2 /* $OpenBSD: key.c,v 1.80 2008/10/10 05:00:12 stevesk Exp $ */
5 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
7 * As far as I am concerned, the code I have written for this software
8 * can be used freely for any purpose. Any derived versions of this
9 * software must be clearly marked as such, and if the derived work is
10 * incompatible with the protocol description in the RFC file, it must be
11 * called by a name other than "ssh" or "Secure Shell".
14 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
15 * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 __RCSID("$NetBSD: key.c,v 1.27 2009/02/16 20:53:54 christos Exp $");
40 #include <sys/param.h>
41 #include <sys/types.h>
43 #include <openssl/evp.h>
61 k
= xcalloc(1, sizeof(*k
));
68 if ((rsa
= RSA_new()) == NULL
)
69 fatal("key_new: RSA_new failed");
70 if ((rsa
->n
= BN_new()) == NULL
)
71 fatal("key_new: BN_new failed");
72 if ((rsa
->e
= BN_new()) == NULL
)
73 fatal("key_new: BN_new failed");
77 if ((dsa
= DSA_new()) == NULL
)
78 fatal("key_new: DSA_new failed");
79 if ((dsa
->p
= BN_new()) == NULL
)
80 fatal("key_new: BN_new failed");
81 if ((dsa
->q
= BN_new()) == NULL
)
82 fatal("key_new: BN_new failed");
83 if ((dsa
->g
= BN_new()) == NULL
)
84 fatal("key_new: BN_new failed");
85 if ((dsa
->pub_key
= BN_new()) == NULL
)
86 fatal("key_new: BN_new failed");
92 fatal("key_new: bad key type %d", k
->type
);
99 key_new_private(int type
)
101 Key
*k
= key_new(type
);
105 if ((k
->rsa
->d
= BN_new()) == NULL
)
106 fatal("key_new_private: BN_new failed");
107 if ((k
->rsa
->iqmp
= BN_new()) == NULL
)
108 fatal("key_new_private: BN_new failed");
109 if ((k
->rsa
->q
= BN_new()) == NULL
)
110 fatal("key_new_private: BN_new failed");
111 if ((k
->rsa
->p
= BN_new()) == NULL
)
112 fatal("key_new_private: BN_new failed");
113 if ((k
->rsa
->dmq1
= BN_new()) == NULL
)
114 fatal("key_new_private: BN_new failed");
115 if ((k
->rsa
->dmp1
= BN_new()) == NULL
)
116 fatal("key_new_private: BN_new failed");
119 if ((k
->dsa
->priv_key
= BN_new()) == NULL
)
120 fatal("key_new_private: BN_new failed");
134 fatal("key_free: key is NULL");
150 fatal("key_free: bad key type %d", k
->type
);
157 key_equal(const Key
*a
, const Key
*b
)
159 if (a
== NULL
|| b
== NULL
|| a
->type
!= b
->type
)
164 return a
->rsa
!= NULL
&& b
->rsa
!= NULL
&&
165 BN_cmp(a
->rsa
->e
, b
->rsa
->e
) == 0 &&
166 BN_cmp(a
->rsa
->n
, b
->rsa
->n
) == 0;
168 return a
->dsa
!= NULL
&& b
->dsa
!= NULL
&&
169 BN_cmp(a
->dsa
->p
, b
->dsa
->p
) == 0 &&
170 BN_cmp(a
->dsa
->q
, b
->dsa
->q
) == 0 &&
171 BN_cmp(a
->dsa
->g
, b
->dsa
->g
) == 0 &&
172 BN_cmp(a
->dsa
->pub_key
, b
->dsa
->pub_key
) == 0;
174 fatal("key_equal: bad key type %d", a
->type
);
180 key_fingerprint_raw(const Key
*k
, enum fp_type dgst_type
,
181 u_int
*dgst_raw_length
)
183 const EVP_MD
*md
= NULL
;
186 u_char
*retval
= NULL
;
190 *dgst_raw_length
= 0;
200 fatal("key_fingerprint_raw: bad digest type %d",
205 nlen
= BN_num_bytes(k
->rsa
->n
);
206 elen
= BN_num_bytes(k
->rsa
->e
);
209 BN_bn2bin(k
->rsa
->n
, blob
);
210 BN_bn2bin(k
->rsa
->e
, blob
+ nlen
);
214 key_to_blob(k
, &blob
, &len
);
219 fatal("key_fingerprint_raw: bad key type %d", k
->type
);
223 retval
= xmalloc(EVP_MAX_MD_SIZE
);
224 EVP_DigestInit(&ctx
, md
);
225 EVP_DigestUpdate(&ctx
, blob
