2 /* $OpenBSD: moduli.c,v 1.21 2008/06/26 09:19:40 djm Exp $ */
4 * Copyright 1994 Phil Karn <karn@qualcomm.com>
5 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
6 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * Two-step process to generate safe primes for DHGEX
33 * Sieve candidates for "safe" primes,
34 * suitable for use as Diffie-Hellman moduli;
35 * that is, where q = (p-1)/2 is also prime.
37 * First step: generate candidate primes (memory intensive)
38 * Second step: test primes' safety (processor intensive)
41 __RCSID("$NetBSD: moduli.c,v 1.6 2009/02/16 20:53:54 christos Exp $");
43 #include <sys/types.h>
45 #include <openssl/bn.h>
46 #include <openssl/dh.h>
62 /* need line long enough for largest moduli plus headers */
63 #define QLINESIZE (100+8192)
67 * Specifies the number of the most significant bit (0 to M).
68 * WARNING: internally, usually 1 to N.
70 #define QSIZE_MINIMUM (511)
73 * Prime sieving defines
76 /* Constant: assuming 8 bit bytes and 32 bit words */
78 #define SHIFT_BYTE (2)
79 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
80 #define SHIFT_MEGABYTE (20)
81 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
84 * Using virtual memory can cause thrashing. This should be the largest
85 * number that is supported without a large amount of disk activity --
86 * that would increase the run time from hours to days or weeks!
88 #define LARGE_MINIMUM (8UL) /* megabytes */
91 * Do not increase this number beyond the unsigned integer bit size.
92 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
94 #define LARGE_MAXIMUM (127UL) /* megabytes */
97 * Constant: when used with 32-bit integers, the largest sieve prime
98 * has to be less than 2**32.
100 #define SMALL_MAXIMUM (0xffffffffUL)
102 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
103 #define TINY_NUMBER (1UL<<16)
105 /* Ensure enough bit space for testing 2*q. */
106 #define TEST_MAXIMUM (1UL<<16)
107 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
108 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
109 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
111 /* bit operations on 32-bit words */
112 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
113 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
114 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
117 * Prime testing defines
120 /* Minimum number of primality tests to perform */
121 #define TRIAL_MINIMUM (4)
124 * Sieving data (XXX - move to struct)
128 static u_int32_t
*TinySieve
, tinybits
;
130 /* sieve 2**30 in 2**16 parts */
131 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
133 /* sieve relative to the initial value */
134 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
135 static u_int32_t largebits
, largememory
; /* megabytes */
136 static BIGNUM
*largebase
;
138 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
139 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
);
142 * print moduli out in consistent form,
145 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
146 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
153 gtm
= gmtime(&time_now
);
155 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
156 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
157 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
158 otype
, otests
, otries
, osize
, ogenerator
);
163 if (BN_print_fp(ofile
, omodulus
) < 1)
166 res
= fprintf(ofile
, "\n");
169 return (res
> 0 ? 0 : -1);
174 ** Sieve p's and q's with small factors
177 sieve_large(u_int32_t s
)
181 debug3("sieve_large %u", s
);
183 /* r = largebase mod s */
184 r
= BN_mod_word(largebase
, s
);
186 u
= 0; /* s divides into largebase exactly */
188 u
= s
- r
; /* largebase+u is first entry divisible by s */
190 if (u
< largebits
* 2) {
192 * The sieve omits p's and q's divisible by 2, so ensure that
193 * largebase+u is odd. Then, step through the sieve in
197 u
+= s
; /* Make largebase+u odd, and u even */
199 /* Mark all multiples of 2*s */
200 for (u
/= 2; u
< largebits
; u
+= s
)
201 BIT_SET(LargeSieve
, u
);
207 u
= 0; /* s divides p exactly */
209 u
= s
- r
; /* p+u is first entry divisible by s */
211 if (u
< largebits
* 4) {
213 * The sieve omits p's divisible by 4, so ensure that
214 * largebase+u is not. Then, step through the sieve in
218 if (SMALL_MAXIMUM
- u
< s
)
223 /* Mark all multiples of 4*s */
224 for (u
/= 4; u
< largebits
; u
+= s
)
225 BIT_SET(LargeSieve
, u
);
230 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
231 * to standard output.
232 * The list is checked against small known primes (less than 2**30).
235 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
238 u_int32_t j
, r
, s
, t
;
239 u_int32_t smallwords
= TINY_NUMBER
>> 6;
240 u_int32_t tinywords
= TINY_NUMBER
>> 6;
241 time_t time_start
, time_stop
;
245 largememory
= memory
;
248 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
249 error("Invalid memory amount (min %ld, max %ld)",
250 LARGE_MINIMUM
, LARGE_MAXIMUM
);
255 * Set power to the length in bits of the prime to be generated.
256 * This is changed to 1 less than the desired safe prime moduli p.
