, &x, 4);
80 return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
83 static uint64_t
84 htobe64(uint64_t x)
86 uint8_t p[8];
87 uint32_t u, v;
88 memcpy(p, &x, 8);
90 u = ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
91 v = ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]);
93 return ((((uint64_t)u) << 32) | v);
96 static uint32_t
97 be32toh(uint32_t x)
99 return htobe32(x);
102 static uint64_t
103 be64toh(uint64_t x)
105 return htobe64(x);
107 # endif
108 #endif
110 /*** SHA-256/384/512 Various Length Definitions ***********************/
111 /* NOTE: Most of these are in sha2.h */
112 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
113 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
114 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
117 * Macro for incrementally adding the unsigned 64-bit integer n to the
118 * unsigned 128-bit integer (represented using a two-element array of
119 * 64-bit words):
121 #define ADDINC128(w,n) { \
122 (w)[0] += (uint64_t)(n); \
123 if ((w)[0] < (n)) { \
124 (w)[1]++; \
128 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
130 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
132 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
133 * S is a ROTATION) because the SHA-256/384/512 description document
134 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
135 * same "backwards" definition.
137 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
138 #define R(b,x) ((x) >> (b))
139 /* 32-bit Rotate-right (used in SHA-256): */
140 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
141 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
142 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
144 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
145 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
146 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
148 /* Four of six logical functions used in SHA-256: */
149 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
150 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
151 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
152 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
154 /* Four of six logical functions used in SHA-384 and SHA-512: */
155 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
156 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
157 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
158 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
160 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
161 /* NOTE: These should not be accessed directly from outside this
162 * library -- they are intended for private internal visibility/use
163 * only.
165 static void SHA512_Last(SHA512_CTX *);
166 void SHA224_Transform(SHA224_CTX *, const uint32_t*);
167 void SHA256_Transform(SHA256_CTX *, const uint32_t*);
168 void SHA384_Transform(SHA384_CTX *, const uint64_t*);
169 void SHA512_Transform(SHA512_CTX *, const uint64_t*);
172 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
173 /* Hash constant words K for SHA-256: */
174 static const uint32_t K256[64] = {
175 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
176 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
177 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
178 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
179 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
180 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
181 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
182 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
183 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
184 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
185 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
186 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
187 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
188 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
189 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
190 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
193 /* Initial hash value H for SHA-224: */
194 static const uint32_t sha224_initial_hash_value[8] = {
195 0xc1059ed8UL,
196 0x367cd507UL,
197 0x3070dd17UL,
198 0xf70e5939UL,
199 0xffc00b31UL,
200 0x68581511UL,
201 0x64f98fa7UL,
202 0xbefa4fa4UL
205 /* Initial hash value H for SHA-256: */
206 static const uint32_t sha256_initial_hash_value[8] = {
207 0x6a09e667UL,
208 0xbb67ae85UL,
209 0x3c6ef372UL,
210 0xa54ff53aUL,
211 0x510e527fUL,
212 0x9b05688cUL,
213 0x1f83d9abUL,
214 0x5be0cd19UL
217 /* Hash constant words K for SHA-384 and SHA-512: */
218 static const uint64_t K512[80] = {
219 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
