1 This is bfd.info, produced by makeinfo version 4.8 from bfd.texinfo.
4 * Bfd: (bfd). The Binary File Descriptor library.
7 This file documents the BFD library.
9 Copyright (C) 1991, 2000, 2001, 2003, 2006, 2007 Free Software
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.1 or
14 any later version published by the Free Software Foundation; with the
15 Invariant Sections being "GNU General Public License" and "Funding Free
16 Software", the Front-Cover texts being (a) (see below), and with the
17 Back-Cover Texts being (b) (see below). A copy of the license is
18 included in the section entitled "GNU Free Documentation License".
20 (a) The FSF's Front-Cover Text is:
24 (b) The FSF's Back-Cover Text is:
26 You have freedom to copy and modify this GNU Manual, like GNU
27 software. Copies published by the Free Software Foundation raise
28 funds for GNU development.
31 File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
33 This file documents the binary file descriptor library libbfd.
37 * Overview:: Overview of BFD
38 * BFD front end:: BFD front end
39 * BFD back ends:: BFD back ends
40 * GNU Free Documentation License:: GNU Free Documentation License
41 * BFD Index:: BFD Index
44 File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
49 BFD is a package which allows applications to use the same routines to
50 operate on object files whatever the object file format. A new object
51 file format can be supported simply by creating a new BFD back end and
52 adding it to the library.
54 BFD is split into two parts: the front end, and the back ends (one
55 for each object file format).
56 * The front end of BFD provides the interface to the user. It manages
57 memory and various canonical data structures. The front end also
58 decides which back end to use and when to call back end routines.
60 * The back ends provide BFD its view of the real world. Each back
61 end provides a set of calls which the BFD front end can use to
62 maintain its canonical form. The back ends also may keep around
63 information for their own use, for greater efficiency.
68 * How It Works:: How It Works
69 * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
72 File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
77 One spur behind BFD was the desire, on the part of the GNU 960 team at
78 Intel Oregon, for interoperability of applications on their COFF and
79 b.out file formats. Cygnus was providing GNU support for the team, and
80 was contracted to provide the required functionality.
82 The name came from a conversation David Wallace was having with
83 Richard Stallman about the library: RMS said that it would be quite
84 hard--David said "BFD". Stallman was right, but the name stuck.
86 At the same time, Ready Systems wanted much the same thing, but for
87 different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
90 BFD was first implemented by members of Cygnus Support; Steve
91 Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
92 Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
96 File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
101 To use the library, include `bfd.h' and link with `libbfd.a'.
103 BFD provides a common interface to the parts of an object file for a
106 When an application successfully opens a target file (object,
107 archive, or whatever), a pointer to an internal structure is returned.
108 This pointer points to a structure called `bfd', described in `bfd.h'.
109 Our convention is to call this pointer a BFD, and instances of it
110 within code `abfd'. All operations on the target object file are
111 applied as methods to the BFD. The mapping is defined within `bfd.h'
112 in a set of macros, all beginning with `bfd_' to reduce namespace
115 For example, this sequence does what you would probably expect:
116 return the number of sections in an object file attached to a BFD
121 unsigned int number_of_sections (abfd)
124 return bfd_count_sections (abfd);
127 The abstraction used within BFD is that an object file has:
131 * a number of sections containing raw data (*note Sections::),
133 * a set of relocations (*note Relocations::), and
135 * some symbol information (*note Symbols::).
136 Also, BFDs opened for archives have the additional attribute of an
137 index and contain subordinate BFDs. This approach is fine for a.out and
138 coff, but loses efficiency when applied to formats such as S-records and
142 File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
144 1.3 What BFD Version 2 Can Do
145 =============================
147 When an object file is opened, BFD subroutines automatically determine
148 the format of the input object file. They then build a descriptor in
149 memory with pointers to routines that will be used to access elements of
150 the object file's data structures.
152 As different information from the object files is required, BFD
153 reads from different sections of the file and processes them. For
154 example, a very common operation for the linker is processing symbol
155 tables. Each BFD back end provides a routine for converting between
156 the object file's representation of symbols and an internal canonical
157 format. When the linker asks for the symbol table of an object file, it
158 calls through a memory pointer to the routine from the relevant BFD
159 back end which reads and converts the table into a canonical form. The
160 linker then operates upon the canonical form. When the link is finished
161 and the linker writes the output file's symbol table, another BFD back
162 end routine is called to take the newly created symbol table and
163 convert it into the chosen output format.
167 * BFD information loss:: Information Loss
168 * Canonical format:: The BFD canonical object-file format
171 File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
173 1.3.1 Information Loss
174 ----------------------
176 _Information can be lost during output._ The output formats supported
177 by BFD do not provide identical facilities, and information which can
178 be described in one form has nowhere to go in another format. One
179 example of this is alignment information in `b.out'. There is nowhere
180 in an `a.out' format file to store alignment information on the
181 contained data, so when a file is linked from `b.out' and an `a.out'
182 image is produced, alignment information will not propagate to the
183 output file. (The linker will still use the alignment information
184 internally, so the link is performed correctly).
186 Another example is COFF section names. COFF files may contain an
187 unlimited number of sections, each one with a textual section name. If
188 the target of the link is a format which does not have many sections
189 (e.g., `a.out') or has sections without names (e.g., the Oasys format),
190 the link cannot be done simply. You can circumvent this problem by
191 describing the desired input-to-output section mapping with the linker
194 _Information can be lost during canonicalization._ The BFD internal
195 canonical form of the external formats is not exhaustive; there are
196 structures in input formats for which there is no direct representation
197 internally. This means that the BFD back ends cannot maintain all
198 possible data richness through the transformation between external to
199 internal and back to external formats.
201 This limitation is only a problem when an application reads one
202 format and writes another. Each BFD back end is responsible for
203 maintaining as much data as possible, and the internal BFD canonical
204 form has structures which are opaque to the BFD core, and exported only
205 to the back ends. When a file is read in one format, the canonical form
206 is generated for BFD and the application. At the same time, the back
207 end saves away any information which may otherwise be lost. If the data
208 is then written back in the same format, the back end routine will be
209 able to use the canonical form provided by the BFD core as well as the
210 information it prepared earlier. Since there is a great deal of
211 commonality between back ends, there is no information lost when
212 linking or copying big endian COFF to little endian COFF, or `a.out' to
213 `b.out'. When a mixture of formats is linked, the information is only
214 lost from the files whose format differs from the destination.
217 File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
219 1.3.2 The BFD canonical object-file format
220 ------------------------------------------
222 The greatest potential for loss of information occurs when there is the
223 least overlap between the information provided by the source format,
224 that stored by the canonical format, and that needed by the destination
225 format. A brief description of the canonical form may help you
226 understand which kinds of data you can count on preserving across
230 Information stored on a per-file basis includes target machine
231 architecture, particular implementation format type, a demand
232 pageable bit, and a write protected bit. Information like Unix
233 magic numbers is not stored here--only the magic numbers' meaning,
234 so a `ZMAGIC' file would have both the demand pageable bit and the
235 write protected text bit set. The byte order of the target is
236 stored on a per-file basis, so that big- and little-endian object
237 files may be used with one another.
240 Each section in the input file contains the name of the section,
241 the section's original address in the object file, size and
242 alignment information, various flags, and pointers into other BFD
246 Each symbol contains a pointer to the information for the object
247 file which originally defined it, its name, its value, and various
248 flag bits. When a BFD back end reads in a symbol table, it
249 relocates all symbols to make them relative to the base of the
250 section where they were defined. Doing this ensures that each
251 symbol points to its containing section. Each symbol also has a
252 varying amount of hidden private data for the BFD back end. Since
253 the symbol points to the original file, the private data format
254 for that symbol is accessible. `ld' can operate on a collection
255 of symbols of wildly different formats without problems.
257 Normal global and simple local symbols are maintained on output,
258 so an output file (no matter its format) will retain symbols
259 pointing to functions and to global, static, and common variables.
260 Some symbol information is not worth retaining; in `a.out', type
261 information is stored in the symbol table as long symbol names.
262 This information would be useless to most COFF debuggers; the
263 linker has command line switches to allow users to throw it away.
265 There is one word of type information within the symbol, so if the
266 format supports symbol type information within symbols (for
267 example, COFF, IEEE, Oasys) and the type is simple enough to fit
268 within one word (nearly everything but aggregates), the
269 information will be preserved.
272 Each canonical BFD relocation record contains a pointer to the
273 symbol to relocate to, the offset of the data to relocate, the
274 section the data is in, and a pointer to a relocation type
275 descriptor. Relocation is performed by passing messages through
276 the relocation type descriptor and the symbol pointer. Therefore,
277 relocations can be performed on output data using a relocation
278 method that is only available in one of the input formats. For
279 instance, Oasys provides a byte relocation format. A relocation
280 record requesting this relocation type would point indirectly to a
281 routine to perform this, so the relocation may be performed on a
282 byte being written to a 68k COFF file, even though 68k COFF has no
283 such relocation type.
286 Object formats can contain, for debugging purposes, some form of
287 mapping between symbols, source line numbers, and addresses in the
288 output file. These addresses have to be relocated along with the
289 symbol information. Each symbol with an associated list of line
290 number records points to the first record of the list. The head
291 of a line number list consists of a pointer to the symbol, which
292 allows finding out the address of the function whose line number
293 is being described. The rest of the list is made up of pairs:
294 offsets into the section and line numbers. Any format which can
295 simply derive this information can pass it successfully between
296 formats (COFF, IEEE and Oasys).
299 File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
307 A BFD has type `bfd'; objects of this type are the cornerstone of any
308 application using BFD. Using BFD consists of making references though
309 the BFD and to data in the BFD.
311 Here is the structure that defines the type `bfd'. It contains the
312 major data about the file and pointers to the rest of the data.
317 /* A unique identifier of the BFD */
320 /* The filename the application opened the BFD with. */
321 const char *filename;
323 /* A pointer to the target jump table. */
324 const struct bfd_target *xvec;
326 /* The IOSTREAM, and corresponding IO vector that provide access
327 to the file backing the BFD. */
329 const struct bfd_iovec *iovec;
331 /* The caching routines use these to maintain a
332 least-recently-used list of BFDs. */
333 struct bfd *lru_prev, *lru_next;
335 /* When a file is closed by the caching routines, BFD retains
336 state information on the file here... */
339 /* File modified time, if mtime_set is TRUE. */
342 /* Reserved for an unimplemented file locking extension. */
345 /* The format which belongs to the BFD. (object, core, etc.) */
348 /* The direction with which the BFD was opened. */
358 /* Format_specific flags. */
361 /* Values that may appear in the flags field of a BFD. These also
362 appear in the object_flags field of the bfd_target structure, where
363 they indicate the set of flags used by that backend (not all flags
364 are meaningful for all object file formats) (FIXME: at the moment,
365 the object_flags values have mostly just been copied from backend
366 to another, and are not necessarily correct). */
368 #define BFD_NO_FLAGS 0x00
370 /* BFD contains relocation entries. */
371 #define HAS_RELOC 0x01
373 /* BFD is directly executable. */
376 /* BFD has line number information (basically used for F_LNNO in a
378 #define HAS_LINENO 0x04
380 /* BFD has debugging information. */
381 #define HAS_DEBUG 0x08
383 /* BFD has symbols. */
384 #define HAS_SYMS 0x10
386 /* BFD has local symbols (basically used for F_LSYMS in a COFF
388 #define HAS_LOCALS 0x20
390 /* BFD is a dynamic object. */
393 /* Text section is write protected (if D_PAGED is not set, this is
394 like an a.out NMAGIC file) (the linker sets this by default, but
395 clears it for -r or -N). */
398 /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
399 linker sets this by default, but clears it for -r or -n or -N). */
400 #define D_PAGED 0x100
402 /* BFD is relaxable (this means that bfd_relax_section may be able to
403 do something) (sometimes bfd_relax_section can do something even if
405 #define BFD_IS_RELAXABLE 0x200
407 /* This may be set before writing out a BFD to request using a
408 traditional format. For example, this is used to request that when
409 writing out an a.out object the symbols not be hashed to eliminate
411 #define BFD_TRADITIONAL_FORMAT 0x400
413 /* This flag indicates that the BFD contents are actually cached
414 in memory. If this is set, iostream points to a bfd_in_memory
416 #define BFD_IN_MEMORY 0x800
418 /* The sections in this BFD specify a memory page. */
419 #define HAS_LOAD_PAGE 0x1000
421 /* This BFD has been created by the linker and doesn't correspond
422 to any input file. */
423 #define BFD_LINKER_CREATED 0x2000
425 /* Currently my_archive is tested before adding origin to
426 anything. I believe that this can become always an add of
427 origin, with origin set to 0 for non archive files. */
430 /* The origin in the archive of the proxy entry. This will
431 normally be the same as origin, except for thin archives,
432 when it will contain the current offset of the proxy in the
433 thin archive rather than the offset of the bfd in its actual
435 ufile_ptr proxy_origin;
437 /* A hash table for section names. */
438 struct bfd_hash_table section_htab;
440 /* Pointer to linked list of sections. */
441 struct bfd_section *sections;
443 /* The last section on the section list. */
444 struct bfd_section *section_last;
446 /* The number of sections. */
447 unsigned int section_count;
449 /* Stuff only useful for object files:
450 The start address. */
451 bfd_vma start_address;
453 /* Used for input and output. */
454 unsigned int symcount;
456 /* Symbol table for output BFD (with symcount entries).
457 Also used by the linker to cache input BFD symbols. */
458 struct bfd_symbol **outsymbols;
460 /* Used for slurped dynamic symbol tables. */
461 unsigned int dynsymcount;
463 /* Pointer to structure which contains architecture information. */
464 const struct bfd_arch_info *arch_info;
466 /* Stuff only useful for archives. */
468 struct bfd *my_archive; /* The containing archive BFD. */
469 struct bfd *archive_next; /* The next BFD in the archive. */
470 struct bfd *archive_head; /* The first BFD in the archive. */
471 struct bfd *nested_archives; /* List of nested archive in a flattened
474 /* A chain of BFD structures involved in a link. */
475 struct bfd *link_next;
477 /* A field used by _bfd_generic_link_add_archive_symbols. This will
478 be used only for archive elements. */
481 /* Used by the back end to hold private data. */
484 struct aout_data_struct *aout_data;
485 struct artdata *aout_ar_data;
486 struct _oasys_data *oasys_obj_data;
487 struct _oasys_ar_data *oasys_ar_data;
488 struct coff_tdata *coff_obj_data;
489 struct pe_tdata *pe_obj_data;
490 struct xcoff_tdata *xcoff_obj_data;
491 struct ecoff_tdata *ecoff_obj_data;
492 struct ieee_data_struct *ieee_data;
493 struct ieee_ar_data_struct *ieee_ar_data;
494 struct srec_data_struct *srec_data;
495 struct ihex_data_struct *ihex_data;
496 struct tekhex_data_struct *tekhex_data;
497 struct elf_obj_tdata *elf_obj_data;
498 struct nlm_obj_tdata *nlm_obj_data;
499 struct bout_data_struct *bout_data;
500 struct mmo_data_struct *mmo_data;
501 struct sun_core_struct *sun_core_data;
502 struct sco5_core_struct *sco5_core_data;
503 struct trad_core_struct *trad_core_data;
504 struct som_data_struct *som_data;
505 struct hpux_core_struct *hpux_core_data;
506 struct hppabsd_core_struct *hppabsd_core_data;
507 struct sgi_core_struct *sgi_core_data;
508 struct lynx_core_struct *lynx_core_data;
509 struct osf_core_struct *osf_core_data;
510 struct cisco_core_struct *cisco_core_data;
511 struct versados_data_struct *versados_data;
512 struct netbsd_core_struct *netbsd_core_data;
513 struct mach_o_data_struct *mach_o_data;
514 struct mach_o_fat_data_struct *mach_o_fat_data;
515 struct bfd_pef_data_struct *pef_data;
516 struct bfd_pef_xlib_data_struct *pef_xlib_data;
517 struct bfd_sym_data_struct *sym_data;
522 /* Used by the application to hold private data. */
525 /* Where all the allocated stuff under this BFD goes. This is a
526 struct objalloc *, but we use void * to avoid requiring the inclusion
530 /* Is the file descriptor being cached? That is, can it be closed as
531 needed, and re-opened when accessed later? */
532 unsigned int cacheable : 1;
534 /* Marks whether there was a default target specified when the
535 BFD was opened. This is used to select which matching algorithm
536 to use to choose the back end. */
537 unsigned int target_defaulted : 1;
539 /* ... and here: (``once'' means at least once). */
540 unsigned int opened_once : 1;
542 /* Set if we have a locally maintained mtime value, rather than
543 getting it from the file each time. */
544 unsigned int mtime_set : 1;
546 /* Flag set if symbols from this BFD should not be exported. */
547 unsigned int no_export : 1;
549 /* Remember when output has begun, to stop strange things
551 unsigned int output_has_begun : 1;
553 /* Have archive map. */
554 unsigned int has_armap : 1;
556 /* Set if this is a thin archive. */
557 unsigned int is_thin_archive : 1;
563 Most BFD functions return nonzero on success (check their individual
564 documentation for precise semantics). On an error, they call
565 `bfd_set_error' to set an error condition that callers can check by
566 calling `bfd_get_error'. If that returns `bfd_error_system_call', then
569 The easiest way to report a BFD error to the user is to use
572 2.2.1 Type `bfd_error_type'
573 ---------------------------
575 The values returned by `bfd_get_error' are defined by the enumerated
576 type `bfd_error_type'.
579 typedef enum bfd_error
581 bfd_error_no_error = 0,
582 bfd_error_system_call,
583 bfd_error_invalid_target,
584 bfd_error_wrong_format,
585 bfd_error_wrong_object_format,
586 bfd_error_invalid_operation,
588 bfd_error_no_symbols,
590 bfd_error_no_more_archived_files,
591 bfd_error_malformed_archive,
592 bfd_error_file_not_recognized,
593 bfd_error_file_ambiguously_recognized,
594 bfd_error_no_contents,
595 bfd_error_nonrepresentable_section,
596 bfd_error_no_debug_section,
598 bfd_error_file_truncated,
599 bfd_error_file_too_big,
601 bfd_error_invalid_error_code
605 2.2.1.1 `bfd_get_error'
606 .......................
609 bfd_error_type bfd_get_error (void);
611 Return the current BFD error condition.
613 2.2.1.2 `bfd_set_error'
614 .......................
617 void bfd_set_error (bfd_error_type error_tag, ...);
619 Set the BFD error condition to be ERROR_TAG. If ERROR_TAG is
620 bfd_error_on_input, then this function takes two more parameters, the
621 input bfd where the error occurred, and the bfd_error_type error.
627 const char *bfd_errmsg (bfd_error_type error_tag);
629 Return a string describing the error ERROR_TAG, or the system error if
630 ERROR_TAG is `bfd_error_system_call'.
636 void bfd_perror (const char *message);
638 Print to the standard error stream a string describing the last BFD
639 error that occurred, or the last system error if the last BFD error was
640 a system call failure. If MESSAGE is non-NULL and non-empty, the error
641 string printed is preceded by MESSAGE, a colon, and a space. It is
642 followed by a newline.
644 2.2.2 BFD error handler
645 -----------------------
647 Some BFD functions want to print messages describing the problem. They
648 call a BFD error handler function. This function may be overridden by
651 The BFD error handler acts like printf.
654 typedef void (*bfd_error_handler_type) (const char *, ...);
656 2.2.2.1 `bfd_set_error_handler'
657 ...............................
660 bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
662 Set the BFD error handler function. Returns the previous function.
664 2.2.2.2 `bfd_set_error_program_name'
665 ....................................
668 void bfd_set_error_program_name (const char *);
670 Set the program name to use when printing a BFD error. This is printed
671 before the error message followed by a colon and space. The string
672 must not be changed after it is passed to this function.
674 2.2.2.3 `bfd_get_error_handler'
675 ...............................
678 bfd_error_handler_type bfd_get_error_handler (void);
680 Return the BFD error handler function.
685 2.3.1 Miscellaneous functions
686 -----------------------------
688 2.3.1.1 `bfd_get_reloc_upper_bound'
689 ...................................
692 long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
694 Return the number of bytes required to store the relocation information
695 associated with section SECT attached to bfd ABFD. If an error occurs,
698 2.3.1.2 `bfd_canonicalize_reloc'
699 ................................
702 long bfd_canonicalize_reloc
703 (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
705 Call the back end associated with the open BFD ABFD and translate the
706 external form of the relocation information attached to SEC into the
707 internal canonical form. Place the table into memory at LOC, which has
708 been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
709 Returns the number of relocs, or -1 on error.
711 The SYMS table is also needed for horrible internal magic reasons.
713 2.3.1.3 `bfd_set_reloc'
714 .......................
718 (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
720 Set the relocation pointer and count within section SEC to the values
721 REL and COUNT. The argument ABFD is ignored.
723 2.3.1.4 `bfd_set_file_flags'
724 ............................
727 bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
729 Set the flag word in the BFD ABFD to the value FLAGS.
732 * `bfd_error_wrong_format' - The target bfd was not of object format.
734 * `bfd_error_invalid_operation' - The target bfd was open for
737 * `bfd_error_invalid_operation' - The flag word contained a bit
738 which was not applicable to the type of file. E.g., an attempt
739 was made to set the `D_PAGED' bit on a BFD format which does not
740 support demand paging.
742 2.3.1.5 `bfd_get_arch_size'
743 ...........................
746 int bfd_get_arch_size (bfd *abfd);
748 Returns the architecture address size, in bits, as determined by the
749 object file's format. For ELF, this information is included in the
753 Returns the arch size in bits if known, `-1' otherwise.
755 2.3.1.6 `bfd_get_sign_extend_vma'
756 .................................
759 int bfd_get_sign_extend_vma (bfd *abfd);
761 Indicates if the target architecture "naturally" sign extends an
762 address. Some architectures implicitly sign extend address values when
763 they are converted to types larger than the size of an address. For
764 instance, bfd_get_start_address() will return an address sign extended
765 to fill a bfd_vma when this is the case.
768 Returns `1' if the target architecture is known to sign extend
769 addresses, `0' if the target architecture is known to not sign extend
770 addresses, and `-1' otherwise.
772 2.3.1.7 `bfd_set_start_address'
773 ...............................
776 bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
778 Make VMA the entry point of output BFD ABFD.
781 Returns `TRUE' on success, `FALSE' otherwise.
783 2.3.1.8 `bfd_get_gp_size'
784 .........................
787 unsigned int bfd_get_gp_size (bfd *abfd);
789 Return the maximum size of objects to be optimized using the GP
790 register under MIPS ECOFF. This is typically set by the `-G' argument
791 to the compiler, assembler or linker.
793 2.3.1.9 `bfd_set_gp_size'
794 .........................
797 void bfd_set_gp_size (bfd *abfd, unsigned int i);
799 Set the maximum size of objects to be optimized using the GP register
800 under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
801 the compiler, assembler or linker.
803 2.3.1.10 `bfd_scan_vma'
804 .......................
807 bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
809 Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
810 integer, and return that integer. (Though without as many bells and
811 whistles as `strtoul'.) The expression is assumed to be unsigned
812 (i.e., positive). If given a BASE, it is used as the base for
813 conversion. A base of 0 causes the function to interpret the string in
814 hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
815 zero is found, otherwise in decimal.
817 If the value would overflow, the maximum `bfd_vma' value is returned.
819 2.3.1.11 `bfd_copy_private_header_data'
820 .......................................
823 bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
825 Copy private BFD header information from the BFD IBFD to the the BFD
826 OBFD. This copies information that may require sections to exist, but
827 does not require symbol tables. Return `true' on success, `false' on
828 error. Possible error returns are:
830 * `bfd_error_no_memory' - Not enough memory exists to create private
833 #define bfd_copy_private_header_data(ibfd, obfd) \
834 BFD_SEND (obfd, _bfd_copy_private_header_data, \
837 2.3.1.12 `bfd_copy_private_bfd_data'
838 ....................................
841 bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
843 Copy private BFD information from the BFD IBFD to the the BFD OBFD.
844 Return `TRUE' on success, `FALSE' on error. Possible error returns are:
846 * `bfd_error_no_memory' - Not enough memory exists to create private
849 #define bfd_copy_private_bfd_data(ibfd, obfd) \
850 BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
853 2.3.1.13 `bfd_merge_private_bfd_data'
854 .....................................
857 bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
859 Merge private BFD information from the BFD IBFD to the the output file
860 BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
861 Possible error returns are:
863 * `bfd_error_no_memory' - Not enough memory exists to create private
866 #define bfd_merge_private_bfd_data(ibfd, obfd) \
867 BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
870 2.3.1.14 `bfd_set_private_flags'
871 ................................
874 bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
876 Set private BFD flag information in the BFD ABFD. Return `TRUE' on
877 success, `FALSE' on error. Possible error returns are:
879 * `bfd_error_no_memory' - Not enough memory exists to create private
882 #define bfd_set_private_flags(abfd, flags) \
883 BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
885 2.3.1.15 `Other functions'
886 ..........................
889 The following functions exist but have not yet been documented.
890 #define bfd_sizeof_headers(abfd, info) \
891 BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))
893 #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
894 BFD_SEND (abfd, _bfd_find_nearest_line, \
895 (abfd, sec, syms, off, file, func, line))
897 #define bfd_find_line(abfd, syms, sym, file, line) \
898 BFD_SEND (abfd, _bfd_find_line, \
899 (abfd, syms, sym, file, line))
901 #define bfd_find_inliner_info(abfd, file, func, line) \
902 BFD_SEND (abfd, _bfd_find_inliner_info, \
903 (abfd, file, func, line))
905 #define bfd_debug_info_start(abfd) \
906 BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
908 #define bfd_debug_info_end(abfd) \
909 BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
911 #define bfd_debug_info_accumulate(abfd, section) \
912 BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
914 #define bfd_stat_arch_elt(abfd, stat) \
915 BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
917 #define bfd_update_armap_timestamp(abfd) \
918 BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
920 #define bfd_set_arch_mach(abfd, arch, mach)\
921 BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
923 #define bfd_relax_section(abfd, section, link_info, again) \
924 BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
926 #define bfd_gc_sections(abfd, link_info) \
927 BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
929 #define bfd_merge_sections(abfd, link_info) \
930 BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
932 #define bfd_is_group_section(abfd, sec) \
933 BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))
935 #define bfd_discard_group(abfd, sec) \
936 BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
938 #define bfd_link_hash_table_create(abfd) \
939 BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
941 #define bfd_link_hash_table_free(abfd, hash) \
942 BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
944 #define bfd_link_add_symbols(abfd, info) \
945 BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
947 #define bfd_link_just_syms(abfd, sec, info) \
948 BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
950 #define bfd_final_link(abfd, info) \
951 BFD_SEND (abfd, _bfd_final_link, (abfd, info))
953 #define bfd_free_cached_info(abfd) \
954 BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
956 #define bfd_get_dynamic_symtab_upper_bound(abfd) \
957 BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
959 #define bfd_print_private_bfd_data(abfd, file)\
960 BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
962 #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
963 BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
965 #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
966 BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
967 dyncount, dynsyms, ret))
969 #define bfd_get_dynamic_reloc_upper_bound(abfd) \
970 BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
972 #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
973 BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
975 extern bfd_byte *bfd_get_relocated_section_contents
976 (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
977 bfd_boolean, asymbol **);
979 2.3.1.16 `bfd_alt_mach_code'
980 ............................