258 if (power
> TEST_MAXIMUM
) {
259 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
261 } else if (power
< TEST_MINIMUM
) {
262 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
265 power
--; /* decrement before squaring */
268 * The density of ordinary primes is on the order of 1/bits, so the
269 * density of safe primes should be about (1/bits)**2. Set test range
270 * to something well above bits**2 to be reasonably sure (but not
271 * guaranteed) of catching at least one safe prime.
273 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
276 * Need idea of how much memory is available. We don't have to use all
279 if (largememory
> LARGE_MAXIMUM
) {
280 logit("Limited memory: %u MB; limit %lu MB",
281 largememory
, LARGE_MAXIMUM
);
282 largememory
= LARGE_MAXIMUM
;
285 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
286 logit("Increased memory: %u MB; need %u bytes",
287 largememory
, (largewords
<< SHIFT_BYTE
));
288 largewords
= (largememory
<< SHIFT_MEGAWORD
);
289 } else if (largememory
> 0) {
290 logit("Decreased memory: %u MB; want %u bytes",
291 largememory
, (largewords
<< SHIFT_BYTE
));
292 largewords
= (largememory
<< SHIFT_MEGAWORD
);
295 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
296 tinybits
= tinywords
<< SHIFT_WORD
;
298 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
299 smallbits
= smallwords
<< SHIFT_WORD
;
302 * dynamically determine available memory
304 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
305 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
307 largebits
= largewords
<< SHIFT_WORD
;
308 largenumbers
= largebits
* 2; /* even numbers excluded */
310 /* validation check: count the number of primes tried */
312 if ((q
= BN_new()) == NULL
)
313 fatal("BN_new failed");
316 * Generate random starting point for subprime search, or use
317 * specified parameter.
319 if ((largebase
= BN_new()) == NULL
)
320 fatal("BN_new failed");
322 if (BN_rand(largebase
, power
, 1, 1) == 0)
323 fatal("BN_rand failed");
325 if (BN_copy(largebase
, start
) == NULL
)
326 fatal("BN_copy: failed");
330 if (BN_set_bit(largebase
, 0) == 0)
331 fatal("BN_set_bit: failed");
335 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
336 largenumbers
, power
);
337 debug2("start point: 0x%s", BN_bn2hex(largebase
));
342 for (i
= 0; i
< tinybits
; i
++) {
343 if (BIT_TEST(TinySieve
, i
))
344 continue; /* 2*i+3 is composite */
346 /* The next tiny prime */
349 /* Mark all multiples of t */
350 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
351 BIT_SET(TinySieve
, j
);
357 * Start the small block search at the next possible prime. To avoid
358 * fencepost errors, the last pass is skipped.
360 for (smallbase
= TINY_NUMBER
+ 3;
361 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
362 smallbase
+= TINY_NUMBER
) {
363 for (i
= 0; i
< tinybits
; i
++) {
364 if (BIT_TEST(TinySieve
, i
))
365 continue; /* 2*i+3 is composite */
367 /* The next tiny prime */
372 s
= 0; /* t divides into smallbase exactly */
374 /* smallbase+s is first entry divisible by t */
379 * The sieve omits even numbers, so ensure that
380 * smallbase+s is odd. Then, step through the sieve
381 * in increments of 2*t
384 s
+= t
; /* Make smallbase+s odd, and s even */
386 /* Mark all multiples of 2*t */
387 for (s
/= 2; s
< smallbits
; s
+= t
)
388 BIT_SET(SmallSieve
, s
);
394 for (i
= 0; i
< smallbits
; i
++) {
395 if (BIT_TEST(SmallSieve
, i
))
396 continue; /* 2*i+smallbase is composite */
398 /* The next small prime */
399 sieve_large((2 * i
) + smallbase
);
402 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
407 logit("%.24s Sieved with %u small primes in %ld seconds",
408 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
410 for (j
= r
= 0; j
< largebits
; j
++) {
411 if (BIT_TEST(LargeSieve
, j
))
412 continue; /* Definitely composite, skip */
414 debug2("test q = largebase+%u", 2 * j
);
415 if (BN_set_word(q
, 2 * j
) == 0)
416 fatal("BN_set_word failed");
417 if (BN_add(q
, q
, largebase
) == 0)
418 fatal("BN_add failed");
419 if (qfileout(out
, MODULI_TYPE_SOPHIE_GERMAIN
,
420 MODULI_TESTS_SIEVE
, largetries
,
421 (power
- 1) /* MSB */, (0), q
) == -1) {
435 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
441 * perform a Miller-Rabin primality test
