No empty .Rs/.Re
[netbsd-mini2440.git] / crypto / dist / heimdal / lib / hcrypto / sha.c
blobf6019088caed5e9fba0f4298bad09ee35d93b136
1 /*
2 * Copyright (c) 1995 - 2001 Kungliga Tekniska Högskolan
3 * (Royal Institute of Technology, Stockholm, Sweden).
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the Institute nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
37 __RCSID("$Heimdal: sha.c 17445 2006-05-05 10:37:46Z lha $"
38 "$NetBSD$");
39 #endif
41 #include "hash.h"
42 #include "sha.h"
44 #define A m->counter[0]
45 #define B m->counter[1]
46 #define C m->counter[2]
47 #define D m->counter[3]
48 #define E m->counter[4]
49 #define X data
51 void
52 SHA1_Init (struct sha *m)
54 m->sz[0] = 0;
55 m->sz[1] = 0;
56 A = 0x67452301;
57 B = 0xefcdab89;
58 C = 0x98badcfe;
59 D = 0x10325476;
60 E = 0xc3d2e1f0;
64 #define F0(x,y,z) CRAYFIX((x & y) | (~x & z))
65 #define F1(x,y,z) (x ^ y ^ z)
66 #define F2(x,y,z) ((x & y) | (x & z) | (y & z))
67 #define F3(x,y,z) F1(x,y,z)
69 #define K0 0x5a827999
70 #define K1 0x6ed9eba1
71 #define K2 0x8f1bbcdc
72 #define K3 0xca62c1d6
74 #define DO(t,f,k) \
75 do { \
76 uint32_t temp; \
78 temp = cshift(AA, 5) + f(BB,CC,DD) + EE + data[t] + k; \
79 EE = DD; \
80 DD = CC; \
81 CC = cshift(BB, 30); \
82 BB = AA; \
83 AA = temp; \
84 } while(0)
86 static inline void
87 calc (struct sha *m, uint32_t *in)
89 uint32_t AA, BB, CC, DD, EE;
90 uint32_t data[80];
91 int i;
93 AA = A;
94 BB = B;
95 CC = C;
96 DD = D;
97 EE = E;
99 for (i = 0; i < 16; ++i)
100 data[i] = in[i];
101 for (i = 16; i < 80; ++i)
102 data[i] = cshift(data[i-3] ^ data[i-8] ^ data[i-14] ^ data[i-16], 1);
104 /* t=[0,19] */
106 DO(0,F0,K0);
107 DO(1,F0,K0);
108 DO(2,F0,K0);
109 DO(3,F0,K0);
110 DO(4,F0,K0);
111 DO(5,F0,K0);
112 DO(6,F0,K0);
113 DO(7,F0,K0);
114 DO(8,F0,K0);
115 DO(9,F0,K0);
116 DO(10,F0,K0);
117 DO(11,F0,K0);
118 DO(12,F0,K0);
119 DO(13,F0,K0);
120 DO(14,F0,K0);
121 DO(15,F0,K0);
122 DO(16,F0,K0);
123 DO(17,F0,K0);
124 DO(18,F0,K0);
125 DO(19,F0,K0);
127 /* t=[20,39] */
129 DO(20,F1,K1);
130 DO(21,F1,K1);
131 DO(22,F1,K1);
132 DO(23,F1,K1);
133 DO(24,F1,K1);
134 DO(25,F1,K1);
135 DO(26,F1,K1);
136 DO(27,F1,K1);
137 DO(28,F1,K1);
138 DO(29,F1,K1);
139 DO(30,F1,K1);
140 DO(31,F1,K1);
141 DO(32,F1,K1);
142 DO(33,F1,K1);
143 DO(34,F1,K1);
144 DO(35,F1,K1);
145 DO(36,F1,K1);
146 DO(37,F1,K1);
147 DO(38,F1,K1);
148 DO(39,F1,K1);
150 /* t=[40,59] */
152 DO(40,F2,K2);
153 DO(41,F2,K2);
154 DO(42,F2,K2);
155 DO(43,F2,K2);
156 DO(44,F2,K2);
157 DO(45,F2,K2);
158 DO(46,F2,K2);
159 DO(47,F2,K2);
160 DO(48,F2,K2);
161 DO(49,F2,K2);
162 DO(50,F2,K2);
163 DO(51,F2,K2);
164 DO(52,F2,K2);
165 DO(53,F2,K2);
166 DO(54,F2,K2);
167 DO(55,F2,K2);
168 DO(56,F2,K2);
169 DO(57,F2,K2);
170 DO(58,F2,K2);