220 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
221 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
222 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
223 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
224 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
225 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
226 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
227 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
228 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
229 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
230 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
231 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
232 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
233 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
234 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
235 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
236 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
237 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
238 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
239 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
240 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
241 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
242 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
243 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
244 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
245 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
246 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
247 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
248 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
249 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
250 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
251 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
252 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
253 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
254 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
255 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
256 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
257 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
258 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
261 /* Initial hash value H for SHA-384 */
262 static const uint64_t sha384_initial_hash_value[8] = {
263 0xcbbb9d5dc1059ed8ULL,
264 0x629a292a367cd507ULL,
265 0x9159015a3070dd17ULL,
266 0x152fecd8f70e5939ULL,
267 0x67332667ffc00b31ULL,
268 0x8eb44a8768581511ULL,
269 0xdb0c2e0d64f98fa7ULL,
270 0x47b5481dbefa4fa4ULL
273 /* Initial hash value H for SHA-512 */
274 static const uint64_t sha512_initial_hash_value[8] = {
275 0x6a09e667f3bcc908ULL,
276 0xbb67ae8584caa73bULL,
277 0x3c6ef372fe94f82bULL,
278 0xa54ff53a5f1d36f1ULL,
279 0x510e527fade682d1ULL,
280 0x9b05688c2b3e6c1fULL,
281 0x1f83d9abfb41bd6bULL,
282 0x5be0cd19137e2179ULL
285 #if !defined(_KERNEL) && !defined(_STANDALONE)
286 #if defined(__weak_alias)
287 __weak_alias(SHA224_Init,_SHA224_Init)
288 __weak_alias(SHA224_Update,_SHA224_Update)
289 __weak_alias(SHA224_Final,_SHA224_Final)
290 __weak_alias(SHA224_Transform,_SHA224_Transform)
292 __weak_alias(SHA256_Init,_SHA256_Init)
293 __weak_alias(SHA256_Update,_SHA256_Update)
294 __weak_alias(SHA256_Final,_SHA256_Final)
295 __weak_alias(SHA256_Transform,_SHA256_Transform)
297 __weak_alias(SHA384_Init,_SHA384_Init)
298 __weak_alias(SHA384_Update,_SHA384_Update)
299 __weak_alias(SHA384_Final,_SHA384_Final)
300 __weak_alias(SHA384_Transform,_SHA384_Transform)
302 __weak_alias(SHA512_Init,_SHA512_Init)
303 __weak_alias(SHA512_Update,_SHA512_Update)
304 __weak_alias(SHA512_Final,_SHA512_Final)
305 __weak_alias(SHA512_Transform,_SHA512_Transform)
306 #endif
307 #endif
309 /*** SHA-256: *********************************************************/
311 SHA256_Init(SHA256_CTX *context)
313 if (context == NULL)
314 return 1;
316 memcpy(context->state, sha256_initial_hash_value,
317 (size_t)(SHA256_DIGEST_LENGTH));
318 memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
319 context->bitcount = 0;
321 return 1;
324 #ifdef SHA2_UNROLL_TRANSFORM
326 /* Unrolled SHA-256 round macros: */
328 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
329 W256[j] = be32toh(*data); \
330 ++data; \
331 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
332 K256[j] + W256[j]; \
333 (d) += T1; \
334 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
337 #define ROUND256(a,b,c,d,e,f,g,h) \
338 s0 = W256[(j+1)&0x0f]; \
339 s0 = sigma0_256(s0); \
340 s1 = W256[(j+14)&0x0f]; \
341 s1 = sigma1_256(s1); \
342 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
343 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