983 bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
985 When more than one machine code number is available for the same
986 machine type, this function can be used to switch between the preferred
987 one (alternative == 0) and any others. Currently, only ELF supports
988 this feature, with up to two alternate machine codes.
995 const struct bfd_arch_info *arch_info;
996 struct bfd_section *sections;
997 struct bfd_section *section_last;
998 unsigned int section_count;
999 struct bfd_hash_table section_htab;
1002 2.3.1.17 `bfd_preserve_save'
1003 ............................
1006 bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
1008 When testing an object for compatibility with a particular target
1009 back-end, the back-end object_p function needs to set up certain fields
1010 in the bfd on successfully recognizing the object. This typically
1011 happens in a piecemeal fashion, with failures possible at many points.
1012 On failure, the bfd is supposed to be restored to its initial state,
1013 which is virtually impossible. However, restoring a subset of the bfd
1014 state works in practice. This function stores the subset and
1015 reinitializes the bfd.
1017 2.3.1.18 `bfd_preserve_restore'
1018 ...............................
1021 void bfd_preserve_restore (bfd *, struct bfd_preserve *);
1023 This function restores bfd state saved by bfd_preserve_save. If MARKER
1024 is non-NULL in struct bfd_preserve then that block and all subsequently
1025 bfd_alloc'd memory is freed.
1027 2.3.1.19 `bfd_preserve_finish'
1028 ..............................
1031 void bfd_preserve_finish (bfd *, struct bfd_preserve *);
1033 This function should be called when the bfd state saved by
1034 bfd_preserve_save is no longer needed. ie. when the back-end object_p
1035 function returns with success.
1037 2.3.1.20 `bfd_emul_get_maxpagesize'
1038 ...................................
1041 bfd_vma bfd_emul_get_maxpagesize (const char *);
1043 Returns the maximum page size, in bytes, as determined by emulation.
1046 Returns the maximum page size in bytes for ELF, abort otherwise.
1048 2.3.1.21 `bfd_emul_set_maxpagesize'
1049 ...................................
1052 void bfd_emul_set_maxpagesize (const char *, bfd_vma);
1054 For ELF, set the maximum page size for the emulation. It is a no-op
1057 2.3.1.22 `bfd_emul_get_commonpagesize'
1058 ......................................
1061 bfd_vma bfd_emul_get_commonpagesize (const char *);
1063 Returns the common page size, in bytes, as determined by emulation.
1066 Returns the common page size in bytes for ELF, abort otherwise.
1068 2.3.1.23 `bfd_emul_set_commonpagesize'
1069 ......................................
1072 void bfd_emul_set_commonpagesize (const char *, bfd_vma);
1074 For ELF, set the common page size for the emulation. It is a no-op for
1077 2.3.1.24 `bfd_demangle'
1078 .......................
1081 char *bfd_demangle (bfd *, const char *, int);
1083 Wrapper around cplus_demangle. Strips leading underscores and other
1084 such chars that would otherwise confuse the demangler. If passed a g++
1085 v3 ABI mangled name, returns a buffer allocated with malloc holding the
1086 demangled name. Returns NULL otherwise and on memory alloc failure.
1088 2.3.1.25 `struct bfd_iovec'
1089 ...........................
1092 The `struct bfd_iovec' contains the internal file I/O class. Each
1093 `BFD' has an instance of this class and all file I/O is routed through
1094 it (it is assumed that the instance implements all methods listed
1098 /* To avoid problems with macros, a "b" rather than "f"
1099 prefix is prepended to each method name. */
1100 /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
1101 bytes starting at PTR. Return the number of bytes actually
1102 transfered (a read past end-of-file returns less than NBYTES),
1103 or -1 (setting `bfd_error') if an error occurs. */
1104 file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
1105 file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
1107 /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'
1108 if an error occurs. */
1109 file_ptr (*btell) (struct bfd *abfd);
1110 /* For the following, on successful completion a value of 0 is returned.
1111 Otherwise, a value of -1 is returned (and `bfd_error' is set). */
1112 int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
1113 int (*bclose) (struct bfd *abfd);
1114 int (*bflush) (struct bfd *abfd);
1115 int (*bstat) (struct bfd *abfd, struct stat *sb);
1118 2.3.1.26 `bfd_get_mtime'
1119 ........................
1122 long bfd_get_mtime (bfd *abfd);
1124 Return the file modification time (as read from the file system, or
1125 from the archive header for archive members).
1127 2.3.1.27 `bfd_get_size'
1128 .......................
1131 file_ptr bfd_get_size (bfd *abfd);
1133 Return the file size (as read from file system) for the file associated
1136 The initial motivation for, and use of, this routine is not so we
1137 can get the exact size of the object the BFD applies to, since that
1138 might not be generally possible (archive members for example). It
1139 would be ideal if someone could eventually modify it so that such
1140 results were guaranteed.
1142 Instead, we want to ask questions like "is this NNN byte sized
1143 object I'm about to try read from file offset YYY reasonable?" As as
1144 example of where we might do this, some object formats use string
1145 tables for which the first `sizeof (long)' bytes of the table contain
1146 the size of the table itself, including the size bytes. If an
1147 application tries to read what it thinks is one of these string tables,
1148 without some way to validate the size, and for some reason the size is
1149 wrong (byte swapping error, wrong location for the string table, etc.),
1150 the only clue is likely to be a read error when it tries to read the
1151 table, or a "virtual memory exhausted" error when it tries to allocate
1152 15 bazillon bytes of space for the 15 bazillon byte table it is about
1153 to read. This function at least allows us to answer the question, "is
1154 the size reasonable?".
1168 * Opening and Closing::
1171 * Linker Functions::
1175 File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
1180 BFD keeps all of its internal structures in obstacks. There is one
1181 obstack per open BFD file, into which the current state is stored. When
1182 a BFD is closed, the obstack is deleted, and so everything which has
1183 been allocated by BFD for the closing file is thrown away.
1185 BFD does not free anything created by an application, but pointers
1186 into `bfd' structures become invalid on a `bfd_close'; for example,
1187 after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
1188 still around, since it has been allocated by the application, but the
1189 data that it pointed to are lost.
1191 The general rule is to not close a BFD until all operations dependent
1192 upon data from the BFD have been completed, or all the data from within
1193 the file has been copied. To help with the management of memory, there
1194 is a function (`bfd_alloc_size') which returns the number of bytes in
1195 obstacks associated with the supplied BFD. This could be used to select
1196 the greediest open BFD, close it to reclaim the memory, perform some
1197 operation and reopen the BFD again, to get a fresh copy of the data
1201 File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
1206 2.5.1 Initialization functions
1207 ------------------------------
1209 These are the functions that handle initializing a BFD.
1215 void bfd_init (void);
1217 This routine must be called before any other BFD function to initialize
1218 magical internal data structures.
1221 File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
1226 The raw data contained within a BFD is maintained through the section
1227 abstraction. A single BFD may have any number of sections. It keeps
1228 hold of them by pointing to the first; each one points to the next in
1231 Sections are supported in BFD in `section.c'.
1237 * typedef asection::
1238 * section prototypes::
1241 File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
1246 When a BFD is opened for reading, the section structures are created
1247 and attached to the BFD.
1249 Each section has a name which describes the section in the outside
1250 world--for example, `a.out' would contain at least three sections,
1251 called `.text', `.data' and `.bss'.
1253 Names need not be unique; for example a COFF file may have several
1254 sections named `.data'.
1256 Sometimes a BFD will contain more than the "natural" number of
1257 sections. A back end may attach other sections containing constructor
1258 data, or an application may add a section (using `bfd_make_section') to
1259 the sections attached to an already open BFD. For example, the linker
1260 creates an extra section `COMMON' for each input file's BFD to hold
1261 information about common storage.
1263 The raw data is not necessarily read in when the section descriptor
1264 is created. Some targets may leave the data in place until a
1265 `bfd_get_section_contents' call is made. Other back ends may read in
1266 all the data at once. For example, an S-record file has to be read
1267 once to determine the size of the data. An IEEE-695 file doesn't
1268 contain raw data in sections, but data and relocation expressions
1269 intermixed, so the data area has to be parsed to get out the data and
1273 File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
1275 2.6.2 Section output
1276 --------------------
1278 To write a new object style BFD, the various sections to be written
1279 have to be created. They are attached to the BFD in the same way as
1280 input sections; data is written to the sections using
1281 `bfd_set_section_contents'.
1283 Any program that creates or combines sections (e.g., the assembler
1284 and linker) must use the `asection' fields `output_section' and
1285 `output_offset' to indicate the file sections to which each section
1286 must be written. (If the section is being created from scratch,
1287 `output_section' should probably point to the section itself and
1288 `output_offset' should probably be zero.)
1290 The data to be written comes from input sections attached (via
1291 `output_section' pointers) to the output sections. The output section
1292 structure can be considered a filter for the input section: the output
1293 section determines the vma of the output data and the name, but the
1294 input section determines the offset into the output section of the data
1297 E.g., to create a section "O", starting at 0x100, 0x123 long,
1298 containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
1299 "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
1305 output_section -----------> section name "O"
1307 section name "B" | size 0x123
1308 output_offset 0x20 |
1310 output_section --------|
1315 The data within a section is stored in a "link_order". These are much
1316 like the fixups in `gas'. The link_order abstraction allows a section
1317 to grow and shrink within itself.
1319 A link_order knows how big it is, and which is the next link_order
1320 and where the raw data for it is; it also points to a list of
1321 relocations which apply to it.
1323 The link_order is used by the linker to perform relaxing on final
1324 code. The compiler creates code which is as big as necessary to make
1325 it work without relaxing, and the user can select whether to relax.
1326 Sometimes relaxing takes a lot of time. The linker runs around the
1327 relocations to see if any are attached to data which can be shrunk, if
1328 so it does it on a link_order by link_order basis.
1331 File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
1333 2.6.4 typedef asection
1334 ----------------------
1336 Here is the section structure:
1339 typedef struct bfd_section
1341 /* The name of the section; the name isn't a copy, the pointer is
1342 the same as that passed to bfd_make_section. */
1345 /* A unique sequence number. */
1348 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
1351 /* The next section in the list belonging to the BFD, or NULL. */
1352 struct bfd_section *next;
1354 /* The previous section in the list belonging to the BFD, or NULL. */
1355 struct bfd_section *prev;
1357 /* The field flags contains attributes of the section. Some
1358 flags are read in from the object file, and some are
1359 synthesized from other information. */
1362 #define SEC_NO_FLAGS 0x000
1364 /* Tells the OS to allocate space for this section when loading.
1365 This is clear for a section containing debug information only. */
1366 #define SEC_ALLOC 0x001
1368 /* Tells the OS to load the section from the file when loading.
1369 This is clear for a .bss section. */
1370 #define SEC_LOAD 0x002
1372 /* The section contains data still to be relocated, so there is
1373 some relocation information too. */
1374 #define SEC_RELOC 0x004
1376 /* A signal to the OS that the section contains read only data. */
1377 #define SEC_READONLY 0x008
1379 /* The section contains code only. */
1380 #define SEC_CODE 0x010
1382 /* The section contains data only. */
1383 #define SEC_DATA 0x020
1385 /* The section will reside in ROM. */
1386 #define SEC_ROM 0x040
1388 /* The section contains constructor information. This section
1389 type is used by the linker to create lists of constructors and
1390 destructors used by `g++'. When a back end sees a symbol
1391 which should be used in a constructor list, it creates a new
1392 section for the type of name (e.g., `__CTOR_LIST__'), attaches
1393 the symbol to it, and builds a relocation. To build the lists
1394 of constructors, all the linker has to do is catenate all the
1395 sections called `__CTOR_LIST__' and relocate the data
1396 contained within - exactly the operations it would peform on
1398 #define SEC_CONSTRUCTOR 0x080
1400 /* The section has contents - a data section could be
1401 `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
1402 `SEC_HAS_CONTENTS' */
1403 #define SEC_HAS_CONTENTS 0x100
1405 /* An instruction to the linker to not output the section
1406 even if it has information which would normally be written. */
1407 #define SEC_NEVER_LOAD 0x200
1409 /* The section contains thread local data. */
1410 #define SEC_THREAD_LOCAL 0x400
1412 /* The section has GOT references. This flag is only for the
1413 linker, and is currently only used by the elf32-hppa back end.
1414 It will be set if global offset table references were detected
1415 in this section, which indicate to the linker that the section
1416 contains PIC code, and must be handled specially when doing a
1418 #define SEC_HAS_GOT_REF 0x800
1420 /* The section contains common symbols (symbols may be defined
1421 multiple times, the value of a symbol is the amount of
1422 space it requires, and the largest symbol value is the one
1423 used). Most targets have exactly one of these (which we
1424 translate to bfd_com_section_ptr), but ECOFF has two. */
1425 #define SEC_IS_COMMON 0x1000
1427 /* The section contains only debugging information. For
1428 example, this is set for ELF .debug and .stab sections.
1429 strip tests this flag to see if a section can be
1431 #define SEC_DEBUGGING 0x2000
1433 /* The contents of this section are held in memory pointed to
1434 by the contents field. This is checked by bfd_get_section_contents,
1435 and the data is retrieved from memory if appropriate. */
1436 #define SEC_IN_MEMORY 0x4000
1438 /* The contents of this section are to be excluded by the
1439 linker for executable and shared objects unless those
1440 objects are to be further relocated. */
1441 #define SEC_EXCLUDE 0x8000
1443 /* The contents of this section are to be sorted based on the sum of
1444 the symbol and addend values specified by the associated relocation
1445 entries. Entries without associated relocation entries will be
1446 appended to the end of the section in an unspecified order. */
1447 #define SEC_SORT_ENTRIES 0x10000
1449 /* When linking, duplicate sections of the same name should be
1450 discarded, rather than being combined into a single section as
1451 is usually done. This is similar to how common symbols are
1452 handled. See SEC_LINK_DUPLICATES below. */
1453 #define SEC_LINK_ONCE 0x20000
1455 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
1456 should handle duplicate sections. */
1457 #define SEC_LINK_DUPLICATES 0xc0000
1459 /* This value for SEC_LINK_DUPLICATES means that duplicate
1460 sections with the same name should simply be discarded. */
1461 #define SEC_LINK_DUPLICATES_DISCARD 0x0
1463 /* This value for SEC_LINK_DUPLICATES means that the linker
1464 should warn if there are any duplicate sections, although
1465 it should still only link one copy. */
1466 #define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
1468 /* This value for SEC_LINK_DUPLICATES means that the linker
1469 should warn if any duplicate sections are a different size. */
1470 #define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
1472 /* This value for SEC_LINK_DUPLICATES means that the linker
1473 should warn if any duplicate sections contain different
1475 #define SEC_LINK_DUPLICATES_SAME_CONTENTS \
1476 (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
1478 /* This section was created by the linker as part of dynamic
1479 relocation or other arcane processing. It is skipped when
1480 going through the first-pass output, trusting that someone
1481 else up the line will take care of it later. */
1482 #define SEC_LINKER_CREATED 0x100000
1484 /* This section should not be subject to garbage collection.
1485 Also set to inform the linker that this section should not be
1486 listed in the link map as discarded. */
1487 #define SEC_KEEP 0x200000
1489 /* This section contains "short" data, and should be placed
1491 #define SEC_SMALL_DATA 0x400000
1493 /* Attempt to merge identical entities in the section.
1494 Entity size is given in the entsize field. */
1495 #define SEC_MERGE 0x800000
1497 /* If given with SEC_MERGE, entities to merge are zero terminated
1498 strings where entsize specifies character size instead of fixed
1500 #define SEC_STRINGS 0x1000000
1502 /* This section contains data about section groups. */
1503 #define SEC_GROUP 0x2000000
1505 /* The section is a COFF shared library section. This flag is
1506 only for the linker. If this type of section appears in
1507 the input file, the linker must copy it to the output file
1508 without changing the vma or size. FIXME: Although this
1509 was originally intended to be general, it really is COFF
1510 specific (and the flag was renamed to indicate this). It
1511 might be cleaner to have some more general mechanism to
1512 allow the back end to control what the linker does with
1514 #define SEC_COFF_SHARED_LIBRARY 0x4000000
1516 /* This section contains data which may be shared with other
1517 executables or shared objects. This is for COFF only. */
1518 #define SEC_COFF_SHARED 0x8000000
1520 /* When a section with this flag is being linked, then if the size of
1521 the input section is less than a page, it should not cross a page
1522 boundary. If the size of the input section is one page or more,
1523 it should be aligned on a page boundary. This is for TI
1525 #define SEC_TIC54X_BLOCK 0x10000000
1527 /* Conditionally link this section; do not link if there are no
1528 references found to any symbol in the section. This is for TI
1530 #define SEC_TIC54X_CLINK 0x20000000
1532 /* End of section flags. */
1534 /* Some internal packed boolean fields. */
1536 /* See the vma field. */
1537 unsigned int user_set_vma : 1;
1539 /* A mark flag used by some of the linker backends. */
1540 unsigned int linker_mark : 1;
1542 /* Another mark flag used by some of the linker backends. Set for
1543 output sections that have an input section. */
1544 unsigned int linker_has_input : 1;
1546 /* Mark flag used by some linker backends for garbage collection. */
1547 unsigned int gc_mark : 1;
1549 /* The following flags are used by the ELF linker. */
1551 /* Mark sections which have been allocated to segments. */
1552 unsigned int segment_mark : 1;
1554 /* Type of sec_info information. */
1555 unsigned int sec_info_type:3;
1556 #define ELF_INFO_TYPE_NONE 0
1557 #define ELF_INFO_TYPE_STABS 1
1558 #define ELF_INFO_TYPE_MERGE 2
1559 #define ELF_INFO_TYPE_EH_FRAME 3
1560 #define ELF_INFO_TYPE_JUST_SYMS 4
1562 /* Nonzero if this section uses RELA relocations, rather than REL. */
1563 unsigned int use_rela_p:1;
1565 /* Bits used by various backends. The generic code doesn't touch
1568 /* Nonzero if this section has TLS related relocations. */
1569 unsigned int has_tls_reloc:1;
1571 /* Nonzero if this section has a gp reloc. */
1572 unsigned int has_gp_reloc:1;
1574 /* Nonzero if this section needs the relax finalize pass. */
1575 unsigned int need_finalize_relax:1;
1577 /* Whether relocations have been processed. */
1578 unsigned int reloc_done : 1;
1580 /* End of internal packed boolean fields. */
1582 /* The virtual memory address of the section - where it will be
1583 at run time. The symbols are relocated against this. The
1584 user_set_vma flag is maintained by bfd; if it's not set, the
1585 backend can assign addresses (for example, in `a.out', where
1586 the default address for `.data' is dependent on the specific
1587 target and various flags). */
1590 /* The load address of the section - where it would be in a
1591 rom image; really only used for writing section header
1595 /* The size of the section in octets, as it will be output.
1596 Contains a value even if the section has no contents (e.g., the
1600 /* For input sections, the original size on disk of the section, in
1601 octets. This field should be set for any section whose size is
1602 changed by linker relaxation. It is required for sections where
1603 the linker relaxation scheme doesn't cache altered section and
1604 reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
1605 targets), and thus the original size needs to be kept to read the
1606 section multiple times. For output sections, rawsize holds the
1607 section size calculated on a previous linker relaxation pass. */
1608 bfd_size_type rawsize;
1610 /* If this section is going to be output, then this value is the
1611 offset in *bytes* into the output section of the first byte in the
1612 input section (byte ==> smallest addressable unit on the
1613 target). In most cases, if this was going to start at the
1614 100th octet (8-bit quantity) in the output section, this value
1615 would be 100. However, if the target byte size is 16 bits
1616 (bfd_octets_per_byte is "2"), this value would be 50. */
1617 bfd_vma output_offset;
1619 /* The output section through which to map on output. */
1620 struct bfd_section *output_section;
1622 /* The alignment requirement of the section, as an exponent of 2 -
1623 e.g., 3 aligns to 2^3 (or 8). */
1624 unsigned int alignment_power;
1626 /* If an input section, a pointer to a vector of relocation
1627 records for the data in this section. */
1628 struct reloc_cache_entry *relocation;
1630 /* If an output section, a pointer to a vector of pointers to
1631 relocation records for the data in this section. */
1632 struct reloc_cache_entry **orelocation;
1634 /* The number of relocation records in one of the above. */
1635 unsigned reloc_count;
1637 /* Information below is back end specific - and not always used
1640 /* File position of section data. */
1643 /* File position of relocation info. */
1644 file_ptr rel_filepos;
1646 /* File position of line data. */
1647 file_ptr line_filepos;
1649 /* Pointer to data for applications. */
1652 /* If the SEC_IN_MEMORY flag is set, this points to the actual
1654 unsigned char *contents;
1656 /* Attached line number information. */
1659 /* Number of line number records. */
1660 unsigned int lineno_count;
1662 /* Entity size for merging purposes. */
1663 unsigned int entsize;
1665 /* Points to the kept section if this section is a link-once section,
1666 and is discarded. */
1667 struct bfd_section *kept_section;
1669 /* When a section is being output, this value changes as more
1670 linenumbers are written out. */
1671 file_ptr moving_line_filepos;
1673 /* What the section number is in the target world. */
1678 /* If this is a constructor section then here is a list of the
1679 relocations created to relocate items within it. */
1680 struct relent_chain *constructor_chain;
1682 /* The BFD which owns the section. */
1685 /* A symbol which points at this section only. */
1686 struct bfd_symbol *symbol;
1687 struct bfd_symbol **symbol_ptr_ptr;
1689 /* Early in the link process, map_head and map_tail are used to build
1690 a list of input sections attached to an output section. Later,
1691 output sections use these fields for a list of bfd_link_order
1694 struct bfd_link_order *link_order;
1695 struct bfd_section *s;
1696 } map_head, map_tail;
1699 /* These sections are global, and are managed by BFD. The application
1700 and target back end are not permitted to change the values in
1701 these sections. New code should use the section_ptr macros rather
1702 than referring directly to the const sections. The const sections
1703 may eventually vanish. */
1704 #define BFD_ABS_SECTION_NAME "*ABS*"
1705 #define BFD_UND_SECTION_NAME "*UND*"
1706 #define BFD_COM_SECTION_NAME "*COM*"
1707 #define BFD_IND_SECTION_NAME "*IND*"
1709 /* The absolute section. */
1710 extern asection bfd_abs_section;
1711 #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
1712 #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
1713 /* Pointer to the undefined section. */
1714 extern asection bfd_und_section;
1715 #define bfd_und_section_ptr ((asection *) &bfd_und_section)
1716 #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
1717 /* Pointer to the common section. */
1718 extern asection bfd_com_section;
1719 #define bfd_com_section_ptr ((asection *) &bfd_com_section)
1720 /* Pointer to the indirect section. */
1721 extern asection bfd_ind_section;
1722 #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
1723 #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
1725 #define bfd_is_const_section(SEC) \
1726 ( ((SEC) == bfd_abs_section_ptr) \
1727 || ((SEC) == bfd_und_section_ptr) \
1728 || ((SEC) == bfd_com_section_ptr) \
1729 || ((SEC) == bfd_ind_section_ptr))
1731 /* Macros to handle insertion and deletion of a bfd's sections. These
1732 only handle the list pointers, ie. do not adjust section_count,
1733 target_index etc. */
1734 #define bfd_section_list_remove(ABFD, S) \
1738 asection *_next = _s->next; \
1739 asection *_prev = _s->prev; \
1741 _prev->next = _next; \
1743 (ABFD)->sections = _next; \
1745 _next->prev = _prev; \
1747 (ABFD)->section_last = _prev; \
1750 #define bfd_section_list_append(ABFD, S) \
1754 bfd *_abfd = ABFD; \
1756 if (_abfd->section_last) \
1758 _s->prev = _abfd->section_last; \
1759 _abfd->section_last->next = _s; \
1764 _abfd->sections = _s; \
1766 _abfd->section_last = _s; \
1769 #define bfd_section_list_prepend(ABFD, S) \
1773 bfd *_abfd = ABFD; \
1775 if (_abfd->sections) \
1777 _s->next = _abfd->sections; \
1778 _abfd->sections->prev = _s; \
1783 _abfd->section_last = _s; \
1785 _abfd->sections = _s; \
1788 #define bfd_section_list_insert_after(ABFD, A, S) \
1793 asection *_next = _a->next; \
1800 (ABFD)->section_last = _s; \
1803 #define bfd_section_list_insert_before(ABFD, B, S) \
1808 asection *_prev = _b->prev; \
1815 (ABFD)->sections = _s; \
1818 #define bfd_section_removed_from_list(ABFD, S) \
1819 ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
1821 #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
1822 /* name, id, index, next, prev, flags, user_set_vma, */ \
1823 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
1825 /* linker_mark, linker_has_input, gc_mark, */ \
1828 /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \
1831 /* has_gp_reloc, need_finalize_relax, reloc_done, */ \
1834 /* vma, lma, size, rawsize */ \
1837 /* output_offset, output_section, alignment_power, */ \
1838 0, (struct bfd_section *) &SEC, 0, \
1840 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
1841 NULL, NULL, 0, 0, 0, \
1843 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
1844 0, NULL, NULL, NULL, 0, \
1846 /* entsize, kept_section, moving_line_filepos, */ \
1849 /* target_index, used_by_bfd, constructor_chain, owner, */ \
1850 0, NULL, NULL, NULL, \
1852 /* symbol, symbol_ptr_ptr, */ \
1853 (struct bfd_symbol *) SYM, &SEC.symbol, \
1855 /* map_head, map_tail */ \
1856 { NULL }, { NULL } \
1860 File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections
1862 2.6.5 Section prototypes
1863 ------------------------
1865 These are the functions exported by the section handling part of BFD.
1867 2.6.5.1 `bfd_section_list_clear'
1868 ................................