, len
);
226 EVP_DigestFinal(&ctx
, retval
, dgst_raw_length
);
227 memset(blob
, 0, len
);
230 fatal("key_fingerprint_raw: blob is null");
236 key_fingerprint_hex(u_char
*dgst_raw
, u_int dgst_raw_len
)
241 retval
= xcalloc(1, dgst_raw_len
* 3 + 1);
242 for (i
= 0; i
< dgst_raw_len
; i
++) {
244 snprintf(hex
, sizeof(hex
), "%02x:", dgst_raw
[i
]);
245 strlcat(retval
, hex
, dgst_raw_len
* 3 + 1);
248 /* Remove the trailing ':' character */
249 retval
[(dgst_raw_len
* 3) - 1] = '\0';
254 key_fingerprint_bubblebabble(u_char
*dgst_raw
, u_int dgst_raw_len
)
256 char vowels
[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
257 char consonants
[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
258 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
259 u_int i
, j
= 0, rounds
, seed
= 1;
262 rounds
= (dgst_raw_len
/ 2) + 1;
263 retval
= xcalloc((rounds
* 6), sizeof(char));
265 for (i
= 0; i
< rounds
; i
++) {
266 u_int idx0
, idx1
, idx2
, idx3
, idx4
;
267 if ((i
+ 1 < rounds
) || (dgst_raw_len
% 2 != 0)) {
268 idx0
= (((((u_int
)(dgst_raw
[2 * i
])) >> 6) & 3) +
270 idx1
= (((u_int
)(dgst_raw
[2 * i
])) >> 2) & 15;
271 idx2
= ((((u_int
)(dgst_raw
[2 * i
])) & 3) +
273 retval
[j
++] = vowels
[idx0
];
274 retval
[j
++] = consonants
[idx1
];
275 retval
[j
++] = vowels
[idx2
];
276 if ((i
+ 1) < rounds
) {
277 idx3
= (((u_int
)(dgst_raw
[(2 * i
) + 1])) >> 4) & 15;
278 idx4
= (((u_int
)(dgst_raw
[(2 * i
) + 1]))) & 15;
279 retval
[j
++] = consonants
[idx3
];
281 retval
[j
++] = consonants
[idx4
];
283 ((((u_int
)(dgst_raw
[2 * i
])) * 7) +
284 ((u_int
)(dgst_raw
[(2 * i
) + 1])))) % 36;
290 retval
[j
++] = vowels
[idx0
];
291 retval
[j
++] = consonants
[idx1
];
292 retval
[j
++] = vowels
[idx2
];
301 * Draw an ASCII-Art representing the fingerprint so human brain can
302 * profit from its built-in pattern recognition ability.
303 * This technique is called "random art" and can be found in some
304 * scientific publications like this original paper:
306 * "Hash Visualization: a New Technique to improve Real-World Security",
307 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
308 * Techniques and E-Commerce (CrypTEC '99)
309 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
311 * The subject came up in a talk by Dan Kaminsky, too.
313 * If you see the picture is different, the key is different.
314 * If the picture looks the same, you still know nothing.
316 * The algorithm used here is a worm crawling over a discrete plane,
317 * leaving a trace (augmenting the field) everywhere it goes.
318 * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
319 * makes the respective movement vector be ignored for this turn.
320 * Graphs are not unambiguous, because circles in graphs can be
321 * walked in either direction.
325 * Field sizes for the random art. Have to be odd, so the starting point
326 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
327 * Else pictures would be too dense, and drawing the frame would
328 * fail, too, because the key type would not fit in anymore.
331 #define FLDSIZE_Y (FLDBASE + 1)
332 #define FLDSIZE_X (FLDBASE * 2 + 1)
334 key_fingerprint_randomart(u_char
*dgst_raw
, u_int dgst_raw_len
, const Key
*k
)
337 * Chars to be used after each other every time the worm
338 * intersects with itself. Matter of taste.