344 (d) += T1; \
345 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
348 void
349 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
351 uint32_t a, b, c, d, e, f, g, h, s0, s1;
352 uint32_t T1, *W256;
353 int j;
355 W256 = (uint32_t *)context->buffer;
357 /* Initialize registers with the prev. intermediate value */
358 a = context->state[0];
359 b = context->state[1];
360 c = context->state[2];
361 d = context->state[3];
362 e = context->state[4];
363 f = context->state[5];
364 g = context->state[6];
365 h = context->state[7];
367 j = 0;
368 do {
369 /* Rounds 0 to 15 (unrolled): */
370 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
371 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
372 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
373 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
374 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
375 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
376 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
377 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
378 } while (j < 16);
380 /* Now for the remaining rounds to 64: */
381 do {
382 ROUND256(a,b,c,d,e,f,g,h);
383 ROUND256(h,a,b,c,d,e,f,g);
384 ROUND256(g,h,a,b,c,d,e,f);
385 ROUND256(f,g,h,a,b,c,d,e);
386 ROUND256(e,f,g,h,a,b,c,d);
387 ROUND256(d,e,f,g,h,a,b,c);
388 ROUND256(c,d,e,f,g,h,a,b);
389 ROUND256(b,c,d,e,f,g,h,a);
390 } while (j < 64);
392 /* Compute the current intermediate hash value */
393 context->state[0] += a;
394 context->state[1] += b;
395 context->state[2] += c;
396 context->state[3] += d;
397 context->state[4] += e;
398 context->state[5] += f;
399 context->state[6] += g;
400 context->state[7] += h;
402 /* Clean up */
403 a = b = c = d = e = f = g = h = T1 = 0;
406 #else /* SHA2_UNROLL_TRANSFORM */
408 void
409 SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
411 uint32_t a, b, c, d, e, f, g, h, s0, s1;
412 uint32_t T1, T2, *W256;
413 int j;
415 W256 = (uint32_t *)(void *)context->buffer;
417 /* Initialize registers with the prev. intermediate value */
418 a = context->state[0];
419 b = context->state[1];
420 c = context->state[2];
421 d = context->state[3];
422 e = context->state[4];
423 f = context->state[5];
424 g = context->state[6];
425 h = context->state[7];
427 j = 0;
428 do {
429 W256[j] = be32toh(*data);
430 ++data;
431 /* Apply the SHA-256 compression function to update a..h */
432 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
433 T2 = Sigma0_256(a) + Maj(a, b, c);
434 h = g;
435 g = f;
436 f = e;
437 e = d + T1;
438 d = c;
439 c = b;
440 b = a;
441 a = T1 + T2;
443 j++;
444 } while (j < 16);
446 do {
447 /* Part of the message block expansion: */
448 s0 = W256[(j+1)&0x0f];
449 s0 = sigma0_256(s0);
450 s1 = W256[(j+14)&0x0f];
451 s1 = sigma1_256(s1);
453 /* Apply the SHA-256 compression function to update a..h */
454 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
455 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
456 T2 = Sigma0_256(a) + Maj(a, b, c);
457 h = g;
458 g = f;
459 f = e;
460 e = d + T1;
461 d = c;
462 c = b;
463 b = a;
464 a = T1 + T2;
466 j++;
467 } while (j < 64);
469 /* Compute the current intermediate hash value */
470 context->state[0] += a;
471 context->state[1] += b;
472 context->state[2] += c;
473 context->state[3] += d;
474 context->state[4] += e;
475 context->state[5] += f;
476 context->state[6] += g;
477 context->state[7] += h;
479 /* Clean up */
480 a = b = c = d = e = f = g = h = T1 = T2 = 0;
483 #endif /* SHA2_UNROLL_TRANSFORM */
486 SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
488 unsigned int freespace, usedspace;
490 if (len == 0) {
491 /* Calling with no data is valid - we do nothing */
492 return 1;
495 usedspace = (unsigned int)((context->bitcount >> 3) %
496 SHA256_BLOCK_LENGTH);
497 if (usedspace > 0) {
498 /* Calculate how much free space is available in the buffer */
499 freespace = SHA256_BLOCK_LENGTH - usedspace;
501 if (len >= freespace) {
502 /* Fill the buffer completely and process it */
503 memcpy(&context->buffer[usedspace], data,
504 (size_t)(freespace));
505 context->bitcount += freespace << 3;
506 len -= freespace;
507 data += freespace;
508 SHA256_Transform(context,
509 (uint32_t *)(void *)context->buffer);
510 } else {
511 /* The buffer is not yet full */
512 memcpy(&context->buffer[usedspace], data, len);
513 context->bitcount += len << 3;
514 /* Clean up: */
515 usedspace = freespace = 0;
516 return 1;
520 * Process as many complete blocks as possible.
522 * Check alignment of the data pointer. If it is 32bit aligned,
523 * SHA256_Transform can be called directly on the data stream,
524 * otherwise enforce the alignment by copy into the buffer.