1871 void bfd_section_list_clear (bfd *);
1873 Clears the section list, and also resets the section count and hash
1876 2.6.5.2 `bfd_get_section_by_name'
1877 .................................
1880 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
1882 Run through ABFD and return the one of the `asection's whose name
1883 matches NAME, otherwise `NULL'. *Note Sections::, for more information.
1885 This should only be used in special cases; the normal way to process
1886 all sections of a given name is to use `bfd_map_over_sections' and
1887 `strcmp' on the name (or better yet, base it on the section flags or
1888 something else) for each section.
1890 2.6.5.3 `bfd_get_section_by_name_if'
1891 ....................................
1894 asection *bfd_get_section_by_name_if
1897 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1900 Call the provided function FUNC for each section attached to the BFD
1901 ABFD whose name matches NAME, passing OBJ as an argument. The function
1902 will be called as if by
1904 func (abfd, the_section, obj);
1906 It returns the first section for which FUNC returns true, otherwise
1909 2.6.5.4 `bfd_get_unique_section_name'
1910 .....................................
1913 char *bfd_get_unique_section_name
1914 (bfd *abfd, const char *templat, int *count);
1916 Invent a section name that is unique in ABFD by tacking a dot and a
1917 digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it
1918 specifies the first number tried as a suffix to generate a unique name.
1919 The value pointed to by COUNT will be incremented in this case.
1921 2.6.5.5 `bfd_make_section_old_way'
1922 ..................................
1925 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1927 Create a new empty section called NAME and attach it to the end of the
1928 chain of sections for the BFD ABFD. An attempt to create a section with
1929 a name which is already in use returns its pointer without changing the
1932 It has the funny name since this is the way it used to be before it
1935 Possible errors are:
1936 * `bfd_error_invalid_operation' - If output has already started for
1939 * `bfd_error_no_memory' - If memory allocation fails.
1941 2.6.5.6 `bfd_make_section_anyway_with_flags'
1942 ............................................
1945 asection *bfd_make_section_anyway_with_flags
1946 (bfd *abfd, const char *name, flagword flags);
1948 Create a new empty section called NAME and attach it to the end of the
1949 chain of sections for ABFD. Create a new section even if there is
1950 already a section with that name. Also set the attributes of the new
1951 section to the value FLAGS.
1953 Return `NULL' and set `bfd_error' on error; possible errors are:
1954 * `bfd_error_invalid_operation' - If output has already started for
1957 * `bfd_error_no_memory' - If memory allocation fails.
1959 2.6.5.7 `bfd_make_section_anyway'
1960 .................................
1963 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1965 Create a new empty section called NAME and attach it to the end of the
1966 chain of sections for ABFD. Create a new section even if there is
1967 already a section with that name.
1969 Return `NULL' and set `bfd_error' on error; possible errors are:
1970 * `bfd_error_invalid_operation' - If output has already started for
1973 * `bfd_error_no_memory' - If memory allocation fails.
1975 2.6.5.8 `bfd_make_section_with_flags'
1976 .....................................
1979 asection *bfd_make_section_with_flags
1980 (bfd *, const char *name, flagword flags);
1982 Like `bfd_make_section_anyway', but return `NULL' (without calling
1983 bfd_set_error ()) without changing the section chain if there is
1984 already a section named NAME. Also set the attributes of the new
1985 section to the value FLAGS. If there is an error, return `NULL' and set
1988 2.6.5.9 `bfd_make_section'
1989 ..........................
1992 asection *bfd_make_section (bfd *, const char *name);
1994 Like `bfd_make_section_anyway', but return `NULL' (without calling
1995 bfd_set_error ()) without changing the section chain if there is
1996 already a section named NAME. If there is an error, return `NULL' and
1999 2.6.5.10 `bfd_set_section_flags'
2000 ................................
2003 bfd_boolean bfd_set_section_flags
2004 (bfd *abfd, asection *sec, flagword flags);
2006 Set the attributes of the section SEC in the BFD ABFD to the value
2007 FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error
2010 * `bfd_error_invalid_operation' - The section cannot have one or
2011 more of the attributes requested. For example, a .bss section in
2012 `a.out' may not have the `SEC_HAS_CONTENTS' field set.
2014 2.6.5.11 `bfd_map_over_sections'
2015 ................................
2018 void bfd_map_over_sections
2020 void (*func) (bfd *abfd, asection *sect, void *obj),
2023 Call the provided function FUNC for each section attached to the BFD
2024 ABFD, passing OBJ as an argument. The function will be called as if by
2026 func (abfd, the_section, obj);
2028 This is the preferred method for iterating over sections; an
2029 alternative would be to use a loop:
2032 for (p = abfd->sections; p != NULL; p = p->next)
2035 2.6.5.12 `bfd_sections_find_if'
2036 ...............................
2039 asection *bfd_sections_find_if
2041 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
2044 Call the provided function OPERATION for each section attached to the
2045 BFD ABFD, passing OBJ as an argument. The function will be called as if
2048 operation (abfd, the_section, obj);
2050 It returns the first section for which OPERATION returns true.
2052 2.6.5.13 `bfd_set_section_size'
2053 ...............................
2056 bfd_boolean bfd_set_section_size
2057 (bfd *abfd, asection *sec, bfd_size_type val);
2059 Set SEC to the size VAL. If the operation is ok, then `TRUE' is
2060 returned, else `FALSE'.
2062 Possible error returns:
2063 * `bfd_error_invalid_operation' - Writing has started to the BFD, so
2064 setting the size is invalid.
2066 2.6.5.14 `bfd_set_section_contents'
2067 ...................................
2070 bfd_boolean bfd_set_section_contents
2071 (bfd *abfd, asection *section, const void *data,
2072 file_ptr offset, bfd_size_type count);
2074 Sets the contents of the section SECTION in BFD ABFD to the data
2075 starting in memory at DATA. The data is written to the output section
2076 starting at offset OFFSET for COUNT octets.
2078 Normally `TRUE' is returned, else `FALSE'. Possible error returns
2080 * `bfd_error_no_contents' - The output section does not have the
2081 `SEC_HAS_CONTENTS' attribute, so nothing can be written to it.
2084 This routine is front end to the back end function
2085 `_bfd_set_section_contents'.
2087 2.6.5.15 `bfd_get_section_contents'
2088 ...................................
2091 bfd_boolean bfd_get_section_contents
2092 (bfd *abfd, asection *section, void *location, file_ptr offset,
2093 bfd_size_type count);
2095 Read data from SECTION in BFD ABFD into memory starting at LOCATION.
2096 The data is read at an offset of OFFSET from the start of the input
2097 section, and is read for COUNT bytes.
2099 If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set
2100 are requested or if the section does not have the `SEC_HAS_CONTENTS'
2101 flag set, then the LOCATION is filled with zeroes. If no errors occur,
2102 `TRUE' is returned, else `FALSE'.
2104 2.6.5.16 `bfd_malloc_and_get_section'
2105 .....................................
2108 bfd_boolean bfd_malloc_and_get_section
2109 (bfd *abfd, asection *section, bfd_byte **buf);
2111 Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by
2114 2.6.5.17 `bfd_copy_private_section_data'
2115 ........................................
2118 bfd_boolean bfd_copy_private_section_data
2119 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
2121 Copy private section information from ISEC in the BFD IBFD to the
2122 section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on
2123 error. Possible error returns are:
2125 * `bfd_error_no_memory' - Not enough memory exists to create private
2128 #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
2129 BFD_SEND (obfd, _bfd_copy_private_section_data, \
2130 (ibfd, isection, obfd, osection))
2132 2.6.5.18 `bfd_generic_is_group_section'
2133 .......................................
2136 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
2138 Returns TRUE if SEC is a member of a group.
2140 2.6.5.19 `bfd_generic_discard_group'
2141 ....................................
2144 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
2146 Remove all members of GROUP from the output.
2149 File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end
2154 BFD tries to maintain as much symbol information as it can when it
2155 moves information from file to file. BFD passes information to
2156 applications though the `asymbol' structure. When the application
2157 requests the symbol table, BFD reads the table in the native form and
2158 translates parts of it into the internal format. To maintain more than
2159 the information passed to applications, some targets keep some
2160 information "behind the scenes" in a structure only the particular back
2161 end knows about. For example, the coff back end keeps the original
2162 symbol table structure as well as the canonical structure when a BFD is
2163 read in. On output, the coff back end can reconstruct the output symbol
2164 table so that no information is lost, even information unique to coff
2165 which BFD doesn't know or understand. If a coff symbol table were read,
2166 but were written through an a.out back end, all the coff specific
2167 information would be lost. The symbol table of a BFD is not necessarily
2168 read in until a canonicalize request is made. Then the BFD back end
2169 fills in a table provided by the application with pointers to the
2170 canonical information. To output symbols, the application provides BFD
2171 with a table of pointers to pointers to `asymbol's. This allows
2172 applications like the linker to output a symbol as it was read, since
2173 the "behind the scenes" information will be still available.
2181 * symbol handling functions::
2184 File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols
2186 2.7.1 Reading symbols
2187 ---------------------
2189 There are two stages to reading a symbol table from a BFD: allocating
2190 storage, and the actual reading process. This is an excerpt from an
2191 application which reads the symbol table:
2193 long storage_needed;
2194 asymbol **symbol_table;
2195 long number_of_symbols;
2198 storage_needed = bfd_get_symtab_upper_bound (abfd);
2200 if (storage_needed < 0)
2203 if (storage_needed == 0)
2206 symbol_table = xmalloc (storage_needed);
2209 bfd_canonicalize_symtab (abfd, symbol_table);
2211 if (number_of_symbols < 0)
2214 for (i = 0; i < number_of_symbols; i++)
2215 process_symbol (symbol_table[i]);
2217 All storage for the symbols themselves is in an objalloc connected
2218 to the BFD; it is freed when the BFD is closed.
2221 File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols
2223 2.7.2 Writing symbols
2224 ---------------------
2226 Writing of a symbol table is automatic when a BFD open for writing is
2227 closed. The application attaches a vector of pointers to pointers to
2228 symbols to the BFD being written, and fills in the symbol count. The
2229 close and cleanup code reads through the table provided and performs
2230 all the necessary operations. The BFD output code must always be
2231 provided with an "owned" symbol: one which has come from another BFD,
2232 or one which has been created using `bfd_make_empty_symbol'. Here is an
2233 example showing the creation of a symbol table with only one element:
2242 abfd = bfd_openw ("foo","a.out-sunos-big");
2243 bfd_set_format (abfd, bfd_object);
2244 new = bfd_make_empty_symbol (abfd);
2245 new->name = "dummy_symbol";
2246 new->section = bfd_make_section_old_way (abfd, ".text");
2247 new->flags = BSF_GLOBAL;
2248 new->value = 0x12345;
2253 bfd_set_symtab (abfd, ptrs, 1);
2260 00012345 A dummy_symbol
2262 Many formats cannot represent arbitrary symbol information; for
2263 instance, the `a.out' object format does not allow an arbitrary number
2264 of sections. A symbol pointing to a section which is not one of
2265 `.text', `.data' or `.bss' cannot be described.
2268 File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols
2273 Mini symbols provide read-only access to the symbol table. They use
2274 less memory space, but require more time to access. They can be useful
2275 for tools like nm or objdump, which may have to handle symbol tables of
2276 extremely large executables.
2278 The `bfd_read_minisymbols' function will read the symbols into
2279 memory in an internal form. It will return a `void *' pointer to a
2280 block of memory, a symbol count, and the size of each symbol. The
2281 pointer is allocated using `malloc', and should be freed by the caller
2282 when it is no longer needed.
2284 The function `bfd_minisymbol_to_symbol' will take a pointer to a
2285 minisymbol, and a pointer to a structure returned by
2286 `bfd_make_empty_symbol', and return a `asymbol' structure. The return
2287 value may or may not be the same as the value from
2288 `bfd_make_empty_symbol' which was passed in.
2291 File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols
2293 2.7.4 typedef asymbol
2294 ---------------------
2296 An `asymbol' has the form:
2299 typedef struct bfd_symbol
2301 /* A pointer to the BFD which owns the symbol. This information
2302 is necessary so that a back end can work out what additional
2303 information (invisible to the application writer) is carried
2306 This field is *almost* redundant, since you can use section->owner
2307 instead, except that some symbols point to the global sections
2308 bfd_{abs,com,und}_section. This could be fixed by making
2309 these globals be per-bfd (or per-target-flavor). FIXME. */
2310 struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
2312 /* The text of the symbol. The name is left alone, and not copied; the
2313 application may not alter it. */
2316 /* The value of the symbol. This really should be a union of a
2317 numeric value with a pointer, since some flags indicate that
2318 a pointer to another symbol is stored here. */
2321 /* Attributes of a symbol. */
2322 #define BSF_NO_FLAGS 0x00
2324 /* The symbol has local scope; `static' in `C'. The value
2325 is the offset into the section of the data. */
2326 #define BSF_LOCAL 0x01
2328 /* The symbol has global scope; initialized data in `C'. The
2329 value is the offset into the section of the data. */
2330 #define BSF_GLOBAL 0x02
2332 /* The symbol has global scope and is exported. The value is
2333 the offset into the section of the data. */
2334 #define BSF_EXPORT BSF_GLOBAL /* No real difference. */
2336 /* A normal C symbol would be one of:
2337 `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or
2340 /* The symbol is a debugging record. The value has an arbitrary
2341 meaning, unless BSF_DEBUGGING_RELOC is also set. */
2342 #define BSF_DEBUGGING 0x08
2344 /* The symbol denotes a function entry point. Used in ELF,
2345 perhaps others someday. */
2346 #define BSF_FUNCTION 0x10
2348 /* Used by the linker. */
2349 #define BSF_KEEP 0x20
2350 #define BSF_KEEP_G 0x40
2352 /* A weak global symbol, overridable without warnings by
2353 a regular global symbol of the same name. */
2354 #define BSF_WEAK 0x80
2356 /* This symbol was created to point to a section, e.g. ELF's
2357 STT_SECTION symbols. */
2358 #define BSF_SECTION_SYM 0x100
2360 /* The symbol used to be a common symbol, but now it is
2362 #define BSF_OLD_COMMON 0x200
2364 /* The default value for common data. */
2365 #define BFD_FORT_COMM_DEFAULT_VALUE 0
2367 /* In some files the type of a symbol sometimes alters its
2368 location in an output file - ie in coff a `ISFCN' symbol
2369 which is also `C_EXT' symbol appears where it was
2370 declared and not at the end of a section. This bit is set
2371 by the target BFD part to convey this information. */
2372 #define BSF_NOT_AT_END 0x400
2374 /* Signal that the symbol is the label of constructor section. */
2375 #define BSF_CONSTRUCTOR 0x800
2377 /* Signal that the symbol is a warning symbol. The name is a
2378 warning. The name of the next symbol is the one to warn about;
2379 if a reference is made to a symbol with the same name as the next
2380 symbol, a warning is issued by the linker. */
2381 #define BSF_WARNING 0x1000
2383 /* Signal that the symbol is indirect. This symbol is an indirect
2384 pointer to the symbol with the same name as the next symbol. */
2385 #define BSF_INDIRECT 0x2000
2387 /* BSF_FILE marks symbols that contain a file name. This is used
2388 for ELF STT_FILE symbols. */
2389 #define BSF_FILE 0x4000
2391 /* Symbol is from dynamic linking information. */
2392 #define BSF_DYNAMIC 0x8000
2394 /* The symbol denotes a data object. Used in ELF, and perhaps
2396 #define BSF_OBJECT 0x10000
2398 /* This symbol is a debugging symbol. The value is the offset
2399 into the section of the data. BSF_DEBUGGING should be set
2401 #define BSF_DEBUGGING_RELOC 0x20000
2403 /* This symbol is thread local. Used in ELF. */
2404 #define BSF_THREAD_LOCAL 0x40000
2406 /* This symbol represents a complex relocation expression,
2407 with the expression tree serialized in the symbol name. */
2408 #define BSF_RELC 0x80000
2410 /* This symbol represents a signed complex relocation expression,
2411 with the expression tree serialized in the symbol name. */
2412 #define BSF_SRELC 0x100000
2414 /* This symbol was created by bfd_get_synthetic_symtab. */
2415 #define BSF_SYNTHETIC 0x200000
2419 /* A pointer to the section to which this symbol is
2420 relative. This will always be non NULL, there are special
2421 sections for undefined and absolute symbols. */
2422 struct bfd_section *section;
2424 /* Back end special data. */
2435 File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols
2437 2.7.5 Symbol handling functions
2438 -------------------------------
2440 2.7.5.1 `bfd_get_symtab_upper_bound'
2441 ....................................
2444 Return the number of bytes required to store a vector of pointers to
2445 `asymbols' for all the symbols in the BFD ABFD, including a terminal
2446 NULL pointer. If there are no symbols in the BFD, then return 0. If an
2447 error occurs, return -1.
2448 #define bfd_get_symtab_upper_bound(abfd) \
2449 BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
2451 2.7.5.2 `bfd_is_local_label'
2452 ............................
2455 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
2457 Return TRUE if the given symbol SYM in the BFD ABFD is a compiler
2458 generated local label, else return FALSE.
2460 2.7.5.3 `bfd_is_local_label_name'
2461 .................................
2464 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
2466 Return TRUE if a symbol with the name NAME in the BFD ABFD is a
2467 compiler generated local label, else return FALSE. This just checks
2468 whether the name has the form of a local label.
2469 #define bfd_is_local_label_name(abfd, name) \
2470 BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
2472 2.7.5.4 `bfd_is_target_special_symbol'
2473 ......................................
2476 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
2478 Return TRUE iff a symbol SYM in the BFD ABFD is something special to
2479 the particular target represented by the BFD. Such symbols should
2480 normally not be mentioned to the user.
2481 #define bfd_is_target_special_symbol(abfd, sym) \
2482 BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
2484 2.7.5.5 `bfd_canonicalize_symtab'
2485 .................................
2488 Read the symbols from the BFD ABFD, and fills in the vector LOCATION
2489 with pointers to the symbols and a trailing NULL. Return the actual
2490 number of symbol pointers, not including the NULL.
2491 #define bfd_canonicalize_symtab(abfd, location) \
2492 BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
2494 2.7.5.6 `bfd_set_symtab'
2495 ........................
2498 bfd_boolean bfd_set_symtab
2499 (bfd *abfd, asymbol **location, unsigned int count);
2501 Arrange that when the output BFD ABFD is closed, the table LOCATION of
2502 COUNT pointers to symbols will be written.
2504 2.7.5.7 `bfd_print_symbol_vandf'
2505 ................................
2508 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
2510 Print the value and flags of the SYMBOL supplied to the stream FILE.
2512 2.7.5.8 `bfd_make_empty_symbol'
2513 ...............................
2516 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2519 This routine is necessary because each back end has private
2520 information surrounding the `asymbol'. Building your own `asymbol' and
2521 pointing to it will not create the private information, and will cause
2523 #define bfd_make_empty_symbol(abfd) \
2524 BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
2526 2.7.5.9 `_bfd_generic_make_empty_symbol'
2527 ........................................
2530 asymbol *_bfd_generic_make_empty_symbol (bfd *);
2532 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2533 to it. Used by core file routines, binary back-end and anywhere else
2534 where no private info is needed.
2536 2.7.5.10 `bfd_make_debug_symbol'
2537 ................................
2540 Create a new `asymbol' structure for the BFD ABFD, to be used as a
2541 debugging symbol. Further details of its use have yet to be worked out.
2542 #define bfd_make_debug_symbol(abfd,ptr,size) \
2543 BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
2545 2.7.5.11 `bfd_decode_symclass'
2546 ..............................
2549 Return a character corresponding to the symbol class of SYMBOL, or '?'
2550 for an unknown class.
2553 int bfd_decode_symclass (asymbol *symbol);
2555 2.7.5.12 `bfd_is_undefined_symclass'
2556 ....................................
2559 Returns non-zero if the class symbol returned by bfd_decode_symclass
2560 represents an undefined symbol. Returns zero otherwise.
2563 bfd_boolean bfd_is_undefined_symclass (int symclass);
2565 2.7.5.13 `bfd_symbol_info'
2566 ..........................
2569 Fill in the basic info about symbol that nm needs. Additional info may
2570 be added by the back-ends after calling this function.
2573 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
2575 2.7.5.14 `bfd_copy_private_symbol_data'
2576 .......................................
2579 bfd_boolean bfd_copy_private_symbol_data
2580 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
2582 Copy private symbol information from ISYM in the BFD IBFD to the symbol
2583 OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.
2584 Possible error returns are:
2586 * `bfd_error_no_memory' - Not enough memory exists to create private
2589 #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
2590 BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
2591 (ibfd, isymbol, obfd, osymbol))
2594 File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end
2600 An archive (or library) is just another BFD. It has a symbol table,
2601 although there's not much a user program will do with it.
2603 The big difference between an archive BFD and an ordinary BFD is
2604 that the archive doesn't have sections. Instead it has a chain of BFDs
2605 that are considered its contents. These BFDs can be manipulated like
2606 any other. The BFDs contained in an archive opened for reading will
2607 all be opened for reading. You may put either input or output BFDs
2608 into an archive opened for output; they will be handled correctly when
2609 the archive is closed.
2611 Use `bfd_openr_next_archived_file' to step through the contents of
2612 an archive opened for input. You don't have to read the entire archive
2613 if you don't want to! Read it until you find what you want.
2615 Archive contents of output BFDs are chained through the `next'
2616 pointer in a BFD. The first one is findable through the `archive_head'
2617 slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A
2618 given BFD may be in only one open output archive at a time.
2620 As expected, the BFD archive code is more general than the archive
2621 code of any given environment. BFD archives may contain files of
2622 different formats (e.g., a.out and coff) and even different
2623 architectures. You may even place archives recursively into archives!
2625 This can cause unexpected confusion, since some archive formats are
2626 more expressive than others. For instance, Intel COFF archives can
2627 preserve long filenames; SunOS a.out archives cannot. If you move a
2628 file from the first to the second format and back again, the filename
2629 may be truncated. Likewise, different a.out environments have different
2630 conventions as to how they truncate filenames, whether they preserve
2631 directory names in filenames, etc. When interoperating with native
2632 tools, be sure your files are homogeneous.
2634 Beware: most of these formats do not react well to the presence of
2635 spaces in filenames. We do the best we can, but can't always handle
2636 this case due to restrictions in the format of archives. Many Unix
2637 utilities are braindead in regards to spaces and such in filenames
2638 anyway, so this shouldn't be much of a restriction.
2640 Archives are supported in BFD in `archive.c'.
2642 2.8.1 Archive functions
2643 -----------------------
2645 2.8.1.1 `bfd_get_next_mapent'
2646 .............................
2649 symindex bfd_get_next_mapent
2650 (bfd *abfd, symindex previous, carsym **sym);
2652 Step through archive ABFD's symbol table (if it has one). Successively
2653 update SYM with the next symbol's information, returning that symbol's
2654 (internal) index into the symbol table.
2656 Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first
2657 one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.
2659 A `carsym' is a canonical archive symbol. The only user-visible
2660 element is its name, a null-terminated string.
2662 2.8.1.2 `bfd_set_archive_head'
2663 ..............................
2666 bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
2668 Set the head of the chain of BFDs contained in the archive OUTPUT to
2671 2.8.1.3 `bfd_openr_next_archived_file'
2672 ......................................
2675 bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
2677 Provided a BFD, ARCHIVE, containing an archive and NULL, open an input
2678 BFD on the first contained element and returns that. Subsequent calls
2679 should pass the archive and the previous return value to return a
2680 created BFD to the next contained element. NULL is returned when there
2684 File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end
2689 A format is a BFD concept of high level file contents type. The formats
2690 supported by BFD are:
2693 The BFD may contain data, symbols, relocations and debug info.
2696 The BFD contains other BFDs and an optional index.
2699 The BFD contains the result of an executable core dump.
2701 2.9.1 File format functions
2702 ---------------------------
2704 2.9.1.1 `bfd_check_format'
2705 ..........................
2708 bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
2710 Verify if the file attached to the BFD ABFD is compatible with the
2711 format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').
2713 If the BFD has been set to a specific target before the call, only
2714 the named target and format combination is checked. If the target has
2715 not been set, or has been set to `default', then all the known target
2716 backends is interrogated to determine a match. If the default target
2717 matches, it is used. If not, exactly one target must recognize the
2718 file, or an error results.
2720 The function returns `TRUE' on success, otherwise `FALSE' with one
2721 of the following error codes:
2723 * `bfd_error_invalid_operation' - if `format' is not one of
2724 `bfd_object', `bfd_archive' or `bfd_core'.
2726 * `bfd_error_system_call' - if an error occured during a read - even
2727 some file mismatches can cause bfd_error_system_calls.
2729 * `file_not_recognised' - none of the backends recognised the file
2732 * `bfd_error_file_ambiguously_recognized' - more than one backend
2733 recognised the file format.
2735 2.9.1.2 `bfd_check_format_matches'
2736 ..................................
2739 bfd_boolean bfd_check_format_matches
2740 (bfd *abfd, bfd_format format, char ***matching);
2742 Like `bfd_check_format', except when it returns FALSE with `bfd_errno'
2743 set to `bfd_error_file_ambiguously_recognized'. In that case, if
2744 MATCHING is not NULL, it will be filled in with a NULL-terminated list
2745 of the names of the formats that matched, allocated with `malloc'.
2746 Then the user may choose a format and try again.
2748 When done with the list that MATCHING points to, the caller should
2751 2.9.1.3 `bfd_set_format'
2752 ........................
2755 bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
2757 This function sets the file format of the BFD ABFD to the format
2758 FORMAT. If the target set in the BFD does not support the format
2759 requested, the format is invalid, or the BFD is not open for writing,
2760 then an error occurs.
2762 2.9.1.4 `bfd_format_string'
2763 ...........................
2766 const char *bfd_format_string (bfd_format format);
2768 Return a pointer to a const string `invalid', `object', `archive',
2769 `core', or `unknown', depending upon the value of FORMAT.
2772 File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end
2777 BFD maintains relocations in much the same way it maintains symbols:
2778 they are left alone until required, then read in en-masse and
2779 translated into an internal form. A common routine
2780 `bfd_perform_relocation' acts upon the canonical form to do the fixup.