171 DO(59,F2,K2);
173 /* t=[60,79] */
175 DO(60,F3,K3);
176 DO(61,F3,K3);
177 DO(62,F3,K3);
178 DO(63,F3,K3);
179 DO(64,F3,K3);
180 DO(65,F3,K3);
181 DO(66,F3,K3);
182 DO(67,F3,K3);
183 DO(68,F3,K3);
184 DO(69,F3,K3);
185 DO(70,F3,K3);
186 DO(71,F3,K3);
187 DO(72,F3,K3);
188 DO(73,F3,K3);
189 DO(74,F3,K3);
190 DO(75,F3,K3);
191 DO(76,F3,K3);
192 DO(77,F3,K3);
193 DO(78,F3,K3);
194 DO(79,F3,K3);
196 A += AA;
197 B += BB;
198 C += CC;
199 D += DD;
200 E += EE;
204 * From `Performance analysis of MD5' by Joseph D. Touch <touch@isi.edu>
207 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
208 static inline uint32_t
209 swap_uint32_t (uint32_t t)
211 #define ROL(x,n) ((x)<<(n))|((x)>>(32-(n)))
212 uint32_t temp1, temp2;
214 temp1 = cshift(t, 16);
215 temp2 = temp1 >> 8;
216 temp1 &= 0x00ff00ff;
217 temp2 &= 0x00ff00ff;
218 temp1 <<= 8;
219 return temp1 | temp2;
221 #endif
223 struct x32{
224 unsigned int a:32;
225 unsigned int b:32;
228 void
229 SHA1_Update (struct sha *m, const void *v, size_t len)
231 const unsigned char *p = v;
232 size_t old_sz = m->sz[0];
233 size_t offset;
235 m->sz[0] += len * 8;
236 if (m->sz[0] < old_sz)
237 ++m->sz[1];
238 offset = (old_sz / 8) % 64;
239 while(len > 0){
240 size_t l = min(len, 64 - offset);
241 memcpy(m->save + offset, p, l);
242 offset += l;
243 p += l;
244 len -= l;
245 if(offset == 64){
246 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
247 int i;
248 uint32_t current[16];
249 struct x32 *u = (struct x32*)m->save;
250 for(i = 0; i < 8; i++){
251 current[2*i+0] = swap_uint32_t(u[i].a);
252 current[2*i+1] = swap_uint32_t(u[i].b);
254 calc(m, current);
255 #else
256 calc(m, (uint32_t*)m->save);
257 #endif
258 offset = 0;
263 void
264 SHA1_Final (void *res, struct sha *m)
266 unsigned char zeros[72];
267 unsigned offset = (m->sz[0] / 8) % 64;
268 unsigned int dstart = (120 - offset - 1) % 64 + 1;
270 *zeros = 0x80;
271 memset (zeros + 1, 0, sizeof(zeros) - 1);
272 zeros[dstart+7] = (m->sz[0] >> 0) & 0xff;
273 zeros[dstart+6] = (m->sz[0] >> 8) & 0xff;
274 zeros[dstart+5] = (m->sz[0] >> 16) & 0xff;
275 zeros[dstart+4] = (m->sz[0] >> 24) & 0xff;
276 zeros[dstart+3] = (m->sz[1] >> 0) & 0xff;
277 zeros[dstart+2] = (m->sz[1] >> 8) & 0xff;
278 zeros[dstart+1] = (m->sz[1] >> 16) & 0xff;
279 zeros[dstart+0] = (m->sz[1] >> 24) & 0xff;
280 SHA1_Update (m, zeros, dstart + 8);
282 int i;
283 unsigned char *r = (unsigned char*)res;
285 for (i = 0; i < 5; ++i) {
286 r[4*i+3] = m->counter[i] & 0xFF;
287 r[4*i+2] = (m->counter[i] >> 8) & 0xFF;
288 r[4*i+1] = (m->counter[i] >> 16) & 0xFF;
289 r[4*i] = (m->counter[i] >> 24) & 0xFF;
292 #if 0
294 int i;
295 uint32_t *r = (uint32_t *)res;
297 for (i = 0; i < 5; ++i)
298 r[i] = swap_uint32_t (m->counter[i]);
300 #endif