526 if ((uintptr_t)data % 4 == 0) {
527 while (len >= SHA256_BLOCK_LENGTH) {
528 SHA256_Transform(context,
529 (const uint32_t *)(const void *)data);
530 context->bitcount += SHA256_BLOCK_LENGTH << 3;
531 len -= SHA256_BLOCK_LENGTH;
532 data += SHA256_BLOCK_LENGTH;
534 } else {
535 while (len >= SHA256_BLOCK_LENGTH) {
536 memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
537 SHA256_Transform(context,
538 (const uint32_t *)(const void *)context->buffer);
539 context->bitcount += SHA256_BLOCK_LENGTH << 3;
540 len -= SHA256_BLOCK_LENGTH;
541 data += SHA256_BLOCK_LENGTH;
544 if (len > 0) {
545 /* There's left-overs, so save 'em */
546 memcpy(context->buffer, data, len);
547 context->bitcount += len << 3;
549 /* Clean up: */
550 usedspace = freespace = 0;
552 return 1;
555 static int
556 SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
558 uint32_t *d = (void *)digest;
559 unsigned int usedspace;
560 size_t i;
562 /* If no digest buffer is passed, we don't bother doing this: */
563 if (digest != NULL) {
564 usedspace = (unsigned int)((context->bitcount >> 3) %
565 SHA256_BLOCK_LENGTH);
566 context->bitcount = htobe64(context->bitcount);
567 if (usedspace > 0) {
568 /* Begin padding with a 1 bit: */
569 context->buffer[usedspace++] = 0x80;
571 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
572 /* Set-up for the last transform: */
573 memset(&context->buffer[usedspace], 0,
574 (size_t)(SHA256_SHORT_BLOCK_LENGTH -
575 usedspace));
576 } else {
577 if (usedspace < SHA256_BLOCK_LENGTH) {
578 memset(&context->buffer[usedspace], 0,
579 (size_t)(SHA256_BLOCK_LENGTH -
580 usedspace));
582 /* Do second-to-last transform: */
583 SHA256_Transform(context,
584 (uint32_t *)(void *)context->buffer);
586 /* And set-up for the last transform: */
587 memset(context->buffer, 0,
588 (size_t)(SHA256_SHORT_BLOCK_LENGTH));
590 } else {
591 /* Set-up for the last transform: */
592 memset(context->buffer, 0,
593 (size_t)(SHA256_SHORT_BLOCK_LENGTH));
595 /* Begin padding with a 1 bit: */
596 *context->buffer = 0x80;
598 /* Set the bit count: */
599 memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
600 &context->bitcount, sizeof(context->bitcount));
602 /* Final transform: */
603 SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
605 for (i = 0; i < len / 4; i++)
606 d[i] = htobe32(context->state[i]);
609 /* Clean up state data: */
610 memset(context, 0, sizeof(*context));
611 usedspace = 0;
613 return 1;
617 SHA256_Final(uint8_t digest[], SHA256_CTX *context)
619 return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
622 /*** SHA-224: *********************************************************/
623 int
624 SHA224_Init(SHA224_CTX *context)
626 if (context == NULL)
627 return 1;
629 /* The state and buffer size are driven by SHA256, not by SHA224. */
630 memcpy(context->state, sha224_initial_hash_value,
631 (size_t)(SHA256_DIGEST_LENGTH));
632 memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
633 context->bitcount = 0;
635 return 1;
639 SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
641 return SHA256_Update((SHA256_CTX *)context, data, len);
644 void
645 SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
647 SHA256_Transform((SHA256_CTX *)context, data);
651 SHA224_Final(uint8_t digest[], SHA224_CTX *context)
653 return SHA224_256_Final(digest, (SHA256_CTX *)context,
654 SHA224_DIGEST_LENGTH);
657 /*** SHA-512: *********************************************************/
659 SHA512_Init(SHA512_CTX *context)
661 if (context == NULL)
662 return 1;
664 memcpy(context->state, sha512_initial_hash_value,
665 (size_t)(SHA512_DIGEST_LENGTH));
666 memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
667 context->bitcount[0] = context->bitcount[1] = 0;
669 return 1;
672 #ifdef SHA2_UNROLL_TRANSFORM
674 /* Unrolled SHA-512 round macros: */
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 W512[j] = be64toh(*data); \
677 ++data; \
678 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
679 K512[j] + W512[j]; \
680 (d) += T1, \
681 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
684 #define ROUND512(a,b,c,d,e,f,g,h) \
685 s0 = W512[(j+1)&0x0f]; \
686 s0 = sigma0_512(s0); \
687 s1 = W512[(j+14)&0x0f]; \
688 s1 = sigma1_512(s1); \
689 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
690 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
691 (d) += T1; \
692 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