2782 Relocations are maintained on a per section basis, while symbols are
2783 maintained on a per BFD basis.
2785 All that a back end has to do to fit the BFD interface is to create
2786 a `struct reloc_cache_entry' for each relocation in a particular
2787 section, and fill in the right bits of the structures.
2795 File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations
2797 2.10.1 typedef arelent
2798 ----------------------
2800 This is the structure of a relocation entry:
2803 typedef enum bfd_reloc_status
2805 /* No errors detected. */
2808 /* The relocation was performed, but there was an overflow. */
2811 /* The address to relocate was not within the section supplied. */
2812 bfd_reloc_outofrange,
2814 /* Used by special functions. */
2817 /* Unsupported relocation size requested. */
2818 bfd_reloc_notsupported,
2823 /* The symbol to relocate against was undefined. */
2824 bfd_reloc_undefined,
2826 /* The relocation was performed, but may not be ok - presently
2827 generated only when linking i960 coff files with i960 b.out
2828 symbols. If this type is returned, the error_message argument
2829 to bfd_perform_relocation will be set. */
2832 bfd_reloc_status_type;
2835 typedef struct reloc_cache_entry
2837 /* A pointer into the canonical table of pointers. */
2838 struct bfd_symbol **sym_ptr_ptr;
2840 /* offset in section. */
2841 bfd_size_type address;
2843 /* addend for relocation value. */
2846 /* Pointer to how to perform the required relocation. */
2847 reloc_howto_type *howto;
2852 Here is a description of each of the fields within an `arelent':
2855 The symbol table pointer points to a pointer to the symbol
2856 associated with the relocation request. It is the pointer into the
2857 table returned by the back end's `canonicalize_symtab' action. *Note
2858 Symbols::. The symbol is referenced through a pointer to a pointer so
2859 that tools like the linker can fix up all the symbols of the same name
2860 by modifying only one pointer. The relocation routine looks in the
2861 symbol and uses the base of the section the symbol is attached to and
2862 the value of the symbol as the initial relocation offset. If the symbol
2863 pointer is zero, then the section provided is looked up.
2866 The `address' field gives the offset in bytes from the base of the
2867 section data which owns the relocation record to the first byte of
2868 relocatable information. The actual data relocated will be relative to
2869 this point; for example, a relocation type which modifies the bottom
2870 two bytes of a four byte word would not touch the first byte pointed to
2871 in a big endian world.
2874 The `addend' is a value provided by the back end to be added (!) to
2875 the relocation offset. Its interpretation is dependent upon the howto.
2876 For example, on the 68k the code:
2881 return foo[0x12345678];
2884 Could be compiled into:
2892 This could create a reloc pointing to `foo', but leave the offset in
2893 the data, something like:
2895 RELOCATION RECORDS FOR [.text]:
2899 00000000 4e56 fffc ; linkw fp,#-4
2900 00000004 1039 1234 5678 ; moveb @#12345678,d0
2901 0000000a 49c0 ; extbl d0
2902 0000000c 4e5e ; unlk fp
2905 Using coff and an 88k, some instructions don't have enough space in
2906 them to represent the full address range, and pointers have to be
2907 loaded in two parts. So you'd get something like:
2909 or.u r13,r0,hi16(_foo+0x12345678)
2910 ld.b r2,r13,lo16(_foo+0x12345678)
2913 This should create two relocs, both pointing to `_foo', and with
2914 0x12340000 in their addend field. The data would consist of:
2916 RELOCATION RECORDS FOR [.text]:
2918 00000002 HVRT16 _foo+0x12340000
2919 00000006 LVRT16 _foo+0x12340000
2921 00000000 5da05678 ; or.u r13,r0,0x5678
2922 00000004 1c4d5678 ; ld.b r2,r13,0x5678
2923 00000008 f400c001 ; jmp r1
2925 The relocation routine digs out the value from the data, adds it to
2926 the addend to get the original offset, and then adds the value of
2927 `_foo'. Note that all 32 bits have to be kept around somewhere, to cope
2928 with carry from bit 15 to bit 16.
2930 One further example is the sparc and the a.out format. The sparc has
2931 a similar problem to the 88k, in that some instructions don't have room
2932 for an entire offset, but on the sparc the parts are created in odd
2933 sized lumps. The designers of the a.out format chose to not use the
2934 data within the section for storing part of the offset; all the offset
2935 is kept within the reloc. Anything in the data should be ignored.
2938 sethi %hi(_foo+0x12345678),%g2
2939 ldsb [%g2+%lo(_foo+0x12345678)],%i0
2943 Both relocs contain a pointer to `foo', and the offsets contain junk.
2945 RELOCATION RECORDS FOR [.text]:
2947 00000004 HI22 _foo+0x12345678
2948 00000008 LO10 _foo+0x12345678
2950 00000000 9de3bf90 ; save %sp,-112,%sp
2951 00000004 05000000 ; sethi %hi(_foo+0),%g2
2952 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
2953 0000000c 81c7e008 ; ret
2954 00000010 81e80000 ; restore
2957 The `howto' field can be imagined as a relocation instruction. It is
2958 a pointer to a structure which contains information on what to do with
2959 all of the other information in the reloc record and data section. A
2960 back end would normally have a relocation instruction set and turn
2961 relocations into pointers to the correct structure on input - but it
2962 would be possible to create each howto field on demand.
2964 2.10.1.1 `enum complain_overflow'
2965 .................................
2967 Indicates what sort of overflow checking should be done when performing
2971 enum complain_overflow
2973 /* Do not complain on overflow. */
2974 complain_overflow_dont,
2976 /* Complain if the value overflows when considered as a signed
2977 number one bit larger than the field. ie. A bitfield of N bits
2978 is allowed to represent -2**n to 2**n-1. */
2979 complain_overflow_bitfield,
2981 /* Complain if the value overflows when considered as a signed
2983 complain_overflow_signed,
2985 /* Complain if the value overflows when considered as an
2987 complain_overflow_unsigned
2990 2.10.1.2 `reloc_howto_type'
2991 ...........................
2993 The `reloc_howto_type' is a structure which contains all the
2994 information that libbfd needs to know to tie up a back end's data.
2996 struct bfd_symbol; /* Forward declaration. */
2998 struct reloc_howto_struct
3000 /* The type field has mainly a documentary use - the back end can
3001 do what it wants with it, though normally the back end's
3002 external idea of what a reloc number is stored
3003 in this field. For example, a PC relative word relocation
3004 in a coff environment has the type 023 - because that's
3005 what the outside world calls a R_PCRWORD reloc. */
3008 /* The value the final relocation is shifted right by. This drops
3009 unwanted data from the relocation. */
3010 unsigned int rightshift;
3012 /* The size of the item to be relocated. This is *not* a
3013 power-of-two measure. To get the number of bytes operated
3014 on by a type of relocation, use bfd_get_reloc_size. */
3017 /* The number of bits in the item to be relocated. This is used
3018 when doing overflow checking. */
3019 unsigned int bitsize;
3021 /* Notes that the relocation is relative to the location in the
3022 data section of the addend. The relocation function will
3023 subtract from the relocation value the address of the location
3025 bfd_boolean pc_relative;
3027 /* The bit position of the reloc value in the destination.
3028 The relocated value is left shifted by this amount. */
3029 unsigned int bitpos;
3031 /* What type of overflow error should be checked for when
3033 enum complain_overflow complain_on_overflow;
3035 /* If this field is non null, then the supplied function is
3036 called rather than the normal function. This allows really
3037 strange relocation methods to be accommodated (e.g., i960 callj
3039 bfd_reloc_status_type (*special_function)
3040 (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
3043 /* The textual name of the relocation type. */
3046 /* Some formats record a relocation addend in the section contents
3047 rather than with the relocation. For ELF formats this is the
3048 distinction between USE_REL and USE_RELA (though the code checks
3049 for USE_REL == 1/0). The value of this field is TRUE if the
3050 addend is recorded with the section contents; when performing a
3051 partial link (ld -r) the section contents (the data) will be
3052 modified. The value of this field is FALSE if addends are
3053 recorded with the relocation (in arelent.addend); when performing
3054 a partial link the relocation will be modified.
3055 All relocations for all ELF USE_RELA targets should set this field
3056 to FALSE (values of TRUE should be looked on with suspicion).
3057 However, the converse is not true: not all relocations of all ELF
3058 USE_REL targets set this field to TRUE. Why this is so is peculiar
3059 to each particular target. For relocs that aren't used in partial
3060 links (e.g. GOT stuff) it doesn't matter what this is set to. */
3061 bfd_boolean partial_inplace;
3063 /* src_mask selects the part of the instruction (or data) to be used
3064 in the relocation sum. If the target relocations don't have an
3065 addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
3066 dst_mask to extract the addend from the section contents. If
3067 relocations do have an addend in the reloc, eg. ELF USE_RELA, this
3068 field should be zero. Non-zero values for ELF USE_RELA targets are
3069 bogus as in those cases the value in the dst_mask part of the
3070 section contents should be treated as garbage. */
3073 /* dst_mask selects which parts of the instruction (or data) are
3074 replaced with a relocated value. */
3077 /* When some formats create PC relative instructions, they leave
3078 the value of the pc of the place being relocated in the offset
3079 slot of the instruction, so that a PC relative relocation can
3080 be made just by adding in an ordinary offset (e.g., sun3 a.out).
3081 Some formats leave the displacement part of an instruction
3082 empty (e.g., m88k bcs); this flag signals the fact. */
3083 bfd_boolean pcrel_offset;
3086 2.10.1.3 `The HOWTO Macro'
3087 ..........................
3090 The HOWTO define is horrible and will go away.
3091 #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
3092 { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
3095 And will be replaced with the totally magic way. But for the moment, we
3096 are compatible, so do it this way.
3097 #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
3098 HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
3099 NAME, FALSE, 0, 0, IN)
3102 This is used to fill in an empty howto entry in an array.
3103 #define EMPTY_HOWTO(C) \
3104 HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
3105 NULL, FALSE, 0, 0, FALSE)
3108 Helper routine to turn a symbol into a relocation value.
3109 #define HOWTO_PREPARE(relocation, symbol) \
3111 if (symbol != NULL) \
3113 if (bfd_is_com_section (symbol->section)) \
3119 relocation = symbol->value; \
3124 2.10.1.4 `bfd_get_reloc_size'
3125 .............................
3128 unsigned int bfd_get_reloc_size (reloc_howto_type *);
3130 For a reloc_howto_type that operates on a fixed number of bytes, this
3131 returns the number of bytes operated on.
3133 2.10.1.5 `arelent_chain'
3134 ........................
3137 How relocs are tied together in an `asection':
3138 typedef struct relent_chain
3141 struct relent_chain *next;
3145 2.10.1.6 `bfd_check_overflow'
3146 .............................
3149 bfd_reloc_status_type bfd_check_overflow
3150 (enum complain_overflow how,
3151 unsigned int bitsize,
3152 unsigned int rightshift,
3153 unsigned int addrsize,
3154 bfd_vma relocation);
3156 Perform overflow checking on RELOCATION which has BITSIZE significant
3157 bits and will be shifted right by RIGHTSHIFT bits, on a machine with
3158 addresses containing ADDRSIZE significant bits. The result is either of
3159 `bfd_reloc_ok' or `bfd_reloc_overflow'.
3161 2.10.1.7 `bfd_perform_relocation'
3162 .................................
3165 bfd_reloc_status_type bfd_perform_relocation
3167 arelent *reloc_entry,
3169 asection *input_section,
3171 char **error_message);
3173 If OUTPUT_BFD is supplied to this function, the generated image will be
3174 relocatable; the relocations are copied to the output file after they
3175 have been changed to reflect the new state of the world. There are two
3176 ways of reflecting the results of partial linkage in an output file: by
3177 modifying the output data in place, and by modifying the relocation
3178 record. Some native formats (e.g., basic a.out and basic coff) have no
3179 way of specifying an addend in the relocation type, so the addend has
3180 to go in the output data. This is no big deal since in these formats
3181 the output data slot will always be big enough for the addend. Complex
3182 reloc types with addends were invented to solve just this problem. The
3183 ERROR_MESSAGE argument is set to an error message if this return
3184 `bfd_reloc_dangerous'.
3186 2.10.1.8 `bfd_install_relocation'
3187 .................................
3190 bfd_reloc_status_type bfd_install_relocation
3192 arelent *reloc_entry,
3193 void *data, bfd_vma data_start,
3194 asection *input_section,
3195 char **error_message);
3197 This looks remarkably like `bfd_perform_relocation', except it does not
3198 expect that the section contents have been filled in. I.e., it's
3199 suitable for use when creating, rather than applying a relocation.
3201 For now, this function should be considered reserved for the
3205 File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations
3207 2.10.2 The howto manager
3208 ------------------------
3210 When an application wants to create a relocation, but doesn't know what
3211 the target machine might call it, it can find out by using this bit of
3214 2.10.2.1 `bfd_reloc_code_type'
3215 ..............................
3218 The insides of a reloc code. The idea is that, eventually, there will
3219 be one enumerator for every type of relocation we ever do. Pass one of
3220 these values to `bfd_reloc_type_lookup', and it'll return a howto
3223 This does mean that the application must determine the correct
3224 enumerator value; you can't get a howto pointer from a random set of
3227 Here are the possible values for `enum bfd_reloc_code_real':
3236 Basic absolute relocations of N bits.
3238 -- : BFD_RELOC_64_PCREL
3239 -- : BFD_RELOC_32_PCREL
3240 -- : BFD_RELOC_24_PCREL
3241 -- : BFD_RELOC_16_PCREL
3242 -- : BFD_RELOC_12_PCREL
3243 -- : BFD_RELOC_8_PCREL
3244 PC-relative relocations. Sometimes these are relative to the
3245 address of the relocation itself; sometimes they are relative to
3246 the start of the section containing the relocation. It depends on
3247 the specific target.
3249 The 24-bit relocation is used in some Intel 960 configurations.
3251 -- : BFD_RELOC_32_SECREL
3252 Section relative relocations. Some targets need this for DWARF2.
3254 -- : BFD_RELOC_32_GOT_PCREL
3255 -- : BFD_RELOC_16_GOT_PCREL
3256 -- : BFD_RELOC_8_GOT_PCREL
3257 -- : BFD_RELOC_32_GOTOFF
3258 -- : BFD_RELOC_16_GOTOFF
3259 -- : BFD_RELOC_LO16_GOTOFF
3260 -- : BFD_RELOC_HI16_GOTOFF
3261 -- : BFD_RELOC_HI16_S_GOTOFF
3262 -- : BFD_RELOC_8_GOTOFF
3263 -- : BFD_RELOC_64_PLT_PCREL
3264 -- : BFD_RELOC_32_PLT_PCREL
3265 -- : BFD_RELOC_24_PLT_PCREL
3266 -- : BFD_RELOC_16_PLT_PCREL
3267 -- : BFD_RELOC_8_PLT_PCREL
3268 -- : BFD_RELOC_64_PLTOFF
3269 -- : BFD_RELOC_32_PLTOFF
3270 -- : BFD_RELOC_16_PLTOFF
3271 -- : BFD_RELOC_LO16_PLTOFF
3272 -- : BFD_RELOC_HI16_PLTOFF
3273 -- : BFD_RELOC_HI16_S_PLTOFF
3274 -- : BFD_RELOC_8_PLTOFF
3277 -- : BFD_RELOC_68K_GLOB_DAT
3278 -- : BFD_RELOC_68K_JMP_SLOT
3279 -- : BFD_RELOC_68K_RELATIVE
3280 Relocations used by 68K ELF.
3282 -- : BFD_RELOC_32_BASEREL
3283 -- : BFD_RELOC_16_BASEREL
3284 -- : BFD_RELOC_LO16_BASEREL
3285 -- : BFD_RELOC_HI16_BASEREL
3286 -- : BFD_RELOC_HI16_S_BASEREL
3287 -- : BFD_RELOC_8_BASEREL
3289 Linkage-table relative.
3291 -- : BFD_RELOC_8_FFnn
3292 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
3294 -- : BFD_RELOC_32_PCREL_S2
3295 -- : BFD_RELOC_16_PCREL_S2
3296 -- : BFD_RELOC_23_PCREL_S2
3297 These PC-relative relocations are stored as word displacements -
3298 i.e., byte displacements shifted right two bits. The 30-bit word
3299 displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the
3300 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
3301 signed 16-bit displacement is used on the MIPS, and the 23-bit
3302 displacement is used on the Alpha.
3306 High 22 bits and low 10 bits of 32-bit value, placed into lower
3307 bits of the target word. These are used on the SPARC.
3309 -- : BFD_RELOC_GPREL16
3310 -- : BFD_RELOC_GPREL32
3311 For systems that allocate a Global Pointer register, these are
3312 displacements off that register. These relocation types are
3313 handled specially, because the value the register will have is
3314 decided relatively late.
3316 -- : BFD_RELOC_I960_CALLJ
3317 Reloc types used for i960/b.out.
3320 -- : BFD_RELOC_SPARC_WDISP22
3321 -- : BFD_RELOC_SPARC22
3322 -- : BFD_RELOC_SPARC13
3323 -- : BFD_RELOC_SPARC_GOT10
3324 -- : BFD_RELOC_SPARC_GOT13
3325 -- : BFD_RELOC_SPARC_GOT22
3326 -- : BFD_RELOC_SPARC_PC10
3327 -- : BFD_RELOC_SPARC_PC22
3328 -- : BFD_RELOC_SPARC_WPLT30
3329 -- : BFD_RELOC_SPARC_COPY
3330 -- : BFD_RELOC_SPARC_GLOB_DAT
3331 -- : BFD_RELOC_SPARC_JMP_SLOT
3332 -- : BFD_RELOC_SPARC_RELATIVE
3333 -- : BFD_RELOC_SPARC_UA16
3334 -- : BFD_RELOC_SPARC_UA32
3335 -- : BFD_RELOC_SPARC_UA64
3336 -- : BFD_RELOC_SPARC_GOTDATA_HIX22
3337 -- : BFD_RELOC_SPARC_GOTDATA_LOX10
3338 -- : BFD_RELOC_SPARC_GOTDATA_OP_HIX22
3339 -- : BFD_RELOC_SPARC_GOTDATA_OP_LOX10
3340 -- : BFD_RELOC_SPARC_GOTDATA_OP
3341 SPARC ELF relocations. There is probably some overlap with other
3342 relocation types already defined.
3344 -- : BFD_RELOC_SPARC_BASE13
3345 -- : BFD_RELOC_SPARC_BASE22
3346 I think these are specific to SPARC a.out (e.g., Sun 4).
3348 -- : BFD_RELOC_SPARC_64
3349 -- : BFD_RELOC_SPARC_10
3350 -- : BFD_RELOC_SPARC_11
3351 -- : BFD_RELOC_SPARC_OLO10
3352 -- : BFD_RELOC_SPARC_HH22
3353 -- : BFD_RELOC_SPARC_HM10
3354 -- : BFD_RELOC_SPARC_LM22
3355 -- : BFD_RELOC_SPARC_PC_HH22
3356 -- : BFD_RELOC_SPARC_PC_HM10
3357 -- : BFD_RELOC_SPARC_PC_LM22
3358 -- : BFD_RELOC_SPARC_WDISP16
3359 -- : BFD_RELOC_SPARC_WDISP19
3360 -- : BFD_RELOC_SPARC_7
3361 -- : BFD_RELOC_SPARC_6
3362 -- : BFD_RELOC_SPARC_5
3363 -- : BFD_RELOC_SPARC_DISP64
3364 -- : BFD_RELOC_SPARC_PLT32
3365 -- : BFD_RELOC_SPARC_PLT64
3366 -- : BFD_RELOC_SPARC_HIX22
3367 -- : BFD_RELOC_SPARC_LOX10
3368 -- : BFD_RELOC_SPARC_H44
3369 -- : BFD_RELOC_SPARC_M44
3370 -- : BFD_RELOC_SPARC_L44
3371 -- : BFD_RELOC_SPARC_REGISTER
3374 -- : BFD_RELOC_SPARC_REV32
3375 SPARC little endian relocation
3377 -- : BFD_RELOC_SPARC_TLS_GD_HI22
3378 -- : BFD_RELOC_SPARC_TLS_GD_LO10
3379 -- : BFD_RELOC_SPARC_TLS_GD_ADD
3380 -- : BFD_RELOC_SPARC_TLS_GD_CALL
3381 -- : BFD_RELOC_SPARC_TLS_LDM_HI22
3382 -- : BFD_RELOC_SPARC_TLS_LDM_LO10
3383 -- : BFD_RELOC_SPARC_TLS_LDM_ADD
3384 -- : BFD_RELOC_SPARC_TLS_LDM_CALL
3385 -- : BFD_RELOC_SPARC_TLS_LDO_HIX22
3386 -- : BFD_RELOC_SPARC_TLS_LDO_LOX10
3387 -- : BFD_RELOC_SPARC_TLS_LDO_ADD
3388 -- : BFD_RELOC_SPARC_TLS_IE_HI22
3389 -- : BFD_RELOC_SPARC_TLS_IE_LO10
3390 -- : BFD_RELOC_SPARC_TLS_IE_LD
3391 -- : BFD_RELOC_SPARC_TLS_IE_LDX
3392 -- : BFD_RELOC_SPARC_TLS_IE_ADD
3393 -- : BFD_RELOC_SPARC_TLS_LE_HIX22
3394 -- : BFD_RELOC_SPARC_TLS_LE_LOX10
3395 -- : BFD_RELOC_SPARC_TLS_DTPMOD32
3396 -- : BFD_RELOC_SPARC_TLS_DTPMOD64
3397 -- : BFD_RELOC_SPARC_TLS_DTPOFF32
3398 -- : BFD_RELOC_SPARC_TLS_DTPOFF64
3399 -- : BFD_RELOC_SPARC_TLS_TPOFF32
3400 -- : BFD_RELOC_SPARC_TLS_TPOFF64
3401 SPARC TLS relocations
3403 -- : BFD_RELOC_SPU_IMM7
3404 -- : BFD_RELOC_SPU_IMM8
3405 -- : BFD_RELOC_SPU_IMM10
3406 -- : BFD_RELOC_SPU_IMM10W
3407 -- : BFD_RELOC_SPU_IMM16
3408 -- : BFD_RELOC_SPU_IMM16W
3409 -- : BFD_RELOC_SPU_IMM18
3410 -- : BFD_RELOC_SPU_PCREL9a
3411 -- : BFD_RELOC_SPU_PCREL9b
3412 -- : BFD_RELOC_SPU_PCREL16
3413 -- : BFD_RELOC_SPU_LO16
3414 -- : BFD_RELOC_SPU_HI16
3415 -- : BFD_RELOC_SPU_PPU32
3416 -- : BFD_RELOC_SPU_PPU64
3419 -- : BFD_RELOC_ALPHA_GPDISP_HI16
3420 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
3421 "addend" in some special way. For GPDISP_HI16 ("gpdisp")
3422 relocations, the symbol is ignored when writing; when reading, it
3423 will be the absolute section symbol. The addend is the
3424 displacement in bytes of the "lda" instruction from the "ldah"
3425 instruction (which is at the address of this reloc).
3427 -- : BFD_RELOC_ALPHA_GPDISP_LO16
3428 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
3429 with GPDISP_HI16 relocs. The addend is ignored when writing the
3430 relocations out, and is filled in with the file's GP value on
3431 reading, for convenience.
3433 -- : BFD_RELOC_ALPHA_GPDISP
3434 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
3435 relocation except that there is no accompanying GPDISP_LO16
3438 -- : BFD_RELOC_ALPHA_LITERAL
3439 -- : BFD_RELOC_ALPHA_ELF_LITERAL
3440 -- : BFD_RELOC_ALPHA_LITUSE
3441 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
3442 the assembler turns it into a LDQ instruction to load the address
3443 of the symbol, and then fills in a register in the real
3446 The LITERAL reloc, at the LDQ instruction, refers to the .lita
3447 section symbol. The addend is ignored when writing, but is filled
3448 in with the file's GP value on reading, for convenience, as with
3449 the GPDISP_LO16 reloc.
3451 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and
3452 GPDISP_LO16. It should refer to the symbol to be referenced, as
3453 with 16_GOTOFF, but it generates output not based on the position
3454 within the .got section, but relative to the GP value chosen for
3455 the file during the final link stage.
3457 The LITUSE reloc, on the instruction using the loaded address,
3458 gives information to the linker that it might be able to use to
3459 optimize away some literal section references. The symbol is
3460 ignored (read as the absolute section symbol), and the "addend"
3461 indicates the type of instruction using the register: 1 - "memory"
3462 fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target
3465 -- : BFD_RELOC_ALPHA_HINT
3466 The HINT relocation indicates a value that should be filled into
3467 the "hint" field of a jmp/jsr/ret instruction, for possible branch-
3468 prediction logic which may be provided on some processors.
3470 -- : BFD_RELOC_ALPHA_LINKAGE
3471 The LINKAGE relocation outputs a linkage pair in the object file,
3472 which is filled by the linker.
3474 -- : BFD_RELOC_ALPHA_CODEADDR
3475 The CODEADDR relocation outputs a STO_CA in the object file, which
3476 is filled by the linker.
3478 -- : BFD_RELOC_ALPHA_GPREL_HI16
3479 -- : BFD_RELOC_ALPHA_GPREL_LO16
3480 The GPREL_HI/LO relocations together form a 32-bit offset from the
3483 -- : BFD_RELOC_ALPHA_BRSGP
3484 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
3485 share a common GP, and the target address is adjusted for
3486 STO_ALPHA_STD_GPLOAD.
3488 -- : BFD_RELOC_ALPHA_TLSGD
3489 -- : BFD_RELOC_ALPHA_TLSLDM
3490 -- : BFD_RELOC_ALPHA_DTPMOD64
3491 -- : BFD_RELOC_ALPHA_GOTDTPREL16
3492 -- : BFD_RELOC_ALPHA_DTPREL64
3493 -- : BFD_RELOC_ALPHA_DTPREL_HI16
3494 -- : BFD_RELOC_ALPHA_DTPREL_LO16
3495 -- : BFD_RELOC_ALPHA_DTPREL16
3496 -- : BFD_RELOC_ALPHA_GOTTPREL16
3497 -- : BFD_RELOC_ALPHA_TPREL64
3498 -- : BFD_RELOC_ALPHA_TPREL_HI16
3499 -- : BFD_RELOC_ALPHA_TPREL_LO16
3500 -- : BFD_RELOC_ALPHA_TPREL16
3501 Alpha thread-local storage relocations.
3503 -- : BFD_RELOC_MIPS_JMP
3504 Bits 27..2 of the relocation address shifted right 2 bits; simple
3507 -- : BFD_RELOC_MIPS16_JMP
3508 The MIPS16 jump instruction.
3510 -- : BFD_RELOC_MIPS16_GPREL
3511 MIPS16 GP relative reloc.
3514 High 16 bits of 32-bit value; simple reloc.
3516 -- : BFD_RELOC_HI16_S
3517 High 16 bits of 32-bit value but the low 16 bits will be sign
3518 extended and added to form the final result. If the low 16 bits
3519 form a negative number, we need to add one to the high value to
3520 compensate for the borrow when the low bits are added.