442 * on the list of candidates
443 * (checking both q and p)
444 * The result is a list of so-call "safe" primes
447 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
)
452 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
453 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
454 time_t time_start
, time_stop
;
457 if (trials
< TRIAL_MINIMUM
) {
458 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
464 if ((p
= BN_new()) == NULL
)
465 fatal("BN_new failed");
466 if ((q
= BN_new()) == NULL
)
467 fatal("BN_new failed");
468 if ((ctx
= BN_CTX_new()) == NULL
)
469 fatal("BN_CTX_new failed");
471 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
472 ctime(&time_start
), trials
, generator_wanted
);
475 lp
= xmalloc(QLINESIZE
+ 1);
476 while (fgets(lp
, QLINESIZE
+ 1, in
) != NULL
) {
478 if (strlen(lp
) < 14 || *lp
== '!' || *lp
== '#') {
479 debug2("%10u: comment or short line", count_in
);
483 /* XXX - fragile parser */
485 cp
= &lp
[14]; /* (skip) */
488 in_type
= strtoul(cp
, &cp
, 10);
491 in_tests
= strtoul(cp
, &cp
, 10);
493 if (in_tests
& MODULI_TESTS_COMPOSITE
) {
494 debug2("%10u: known composite", count_in
);
499 in_tries
= strtoul(cp
, &cp
, 10);
501 /* size (most significant bit) */
502 in_size
= strtoul(cp
, &cp
, 10);
504 /* generator (hex) */
505 generator_known
= strtoul(cp
, &cp
, 16);
507 /* Skip white space */
508 cp
+= strspn(cp
, " ");
512 case MODULI_TYPE_SOPHIE_GERMAIN
:
513 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
515 if (BN_hex2bn(&a
, cp
) == 0)
516 fatal("BN_hex2bn failed");
518 if (BN_lshift(p
, q
, 1) == 0)
519 fatal("BN_lshift failed");
520 if (BN_add_word(p
, 1) == 0)
521 fatal("BN_add_word failed");
525 case MODULI_TYPE_UNSTRUCTURED
:
526 case MODULI_TYPE_SAFE
:
527 case MODULI_TYPE_SCHNORR
:
528 case MODULI_TYPE_STRONG
:
529 case MODULI_TYPE_UNKNOWN
:
530 debug2("%10u: (%u)", count_in
, in_type
);
532 if (BN_hex2bn(&a
, cp
) == 0)
533 fatal("BN_hex2bn failed");
535 if (BN_rshift(q
, p
, 1) == 0)
536 fatal("BN_rshift failed");
539 debug2("Unknown prime type");
544 * due to earlier inconsistencies in interpretation, check
545 * the proposed bit size.
547 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
548 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
551 if (in_size
< QSIZE_MINIMUM
) {
552 debug2("%10u: bit size %u too short", count_in
, in_size
);
556 if (in_tests
& MODULI_TESTS_MILLER_RABIN
)
562 * guess unknown generator
564 if (generator_known
== 0) {
565 if (BN_mod_word(p
, 24) == 11)
567 else if (BN_mod_word(p
, 12) == 5)
570 u_int32_t r
= BN_mod_word(p
, 10);
572 if (r
== 3 || r
== 7)
577 * skip tests when desired generator doesn't match
579 if (generator_wanted
> 0 &&
580 generator_wanted
!= generator_known
) {
581 debug2("%10u: generator %d != %d",
582 count_in
, generator_known
, generator_wanted
);
587 * Primes with no known generator are useless for DH, so
590 if (generator_known
== 0) {
591 debug2("%10u: no known generator", count_in
);
598 * The (1/4)^N performance bound on Miller-Rabin is
599 * extremely pessimistic, so don't spend a lot of time
600 * really verifying that q is prime until after we know
601 * that p is also prime. A single pass will weed out the
602 * vast majority of composite q's.
604 if (BN_is_prime(q
, 1, NULL
, ctx
, NULL
) <= 0) {
605 debug("%10u: q failed first possible prime test",
611 * q is possibly prime, so go ahead and really make sure
612 * that p is prime. If it is, then we can go back and do
613 * the same for q. If p is composite, chances are that
614 * will show up on the first Rabin-Miller iteration so it
615 * doesn't hurt to specify a high iteration count.
617 if (!BN_is_prime(p
, trials
, NULL
, ctx
, NULL
)) {
618 debug("%10u: p is not prime", count_in
);
621 debug("%10u: p is almost certainly prime", count_in
);
623 /* recheck q more rigorously */
624 if (!BN_is_prime(q
, trials
- 1, NULL
, ctx
, NULL
)) {
625 debug("%10u: q is not prime", count_in
);
628 debug("%10u: q is almost certainly prime", count_in
);
630 if (qfileout(out
, MODULI_TYPE_SAFE
,
631 in_tests
| MODULI_TESTS_MILLER_RABIN
,
632 in_tries
, in_size
, generator_known
, p
)) {
646 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
647 ctime(&time_stop
), count_out
, count_possible
,
648 (long) (time_stop
- time_start
));