340 char *augmentation_string
= " .o+=*BOX@%&#/^SE";
342 u_char field
[FLDSIZE_X
][FLDSIZE_Y
];
345 size_t len
= strlen(augmentation_string
) - 1;
347 retval
= xcalloc(1, (FLDSIZE_X
+ 3) * (FLDSIZE_Y
+ 2));
349 /* initialize field */
350 memset(field
, 0, FLDSIZE_X
* FLDSIZE_Y
* sizeof(char));
354 /* process raw key */
355 for (i
= 0; i
< dgst_raw_len
; i
++) {
357 /* each byte conveys four 2-bit move commands */
359 for (b
= 0; b
< 4; b
++) {
360 /* evaluate 2 bit, rest is shifted later */
361 x
+= (input
& 0x1) ? 1 : -1;
362 y
+= (input
& 0x2) ? 1 : -1;
364 /* assure we are still in bounds */
367 x
= MIN(x
, FLDSIZE_X
- 1);
368 y
= MIN(y
, FLDSIZE_Y
- 1);
370 /* augment the field */
371 if (field
[x
][y
] < len
- 2)
377 /* mark starting point and end point*/
378 field
[FLDSIZE_X
/ 2][FLDSIZE_Y
/ 2] = len
- 1;
382 snprintf(retval
, FLDSIZE_X
, "+--[%4s %4u]", key_type(k
), key_size(k
));
383 p
= strchr(retval
, '\0');
385 /* output upper border */
386 for (i
= p
- retval
- 1; i
< FLDSIZE_X
; i
++)
392 for (y
= 0; y
< FLDSIZE_Y
; y
++) {
394 for (x
= 0; x
< FLDSIZE_X
; x
++)
395 *p
++ = augmentation_string
[MIN(field
[x
][y
], len
)];
400 /* output lower border */
402 for (i
= 0; i
< FLDSIZE_X
; i
++)
410 key_fingerprint(const Key
*k
, enum fp_type dgst_type
, enum fp_rep dgst_rep
)
416 dgst_raw
= key_fingerprint_raw(k
, dgst_type
, &dgst_raw_len
);
418 fatal("key_fingerprint: null from key_fingerprint_raw()");
421 retval
= key_fingerprint_hex(dgst_raw
, dgst_raw_len
);
423 case SSH_FP_BUBBLEBABBLE
:
424 retval
= key_fingerprint_bubblebabble(dgst_raw
, dgst_raw_len
);
426 case SSH_FP_RANDOMART
:
427 retval
= key_fingerprint_randomart(dgst_raw
, dgst_raw_len
, k
);
430 fatal("key_fingerprint: bad digest representation %d",
434 memset(dgst_raw
, 0, dgst_raw_len
);
440 * Reads a multiple-precision integer in decimal from the buffer, and advances
441 * the pointer. The integer must already be initialized. This function is
442 * permitted to modify the buffer. This leaves *cpp to point just beyond the
443 * last processed (and maybe modified) character. Note that this may modify
444 * the buffer containing the number.
447 read_bignum(char **cpp
, BIGNUM
* value
)
452 /* Skip any leading whitespace. */
453 for (; *cp
== ' ' || *cp
== '\t'; cp
++)
456 /* Check that it begins with a decimal digit. */
457 if (*cp
< '0' || *cp
> '9')
460 /* Save starting position. */
463 /* Move forward until all decimal digits skipped. */
464 for (; *cp
>= '0' && *cp
<= '9'; cp
++)
467 /* Save the old terminating character, and replace it by \0. */
471 /* Parse the number. */
472 if (BN_dec2bn(&value
, *cpp
) == 0)
475 /* Restore old terminating character. */
478 /* Move beyond the number and return success. */
484 write_bignum(FILE *f
, BIGNUM
*num
)
486 char *buf
= BN_bn2dec(num
);
488 error("write_bignum: BN_bn2dec() failed");
491 fprintf(f
, " %s", buf
);
496 /* returns 1 ok, -1 error */
498 key_read(Key
*ret
, char **cpp
)
511 /* Get number of bits. */
512 if (*cp
< '0' || *cp
> '9')
513 return -1; /* Bad bit count... */
514 for (bits
= 0; *cp
>= '0' && *cp
<= '9'; cp
++)
515 bits
= 10 * bits
+ *cp
- '0';
519 /* Get public exponent, public modulus. */
520 if (!read_bignum(cpp
, ret
->rsa
->e
))
522 if (!read_bignum(cpp
, ret
->rsa
->n
))
529 space
= strchr(cp
, ' ');
531 debug3("key_read: missing whitespace");
535 type
= key_type_from_name(cp
);
537 if (type
== KEY_UNSPEC