3525 -- : BFD_RELOC_HI16_PCREL
3526 High 16 bits of 32-bit pc-relative value
3528 -- : BFD_RELOC_HI16_S_PCREL
3529 High 16 bits of 32-bit pc-relative value, adjusted
3531 -- : BFD_RELOC_LO16_PCREL
3532 Low 16 bits of pc-relative value
3534 -- : BFD_RELOC_MIPS16_GOT16
3535 -- : BFD_RELOC_MIPS16_CALL16
3536 Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of
3537 16-bit immediate fields
3539 -- : BFD_RELOC_MIPS16_HI16
3540 MIPS16 high 16 bits of 32-bit value.
3542 -- : BFD_RELOC_MIPS16_HI16_S
3543 MIPS16 high 16 bits of 32-bit value but the low 16 bits will be
3544 sign extended and added to form the final result. If the low 16
3545 bits form a negative number, we need to add one to the high value
3546 to compensate for the borrow when the low bits are added.
3548 -- : BFD_RELOC_MIPS16_LO16
3551 -- : BFD_RELOC_MIPS_LITERAL
3552 Relocation against a MIPS literal section.
3554 -- : BFD_RELOC_MIPS_GOT16
3555 -- : BFD_RELOC_MIPS_CALL16
3556 -- : BFD_RELOC_MIPS_GOT_HI16
3557 -- : BFD_RELOC_MIPS_GOT_LO16
3558 -- : BFD_RELOC_MIPS_CALL_HI16
3559 -- : BFD_RELOC_MIPS_CALL_LO16
3560 -- : BFD_RELOC_MIPS_SUB
3561 -- : BFD_RELOC_MIPS_GOT_PAGE
3562 -- : BFD_RELOC_MIPS_GOT_OFST
3563 -- : BFD_RELOC_MIPS_GOT_DISP
3564 -- : BFD_RELOC_MIPS_SHIFT5
3565 -- : BFD_RELOC_MIPS_SHIFT6
3566 -- : BFD_RELOC_MIPS_INSERT_A
3567 -- : BFD_RELOC_MIPS_INSERT_B
3568 -- : BFD_RELOC_MIPS_DELETE
3569 -- : BFD_RELOC_MIPS_HIGHEST
3570 -- : BFD_RELOC_MIPS_HIGHER
3571 -- : BFD_RELOC_MIPS_SCN_DISP
3572 -- : BFD_RELOC_MIPS_REL16
3573 -- : BFD_RELOC_MIPS_RELGOT
3574 -- : BFD_RELOC_MIPS_JALR
3575 -- : BFD_RELOC_MIPS_TLS_DTPMOD32
3576 -- : BFD_RELOC_MIPS_TLS_DTPREL32
3577 -- : BFD_RELOC_MIPS_TLS_DTPMOD64
3578 -- : BFD_RELOC_MIPS_TLS_DTPREL64
3579 -- : BFD_RELOC_MIPS_TLS_GD
3580 -- : BFD_RELOC_MIPS_TLS_LDM
3581 -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16
3582 -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16
3583 -- : BFD_RELOC_MIPS_TLS_GOTTPREL
3584 -- : BFD_RELOC_MIPS_TLS_TPREL32
3585 -- : BFD_RELOC_MIPS_TLS_TPREL64
3586 -- : BFD_RELOC_MIPS_TLS_TPREL_HI16
3587 -- : BFD_RELOC_MIPS_TLS_TPREL_LO16
3588 MIPS ELF relocations.
3590 -- : BFD_RELOC_MIPS_COPY
3591 -- : BFD_RELOC_MIPS_JUMP_SLOT
3592 MIPS ELF relocations (VxWorks and PLT extensions).
3594 -- : BFD_RELOC_FRV_LABEL16
3595 -- : BFD_RELOC_FRV_LABEL24
3596 -- : BFD_RELOC_FRV_LO16
3597 -- : BFD_RELOC_FRV_HI16
3598 -- : BFD_RELOC_FRV_GPREL12
3599 -- : BFD_RELOC_FRV_GPRELU12
3600 -- : BFD_RELOC_FRV_GPREL32
3601 -- : BFD_RELOC_FRV_GPRELHI
3602 -- : BFD_RELOC_FRV_GPRELLO
3603 -- : BFD_RELOC_FRV_GOT12
3604 -- : BFD_RELOC_FRV_GOTHI
3605 -- : BFD_RELOC_FRV_GOTLO
3606 -- : BFD_RELOC_FRV_FUNCDESC
3607 -- : BFD_RELOC_FRV_FUNCDESC_GOT12
3608 -- : BFD_RELOC_FRV_FUNCDESC_GOTHI
3609 -- : BFD_RELOC_FRV_FUNCDESC_GOTLO
3610 -- : BFD_RELOC_FRV_FUNCDESC_VALUE
3611 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12
3612 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
3613 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
3614 -- : BFD_RELOC_FRV_GOTOFF12
3615 -- : BFD_RELOC_FRV_GOTOFFHI
3616 -- : BFD_RELOC_FRV_GOTOFFLO
3617 -- : BFD_RELOC_FRV_GETTLSOFF
3618 -- : BFD_RELOC_FRV_TLSDESC_VALUE
3619 -- : BFD_RELOC_FRV_GOTTLSDESC12
3620 -- : BFD_RELOC_FRV_GOTTLSDESCHI
3621 -- : BFD_RELOC_FRV_GOTTLSDESCLO
3622 -- : BFD_RELOC_FRV_TLSMOFF12
3623 -- : BFD_RELOC_FRV_TLSMOFFHI
3624 -- : BFD_RELOC_FRV_TLSMOFFLO
3625 -- : BFD_RELOC_FRV_GOTTLSOFF12
3626 -- : BFD_RELOC_FRV_GOTTLSOFFHI
3627 -- : BFD_RELOC_FRV_GOTTLSOFFLO
3628 -- : BFD_RELOC_FRV_TLSOFF
3629 -- : BFD_RELOC_FRV_TLSDESC_RELAX
3630 -- : BFD_RELOC_FRV_GETTLSOFF_RELAX
3631 -- : BFD_RELOC_FRV_TLSOFF_RELAX
3632 -- : BFD_RELOC_FRV_TLSMOFF
3633 Fujitsu Frv Relocations.
3635 -- : BFD_RELOC_MN10300_GOTOFF24
3636 This is a 24bit GOT-relative reloc for the mn10300.
3638 -- : BFD_RELOC_MN10300_GOT32
3639 This is a 32bit GOT-relative reloc for the mn10300, offset by two
3640 bytes in the instruction.
3642 -- : BFD_RELOC_MN10300_GOT24
3643 This is a 24bit GOT-relative reloc for the mn10300, offset by two
3644 bytes in the instruction.
3646 -- : BFD_RELOC_MN10300_GOT16
3647 This is a 16bit GOT-relative reloc for the mn10300, offset by two
3648 bytes in the instruction.
3650 -- : BFD_RELOC_MN10300_COPY
3651 Copy symbol at runtime.
3653 -- : BFD_RELOC_MN10300_GLOB_DAT
3656 -- : BFD_RELOC_MN10300_JMP_SLOT
3659 -- : BFD_RELOC_MN10300_RELATIVE
3660 Adjust by program base.
3662 -- : BFD_RELOC_MN10300_SYM_DIFF
3663 Together with another reloc targeted at the same location, allows
3664 for a value that is the difference of two symbols in the same
3667 -- : BFD_RELOC_MN10300_ALIGN
3668 The addend of this reloc is an alignment power that must be
3669 honoured at the offset's location, regardless of linker relaxation.
3671 -- : BFD_RELOC_386_GOT32
3672 -- : BFD_RELOC_386_PLT32
3673 -- : BFD_RELOC_386_COPY
3674 -- : BFD_RELOC_386_GLOB_DAT
3675 -- : BFD_RELOC_386_JUMP_SLOT
3676 -- : BFD_RELOC_386_RELATIVE
3677 -- : BFD_RELOC_386_GOTOFF
3678 -- : BFD_RELOC_386_GOTPC
3679 -- : BFD_RELOC_386_TLS_TPOFF
3680 -- : BFD_RELOC_386_TLS_IE
3681 -- : BFD_RELOC_386_TLS_GOTIE
3682 -- : BFD_RELOC_386_TLS_LE
3683 -- : BFD_RELOC_386_TLS_GD
3684 -- : BFD_RELOC_386_TLS_LDM
3685 -- : BFD_RELOC_386_TLS_LDO_32
3686 -- : BFD_RELOC_386_TLS_IE_32
3687 -- : BFD_RELOC_386_TLS_LE_32
3688 -- : BFD_RELOC_386_TLS_DTPMOD32
3689 -- : BFD_RELOC_386_TLS_DTPOFF32
3690 -- : BFD_RELOC_386_TLS_TPOFF32
3691 -- : BFD_RELOC_386_TLS_GOTDESC
3692 -- : BFD_RELOC_386_TLS_DESC_CALL
3693 -- : BFD_RELOC_386_TLS_DESC
3694 i386/elf relocations
3696 -- : BFD_RELOC_X86_64_GOT32
3697 -- : BFD_RELOC_X86_64_PLT32
3698 -- : BFD_RELOC_X86_64_COPY
3699 -- : BFD_RELOC_X86_64_GLOB_DAT
3700 -- : BFD_RELOC_X86_64_JUMP_SLOT
3701 -- : BFD_RELOC_X86_64_RELATIVE
3702 -- : BFD_RELOC_X86_64_GOTPCREL
3703 -- : BFD_RELOC_X86_64_32S
3704 -- : BFD_RELOC_X86_64_DTPMOD64
3705 -- : BFD_RELOC_X86_64_DTPOFF64
3706 -- : BFD_RELOC_X86_64_TPOFF64
3707 -- : BFD_RELOC_X86_64_TLSGD
3708 -- : BFD_RELOC_X86_64_TLSLD
3709 -- : BFD_RELOC_X86_64_DTPOFF32
3710 -- : BFD_RELOC_X86_64_GOTTPOFF
3711 -- : BFD_RELOC_X86_64_TPOFF32
3712 -- : BFD_RELOC_X86_64_GOTOFF64
3713 -- : BFD_RELOC_X86_64_GOTPC32
3714 -- : BFD_RELOC_X86_64_GOT64
3715 -- : BFD_RELOC_X86_64_GOTPCREL64
3716 -- : BFD_RELOC_X86_64_GOTPC64
3717 -- : BFD_RELOC_X86_64_GOTPLT64
3718 -- : BFD_RELOC_X86_64_PLTOFF64
3719 -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC
3720 -- : BFD_RELOC_X86_64_TLSDESC_CALL
3721 -- : BFD_RELOC_X86_64_TLSDESC
3722 x86-64/elf relocations
3724 -- : BFD_RELOC_NS32K_IMM_8
3725 -- : BFD_RELOC_NS32K_IMM_16
3726 -- : BFD_RELOC_NS32K_IMM_32
3727 -- : BFD_RELOC_NS32K_IMM_8_PCREL
3728 -- : BFD_RELOC_NS32K_IMM_16_PCREL
3729 -- : BFD_RELOC_NS32K_IMM_32_PCREL
3730 -- : BFD_RELOC_NS32K_DISP_8
3731 -- : BFD_RELOC_NS32K_DISP_16
3732 -- : BFD_RELOC_NS32K_DISP_32
3733 -- : BFD_RELOC_NS32K_DISP_8_PCREL
3734 -- : BFD_RELOC_NS32K_DISP_16_PCREL
3735 -- : BFD_RELOC_NS32K_DISP_32_PCREL
3738 -- : BFD_RELOC_PDP11_DISP_8_PCREL
3739 -- : BFD_RELOC_PDP11_DISP_6_PCREL
3742 -- : BFD_RELOC_PJ_CODE_HI16
3743 -- : BFD_RELOC_PJ_CODE_LO16
3744 -- : BFD_RELOC_PJ_CODE_DIR16
3745 -- : BFD_RELOC_PJ_CODE_DIR32
3746 -- : BFD_RELOC_PJ_CODE_REL16
3747 -- : BFD_RELOC_PJ_CODE_REL32
3748 Picojava relocs. Not all of these appear in object files.
3750 -- : BFD_RELOC_PPC_B26
3751 -- : BFD_RELOC_PPC_BA26
3752 -- : BFD_RELOC_PPC_TOC16
3753 -- : BFD_RELOC_PPC_B16
3754 -- : BFD_RELOC_PPC_B16_BRTAKEN
3755 -- : BFD_RELOC_PPC_B16_BRNTAKEN
3756 -- : BFD_RELOC_PPC_BA16
3757 -- : BFD_RELOC_PPC_BA16_BRTAKEN
3758 -- : BFD_RELOC_PPC_BA16_BRNTAKEN
3759 -- : BFD_RELOC_PPC_COPY
3760 -- : BFD_RELOC_PPC_GLOB_DAT
3761 -- : BFD_RELOC_PPC_JMP_SLOT
3762 -- : BFD_RELOC_PPC_RELATIVE
3763 -- : BFD_RELOC_PPC_LOCAL24PC
3764 -- : BFD_RELOC_PPC_EMB_NADDR32
3765 -- : BFD_RELOC_PPC_EMB_NADDR16
3766 -- : BFD_RELOC_PPC_EMB_NADDR16_LO
3767 -- : BFD_RELOC_PPC_EMB_NADDR16_HI
3768 -- : BFD_RELOC_PPC_EMB_NADDR16_HA
3769 -- : BFD_RELOC_PPC_EMB_SDAI16
3770 -- : BFD_RELOC_PPC_EMB_SDA2I16
3771 -- : BFD_RELOC_PPC_EMB_SDA2REL
3772 -- : BFD_RELOC_PPC_EMB_SDA21
3773 -- : BFD_RELOC_PPC_EMB_MRKREF
3774 -- : BFD_RELOC_PPC_EMB_RELSEC16
3775 -- : BFD_RELOC_PPC_EMB_RELST_LO
3776 -- : BFD_RELOC_PPC_EMB_RELST_HI
3777 -- : BFD_RELOC_PPC_EMB_RELST_HA
3778 -- : BFD_RELOC_PPC_EMB_BIT_FLD
3779 -- : BFD_RELOC_PPC_EMB_RELSDA
3780 -- : BFD_RELOC_PPC64_HIGHER
3781 -- : BFD_RELOC_PPC64_HIGHER_S
3782 -- : BFD_RELOC_PPC64_HIGHEST
3783 -- : BFD_RELOC_PPC64_HIGHEST_S
3784 -- : BFD_RELOC_PPC64_TOC16_LO
3785 -- : BFD_RELOC_PPC64_TOC16_HI
3786 -- : BFD_RELOC_PPC64_TOC16_HA
3787 -- : BFD_RELOC_PPC64_TOC
3788 -- : BFD_RELOC_PPC64_PLTGOT16
3789 -- : BFD_RELOC_PPC64_PLTGOT16_LO
3790 -- : BFD_RELOC_PPC64_PLTGOT16_HI
3791 -- : BFD_RELOC_PPC64_PLTGOT16_HA
3792 -- : BFD_RELOC_PPC64_ADDR16_DS
3793 -- : BFD_RELOC_PPC64_ADDR16_LO_DS
3794 -- : BFD_RELOC_PPC64_GOT16_DS
3795 -- : BFD_RELOC_PPC64_GOT16_LO_DS
3796 -- : BFD_RELOC_PPC64_PLT16_LO_DS
3797 -- : BFD_RELOC_PPC64_SECTOFF_DS
3798 -- : BFD_RELOC_PPC64_SECTOFF_LO_DS
3799 -- : BFD_RELOC_PPC64_TOC16_DS
3800 -- : BFD_RELOC_PPC64_TOC16_LO_DS
3801 -- : BFD_RELOC_PPC64_PLTGOT16_DS
3802 -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS
3803 Power(rs6000) and PowerPC relocations.
3805 -- : BFD_RELOC_PPC_TLS
3806 -- : BFD_RELOC_PPC_DTPMOD
3807 -- : BFD_RELOC_PPC_TPREL16
3808 -- : BFD_RELOC_PPC_TPREL16_LO
3809 -- : BFD_RELOC_PPC_TPREL16_HI
3810 -- : BFD_RELOC_PPC_TPREL16_HA
3811 -- : BFD_RELOC_PPC_TPREL
3812 -- : BFD_RELOC_PPC_DTPREL16
3813 -- : BFD_RELOC_PPC_DTPREL16_LO
3814 -- : BFD_RELOC_PPC_DTPREL16_HI
3815 -- : BFD_RELOC_PPC_DTPREL16_HA
3816 -- : BFD_RELOC_PPC_DTPREL
3817 -- : BFD_RELOC_PPC_GOT_TLSGD16
3818 -- : BFD_RELOC_PPC_GOT_TLSGD16_LO
3819 -- : BFD_RELOC_PPC_GOT_TLSGD16_HI
3820 -- : BFD_RELOC_PPC_GOT_TLSGD16_HA
3821 -- : BFD_RELOC_PPC_GOT_TLSLD16
3822 -- : BFD_RELOC_PPC_GOT_TLSLD16_LO
3823 -- : BFD_RELOC_PPC_GOT_TLSLD16_HI
3824 -- : BFD_RELOC_PPC_GOT_TLSLD16_HA
3825 -- : BFD_RELOC_PPC_GOT_TPREL16
3826 -- : BFD_RELOC_PPC_GOT_TPREL16_LO
3827 -- : BFD_RELOC_PPC_GOT_TPREL16_HI
3828 -- : BFD_RELOC_PPC_GOT_TPREL16_HA
3829 -- : BFD_RELOC_PPC_GOT_DTPREL16
3830 -- : BFD_RELOC_PPC_GOT_DTPREL16_LO
3831 -- : BFD_RELOC_PPC_GOT_DTPREL16_HI
3832 -- : BFD_RELOC_PPC_GOT_DTPREL16_HA
3833 -- : BFD_RELOC_PPC64_TPREL16_DS
3834 -- : BFD_RELOC_PPC64_TPREL16_LO_DS
3835 -- : BFD_RELOC_PPC64_TPREL16_HIGHER
3836 -- : BFD_RELOC_PPC64_TPREL16_HIGHERA
3837 -- : BFD_RELOC_PPC64_TPREL16_HIGHEST
3838 -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA
3839 -- : BFD_RELOC_PPC64_DTPREL16_DS
3840 -- : BFD_RELOC_PPC64_DTPREL16_LO_DS
3841 -- : BFD_RELOC_PPC64_DTPREL16_HIGHER
3842 -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA
3843 -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST
3844 -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA
3845 PowerPC and PowerPC64 thread-local storage relocations.
3847 -- : BFD_RELOC_I370_D12
3848 IBM 370/390 relocations
3851 The type of reloc used to build a constructor table - at the moment
3852 probably a 32 bit wide absolute relocation, but the target can
3853 choose. It generally does map to one of the other relocation
3856 -- : BFD_RELOC_ARM_PCREL_BRANCH
3857 ARM 26 bit pc-relative branch. The lowest two bits must be zero
3858 and are not stored in the instruction.
3860 -- : BFD_RELOC_ARM_PCREL_BLX
3861 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
3862 not stored in the instruction. The 2nd lowest bit comes from a 1
3863 bit field in the instruction.
3865 -- : BFD_RELOC_THUMB_PCREL_BLX
3866 Thumb 22 bit pc-relative branch. The lowest bit must be zero and
3867 is not stored in the instruction. The 2nd lowest bit comes from a
3868 1 bit field in the instruction.
3870 -- : BFD_RELOC_ARM_PCREL_CALL
3871 ARM 26-bit pc-relative branch for an unconditional BL or BLX
3874 -- : BFD_RELOC_ARM_PCREL_JUMP
3875 ARM 26-bit pc-relative branch for B or conditional BL instruction.
3877 -- : BFD_RELOC_THUMB_PCREL_BRANCH7
3878 -- : BFD_RELOC_THUMB_PCREL_BRANCH9
3879 -- : BFD_RELOC_THUMB_PCREL_BRANCH12
3880 -- : BFD_RELOC_THUMB_PCREL_BRANCH20
3881 -- : BFD_RELOC_THUMB_PCREL_BRANCH23
3882 -- : BFD_RELOC_THUMB_PCREL_BRANCH25
3883 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The
3884 lowest bit must be zero and is not stored in the instruction.
3885 Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an
3886 "nn" one smaller in all cases. Note further that BRANCH23
3887 corresponds to R_ARM_THM_CALL.
3889 -- : BFD_RELOC_ARM_OFFSET_IMM
3890 12-bit immediate offset, used in ARM-format ldr and str
3893 -- : BFD_RELOC_ARM_THUMB_OFFSET
3894 5-bit immediate offset, used in Thumb-format ldr and str
3897 -- : BFD_RELOC_ARM_TARGET1
3898 Pc-relative or absolute relocation depending on target. Used for
3899 entries in .init_array sections.
3901 -- : BFD_RELOC_ARM_ROSEGREL32
3902 Read-only segment base relative address.
3904 -- : BFD_RELOC_ARM_SBREL32
3905 Data segment base relative address.
3907 -- : BFD_RELOC_ARM_TARGET2
3908 This reloc is used for references to RTTI data from exception
3909 handling tables. The actual definition depends on the target. It
3910 may be a pc-relative or some form of GOT-indirect relocation.
3912 -- : BFD_RELOC_ARM_PREL31
3913 31-bit PC relative address.
3915 -- : BFD_RELOC_ARM_MOVW
3916 -- : BFD_RELOC_ARM_MOVT
3917 -- : BFD_RELOC_ARM_MOVW_PCREL
3918 -- : BFD_RELOC_ARM_MOVT_PCREL
3919 -- : BFD_RELOC_ARM_THUMB_MOVW
3920 -- : BFD_RELOC_ARM_THUMB_MOVT
3921 -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL
3922 -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL
3923 Low and High halfword relocations for MOVW and MOVT instructions.
3925 -- : BFD_RELOC_ARM_JUMP_SLOT
3926 -- : BFD_RELOC_ARM_GLOB_DAT
3927 -- : BFD_RELOC_ARM_GOT32
3928 -- : BFD_RELOC_ARM_PLT32
3929 -- : BFD_RELOC_ARM_RELATIVE
3930 -- : BFD_RELOC_ARM_GOTOFF
3931 -- : BFD_RELOC_ARM_GOTPC
3932 Relocations for setting up GOTs and PLTs for shared libraries.
3934 -- : BFD_RELOC_ARM_TLS_GD32
3935 -- : BFD_RELOC_ARM_TLS_LDO32
3936 -- : BFD_RELOC_ARM_TLS_LDM32
3937 -- : BFD_RELOC_ARM_TLS_DTPOFF32
3938 -- : BFD_RELOC_ARM_TLS_DTPMOD32
3939 -- : BFD_RELOC_ARM_TLS_TPOFF32
3940 -- : BFD_RELOC_ARM_TLS_IE32
3941 -- : BFD_RELOC_ARM_TLS_LE32
3942 ARM thread-local storage relocations.
3944 -- : BFD_RELOC_ARM_ALU_PC_G0_NC
3945 -- : BFD_RELOC_ARM_ALU_PC_G0
3946 -- : BFD_RELOC_ARM_ALU_PC_G1_NC
3947 -- : BFD_RELOC_ARM_ALU_PC_G1
3948 -- : BFD_RELOC_ARM_ALU_PC_G2
3949 -- : BFD_RELOC_ARM_LDR_PC_G0
3950 -- : BFD_RELOC_ARM_LDR_PC_G1
3951 -- : BFD_RELOC_ARM_LDR_PC_G2
3952 -- : BFD_RELOC_ARM_LDRS_PC_G0
3953 -- : BFD_RELOC_ARM_LDRS_PC_G1
3954 -- : BFD_RELOC_ARM_LDRS_PC_G2
3955 -- : BFD_RELOC_ARM_LDC_PC_G0
3956 -- : BFD_RELOC_ARM_LDC_PC_G1
3957 -- : BFD_RELOC_ARM_LDC_PC_G2
3958 -- : BFD_RELOC_ARM_ALU_SB_G0_NC
3959 -- : BFD_RELOC_ARM_ALU_SB_G0
3960 -- : BFD_RELOC_ARM_ALU_SB_G1_NC
3961 -- : BFD_RELOC_ARM_ALU_SB_G1
3962 -- : BFD_RELOC_ARM_ALU_SB_G2
3963 -- : BFD_RELOC_ARM_LDR_SB_G0
3964 -- : BFD_RELOC_ARM_LDR_SB_G1
3965 -- : BFD_RELOC_ARM_LDR_SB_G2
3966 -- : BFD_RELOC_ARM_LDRS_SB_G0
3967 -- : BFD_RELOC_ARM_LDRS_SB_G1
3968 -- : BFD_RELOC_ARM_LDRS_SB_G2
3969 -- : BFD_RELOC_ARM_LDC_SB_G0
3970 -- : BFD_RELOC_ARM_LDC_SB_G1
3971 -- : BFD_RELOC_ARM_LDC_SB_G2
3972 ARM group relocations.
3974 -- : BFD_RELOC_ARM_V4BX
3975 Annotation of BX instructions.
3977 -- : BFD_RELOC_ARM_IMMEDIATE
3978 -- : BFD_RELOC_ARM_ADRL_IMMEDIATE
3979 -- : BFD_RELOC_ARM_T32_IMMEDIATE
3980 -- : BFD_RELOC_ARM_T32_ADD_IMM
3981 -- : BFD_RELOC_ARM_T32_IMM12
3982 -- : BFD_RELOC_ARM_T32_ADD_PC12
3983 -- : BFD_RELOC_ARM_SHIFT_IMM
3984 -- : BFD_RELOC_ARM_SMC
3985 -- : BFD_RELOC_ARM_SWI
3986 -- : BFD_RELOC_ARM_MULTI
3987 -- : BFD_RELOC_ARM_CP_OFF_IMM
3988 -- : BFD_RELOC_ARM_CP_OFF_IMM_S2
3989 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM
3990 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
3991 -- : BFD_RELOC_ARM_ADR_IMM
3992 -- : BFD_RELOC_ARM_LDR_IMM
3993 -- : BFD_RELOC_ARM_LITERAL
3994 -- : BFD_RELOC_ARM_IN_POOL
3995 -- : BFD_RELOC_ARM_OFFSET_IMM8
3996 -- : BFD_RELOC_ARM_T32_OFFSET_U8
3997 -- : BFD_RELOC_ARM_T32_OFFSET_IMM
3998 -- : BFD_RELOC_ARM_HWLITERAL
3999 -- : BFD_RELOC_ARM_THUMB_ADD
4000 -- : BFD_RELOC_ARM_THUMB_IMM
4001 -- : BFD_RELOC_ARM_THUMB_SHIFT
4002 These relocs are only used within the ARM assembler. They are not
4003 (at present) written to any object files.
