No empty .Rs/.Re
[netbsd-mini2440.git] / crypto / dist / heimdal / lib / hcrypto / imath / iprime.c
blob49a4d764ce662a294ebe18c7fba790cf2b142778
1 /*
2 Name: iprime.c
3 Purpose: Pseudoprimality testing routines
4 Author: M. J. Fromberger <http://www.dartmouth.edu/~sting/>
5 Info: $Id: iprime.c,v 1.1 2008/03/22 09:42:41 mlelstv Exp $
7 Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
9 Permission is hereby granted, free of charge, to any person
10 obtaining a copy of this software and associated documentation files
11 (the "Software"), to deal in the Software without restriction,
12 including without limitation the rights to use, copy, modify, merge,
13 publish, distribute, sublicense, and/or sell copies of the Software,
14 and to permit persons to whom the Software is furnished to do so,
15 subject to the following conditions:
17 The above copyright notice and this permission notice shall be
18 included in all copies or substantial portions of the Software.
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
23 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
24 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
25 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
26 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27 SOFTWARE.
30 #include "iprime.h"
31 #include <stdlib.h>
33 static const int s_ptab[] = {
34 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
35 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
36 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
37 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
38 211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
39 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
40 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
41 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
42 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
43 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
44 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
45 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
46 709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
47 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
48 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
49 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
50 991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
51 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
52 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
53 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
54 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
55 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
56 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
57 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
58 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
59 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
60 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
61 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
62 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
63 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
64 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
65 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
66 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
67 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
68 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
69 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
70 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
71 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
72 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
73 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
74 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
75 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
76 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
77 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
78 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
79 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
80 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
81 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
82 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
83 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
84 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
85 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
86 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
87 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
88 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
89 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
90 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
91 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
92 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
93 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
94 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
95 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
96 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
97 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
98 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
99 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
100 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
101 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
102 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
103 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
104 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
105 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
106 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
107 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
108 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
109 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
110 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
111 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
112 4957, 4967, 4969, 4973, 4987, 4993, 4999
114 static const int s_ptab_size = sizeof(s_ptab)/sizeof(s_ptab[0]);
117 /* {{{ mp_int_is_prime(z) */
119 /* Test whether z is likely to be prime:
120 MP_TRUE means it is probably prime
121 MP_FALSE means it is definitely composite
123 mp_result mp_int_is_prime(mp_int z)
125 int i, rem;
126 mp_result res;
128 /* First check for divisibility by small primes; this eliminates a
129 large number of composite candidates quickly
131 for(i = 0; i < s_ptab_size; ++i) {
132 if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)
133 return res;
135 if(rem == 0)
136 return MP_FALSE;
139 /* Now try Fermat's test for several prime witnesses (since we now
140 know from the above that z is not a multiple of any of them)
143 mpz_t tmp;
145 if((res = mp_int_init(&tmp)) != MP_OK) return res;
147 for(i = 0; i < 10 && i < s_ptab_size; ++i) {
148 if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)
149 return res;
151 if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {
152 mp_int_clear(&tmp);
153 return MP_FALSE;
157 mp_int_clear(&tmp);
160 return MP_TRUE;
163 /* }}} */
165 /* {{{ mp_int_find_prime(z) */
167 /* Find the first apparent prime in ascending order from z */
168 mp_result mp_int_find_prime(mp_int z)
170 mp_result res;
172 if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))
173 return res;
175 while((res = mp_int_is_prime(z)) == MP_FALSE) {
176 if((res = mp_int_add_value(z, 2, z)) != MP_OK)
177 break;
181 return res;
184 /* }}} */
186 /* Here there be dragons */