695 void
696 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
698 uint64_t a, b, c, d, e, f, g, h, s0, s1;
699 uint64_t T1, *W512 = (uint64_t *)context->buffer;
700 int j;
702 /* Initialize registers with the prev. intermediate value */
703 a = context->state[0];
704 b = context->state[1];
705 c = context->state[2];
706 d = context->state[3];
707 e = context->state[4];
708 f = context->state[5];
709 g = context->state[6];
710 h = context->state[7];
712 j = 0;
713 do {
714 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
715 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
716 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
717 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
718 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
719 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
720 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
721 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
722 } while (j < 16);
724 /* Now for the remaining rounds up to 79: */
725 do {
726 ROUND512(a,b,c,d,e,f,g,h);
727 ROUND512(h,a,b,c,d,e,f,g);
728 ROUND512(g,h,a,b,c,d,e,f);
729 ROUND512(f,g,h,a,b,c,d,e);
730 ROUND512(e,f,g,h,a,b,c,d);
731 ROUND512(d,e,f,g,h,a,b,c);
732 ROUND512(c,d,e,f,g,h,a,b);
733 ROUND512(b,c,d,e,f,g,h,a);
734 } while (j < 80);
736 /* Compute the current intermediate hash value */
737 context->state[0] += a;
738 context->state[1] += b;
739 context->state[2] += c;
740 context->state[3] += d;
741 context->state[4] += e;
742 context->state[5] += f;
743 context->state[6] += g;
744 context->state[7] += h;
746 /* Clean up */
747 a = b = c = d = e = f = g = h = T1 = 0;
750 #else /* SHA2_UNROLL_TRANSFORM */
752 void
753 SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
755 uint64_t a, b, c, d, e, f, g, h, s0, s1;
756 uint64_t T1, T2, *W512 = (void *)context->buffer;
757 int j;
759 /* Initialize registers with the prev. intermediate value */
760 a = context->state[0];
761 b = context->state[1];
762 c = context->state[2];
763 d = context->state[3];
764 e = context->state[4];
765 f = context->state[5];
766 g = context->state[6];
767 h = context->state[7];
769 j = 0;
770 do {
771 W512[j] = be64toh(*data);
772 ++data;
773 /* Apply the SHA-512 compression function to update a..h */
774 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
775 T2 = Sigma0_512(a) + Maj(a, b, c);
776 h = g;
777 g = f;
778 f = e;
779 e = d + T1;
780 d = c;
781 c = b;
782 b = a;
783 a = T1 + T2;
785 j++;
786 } while (j < 16);
788 do {
789 /* Part of the message block expansion: */
790 s0 = W512[(j+1)&0x0f];
791 s0 = sigma0_512(s0);
792 s1 = W512[(j+14)&0x0f];
793 s1 = sigma1_512(s1);
795 /* Apply the SHA-512 compression function to update a..h */
796 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
797 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
798 T2 = Sigma0_512(a) + Maj(a, b, c);
799 h = g;
800 g = f;
801 f = e;
802 e = d + T1;
803 d = c;
804 c = b;
805 b = a;
806 a = T1 + T2;
808 j++;
809 } while (j < 80);
811 /* Compute the current intermediate hash value */
812 context->state[0] += a;
813 context->state[1] += b;
814 context->state[2] += c;
815 context->state[3] += d;
816 context->state[4] += e;
817 context->state[5] += f;
818 context->state[6] += g;
819 context->state[7] += h;
821 /* Clean up */
822 a = b = c = d = e = f = g = h = T1 = T2 = 0;
825 #endif /* SHA2_UNROLL_TRANSFORM */
828 SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
830 unsigned int freespace, usedspace;
832 if (len == 0) {
833 /* Calling with no data is valid - we do nothing */
834 return 1;
837 usedspace = (unsigned int)((context->bitcount[0] >> 3) %
838 SHA512_BLOCK_LENGTH);
839 if (usedspace > 0) {
840 /* Calculate how much free space is available in the buffer */
841 freespace = SHA512_BLOCK_LENGTH - usedspace;
843 if (len >= freespace) {
844 /* Fill the buffer completely and process it */
845 memcpy(&context->buffer[usedspace], data,
846 (size_t)(freespace));
847 ADDINC128(context->bitcount, freespace << 3);
848 len -= freespace;
849 data += freespace;
850 SHA512_Transform(context,
851 (uint64_t *)(void *)context->buffer);
852 } else {
853 /* The buffer is not yet full */
854 memcpy(&context->buffer[usedspace], data, len);
855 ADDINC128(context->bitcount, len << 3);
856 /* Clean up: */
857 usedspace = freespace = 0;
858 return 1;
862 * Process as many complete blocks as possible.