4005 -- : BFD_RELOC_SH_PCDISP8BY2
4006 -- : BFD_RELOC_SH_PCDISP12BY2
4007 -- : BFD_RELOC_SH_IMM3
4008 -- : BFD_RELOC_SH_IMM3U
4009 -- : BFD_RELOC_SH_DISP12
4010 -- : BFD_RELOC_SH_DISP12BY2
4011 -- : BFD_RELOC_SH_DISP12BY4
4012 -- : BFD_RELOC_SH_DISP12BY8
4013 -- : BFD_RELOC_SH_DISP20
4014 -- : BFD_RELOC_SH_DISP20BY8
4015 -- : BFD_RELOC_SH_IMM4
4016 -- : BFD_RELOC_SH_IMM4BY2
4017 -- : BFD_RELOC_SH_IMM4BY4
4018 -- : BFD_RELOC_SH_IMM8
4019 -- : BFD_RELOC_SH_IMM8BY2
4020 -- : BFD_RELOC_SH_IMM8BY4
4021 -- : BFD_RELOC_SH_PCRELIMM8BY2
4022 -- : BFD_RELOC_SH_PCRELIMM8BY4
4023 -- : BFD_RELOC_SH_SWITCH16
4024 -- : BFD_RELOC_SH_SWITCH32
4025 -- : BFD_RELOC_SH_USES
4026 -- : BFD_RELOC_SH_COUNT
4027 -- : BFD_RELOC_SH_ALIGN
4028 -- : BFD_RELOC_SH_CODE
4029 -- : BFD_RELOC_SH_DATA
4030 -- : BFD_RELOC_SH_LABEL
4031 -- : BFD_RELOC_SH_LOOP_START
4032 -- : BFD_RELOC_SH_LOOP_END
4033 -- : BFD_RELOC_SH_COPY
4034 -- : BFD_RELOC_SH_GLOB_DAT
4035 -- : BFD_RELOC_SH_JMP_SLOT
4036 -- : BFD_RELOC_SH_RELATIVE
4037 -- : BFD_RELOC_SH_GOTPC
4038 -- : BFD_RELOC_SH_GOT_LOW16
4039 -- : BFD_RELOC_SH_GOT_MEDLOW16
4040 -- : BFD_RELOC_SH_GOT_MEDHI16
4041 -- : BFD_RELOC_SH_GOT_HI16
4042 -- : BFD_RELOC_SH_GOTPLT_LOW16
4043 -- : BFD_RELOC_SH_GOTPLT_MEDLOW16
4044 -- : BFD_RELOC_SH_GOTPLT_MEDHI16
4045 -- : BFD_RELOC_SH_GOTPLT_HI16
4046 -- : BFD_RELOC_SH_PLT_LOW16
4047 -- : BFD_RELOC_SH_PLT_MEDLOW16
4048 -- : BFD_RELOC_SH_PLT_MEDHI16
4049 -- : BFD_RELOC_SH_PLT_HI16
4050 -- : BFD_RELOC_SH_GOTOFF_LOW16
4051 -- : BFD_RELOC_SH_GOTOFF_MEDLOW16
4052 -- : BFD_RELOC_SH_GOTOFF_MEDHI16
4053 -- : BFD_RELOC_SH_GOTOFF_HI16
4054 -- : BFD_RELOC_SH_GOTPC_LOW16
4055 -- : BFD_RELOC_SH_GOTPC_MEDLOW16
4056 -- : BFD_RELOC_SH_GOTPC_MEDHI16
4057 -- : BFD_RELOC_SH_GOTPC_HI16
4058 -- : BFD_RELOC_SH_COPY64
4059 -- : BFD_RELOC_SH_GLOB_DAT64
4060 -- : BFD_RELOC_SH_JMP_SLOT64
4061 -- : BFD_RELOC_SH_RELATIVE64
4062 -- : BFD_RELOC_SH_GOT10BY4
4063 -- : BFD_RELOC_SH_GOT10BY8
4064 -- : BFD_RELOC_SH_GOTPLT10BY4
4065 -- : BFD_RELOC_SH_GOTPLT10BY8
4066 -- : BFD_RELOC_SH_GOTPLT32
4067 -- : BFD_RELOC_SH_SHMEDIA_CODE
4068 -- : BFD_RELOC_SH_IMMU5
4069 -- : BFD_RELOC_SH_IMMS6
4070 -- : BFD_RELOC_SH_IMMS6BY32
4071 -- : BFD_RELOC_SH_IMMU6
4072 -- : BFD_RELOC_SH_IMMS10
4073 -- : BFD_RELOC_SH_IMMS10BY2
4074 -- : BFD_RELOC_SH_IMMS10BY4
4075 -- : BFD_RELOC_SH_IMMS10BY8
4076 -- : BFD_RELOC_SH_IMMS16
4077 -- : BFD_RELOC_SH_IMMU16
4078 -- : BFD_RELOC_SH_IMM_LOW16
4079 -- : BFD_RELOC_SH_IMM_LOW16_PCREL
4080 -- : BFD_RELOC_SH_IMM_MEDLOW16
4081 -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL
4082 -- : BFD_RELOC_SH_IMM_MEDHI16
4083 -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL
4084 -- : BFD_RELOC_SH_IMM_HI16
4085 -- : BFD_RELOC_SH_IMM_HI16_PCREL
4086 -- : BFD_RELOC_SH_PT_16
4087 -- : BFD_RELOC_SH_TLS_GD_32
4088 -- : BFD_RELOC_SH_TLS_LD_32
4089 -- : BFD_RELOC_SH_TLS_LDO_32
4090 -- : BFD_RELOC_SH_TLS_IE_32
4091 -- : BFD_RELOC_SH_TLS_LE_32
4092 -- : BFD_RELOC_SH_TLS_DTPMOD32
4093 -- : BFD_RELOC_SH_TLS_DTPOFF32
4094 -- : BFD_RELOC_SH_TLS_TPOFF32
4095 Renesas / SuperH SH relocs. Not all of these appear in object
4098 -- : BFD_RELOC_ARC_B22_PCREL
4099 ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two
4100 bits must be zero and are not stored in the instruction. The high
4101 20 bits are installed in bits 26 through 7 of the instruction.
4103 -- : BFD_RELOC_ARC_B26
4104 ARC 26 bit absolute branch. The lowest two bits must be zero and
4105 are not stored in the instruction. The high 24 bits are installed
4106 in bits 23 through 0.
4108 -- : BFD_RELOC_BFIN_16_IMM
4109 ADI Blackfin 16 bit immediate absolute reloc.
4111 -- : BFD_RELOC_BFIN_16_HIGH
4112 ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
4114 -- : BFD_RELOC_BFIN_4_PCREL
4115 ADI Blackfin 'a' part of LSETUP.
4117 -- : BFD_RELOC_BFIN_5_PCREL
4120 -- : BFD_RELOC_BFIN_16_LOW
4121 ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
4123 -- : BFD_RELOC_BFIN_10_PCREL
4126 -- : BFD_RELOC_BFIN_11_PCREL
4127 ADI Blackfin 'b' part of LSETUP.
4129 -- : BFD_RELOC_BFIN_12_PCREL_JUMP
4132 -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S
4133 ADI Blackfin Short jump, pcrel.
4135 -- : BFD_RELOC_BFIN_24_PCREL_CALL_X
4136 ADI Blackfin Call.x not implemented.
4138 -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L
4139 ADI Blackfin Long Jump pcrel.
4141 -- : BFD_RELOC_BFIN_GOT17M4
4142 -- : BFD_RELOC_BFIN_GOTHI
4143 -- : BFD_RELOC_BFIN_GOTLO
4144 -- : BFD_RELOC_BFIN_FUNCDESC
4145 -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4
4146 -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI
4147 -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO
4148 -- : BFD_RELOC_BFIN_FUNCDESC_VALUE
4149 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
4150 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
4151 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
4152 -- : BFD_RELOC_BFIN_GOTOFF17M4
4153 -- : BFD_RELOC_BFIN_GOTOFFHI
4154 -- : BFD_RELOC_BFIN_GOTOFFLO
4155 ADI Blackfin FD-PIC relocations.
4157 -- : BFD_RELOC_BFIN_GOT
4158 ADI Blackfin GOT relocation.
4160 -- : BFD_RELOC_BFIN_PLTPC
4161 ADI Blackfin PLTPC relocation.
4163 -- : BFD_ARELOC_BFIN_PUSH
4164 ADI Blackfin arithmetic relocation.
4166 -- : BFD_ARELOC_BFIN_CONST
4167 ADI Blackfin arithmetic relocation.
4169 -- : BFD_ARELOC_BFIN_ADD
4170 ADI Blackfin arithmetic relocation.
4172 -- : BFD_ARELOC_BFIN_SUB
4173 ADI Blackfin arithmetic relocation.
4175 -- : BFD_ARELOC_BFIN_MULT
4176 ADI Blackfin arithmetic relocation.
4178 -- : BFD_ARELOC_BFIN_DIV
4179 ADI Blackfin arithmetic relocation.
4181 -- : BFD_ARELOC_BFIN_MOD
4182 ADI Blackfin arithmetic relocation.
4184 -- : BFD_ARELOC_BFIN_LSHIFT
4185 ADI Blackfin arithmetic relocation.
4187 -- : BFD_ARELOC_BFIN_RSHIFT
4188 ADI Blackfin arithmetic relocation.
4190 -- : BFD_ARELOC_BFIN_AND
4191 ADI Blackfin arithmetic relocation.
4193 -- : BFD_ARELOC_BFIN_OR
4194 ADI Blackfin arithmetic relocation.
4196 -- : BFD_ARELOC_BFIN_XOR
4197 ADI Blackfin arithmetic relocation.
4199 -- : BFD_ARELOC_BFIN_LAND
4200 ADI Blackfin arithmetic relocation.
4202 -- : BFD_ARELOC_BFIN_LOR
4203 ADI Blackfin arithmetic relocation.
4205 -- : BFD_ARELOC_BFIN_LEN
4206 ADI Blackfin arithmetic relocation.
4208 -- : BFD_ARELOC_BFIN_NEG
4209 ADI Blackfin arithmetic relocation.
4211 -- : BFD_ARELOC_BFIN_COMP
4212 ADI Blackfin arithmetic relocation.
4214 -- : BFD_ARELOC_BFIN_PAGE
4215 ADI Blackfin arithmetic relocation.
4217 -- : BFD_ARELOC_BFIN_HWPAGE
4218 ADI Blackfin arithmetic relocation.
4220 -- : BFD_ARELOC_BFIN_ADDR
4221 ADI Blackfin arithmetic relocation.
4223 -- : BFD_RELOC_D10V_10_PCREL_R
4224 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4225 bits assumed to be 0.
4227 -- : BFD_RELOC_D10V_10_PCREL_L
4228 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4229 bits assumed to be 0. This is the same as the previous reloc
4230 except it is in the left container, i.e., shifted left 15 bits.
4232 -- : BFD_RELOC_D10V_18
4233 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4235 -- : BFD_RELOC_D10V_18_PCREL
4236 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4238 -- : BFD_RELOC_D30V_6
4239 Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
4241 -- : BFD_RELOC_D30V_9_PCREL
4242 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4245 -- : BFD_RELOC_D30V_9_PCREL_R
4246 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4247 be 0. Same as the previous reloc but on the right side of the
4250 -- : BFD_RELOC_D30V_15
4251 This is a 12-bit absolute reloc with the right 3 bitsassumed to be
4254 -- : BFD_RELOC_D30V_15_PCREL
4255 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4258 -- : BFD_RELOC_D30V_15_PCREL_R
4259 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4260 to be 0. Same as the previous reloc but on the right side of the
4263 -- : BFD_RELOC_D30V_21
4264 This is an 18-bit absolute reloc with the right 3 bits assumed to
4267 -- : BFD_RELOC_D30V_21_PCREL
4268 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4271 -- : BFD_RELOC_D30V_21_PCREL_R
4272 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4273 to be 0. Same as the previous reloc but on the right side of the
4276 -- : BFD_RELOC_D30V_32
4277 This is a 32-bit absolute reloc.
4279 -- : BFD_RELOC_D30V_32_PCREL
4280 This is a 32-bit pc-relative reloc.
4282 -- : BFD_RELOC_DLX_HI16_S
4285 -- : BFD_RELOC_DLX_LO16
4288 -- : BFD_RELOC_DLX_JMP26
4291 -- : BFD_RELOC_M32C_HI8
4292 -- : BFD_RELOC_M32C_RL_JUMP
4293 -- : BFD_RELOC_M32C_RL_1ADDR
4294 -- : BFD_RELOC_M32C_RL_2ADDR
4295 Renesas M16C/M32C Relocations.
4297 -- : BFD_RELOC_M32R_24
4298 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit
4301 -- : BFD_RELOC_M32R_10_PCREL
4302 This is a 10-bit pc-relative reloc with the right 2 bits assumed
4305 -- : BFD_RELOC_M32R_18_PCREL
4306 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4308 -- : BFD_RELOC_M32R_26_PCREL
4309 This is a 26-bit reloc with the right 2 bits assumed to be 0.
4311 -- : BFD_RELOC_M32R_HI16_ULO
4312 This is a 16-bit reloc containing the high 16 bits of an address
4313 used when the lower 16 bits are treated as unsigned.
4315 -- : BFD_RELOC_M32R_HI16_SLO
4316 This is a 16-bit reloc containing the high 16 bits of an address
4317 used when the lower 16 bits are treated as signed.
4319 -- : BFD_RELOC_M32R_LO16
4320 This is a 16-bit reloc containing the lower 16 bits of an address.
4322 -- : BFD_RELOC_M32R_SDA16
4323 This is a 16-bit reloc containing the small data area offset for
4324 use in add3, load, and store instructions.
4326 -- : BFD_RELOC_M32R_GOT24
4327 -- : BFD_RELOC_M32R_26_PLTREL
4328 -- : BFD_RELOC_M32R_COPY
4329 -- : BFD_RELOC_M32R_GLOB_DAT
4330 -- : BFD_RELOC_M32R_JMP_SLOT
4331 -- : BFD_RELOC_M32R_RELATIVE
4332 -- : BFD_RELOC_M32R_GOTOFF
4333 -- : BFD_RELOC_M32R_GOTOFF_HI_ULO
4334 -- : BFD_RELOC_M32R_GOTOFF_HI_SLO
4335 -- : BFD_RELOC_M32R_GOTOFF_LO
4336 -- : BFD_RELOC_M32R_GOTPC24
4337 -- : BFD_RELOC_M32R_GOT16_HI_ULO
4338 -- : BFD_RELOC_M32R_GOT16_HI_SLO
4339 -- : BFD_RELOC_M32R_GOT16_LO
4340 -- : BFD_RELOC_M32R_GOTPC_HI_ULO
4341 -- : BFD_RELOC_M32R_GOTPC_HI_SLO
4342 -- : BFD_RELOC_M32R_GOTPC_LO
4345 -- : BFD_RELOC_V850_9_PCREL
4346 This is a 9-bit reloc
4348 -- : BFD_RELOC_V850_22_PCREL
4349 This is a 22-bit reloc
4351 -- : BFD_RELOC_V850_SDA_16_16_OFFSET
4352 This is a 16 bit offset from the short data area pointer.
4354 -- : BFD_RELOC_V850_SDA_15_16_OFFSET
4355 This is a 16 bit offset (of which only 15 bits are used) from the
4356 short data area pointer.
4358 -- : BFD_RELOC_V850_ZDA_16_16_OFFSET
4359 This is a 16 bit offset from the zero data area pointer.
4361 -- : BFD_RELOC_V850_ZDA_15_16_OFFSET
4362 This is a 16 bit offset (of which only 15 bits are used) from the
4363 zero data area pointer.
4365 -- : BFD_RELOC_V850_TDA_6_8_OFFSET
4366 This is an 8 bit offset (of which only 6 bits are used) from the
4367 tiny data area pointer.
4369 -- : BFD_RELOC_V850_TDA_7_8_OFFSET
4370 This is an 8bit offset (of which only 7 bits are used) from the
4371 tiny data area pointer.
4373 -- : BFD_RELOC_V850_TDA_7_7_OFFSET
4374 This is a 7 bit offset from the tiny data area pointer.
4376 -- : BFD_RELOC_V850_TDA_16_16_OFFSET
4377 This is a 16 bit offset from the tiny data area pointer.
4379 -- : BFD_RELOC_V850_TDA_4_5_OFFSET
4380 This is a 5 bit offset (of which only 4 bits are used) from the
4381 tiny data area pointer.
4383 -- : BFD_RELOC_V850_TDA_4_4_OFFSET
4384 This is a 4 bit offset from the tiny data area pointer.
4386 -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
4387 This is a 16 bit offset from the short data area pointer, with the
4388 bits placed non-contiguously in the instruction.
4390 -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
4391 This is a 16 bit offset from the zero data area pointer, with the
4392 bits placed non-contiguously in the instruction.
4394 -- : BFD_RELOC_V850_CALLT_6_7_OFFSET
4395 This is a 6 bit offset from the call table base pointer.
4397 -- : BFD_RELOC_V850_CALLT_16_16_OFFSET
4398 This is a 16 bit offset from the call table base pointer.
4400 -- : BFD_RELOC_V850_LONGCALL
4401 Used for relaxing indirect function calls.
4403 -- : BFD_RELOC_V850_LONGJUMP
4404 Used for relaxing indirect jumps.
4406 -- : BFD_RELOC_V850_ALIGN
4407 Used to maintain alignment whilst relaxing.
4409 -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET
4410 This is a variation of BFD_RELOC_LO16 that can be used in v850e
4413 -- : BFD_RELOC_MN10300_32_PCREL
4414 This is a 32bit pcrel reloc for the mn10300, offset by two bytes
4417 -- : BFD_RELOC_MN10300_16_PCREL
4418 This is a 16bit pcrel reloc for the mn10300, offset by two bytes
4421 -- : BFD_RELOC_TIC30_LDP
4422 This is a 8bit DP reloc for the tms320c30, where the most
4423 significant 8 bits of a 24 bit word are placed into the least
4424 significant 8 bits of the opcode.
4426 -- : BFD_RELOC_TIC54X_PARTLS7
4427 This is a 7bit reloc for the tms320c54x, where the least
4428 significant 7 bits of a 16 bit word are placed into the least
4429 significant 7 bits of the opcode.
4431 -- : BFD_RELOC_TIC54X_PARTMS9
4432 This is a 9bit DP reloc for the tms320c54x, where the most
4433 significant 9 bits of a 16 bit word are placed into the least
4434 significant 9 bits of the opcode.
4436 -- : BFD_RELOC_TIC54X_23
4437 This is an extended address 23-bit reloc for the tms320c54x.
4439 -- : BFD_RELOC_TIC54X_16_OF_23
4440 This is a 16-bit reloc for the tms320c54x, where the least
4441 significant 16 bits of a 23-bit extended address are placed into
4444 -- : BFD_RELOC_TIC54X_MS7_OF_23
4445 This is a reloc for the tms320c54x, where the most significant 7
4446 bits of a 23-bit extended address are placed into the opcode.
4448 -- : BFD_RELOC_FR30_48
4449 This is a 48 bit reloc for the FR30 that stores 32 bits.
4451 -- : BFD_RELOC_FR30_20
4452 This is a 32 bit reloc for the FR30 that stores 20 bits split up
4455 -- : BFD_RELOC_FR30_6_IN_4
4456 This is a 16 bit reloc for the FR30 that stores a 6 bit word
4459 -- : BFD_RELOC_FR30_8_IN_8
4460 This is a 16 bit reloc for the FR30 that stores an 8 bit byte
4463 -- : BFD_RELOC_FR30_9_IN_8
4464 This is a 16 bit reloc for the FR30 that stores a 9 bit short
4467 -- : BFD_RELOC_FR30_10_IN_8
4468 This is a 16 bit reloc for the FR30 that stores a 10 bit word
4471 -- : BFD_RELOC_FR30_9_PCREL
4472 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
4473 short offset into 8 bits.
4475 -- : BFD_RELOC_FR30_12_PCREL
4476 This is a 16 bit reloc for the FR30 that stores a 12 bit pc
4477 relative short offset into 11 bits.
4479 -- : BFD_RELOC_MCORE_PCREL_IMM8BY4
4480 -- : BFD_RELOC_MCORE_PCREL_IMM11BY2
4481 -- : BFD_RELOC_MCORE_PCREL_IMM4BY2
4482 -- : BFD_RELOC_MCORE_PCREL_32
4483 -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
4484 -- : BFD_RELOC_MCORE_RVA
4485 Motorola Mcore relocations.
4487 -- : BFD_RELOC_MEP_8
4488 -- : BFD_RELOC_MEP_16
4489 -- : BFD_RELOC_MEP_32
4490 -- : BFD_RELOC_MEP_PCREL8A2
4491 -- : BFD_RELOC_MEP_PCREL12A2
4492 -- : BFD_RELOC_MEP_PCREL17A2
4493 -- : BFD_RELOC_MEP_PCREL24A2
4494 -- : BFD_RELOC_MEP_PCABS24A2
4495 -- : BFD_RELOC_MEP_LOW16
4496 -- : BFD_RELOC_MEP_HI16U
4497 -- : BFD_RELOC_MEP_HI16S
4498 -- : BFD_RELOC_MEP_GPREL
4499 -- : BFD_RELOC_MEP_TPREL
4500 -- : BFD_RELOC_MEP_TPREL7
4501 -- : BFD_RELOC_MEP_TPREL7A2
4502 -- : BFD_RELOC_MEP_TPREL7A4
4503 -- : BFD_RELOC_MEP_UIMM24
4504 -- : BFD_RELOC_MEP_ADDR24A4
4505 -- : BFD_RELOC_MEP_GNU_VTINHERIT
4506 -- : BFD_RELOC_MEP_GNU_VTENTRY
4507 Toshiba Media Processor Relocations.
4509 -- : BFD_RELOC_MMIX_GETA
4510 -- : BFD_RELOC_MMIX_GETA_1
4511 -- : BFD_RELOC_MMIX_GETA_2
4512 -- : BFD_RELOC_MMIX_GETA_3
4513 These are relocations for the GETA instruction.
4515 -- : BFD_RELOC_MMIX_CBRANCH
4516 -- : BFD_RELOC_MMIX_CBRANCH_J
4517 -- : BFD_RELOC_MMIX_CBRANCH_1
4518 -- : BFD_RELOC_MMIX_CBRANCH_2
4519 -- : BFD_RELOC_MMIX_CBRANCH_3
4520 These are relocations for a conditional branch instruction.
4522 -- : BFD_RELOC_MMIX_PUSHJ
4523 -- : BFD_RELOC_MMIX_PUSHJ_1
4524 -- : BFD_RELOC_MMIX_PUSHJ_2
4525 -- : BFD_RELOC_MMIX_PUSHJ_3
4526 -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE
4527 These are relocations for the PUSHJ instruction.
4529 -- : BFD_RELOC_MMIX_JMP
4530 -- : BFD_RELOC_MMIX_JMP_1
4531 -- : BFD_RELOC_MMIX_JMP_2
4532 -- : BFD_RELOC_MMIX_JMP_3
4533 These are relocations for the JMP instruction.
4535 -- : BFD_RELOC_MMIX_ADDR19
4536 This is a relocation for a relative address as in a GETA
4537 instruction or a branch.
4539 -- : BFD_RELOC_MMIX_ADDR27
4540 This is a relocation for a relative address as in a JMP
4543 -- : BFD_RELOC_MMIX_REG_OR_BYTE
4544 This is a relocation for an instruction field that may be a general
4545 register or a value 0..255.
4547 -- : BFD_RELOC_MMIX_REG
4548 This is a relocation for an instruction field that may be a general
4551 -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET
4552 This is a relocation for two instruction fields holding a register
4553 and an offset, the equivalent of the relocation.
4555 -- : BFD_RELOC_MMIX_LOCAL
4556 This relocation is an assertion that the expression is not
4557 allocated as a global register. It does not modify contents.
4559 -- : BFD_RELOC_AVR_7_PCREL
4560 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
4561 short offset into 7 bits.
4563 -- : BFD_RELOC_AVR_13_PCREL
4564 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
4565 short offset into 12 bits.
4567 -- : BFD_RELOC_AVR_16_PM
4568 This is a 16 bit reloc for the AVR that stores 17 bit value
4569 (usually program memory address) into 16 bits.
4571 -- : BFD_RELOC_AVR_LO8_LDI
4572 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4573 data memory address) into 8 bit immediate value of LDI insn.
4575 -- : BFD_RELOC_AVR_HI8_LDI
4576 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4577 bit of data memory address) into 8 bit immediate value of LDI insn.
4579 -- : BFD_RELOC_AVR_HH8_LDI
4580 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4581 high 8 bit of program memory address) into 8 bit immediate value
4584 -- : BFD_RELOC_AVR_MS8_LDI
4585 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4586 high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.
4588 -- : BFD_RELOC_AVR_LO8_LDI_NEG
4589 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4590 (usually data memory address) into 8 bit immediate value of SUBI
4593 -- : BFD_RELOC_AVR_HI8_LDI_NEG
4594 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4595 (high 8 bit of data memory address) into 8 bit immediate value of
4598 -- : BFD_RELOC_AVR_HH8_LDI_NEG
4599 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4600 (most high 8 bit of program memory address) into 8 bit immediate
4601 value of LDI or SUBI insn.