) {
538 debug3("key_read: missing keytype");
543 debug3("key_read: short string");
546 if (ret
->type
== KEY_UNSPEC
) {
548 } else if (ret
->type
!= type
) {
549 /* is a key, but different type */
550 debug3("key_read: type mismatch");
555 n
= uudecode(cp
, blob
, len
);
557 error("key_read: uudecode %s failed", cp
);
561 k
= key_from_blob(blob
, (u_int
)n
);
564 error("key_read: key_from_blob %s failed", cp
);
567 if (k
->type
!= type
) {
568 error("key_read: type mismatch: encoding error");
573 if (ret
->type
== KEY_RSA
) {
574 if (ret
->rsa
!= NULL
)
580 RSA_print_fp(stderr
, ret
->rsa
, 8);
583 if (ret
->dsa
!= NULL
)
589 DSA_print_fp(stderr
, ret
->dsa
, 8);
596 /* advance cp: skip whitespace and data */
597 while (*cp
== ' ' || *cp
== '\t')
599 while (*cp
!= '\0' && *cp
!= ' ' && *cp
!= '\t')
604 fatal("key_read: bad key type: %d", ret
->type
);
611 key_write(const Key
*key
, FILE *f
)
618 if (key
->type
== KEY_RSA1
&& key
->rsa
!= NULL
) {
619 /* size of modulus 'n' */
620 bits
= BN_num_bits(key
->rsa
->n
);
621 fprintf(f
, "%u", bits
);
622 if (write_bignum(f
, key
->rsa
->e
) &&
623 write_bignum(f
, key
->rsa
->n
)) {
626 error("key_write: failed for RSA key");
628 } else if ((key
->type
== KEY_DSA
&& key
->dsa
!= NULL
) ||
629 (key
->type
== KEY_RSA
&& key
->rsa
!= NULL
)) {
630 key_to_blob(key
, &blob
, &len
);
632 n
= uuencode(blob
, len
, uu
, 2*len
);
634 fprintf(f
, "%s %s", key_ssh_name(key
), uu
);
644 key_type(const Key
*k
)
658 key_ssh_name(const Key
*k
)
666 return "ssh-unknown";
670 key_size(const Key
*k
)
675 return BN_num_bits(k
->rsa
->n
);
677 return BN_num_bits(k
->dsa
->p
);
683 rsa_generate_private_key(u_int bits
)
687 private = RSA_generate_key(bits
, 35, NULL
, NULL
);
689 fatal("rsa_generate_private_key: key generation failed.");
694 dsa_generate_private_key(u_int bits
)
696 DSA
*private = DSA_generate_parameters(bits
, NULL
, 0, NULL
, NULL
, NULL
, NULL
);
699 fatal("dsa_generate_private_key: DSA_generate_parameters failed");
700 if (!DSA_generate_key(private))
701 fatal("dsa_generate_private_key: DSA_generate_key failed.");
703 fatal("dsa_generate_private_key: NULL.");
708 key_generate(int type
, u_int bits
)
710 Key
*k
= key_new(KEY_UNSPEC
);
713 k
->dsa
= dsa_generate_private_key(bits
);
717 k
->rsa
= rsa_generate_private_key(bits
);
720 fatal("key_generate: unknown type %d", type
);
727 key_from_private(const Key
*k
)
732 n
= key_new(k
->type
);
733 if ((BN_copy(n
->dsa
->p
, k
->dsa
->p
) == NULL
) ||
734 (BN_copy(n
->dsa
->q
, k
->dsa
->q
) == NULL
) ||
735 (BN_copy(n
->dsa
->g
, k
->dsa
->g
) == NULL
) ||
736 (BN_copy(n
->dsa
->pub_key
, k
->dsa
->pub_key
) == NULL
))
737 fatal("key_from_private: BN_copy failed");
741 n
= key_new(k
->type
);
742 if ((BN_copy(n
->rsa
->n
, k
->rsa
->n
) == NULL
) ||
743 (BN_copy(n
->rsa
->e
, k
->rsa
->e
) == NULL
))
744 fatal("key_from_private: BN_copy failed");
747 fatal("key_from_private: unknown type %d", k
->type
);
754 key_type_from_name(char *name
)
756 if (strcmp(name
, "rsa1") == 0) {
758 } else if (strcmp(name
, "rsa") == 0) {
760 } else if (strcmp(name
, "dsa") == 0) {
762 } else if (strcmp(name
, "ssh-rsa") == 0) {
764 } else if (strcmp(name
, "ssh-dss") == 0) {
767 debug2("key_type_from_name: unknown key type '%s'", name
);
772 key_names_valid2(const char *names
)
776 if (names
== NULL
|| strcmp(names
, "") == 0)
778 s
= cp
= xstrdup(names
);
779 for ((p
= strsep(&cp