864 * Check alignment of the data pointer. If it is 64bit aligned,
865 * SHA512_Transform can be called directly on the data stream,
866 * otherwise enforce the alignment by copy into the buffer.
868 if ((uintptr_t)data % 8 == 0) {
869 while (len >= SHA512_BLOCK_LENGTH) {
870 SHA512_Transform(context,
871 (const uint64_t*)(const void *)data);
872 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
873 len -= SHA512_BLOCK_LENGTH;
874 data += SHA512_BLOCK_LENGTH;
876 } else {
877 while (len >= SHA512_BLOCK_LENGTH) {
878 memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
879 SHA512_Transform(context,
880 (const void *)context->buffer);
881 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
882 len -= SHA512_BLOCK_LENGTH;
883 data += SHA512_BLOCK_LENGTH;
886 if (len > 0) {
887 /* There's left-overs, so save 'em */
888 memcpy(context->buffer, data, len);
889 ADDINC128(context->bitcount, len << 3);
891 /* Clean up: */
892 usedspace = freespace = 0;
894 return 1;
897 static void
898 SHA512_Last(SHA512_CTX *context)
900 unsigned int usedspace;
902 usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
903 context->bitcount[0] = htobe64(context->bitcount[0]);
904 context->bitcount[1] = htobe64(context->bitcount[1]);
905 if (usedspace > 0) {
906 /* Begin padding with a 1 bit: */
907 context->buffer[usedspace++] = 0x80;
909 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
910 /* Set-up for the last transform: */
911 memset(&context->buffer[usedspace], 0,
912 (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
913 } else {
914 if (usedspace < SHA512_BLOCK_LENGTH) {
915 memset(&context->buffer[usedspace], 0,
916 (size_t)(SHA512_BLOCK_LENGTH - usedspace));
918 /* Do second-to-last transform: */
919 SHA512_Transform(context,
920 (uint64_t *)(void *)context->buffer);
922 /* And set-up for the last transform: */
923 memset(context->buffer, 0,
924 (size_t)(SHA512_BLOCK_LENGTH - 2));
926 } else {
927 /* Prepare for final transform: */
928 memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
930 /* Begin padding with a 1 bit: */
931 *context->buffer = 0x80;
933 /* Store the length of input data (in bits): */
934 memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
935 &context->bitcount[1], sizeof(context->bitcount[1]));
936 memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
937 &context->bitcount[0], sizeof(context->bitcount[0]));
939 /* Final transform: */
940 SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
944 SHA512_Final(uint8_t digest[], SHA512_CTX *context)
946 size_t i;
948 /* If no digest buffer is passed, we don't bother doing this: */
949 if (digest != NULL) {
950 SHA512_Last(context);
952 /* Save the hash data for output: */
953 for (i = 0; i < 8; ++i)
954 be64enc(digest + 8 * i, context->state[i]);
957 /* Zero out state data */
958 memset(context, 0, sizeof(*context));
960 return 1;
963 /*** SHA-384: *********************************************************/
965 SHA384_Init(SHA384_CTX *context)
967 if (context == NULL)
968 return 1;
970 memcpy(context->state, sha384_initial_hash_value,
971 (size_t)(SHA512_DIGEST_LENGTH));
972 memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
973 context->bitcount[0] = context->bitcount[1] = 0;
975 return 1;
979 SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
981 return SHA512_Update((SHA512_CTX *)context, data, len);
984 void
985 SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
987 SHA512_Transform((SHA512_CTX *)context, data);
991 SHA384_Final(uint8_t digest[], SHA384_CTX *context)
993 uint64_t *d = (void *)digest;
994 size_t i;
996 /* If no digest buffer is passed, we don't bother doing this: */
997 if (digest != NULL) {
998 SHA512_Last((SHA512_CTX *)context);
1000 /* Save the hash data for output: */
1001 for (i = 0; i < 6; ++i)
1002 d[i] = be64toh(context->state[i]);
1005 /* Zero out state data */
1006 memset(context, 0, sizeof(*context));
1008 return 1;