4603 -- : BFD_RELOC_AVR_MS8_LDI_NEG
4604 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4605 (msb of 32 bit value) into 8 bit immediate value of LDI insn.
4607 -- : BFD_RELOC_AVR_LO8_LDI_PM
4608 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4609 command address) into 8 bit immediate value of LDI insn.
4611 -- : BFD_RELOC_AVR_LO8_LDI_GS
4612 This is a 16 bit reloc for the AVR that stores 8 bit value
4613 (command address) into 8 bit immediate value of LDI insn. If the
4614 address is beyond the 128k boundary, the linker inserts a jump
4615 stub for this reloc in the lower 128k.
4617 -- : BFD_RELOC_AVR_HI8_LDI_PM
4618 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4619 bit of command address) into 8 bit immediate value of LDI insn.
4621 -- : BFD_RELOC_AVR_HI8_LDI_GS
4622 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4623 bit of command address) into 8 bit immediate value of LDI insn.
4624 If the address is beyond the 128k boundary, the linker inserts a
4625 jump stub for this reloc below 128k.
4627 -- : BFD_RELOC_AVR_HH8_LDI_PM
4628 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4629 high 8 bit of command address) into 8 bit immediate value of LDI
4632 -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG
4633 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4634 (usually command address) into 8 bit immediate value of SUBI insn.
4636 -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG
4637 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4638 (high 8 bit of 16 bit command address) into 8 bit immediate value
4641 -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG
4642 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4643 (high 6 bit of 22 bit command address) into 8 bit immediate value
4646 -- : BFD_RELOC_AVR_CALL
4647 This is a 32 bit reloc for the AVR that stores 23 bit value into
4650 -- : BFD_RELOC_AVR_LDI
4651 This is a 16 bit reloc for the AVR that stores all needed bits for
4652 absolute addressing with ldi with overflow check to linktime
4654 -- : BFD_RELOC_AVR_6
4655 This is a 6 bit reloc for the AVR that stores offset for ldd/std
4658 -- : BFD_RELOC_AVR_6_ADIW
4659 This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw
4662 -- : BFD_RELOC_390_12
4665 -- : BFD_RELOC_390_GOT12
4668 -- : BFD_RELOC_390_PLT32
4669 32 bit PC relative PLT address.
4671 -- : BFD_RELOC_390_COPY
4672 Copy symbol at runtime.
4674 -- : BFD_RELOC_390_GLOB_DAT
4677 -- : BFD_RELOC_390_JMP_SLOT
4680 -- : BFD_RELOC_390_RELATIVE
4681 Adjust by program base.
4683 -- : BFD_RELOC_390_GOTPC
4684 32 bit PC relative offset to GOT.
4686 -- : BFD_RELOC_390_GOT16
4689 -- : BFD_RELOC_390_PC16DBL
4690 PC relative 16 bit shifted by 1.
4692 -- : BFD_RELOC_390_PLT16DBL
4693 16 bit PC rel. PLT shifted by 1.
4695 -- : BFD_RELOC_390_PC32DBL
4696 PC relative 32 bit shifted by 1.
4698 -- : BFD_RELOC_390_PLT32DBL
4699 32 bit PC rel. PLT shifted by 1.
4701 -- : BFD_RELOC_390_GOTPCDBL
4702 32 bit PC rel. GOT shifted by 1.
4704 -- : BFD_RELOC_390_GOT64
4707 -- : BFD_RELOC_390_PLT64
4708 64 bit PC relative PLT address.
4710 -- : BFD_RELOC_390_GOTENT
4711 32 bit rel. offset to GOT entry.
4713 -- : BFD_RELOC_390_GOTOFF64
4714 64 bit offset to GOT.
4716 -- : BFD_RELOC_390_GOTPLT12
4717 12-bit offset to symbol-entry within GOT, with PLT handling.
4719 -- : BFD_RELOC_390_GOTPLT16
4720 16-bit offset to symbol-entry within GOT, with PLT handling.
4722 -- : BFD_RELOC_390_GOTPLT32
4723 32-bit offset to symbol-entry within GOT, with PLT handling.
4725 -- : BFD_RELOC_390_GOTPLT64
4726 64-bit offset to symbol-entry within GOT, with PLT handling.
4728 -- : BFD_RELOC_390_GOTPLTENT
4729 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
4731 -- : BFD_RELOC_390_PLTOFF16
4732 16-bit rel. offset from the GOT to a PLT entry.
4734 -- : BFD_RELOC_390_PLTOFF32
4735 32-bit rel. offset from the GOT to a PLT entry.
4737 -- : BFD_RELOC_390_PLTOFF64
4738 64-bit rel. offset from the GOT to a PLT entry.
4740 -- : BFD_RELOC_390_TLS_LOAD
4741 -- : BFD_RELOC_390_TLS_GDCALL
4742 -- : BFD_RELOC_390_TLS_LDCALL
4743 -- : BFD_RELOC_390_TLS_GD32
4744 -- : BFD_RELOC_390_TLS_GD64
4745 -- : BFD_RELOC_390_TLS_GOTIE12
4746 -- : BFD_RELOC_390_TLS_GOTIE32
4747 -- : BFD_RELOC_390_TLS_GOTIE64
4748 -- : BFD_RELOC_390_TLS_LDM32
4749 -- : BFD_RELOC_390_TLS_LDM64
4750 -- : BFD_RELOC_390_TLS_IE32
4751 -- : BFD_RELOC_390_TLS_IE64
4752 -- : BFD_RELOC_390_TLS_IEENT
4753 -- : BFD_RELOC_390_TLS_LE32
4754 -- : BFD_RELOC_390_TLS_LE64
4755 -- : BFD_RELOC_390_TLS_LDO32
4756 -- : BFD_RELOC_390_TLS_LDO64
4757 -- : BFD_RELOC_390_TLS_DTPMOD
4758 -- : BFD_RELOC_390_TLS_DTPOFF
4759 -- : BFD_RELOC_390_TLS_TPOFF
4760 s390 tls relocations.
4762 -- : BFD_RELOC_390_20
4763 -- : BFD_RELOC_390_GOT20
4764 -- : BFD_RELOC_390_GOTPLT20
4765 -- : BFD_RELOC_390_TLS_GOTIE20
4766 Long displacement extension.
4768 -- : BFD_RELOC_SCORE_DUMMY1
4771 -- : BFD_RELOC_SCORE_GPREL15
4772 Low 16 bit for load/store
4774 -- : BFD_RELOC_SCORE_DUMMY2
4775 -- : BFD_RELOC_SCORE_JMP
4776 This is a 24-bit reloc with the right 1 bit assumed to be 0
4778 -- : BFD_RELOC_SCORE_BRANCH
4779 This is a 19-bit reloc with the right 1 bit assumed to be 0
4781 -- : BFD_RELOC_SCORE16_JMP
4782 This is a 11-bit reloc with the right 1 bit assumed to be 0
4784 -- : BFD_RELOC_SCORE16_BRANCH
4785 This is a 8-bit reloc with the right 1 bit assumed to be 0
4787 -- : BFD_RELOC_SCORE_GOT15
4788 -- : BFD_RELOC_SCORE_GOT_LO16
4789 -- : BFD_RELOC_SCORE_CALL15
4790 -- : BFD_RELOC_SCORE_DUMMY_HI16
4791 Undocumented Score relocs
4793 -- : BFD_RELOC_IP2K_FR9
4794 Scenix IP2K - 9-bit register number / data address
4796 -- : BFD_RELOC_IP2K_BANK
4797 Scenix IP2K - 4-bit register/data bank number
4799 -- : BFD_RELOC_IP2K_ADDR16CJP
4800 Scenix IP2K - low 13 bits of instruction word address
4802 -- : BFD_RELOC_IP2K_PAGE3
4803 Scenix IP2K - high 3 bits of instruction word address
4805 -- : BFD_RELOC_IP2K_LO8DATA
4806 -- : BFD_RELOC_IP2K_HI8DATA
4807 -- : BFD_RELOC_IP2K_EX8DATA
4808 Scenix IP2K - ext/low/high 8 bits of data address
4810 -- : BFD_RELOC_IP2K_LO8INSN
4811 -- : BFD_RELOC_IP2K_HI8INSN
4812 Scenix IP2K - low/high 8 bits of instruction word address
4814 -- : BFD_RELOC_IP2K_PC_SKIP
4815 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
4817 -- : BFD_RELOC_IP2K_TEXT
4818 Scenix IP2K - 16 bit word address in text section.
4820 -- : BFD_RELOC_IP2K_FR_OFFSET
4821 Scenix IP2K - 7-bit sp or dp offset
4823 -- : BFD_RELOC_VPE4KMATH_DATA
4824 -- : BFD_RELOC_VPE4KMATH_INSN
4825 Scenix VPE4K coprocessor - data/insn-space addressing
4827 -- : BFD_RELOC_VTABLE_INHERIT
4828 -- : BFD_RELOC_VTABLE_ENTRY
4829 These two relocations are used by the linker to determine which of
4830 the entries in a C++ virtual function table are actually used.
4831 When the -gc-sections option is given, the linker will zero out
4832 the entries that are not used, so that the code for those
4833 functions need not be included in the output.
4835 VTABLE_INHERIT is a zero-space relocation used to describe to the
4836 linker the inheritance tree of a C++ virtual function table. The
4837 relocation's symbol should be the parent class' vtable, and the
4838 relocation should be located at the child vtable.
4840 VTABLE_ENTRY is a zero-space relocation that describes the use of a
4841 virtual function table entry. The reloc's symbol should refer to
4842 the table of the class mentioned in the code. Off of that base,
4843 an offset describes the entry that is being used. For Rela hosts,
4844 this offset is stored in the reloc's addend. For Rel hosts, we
4845 are forced to put this offset in the reloc's section offset.
4847 -- : BFD_RELOC_IA64_IMM14
4848 -- : BFD_RELOC_IA64_IMM22
4849 -- : BFD_RELOC_IA64_IMM64
4850 -- : BFD_RELOC_IA64_DIR32MSB
4851 -- : BFD_RELOC_IA64_DIR32LSB
4852 -- : BFD_RELOC_IA64_DIR64MSB
4853 -- : BFD_RELOC_IA64_DIR64LSB
4854 -- : BFD_RELOC_IA64_GPREL22
4855 -- : BFD_RELOC_IA64_GPREL64I
4856 -- : BFD_RELOC_IA64_GPREL32MSB
4857 -- : BFD_RELOC_IA64_GPREL32LSB
4858 -- : BFD_RELOC_IA64_GPREL64MSB
4859 -- : BFD_RELOC_IA64_GPREL64LSB
4860 -- : BFD_RELOC_IA64_LTOFF22
4861 -- : BFD_RELOC_IA64_LTOFF64I
4862 -- : BFD_RELOC_IA64_PLTOFF22
4863 -- : BFD_RELOC_IA64_PLTOFF64I
4864 -- : BFD_RELOC_IA64_PLTOFF64MSB
4865 -- : BFD_RELOC_IA64_PLTOFF64LSB
4866 -- : BFD_RELOC_IA64_FPTR64I
4867 -- : BFD_RELOC_IA64_FPTR32MSB
4868 -- : BFD_RELOC_IA64_FPTR32LSB
4869 -- : BFD_RELOC_IA64_FPTR64MSB
4870 -- : BFD_RELOC_IA64_FPTR64LSB
4871 -- : BFD_RELOC_IA64_PCREL21B
4872 -- : BFD_RELOC_IA64_PCREL21BI
4873 -- : BFD_RELOC_IA64_PCREL21M
4874 -- : BFD_RELOC_IA64_PCREL21F
4875 -- : BFD_RELOC_IA64_PCREL22
4876 -- : BFD_RELOC_IA64_PCREL60B
4877 -- : BFD_RELOC_IA64_PCREL64I
4878 -- : BFD_RELOC_IA64_PCREL32MSB
4879 -- : BFD_RELOC_IA64_PCREL32LSB
4880 -- : BFD_RELOC_IA64_PCREL64MSB
4881 -- : BFD_RELOC_IA64_PCREL64LSB
4882 -- : BFD_RELOC_IA64_LTOFF_FPTR22
4883 -- : BFD_RELOC_IA64_LTOFF_FPTR64I
4884 -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB
4885 -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB
4886 -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB
4887 -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB
4888 -- : BFD_RELOC_IA64_SEGREL32MSB
4889 -- : BFD_RELOC_IA64_SEGREL32LSB
4890 -- : BFD_RELOC_IA64_SEGREL64MSB
4891 -- : BFD_RELOC_IA64_SEGREL64LSB
4892 -- : BFD_RELOC_IA64_SECREL32MSB
4893 -- : BFD_RELOC_IA64_SECREL32LSB
4894 -- : BFD_RELOC_IA64_SECREL64MSB
4895 -- : BFD_RELOC_IA64_SECREL64LSB
4896 -- : BFD_RELOC_IA64_REL32MSB
4897 -- : BFD_RELOC_IA64_REL32LSB
4898 -- : BFD_RELOC_IA64_REL64MSB
4899 -- : BFD_RELOC_IA64_REL64LSB
4900 -- : BFD_RELOC_IA64_LTV32MSB
4901 -- : BFD_RELOC_IA64_LTV32LSB
4902 -- : BFD_RELOC_IA64_LTV64MSB
4903 -- : BFD_RELOC_IA64_LTV64LSB
4904 -- : BFD_RELOC_IA64_IPLTMSB
4905 -- : BFD_RELOC_IA64_IPLTLSB
4906 -- : BFD_RELOC_IA64_COPY
4907 -- : BFD_RELOC_IA64_LTOFF22X
4908 -- : BFD_RELOC_IA64_LDXMOV
4909 -- : BFD_RELOC_IA64_TPREL14
4910 -- : BFD_RELOC_IA64_TPREL22
4911 -- : BFD_RELOC_IA64_TPREL64I
4912 -- : BFD_RELOC_IA64_TPREL64MSB
4913 -- : BFD_RELOC_IA64_TPREL64LSB
4914 -- : BFD_RELOC_IA64_LTOFF_TPREL22
4915 -- : BFD_RELOC_IA64_DTPMOD64MSB
4916 -- : BFD_RELOC_IA64_DTPMOD64LSB
4917 -- : BFD_RELOC_IA64_LTOFF_DTPMOD22
4918 -- : BFD_RELOC_IA64_DTPREL14
4919 -- : BFD_RELOC_IA64_DTPREL22
4920 -- : BFD_RELOC_IA64_DTPREL64I
4921 -- : BFD_RELOC_IA64_DTPREL32MSB
4922 -- : BFD_RELOC_IA64_DTPREL32LSB
4923 -- : BFD_RELOC_IA64_DTPREL64MSB
4924 -- : BFD_RELOC_IA64_DTPREL64LSB
4925 -- : BFD_RELOC_IA64_LTOFF_DTPREL22
4926 Intel IA64 Relocations.
4928 -- : BFD_RELOC_M68HC11_HI8
4929 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute
4932 -- : BFD_RELOC_M68HC11_LO8
4933 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute
4936 -- : BFD_RELOC_M68HC11_3B
4937 Motorola 68HC11 reloc. This is the 3 bit of a value.
4939 -- : BFD_RELOC_M68HC11_RL_JUMP
4940 Motorola 68HC11 reloc. This reloc marks the beginning of a
4941 jump/call instruction. It is used for linker relaxation to
4942 correctly identify beginning of instruction and change some
4943 branches to use PC-relative addressing mode.
4945 -- : BFD_RELOC_M68HC11_RL_GROUP
4946 Motorola 68HC11 reloc. This reloc marks a group of several
4947 instructions that gcc generates and for which the linker
4948 relaxation pass can modify and/or remove some of them.
4950 -- : BFD_RELOC_M68HC11_LO16
4951 Motorola 68HC11 reloc. This is the 16-bit lower part of an
4952 address. It is used for 'call' instruction to specify the symbol
4953 address without any special transformation (due to memory bank
4956 -- : BFD_RELOC_M68HC11_PAGE
4957 Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the
4958 page number of an address. It is used by 'call' instruction to
4959 specify the page number of the symbol.
4961 -- : BFD_RELOC_M68HC11_24
4962 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the
4963 address with a 16-bit value and a 8-bit page number. The symbol
4964 address is transformed to follow the 16K memory bank of 68HC12
4965 (seen as mapped in the window).
4967 -- : BFD_RELOC_M68HC12_5B
4968 Motorola 68HC12 reloc. This is the 5 bits of a value.
4970 -- : BFD_RELOC_16C_NUM08
4971 -- : BFD_RELOC_16C_NUM08_C
4972 -- : BFD_RELOC_16C_NUM16
4973 -- : BFD_RELOC_16C_NUM16_C
4974 -- : BFD_RELOC_16C_NUM32
4975 -- : BFD_RELOC_16C_NUM32_C
4976 -- : BFD_RELOC_16C_DISP04
4977 -- : BFD_RELOC_16C_DISP04_C
4978 -- : BFD_RELOC_16C_DISP08
4979 -- : BFD_RELOC_16C_DISP08_C
4980 -- : BFD_RELOC_16C_DISP16
4981 -- : BFD_RELOC_16C_DISP16_C
4982 -- : BFD_RELOC_16C_DISP24
4983 -- : BFD_RELOC_16C_DISP24_C
4984 -- : BFD_RELOC_16C_DISP24a
4985 -- : BFD_RELOC_16C_DISP24a_C
4986 -- : BFD_RELOC_16C_REG04
4987 -- : BFD_RELOC_16C_REG04_C
4988 -- : BFD_RELOC_16C_REG04a
4989 -- : BFD_RELOC_16C_REG04a_C
4990 -- : BFD_RELOC_16C_REG14
4991 -- : BFD_RELOC_16C_REG14_C
4992 -- : BFD_RELOC_16C_REG16
4993 -- : BFD_RELOC_16C_REG16_C
4994 -- : BFD_RELOC_16C_REG20
4995 -- : BFD_RELOC_16C_REG20_C
4996 -- : BFD_RELOC_16C_ABS20
4997 -- : BFD_RELOC_16C_ABS20_C
4998 -- : BFD_RELOC_16C_ABS24
4999 -- : BFD_RELOC_16C_ABS24_C
5000 -- : BFD_RELOC_16C_IMM04
5001 -- : BFD_RELOC_16C_IMM04_C
5002 -- : BFD_RELOC_16C_IMM16
5003 -- : BFD_RELOC_16C_IMM16_C
5004 -- : BFD_RELOC_16C_IMM20
5005 -- : BFD_RELOC_16C_IMM20_C
5006 -- : BFD_RELOC_16C_IMM24
5007 -- : BFD_RELOC_16C_IMM24_C
5008 -- : BFD_RELOC_16C_IMM32
5009 -- : BFD_RELOC_16C_IMM32_C
5010 NS CR16C Relocations.
5012 -- : BFD_RELOC_CR16_NUM8
5013 -- : BFD_RELOC_CR16_NUM16
5014 -- : BFD_RELOC_CR16_NUM32
5015 -- : BFD_RELOC_CR16_NUM32a
5016 -- : BFD_RELOC_CR16_REGREL0
5017 -- : BFD_RELOC_CR16_REGREL4
5018 -- : BFD_RELOC_CR16_REGREL4a
5019 -- : BFD_RELOC_CR16_REGREL14
5020 -- : BFD_RELOC_CR16_REGREL14a
5021 -- : BFD_RELOC_CR16_REGREL16
5022 -- : BFD_RELOC_CR16_REGREL20
5023 -- : BFD_RELOC_CR16_REGREL20a
5024 -- : BFD_RELOC_CR16_ABS20
5025 -- : BFD_RELOC_CR16_ABS24
5026 -- : BFD_RELOC_CR16_IMM4
5027 -- : BFD_RELOC_CR16_IMM8
5028 -- : BFD_RELOC_CR16_IMM16
5029 -- : BFD_RELOC_CR16_IMM20
5030 -- : BFD_RELOC_CR16_IMM24
5031 -- : BFD_RELOC_CR16_IMM32
5032 -- : BFD_RELOC_CR16_IMM32a
5033 -- : BFD_RELOC_CR16_DISP4
5034 -- : BFD_RELOC_CR16_DISP8
5035 -- : BFD_RELOC_CR16_DISP16
5036 -- : BFD_RELOC_CR16_DISP20
5037 -- : BFD_RELOC_CR16_DISP24
5038 -- : BFD_RELOC_CR16_DISP24a
5039 -- : BFD_RELOC_CR16_SWITCH8
5040 -- : BFD_RELOC_CR16_SWITCH16
5041 -- : BFD_RELOC_CR16_SWITCH32
5042 NS CR16 Relocations.
5044 -- : BFD_RELOC_CRX_REL4
5045 -- : BFD_RELOC_CRX_REL8
5046 -- : BFD_RELOC_CRX_REL8_CMP
5047 -- : BFD_RELOC_CRX_REL16
5048 -- : BFD_RELOC_CRX_REL24
5049 -- : BFD_RELOC_CRX_REL32
5050 -- : BFD_RELOC_CRX_REGREL12
5051 -- : BFD_RELOC_CRX_REGREL22
5052 -- : BFD_RELOC_CRX_REGREL28
5053 -- : BFD_RELOC_CRX_REGREL32
5054 -- : BFD_RELOC_CRX_ABS16
5055 -- : BFD_RELOC_CRX_ABS32
5056 -- : BFD_RELOC_CRX_NUM8
5057 -- : BFD_RELOC_CRX_NUM16
5058 -- : BFD_RELOC_CRX_NUM32
5059 -- : BFD_RELOC_CRX_IMM16
5060 -- : BFD_RELOC_CRX_IMM32
5061 -- : BFD_RELOC_CRX_SWITCH8
5062 -- : BFD_RELOC_CRX_SWITCH16
5063 -- : BFD_RELOC_CRX_SWITCH32
5066 -- : BFD_RELOC_CRIS_BDISP8
5067 -- : BFD_RELOC_CRIS_UNSIGNED_5
5068 -- : BFD_RELOC_CRIS_SIGNED_6
5069 -- : BFD_RELOC_CRIS_UNSIGNED_6
5070 -- : BFD_RELOC_CRIS_SIGNED_8
5071 -- : BFD_RELOC_CRIS_UNSIGNED_8
5072 -- : BFD_RELOC_CRIS_SIGNED_16
5073 -- : BFD_RELOC_CRIS_UNSIGNED_16
5074 -- : BFD_RELOC_CRIS_LAPCQ_OFFSET
5075 -- : BFD_RELOC_CRIS_UNSIGNED_4
5076 These relocs are only used within the CRIS assembler. They are not
5077 (at present) written to any object files.
5079 -- : BFD_RELOC_CRIS_COPY
5080 -- : BFD_RELOC_CRIS_GLOB_DAT
5081 -- : BFD_RELOC_CRIS_JUMP_SLOT
5082 -- : BFD_RELOC_CRIS_RELATIVE
5083 Relocs used in ELF shared libraries for CRIS.
5085 -- : BFD_RELOC_CRIS_32_GOT
5086 32-bit offset to symbol-entry within GOT.
5088 -- : BFD_RELOC_CRIS_16_GOT
5089 16-bit offset to symbol-entry within GOT.
5091 -- : BFD_RELOC_CRIS_32_GOTPLT
5092 32-bit offset to symbol-entry within GOT, with PLT handling.
5094 -- : BFD_RELOC_CRIS_16_GOTPLT
5095 16-bit offset to symbol-entry within GOT, with PLT handling.
5097 -- : BFD_RELOC_CRIS_32_GOTREL
5098 32-bit offset to symbol, relative to GOT.
5100 -- : BFD_RELOC_CRIS_32_PLT_GOTREL
5101 32-bit offset to symbol with PLT entry, relative to GOT.
5103 -- : BFD_RELOC_CRIS_32_PLT_PCREL
5104 32-bit offset to symbol with PLT entry, relative to this
5107 -- : BFD_RELOC_860_COPY
5108 -- : BFD_RELOC_860_GLOB_DAT
5109 -- : BFD_RELOC_860_JUMP_SLOT
5110 -- : BFD_RELOC_860_RELATIVE
5111 -- : BFD_RELOC_860_PC26
5112 -- : BFD_RELOC_860_PLT26
5113 -- : BFD_RELOC_860_PC16
5114 -- : BFD_RELOC_860_LOW0
5115 -- : BFD_RELOC_860_SPLIT0
5116 -- : BFD_RELOC_860_LOW1
5117 -- : BFD_RELOC_860_SPLIT1
5118 -- : BFD_RELOC_860_LOW2
5119 -- : BFD_RELOC_860_SPLIT2
5120 -- : BFD_RELOC_860_LOW3
5121 -- : BFD_RELOC_860_LOGOT0
5122 -- : BFD_RELOC_860_SPGOT0
5123 -- : BFD_RELOC_860_LOGOT1
5124 -- : BFD_RELOC_860_SPGOT1
5125 -- : BFD_RELOC_860_LOGOTOFF0
5126 -- : BFD_RELOC_860_SPGOTOFF0
5127 -- : BFD_RELOC_860_LOGOTOFF1
5128 -- : BFD_RELOC_860_SPGOTOFF1
5129 -- : BFD_RELOC_860_LOGOTOFF2
5130 -- : BFD_RELOC_860_LOGOTOFF3
5131 -- : BFD_RELOC_860_LOPC
5132 -- : BFD_RELOC_860_HIGHADJ
5133 -- : BFD_RELOC_860_HAGOT
5134 -- : BFD_RELOC_860_HAGOTOFF
5135 -- : BFD_RELOC_860_HAPC
5136 -- : BFD_RELOC_860_HIGH
5137 -- : BFD_RELOC_860_HIGOT
5138 -- : BFD_RELOC_860_HIGOTOFF
5139 Intel i860 Relocations.
5141 -- : BFD_RELOC_OPENRISC_ABS_26
5142 -- : BFD_RELOC_OPENRISC_REL_26
5143 OpenRISC Relocations.
5145 -- : BFD_RELOC_H8_DIR16A8
5146 -- : BFD_RELOC_H8_DIR16R8
5147 -- : BFD_RELOC_H8_DIR24A8
5148 -- : BFD_RELOC_H8_DIR24R8
5149 -- : BFD_RELOC_H8_DIR32A16
5152 -- : BFD_RELOC_XSTORMY16_REL_12
5153 -- : BFD_RELOC_XSTORMY16_12
5154 -- : BFD_RELOC_XSTORMY16_24
5155 -- : BFD_RELOC_XSTORMY16_FPTR16
5156 Sony Xstormy16 Relocations.
5159 Self-describing complex relocations.
5161 -- : BFD_RELOC_XC16X_PAG
5162 -- : BFD_RELOC_XC16X_POF
5163 -- : BFD_RELOC_XC16X_SEG
5164 -- : BFD_RELOC_XC16X_SOF
5165 Infineon Relocations.
5167 -- : BFD_RELOC_VAX_GLOB_DAT
5168 -- : BFD_RELOC_VAX_JMP_SLOT
5169 -- : BFD_RELOC_VAX_RELATIVE
5170 Relocations used by VAX ELF.
5172 -- : BFD_RELOC_MT_PC16
5173 Morpho MT - 16 bit immediate relocation.
5175 -- : BFD_RELOC_MT_HI16
5176 Morpho MT - Hi 16 bits of an address.
5178 -- : BFD_RELOC_MT_LO16
5179 Morpho MT - Low 16 bits of an address.
5181 -- : BFD_RELOC_MT_GNU_VTINHERIT
5182 Morpho MT - Used to tell the linker which vtable entries are used.
5184 -- : BFD_RELOC_MT_GNU_VTENTRY
5185 Morpho MT - Used to tell the linker which vtable entries are used.
5187 -- : BFD_RELOC_MT_PCINSN8
5188 Morpho MT - 8 bit immediate relocation.
5190 -- : BFD_RELOC_MSP430_10_PCREL
5191 -- : BFD_RELOC_MSP430_16_PCREL
5192 -- : BFD_RELOC_MSP430_16
5193 -- : BFD_RELOC_MSP430_16_PCREL_BYTE
5194 -- : BFD_RELOC_MSP430_16_BYTE
5195 -- : BFD_RELOC_MSP430_2X_PCREL
5196 -- : BFD_RELOC_MSP430_RL_PCREL
5197 msp430 specific relocation codes
5199 -- : BFD_RELOC_IQ2000_OFFSET_16
5200 -- : BFD_RELOC_IQ2000_OFFSET_21
5201 -- : BFD_RELOC_IQ2000_UHI16
5204 -- : BFD_RELOC_XTENSA_RTLD
5205 Special Xtensa relocation used only by PLT entries in ELF shared
5206 objects to indicate that the runtime linker should set the value
5207 to one of its own internal functions or data structures.