, ",")); p
&& *p
!= '\0';
780 (p
= strsep(&cp
, ","))) {
781 switch (key_type_from_name(p
)) {
788 debug3("key names ok: [%s]", names
);
794 key_from_blob(const u_char
*blob
, u_int blen
)
802 dump_base64(stderr
, blob
, blen
);
805 buffer_append(&b
, blob
, blen
);
806 if ((ktype
= buffer_get_string_ret(&b
, NULL
)) == NULL
) {
807 error("key_from_blob: can't read key type");
811 type
= key_type_from_name(ktype
);
816 if (buffer_get_bignum2_ret(&b
, key
->rsa
->e
) == -1 ||
817 buffer_get_bignum2_ret(&b
, key
->rsa
->n
) == -1) {
818 error("key_from_blob: can't read rsa key");
824 RSA_print_fp(stderr
, key
->rsa
, 8);
829 if (buffer_get_bignum2_ret(&b
, key
->dsa
->p
) == -1 ||
830 buffer_get_bignum2_ret(&b
, key
->dsa
->q
) == -1 ||
831 buffer_get_bignum2_ret(&b
, key
->dsa
->g
) == -1 ||
832 buffer_get_bignum2_ret(&b
, key
->dsa
->pub_key
) == -1) {
833 error("key_from_blob: can't read dsa key");
839 DSA_print_fp(stderr
, key
->dsa
, 8);
846 error("key_from_blob: cannot handle type %s", ktype
);
849 rlen
= buffer_len(&b
);
850 if (key
!= NULL
&& rlen
!= 0)
851 error("key_from_blob: remaining bytes in key blob %d", rlen
);
860 key_to_blob(const Key
*key
, u_char
**blobp
, u_int
*lenp
)
866 error("key_to_blob: key == NULL");
872 buffer_put_cstring(&b
, key_ssh_name(key
));
873 buffer_put_bignum2(&b
, key
->dsa
->p
);
874 buffer_put_bignum2(&b
, key
->dsa
->q
);
875 buffer_put_bignum2(&b
, key
->dsa
->g
);
876 buffer_put_bignum2(&b
, key
->dsa
->pub_key
);
879 buffer_put_cstring(&b
, key_ssh_name(key
));
880 buffer_put_bignum2(&b
, key
->rsa
->e
);
881 buffer_put_bignum2(&b
, key
->rsa
->n
);
884 error("key_to_blob: unsupported key type %d", key
->type
);
888 len
= buffer_len(&b
);
892 *blobp
= xmalloc(len
);
893 memcpy(*blobp
, buffer_ptr(&b
), len
);
895 memset(buffer_ptr(&b
), 0, len
);
903 u_char
**sigp
, u_int
*lenp
,
904 const u_char
*data
, u_int datalen
)
908 return ssh_dss_sign(key
, sigp
, lenp
, data
, datalen
);
910 return ssh_rsa_sign(key
, sigp
, lenp
, data
, datalen
);
912 error("key_sign: invalid key type %d", key
->type
);
918 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
924 const u_char
*signature
, u_int signaturelen
,
925 const u_char
*data
, u_int datalen
)
927 if (signaturelen
== 0)
932 return ssh_dss_verify(key
, signature
, signaturelen
, data
, datalen
);
934 return ssh_rsa_verify(key
, signature
, signaturelen
, data
, datalen
);
936 error("key_verify: invalid key type %d", key
->type
);
941 /* Converts a private to a public key */
943 key_demote(const Key
*k
)
947 pk
= xcalloc(1, sizeof(*pk
));
949 pk
->flags
= k
->flags
;
956 if ((pk
->rsa
= RSA_new()) == NULL
)
957 fatal("key_demote: RSA_new failed");
958 if ((pk
->rsa
->e
= BN_dup(k
->rsa
->e
)) == NULL
)
959 fatal("key_demote: BN_dup failed");
960 if ((pk
->rsa
->n
= BN_dup(k
->rsa
->n
)) == NULL
)
961 fatal("key_demote: BN_dup failed");
964 if ((pk
->dsa
= DSA_new()) == NULL
)
965 fatal("key_demote: DSA_new failed");
966 if ((pk
->dsa
->p
= BN_dup(k
->dsa
->p
)) == NULL
)
967 fatal("key_demote: BN_dup failed");
968 if ((pk
->dsa
->q
= BN_dup(k
->dsa
->q
)) == NULL
)
969 fatal("key_demote: BN_dup failed");
970 if ((pk
->dsa
->g
= BN_dup(k
->dsa
->g
)) == NULL
)
971 fatal("key_demote: BN_dup failed");
972 if ((pk
->dsa
->pub_key
= BN_dup(k
->dsa
->pub_key
)) == NULL
)
973 fatal("key_demote: BN_dup failed");
976 fatal("key_free: bad key type %d", k
->type
);