5209 -- : BFD_RELOC_XTENSA_GLOB_DAT
5210 -- : BFD_RELOC_XTENSA_JMP_SLOT
5211 -- : BFD_RELOC_XTENSA_RELATIVE
5212 Xtensa relocations for ELF shared objects.
5214 -- : BFD_RELOC_XTENSA_PLT
5215 Xtensa relocation used in ELF object files for symbols that may
5216 require PLT entries. Otherwise, this is just a generic 32-bit
5219 -- : BFD_RELOC_XTENSA_DIFF8
5220 -- : BFD_RELOC_XTENSA_DIFF16
5221 -- : BFD_RELOC_XTENSA_DIFF32
5222 Xtensa relocations to mark the difference of two local symbols.
5223 These are only needed to support linker relaxation and can be
5224 ignored when not relaxing. The field is set to the value of the
5225 difference assuming no relaxation. The relocation encodes the
5226 position of the first symbol so the linker can determine whether
5227 to adjust the field value.
5229 -- : BFD_RELOC_XTENSA_SLOT0_OP
5230 -- : BFD_RELOC_XTENSA_SLOT1_OP
5231 -- : BFD_RELOC_XTENSA_SLOT2_OP
5232 -- : BFD_RELOC_XTENSA_SLOT3_OP
5233 -- : BFD_RELOC_XTENSA_SLOT4_OP
5234 -- : BFD_RELOC_XTENSA_SLOT5_OP
5235 -- : BFD_RELOC_XTENSA_SLOT6_OP
5236 -- : BFD_RELOC_XTENSA_SLOT7_OP
5237 -- : BFD_RELOC_XTENSA_SLOT8_OP
5238 -- : BFD_RELOC_XTENSA_SLOT9_OP
5239 -- : BFD_RELOC_XTENSA_SLOT10_OP
5240 -- : BFD_RELOC_XTENSA_SLOT11_OP
5241 -- : BFD_RELOC_XTENSA_SLOT12_OP
5242 -- : BFD_RELOC_XTENSA_SLOT13_OP
5243 -- : BFD_RELOC_XTENSA_SLOT14_OP
5244 Generic Xtensa relocations for instruction operands. Only the slot
5245 number is encoded in the relocation. The relocation applies to the
5246 last PC-relative immediate operand, or if there are no PC-relative
5247 immediates, to the last immediate operand.
5249 -- : BFD_RELOC_XTENSA_SLOT0_ALT
5250 -- : BFD_RELOC_XTENSA_SLOT1_ALT
5251 -- : BFD_RELOC_XTENSA_SLOT2_ALT
5252 -- : BFD_RELOC_XTENSA_SLOT3_ALT
5253 -- : BFD_RELOC_XTENSA_SLOT4_ALT
5254 -- : BFD_RELOC_XTENSA_SLOT5_ALT
5255 -- : BFD_RELOC_XTENSA_SLOT6_ALT
5256 -- : BFD_RELOC_XTENSA_SLOT7_ALT
5257 -- : BFD_RELOC_XTENSA_SLOT8_ALT
5258 -- : BFD_RELOC_XTENSA_SLOT9_ALT
5259 -- : BFD_RELOC_XTENSA_SLOT10_ALT
5260 -- : BFD_RELOC_XTENSA_SLOT11_ALT
5261 -- : BFD_RELOC_XTENSA_SLOT12_ALT
5262 -- : BFD_RELOC_XTENSA_SLOT13_ALT
5263 -- : BFD_RELOC_XTENSA_SLOT14_ALT
5264 Alternate Xtensa relocations. Only the slot is encoded in the
5265 relocation. The meaning of these relocations is opcode-specific.
5267 -- : BFD_RELOC_XTENSA_OP0
5268 -- : BFD_RELOC_XTENSA_OP1
5269 -- : BFD_RELOC_XTENSA_OP2
5270 Xtensa relocations for backward compatibility. These have all been
5271 replaced by BFD_RELOC_XTENSA_SLOT0_OP.
5273 -- : BFD_RELOC_XTENSA_ASM_EXPAND
5274 Xtensa relocation to mark that the assembler expanded the
5275 instructions from an original target. The expansion size is
5276 encoded in the reloc size.
5278 -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY
5279 Xtensa relocation to mark that the linker should simplify
5280 assembler-expanded instructions. This is commonly used internally
5281 by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
5283 -- : BFD_RELOC_XTENSA_TLSDESC_FN
5284 -- : BFD_RELOC_XTENSA_TLSDESC_ARG
5285 -- : BFD_RELOC_XTENSA_TLS_DTPOFF
5286 -- : BFD_RELOC_XTENSA_TLS_TPOFF
5287 -- : BFD_RELOC_XTENSA_TLS_FUNC
5288 -- : BFD_RELOC_XTENSA_TLS_ARG
5289 -- : BFD_RELOC_XTENSA_TLS_CALL
5290 Xtensa TLS relocations.
5292 -- : BFD_RELOC_Z80_DISP8
5293 8 bit signed offset in (ix+d) or (iy+d).
5295 -- : BFD_RELOC_Z8K_DISP7
5298 -- : BFD_RELOC_Z8K_CALLR
5301 -- : BFD_RELOC_Z8K_IMM4L
5305 typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
5307 2.10.2.2 `bfd_reloc_type_lookup'
5308 ................................
5311 reloc_howto_type *bfd_reloc_type_lookup
5312 (bfd *abfd, bfd_reloc_code_real_type code);
5313 reloc_howto_type *bfd_reloc_name_lookup
5314 (bfd *abfd, const char *reloc_name);
5316 Return a pointer to a howto structure which, when invoked, will perform
5317 the relocation CODE on data from the architecture noted.
5319 2.10.2.3 `bfd_default_reloc_type_lookup'
5320 ........................................
5323 reloc_howto_type *bfd_default_reloc_type_lookup
5324 (bfd *abfd, bfd_reloc_code_real_type code);
5326 Provides a default relocation lookup routine for any architecture.
5328 2.10.2.4 `bfd_get_reloc_code_name'
5329 ..................................
5332 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
5334 Provides a printable name for the supplied relocation code. Useful
5335 mainly for printing error messages.
5337 2.10.2.5 `bfd_generic_relax_section'
5338 ....................................
5341 bfd_boolean bfd_generic_relax_section
5344 struct bfd_link_info *,
5347 Provides default handling for relaxing for back ends which don't do
5350 2.10.2.6 `bfd_generic_gc_sections'
5351 ..................................
5354 bfd_boolean bfd_generic_gc_sections
5355 (bfd *, struct bfd_link_info *);
5357 Provides default handling for relaxing for back ends which don't do
5358 section gc - i.e., does nothing.
5360 2.10.2.7 `bfd_generic_merge_sections'
5361 .....................................
5364 bfd_boolean bfd_generic_merge_sections
5365 (bfd *, struct bfd_link_info *);
5367 Provides default handling for SEC_MERGE section merging for back ends
5368 which don't have SEC_MERGE support - i.e., does nothing.
5370 2.10.2.8 `bfd_generic_get_relocated_section_contents'
5371 .....................................................
5374 bfd_byte *bfd_generic_get_relocated_section_contents
5376 struct bfd_link_info *link_info,
5377 struct bfd_link_order *link_order,
5379 bfd_boolean relocatable,
5382 Provides default handling of relocation effort for back ends which
5383 can't be bothered to do it efficiently.
5386 File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end
5391 2.11.1 Core file functions
5392 --------------------------
5395 These are functions pertaining to core files.
5397 2.11.1.1 `bfd_core_file_failing_command'
5398 ........................................
5401 const char *bfd_core_file_failing_command (bfd *abfd);
5403 Return a read-only string explaining which program was running when it
5404 failed and produced the core file ABFD.
5406 2.11.1.2 `bfd_core_file_failing_signal'
5407 .......................................
5410 int bfd_core_file_failing_signal (bfd *abfd);
5412 Returns the signal number which caused the core dump which generated
5413 the file the BFD ABFD is attached to.
5415 2.11.1.3 `core_file_matches_executable_p'
5416 .........................................
5419 bfd_boolean core_file_matches_executable_p
5420 (bfd *core_bfd, bfd *exec_bfd);
5422 Return `TRUE' if the core file attached to CORE_BFD was generated by a
5423 run of the executable file attached to EXEC_BFD, `FALSE' otherwise.
5425 2.11.1.4 `generic_core_file_matches_executable_p'
5426 .................................................
5429 bfd_boolean generic_core_file_matches_executable_p
5430 (bfd *core_bfd, bfd *exec_bfd);
5432 Return TRUE if the core file attached to CORE_BFD was generated by a
5433 run of the executable file attached to EXEC_BFD. The match is based on
5434 executable basenames only.
5436 Note: When not able to determine the core file failing command or
5437 the executable name, we still return TRUE even though we're not sure
5438 that core file and executable match. This is to avoid generating a
5439 false warning in situations where we really don't know whether they
5443 File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end
5449 Each port of BFD to a different machine requires the creation of a
5450 target back end. All the back end provides to the root part of BFD is a
5451 structure containing pointers to functions which perform certain low
5452 level operations on files. BFD translates the applications's requests
5453 through a pointer into calls to the back end routines.
5455 When a file is opened with `bfd_openr', its format and target are
5456 unknown. BFD uses various mechanisms to determine how to interpret the
5457 file. The operations performed are:
5459 * Create a BFD by calling the internal routine `_bfd_new_bfd', then
5460 call `bfd_find_target' with the target string supplied to
5461 `bfd_openr' and the new BFD pointer.
5463 * If a null target string was provided to `bfd_find_target', look up
5464 the environment variable `GNUTARGET' and use that as the target
5467 * If the target string is still `NULL', or the target string is
5468 `default', then use the first item in the target vector as the
5469 target type, and set `target_defaulted' in the BFD to cause
5470 `bfd_check_format' to loop through all the targets. *Note
5471 bfd_target::. *Note Formats::.
5473 * Otherwise, inspect the elements in the target vector one by one,
5474 until a match on target name is found. When found, use it.
5476 * Otherwise return the error `bfd_error_invalid_target' to
5479 * `bfd_openr' attempts to open the file using `bfd_open_file', and
5481 Once the BFD has been opened and the target selected, the file
5482 format may be determined. This is done by calling `bfd_check_format' on
5483 the BFD with a suggested format. If `target_defaulted' has been set,
5484 each possible target type is tried to see if it recognizes the
5485 specified format. `bfd_check_format' returns `TRUE' when the caller
5493 File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets
5499 This structure contains everything that BFD knows about a target. It
5500 includes things like its byte order, name, and which routines to call
5501 to do various operations.
5503 Every BFD points to a target structure with its `xvec' member.
5505 The macros below are used to dispatch to functions through the
5506 `bfd_target' vector. They are used in a number of macros further down
5507 in `bfd.h', and are also used when calling various routines by hand
5508 inside the BFD implementation. The ARGLIST argument must be
5509 parenthesized; it contains all the arguments to the called function.
5511 They make the documentation (more) unpleasant to read, so if someone
5512 wants to fix this and not break the above, please do.
5513 #define BFD_SEND(bfd, message, arglist) \
5514 ((*((bfd)->xvec->message)) arglist)
5516 #ifdef DEBUG_BFD_SEND
5518 #define BFD_SEND(bfd, message, arglist) \
5519 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5520 ((*((bfd)->xvec->message)) arglist) : \
5521 (bfd_assert (__FILE__,__LINE__), NULL))
5523 For operations which index on the BFD format:
5524 #define BFD_SEND_FMT(bfd, message, arglist) \
5525 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)
5527 #ifdef DEBUG_BFD_SEND
5529 #define BFD_SEND_FMT(bfd, message, arglist) \
5530 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5531 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
5532 (bfd_assert (__FILE__,__LINE__), NULL))
5534 This is the structure which defines the type of BFD this is. The
5535 `xvec' member of the struct `bfd' itself points here. Each module that
5536 implements access to a different target under BFD, defines one of these.
5538 FIXME, these names should be rationalised with the names of the
5539 entry points which call them. Too bad we can't have one macro to define
5543 bfd_target_unknown_flavour,
5544 bfd_target_aout_flavour,
5545 bfd_target_coff_flavour,
5546 bfd_target_ecoff_flavour,
5547 bfd_target_xcoff_flavour,
5548 bfd_target_elf_flavour,
5549 bfd_target_ieee_flavour,
5550 bfd_target_nlm_flavour,
5551 bfd_target_oasys_flavour,
5552 bfd_target_tekhex_flavour,
5553 bfd_target_srec_flavour,
5554 bfd_target_ihex_flavour,
5555 bfd_target_som_flavour,
5556 bfd_target_os9k_flavour,
5557 bfd_target_versados_flavour,
5558 bfd_target_msdos_flavour,
5559 bfd_target_ovax_flavour,
5560 bfd_target_evax_flavour,
5561 bfd_target_mmo_flavour,
5562 bfd_target_mach_o_flavour,
5563 bfd_target_pef_flavour,
5564 bfd_target_pef_xlib_flavour,
5565 bfd_target_sym_flavour
5568 enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
5570 /* Forward declaration. */
5571 typedef struct bfd_link_info _bfd_link_info;
5573 typedef struct bfd_target
5575 /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
5578 /* The "flavour" of a back end is a general indication about
5579 the contents of a file. */
5580 enum bfd_flavour flavour;
5582 /* The order of bytes within the data area of a file. */
5583 enum bfd_endian byteorder;
5585 /* The order of bytes within the header parts of a file. */
5586 enum bfd_endian header_byteorder;
5588 /* A mask of all the flags which an executable may have set -
5589 from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */
5590 flagword object_flags;
5592 /* A mask of all the flags which a section may have set - from
5593 the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */
5594 flagword section_flags;
5596 /* The character normally found at the front of a symbol.
5597 (if any), perhaps `_'. */
5598 char symbol_leading_char;
5600 /* The pad character for file names within an archive header. */
5603 /* The maximum number of characters in an archive header. */
5604 unsigned short ar_max_namelen;
5606 /* Entries for byte swapping for data. These are different from the
5607 other entry points, since they don't take a BFD as the first argument.
5608 Certain other handlers could do the same. */
5609 bfd_uint64_t (*bfd_getx64) (const void *);
5610 bfd_int64_t (*bfd_getx_signed_64) (const void *);
5611 void (*bfd_putx64) (bfd_uint64_t, void *);
5612 bfd_vma (*bfd_getx32) (const void *);
5613 bfd_signed_vma (*bfd_getx_signed_32) (const void *);
5614 void (*bfd_putx32) (bfd_vma, void *);
5615 bfd_vma (*bfd_getx16) (const void *);
5616 bfd_signed_vma (*bfd_getx_signed_16) (const void *);
5617 void (*bfd_putx16) (bfd_vma, void *);
5619 /* Byte swapping for the headers. */
5620 bfd_uint64_t (*bfd_h_getx64) (const void *);
5621 bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
5622 void (*bfd_h_putx64) (bfd_uint64_t, void *);
5623 bfd_vma (*bfd_h_getx32) (const void *);
5624 bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
5625 void (*bfd_h_putx32) (bfd_vma, void *);
5626 bfd_vma (*bfd_h_getx16) (const void *);
5627 bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
5628 void (*bfd_h_putx16) (bfd_vma, void *);
5630 /* Format dependent routines: these are vectors of entry points
5631 within the target vector structure, one for each format to check. */
5633 /* Check the format of a file being read. Return a `bfd_target *' or zero. */
5634 const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);
5636 /* Set the format of a file being written. */
5637 bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);
5639 /* Write cached information into a file being written, at `bfd_close'. */
5640 bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);
5641 The general target vector. These vectors are initialized using the
5642 BFD_JUMP_TABLE macros.
5644 /* Generic entry points. */
5645 #define BFD_JUMP_TABLE_GENERIC(NAME) \
5646 NAME##_close_and_cleanup, \
5647 NAME##_bfd_free_cached_info, \
5648 NAME##_new_section_hook, \
5649 NAME##_get_section_contents, \
5650 NAME##_get_section_contents_in_window
5652 /* Called when the BFD is being closed to do any necessary cleanup. */
5653 bfd_boolean (*_close_and_cleanup) (bfd *);
5654 /* Ask the BFD to free all cached information. */
5655 bfd_boolean (*_bfd_free_cached_info) (bfd *);
5656 /* Called when a new section is created. */
5657 bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
5658 /* Read the contents of a section. */
5659 bfd_boolean (*_bfd_get_section_contents)
5660 (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
5661 bfd_boolean (*_bfd_get_section_contents_in_window)
5662 (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);
5664 /* Entry points to copy private data. */
5665 #define BFD_JUMP_TABLE_COPY(NAME) \
5666 NAME##_bfd_copy_private_bfd_data, \
5667 NAME##_bfd_merge_private_bfd_data, \
5668 _bfd_generic_init_private_section_data, \
5669 NAME##_bfd_copy_private_section_data, \
5670 NAME##_bfd_copy_private_symbol_data, \
5671 NAME##_bfd_copy_private_header_data, \
5672 NAME##_bfd_set_private_flags, \
5673 NAME##_bfd_print_private_bfd_data
5675 /* Called to copy BFD general private data from one object file
5677 bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
5678 /* Called to merge BFD general private data from one object file
5679 to a common output file when linking. */
5680 bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
5681 /* Called to initialize BFD private section data from one object file
5683 #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
5684 BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
5685 bfd_boolean (*_bfd_init_private_section_data)
5686 (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
5687 /* Called to copy BFD private section data from one object file
5689 bfd_boolean (*_bfd_copy_private_section_data)
5690 (bfd *, sec_ptr, bfd *, sec_ptr);
5691 /* Called to copy BFD private symbol data from one symbol
5693 bfd_boolean (*_bfd_copy_private_symbol_data)
5694 (bfd *, asymbol *, bfd *, asymbol *);
5695 /* Called to copy BFD private header data from one object file
5697 bfd_boolean (*_bfd_copy_private_header_data)
5699 /* Called to set private backend flags. */
5700 bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);
5702 /* Called to print private BFD data. */
5703 bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);
5705 /* Core file entry points. */
5706 #define BFD_JUMP_TABLE_CORE(NAME) \
5707 NAME##_core_file_failing_command, \
5708 NAME##_core_file_failing_signal, \
5709 NAME##_core_file_matches_executable_p
5711 char * (*_core_file_failing_command) (bfd *);
5712 int (*_core_file_failing_signal) (bfd *);
5713 bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
5715 /* Archive entry points. */
5716 #define BFD_JUMP_TABLE_ARCHIVE(NAME) \
5717 NAME##_slurp_armap, \
5718 NAME##_slurp_extended_name_table, \
5719 NAME##_construct_extended_name_table, \
5720 NAME##_truncate_arname, \
5721 NAME##_write_armap, \
5722 NAME##_read_ar_hdr, \
5723 NAME##_openr_next_archived_file, \
5724 NAME##_get_elt_at_index, \
5725 NAME##_generic_stat_arch_elt, \
5726 NAME##_update_armap_timestamp
5728 bfd_boolean (*_bfd_slurp_armap) (bfd *);
5729 bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
5730 bfd_boolean (*_bfd_construct_extended_name_table)
5731 (bfd *, char **, bfd_size_type *, const char **);
5732 void (*_bfd_truncate_arname) (bfd *, const char *, char *);
5733 bfd_boolean (*write_armap)
5734 (bfd *, unsigned int, struct orl *, unsigned int, int);
5735 void * (*_bfd_read_ar_hdr_fn) (bfd *);
5736 bfd * (*openr_next_archived_file) (bfd *, bfd *);
5737 #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
5738 bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
5739 int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
5740 bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);
5742 /* Entry points used for symbols. */
5743 #define BFD_JUMP_TABLE_SYMBOLS(NAME) \
5744 NAME##_get_symtab_upper_bound, \
5745 NAME##_canonicalize_symtab, \
5746 NAME##_make_empty_symbol, \
5747 NAME##_print_symbol, \
5748 NAME##_get_symbol_info, \
5749 NAME##_bfd_is_local_label_name, \
5750 NAME##_bfd_is_target_special_symbol, \
5751 NAME##_get_lineno, \
5752 NAME##_find_nearest_line, \
5753 _bfd_generic_find_line, \
5754 NAME##_find_inliner_info, \
5755 NAME##_bfd_make_debug_symbol, \
5756 NAME##_read_minisymbols, \
5757 NAME##_minisymbol_to_symbol
5759 long (*_bfd_get_symtab_upper_bound) (bfd *);
5760 long (*_bfd_canonicalize_symtab)
5761 (bfd *, struct bfd_symbol **);
5763 (*_bfd_make_empty_symbol) (bfd *);
5764 void (*_bfd_print_symbol)
5765 (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
5766 #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
5767 void (*_bfd_get_symbol_info)
5768 (bfd *, struct bfd_symbol *, symbol_info *);
5769 #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
5770 bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
5771 bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
5772 alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
5773 bfd_boolean (*_bfd_find_nearest_line)
5774 (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
5775 const char **, const char **, unsigned int *);
5776 bfd_boolean (*_bfd_find_line)
5777 (bfd *, struct bfd_symbol **, struct bfd_symbol *,
5778 const char **, unsigned int *);
5779 bfd_boolean (*_bfd_find_inliner_info)
5780 (bfd *, const char **, const char **, unsigned int *);
5781 /* Back-door to allow format-aware applications to create debug symbols
5782 while using BFD for everything else. Currently used by the assembler
5783 when creating COFF files. */
5784 asymbol * (*_bfd_make_debug_symbol)
5785 (bfd *, void *, unsigned long size);
5786 #define bfd_read_minisymbols(b, d, m, s) \
5787 BFD_SEND (b, _read_minisymbols, (b, d, m, s))
5788 long (*_read_minisymbols)
5789 (bfd *, bfd_boolean, void **, unsigned int *);
5790 #define bfd_minisymbol_to_symbol(b, d, m, f) \
5791 BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
5792 asymbol * (*_minisymbol_to_symbol)
5793 (bfd *, bfd_boolean, const void *, asymbol *);
5795 /* Routines for relocs. */
5796 #define BFD_JUMP_TABLE_RELOCS(NAME) \
5797 NAME##_get_reloc_upper_bound, \
5798 NAME##_canonicalize_reloc, \
5799 NAME##_bfd_reloc_type_lookup, \
5800 NAME##_bfd_reloc_name_lookup
5802 long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
5803 long (*_bfd_canonicalize_reloc)
5804 (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
5805 /* See documentation on reloc types. */
5807 (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
5809 (*reloc_name_lookup) (bfd *, const char *);
5812 /* Routines used when writing an object file. */
5813 #define BFD_JUMP_TABLE_WRITE(NAME) \
5814 NAME##_set_arch_mach, \
5815 NAME##_set_section_contents
5817 bfd_boolean (*_bfd_set_arch_mach)
5818 (bfd *, enum bfd_architecture, unsigned long);
5819 bfd_boolean (*_bfd_set_section_contents)
5820 (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);
5822 /* Routines used by the linker. */
5823 #define BFD_JUMP_TABLE_LINK(NAME) \
5824 NAME##_sizeof_headers, \
5825 NAME##_bfd_get_relocated_section_contents, \
5826 NAME##_bfd_relax_section, \
5827 NAME##_bfd_link_hash_table_create, \
5828 NAME##_bfd_link_hash_table_free, \
5829 NAME##_bfd_link_add_symbols, \
5830 NAME##_bfd_link_just_syms, \
5831 NAME##_bfd_final_link, \
5832 NAME##_bfd_link_split_section, \
5833 NAME##_bfd_gc_sections, \
5834 NAME##_bfd_merge_sections, \
5835 NAME##_bfd_is_group_section, \
5836 NAME##_bfd_discard_group, \
5837 NAME##_section_already_linked \
5839 int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
5840 bfd_byte * (*_bfd_get_relocated_section_contents)
5841 (bfd *, struct bfd_link_info *, struct bfd_link_order *,
5842 bfd_byte *, bfd_boolean, struct bfd_symbol **);
5844 bfd_boolean (*_bfd_relax_section)
5845 (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);
5847 /* Create a hash table for the linker. Different backends store
5848 different information in this table. */
5849 struct bfd_link_hash_table *
5850 (*_bfd_link_hash_table_create) (bfd *);
5852 /* Release the memory associated with the linker hash table. */
5853 void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);
5855 /* Add symbols from this object file into the hash table. */
5856 bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);
5858 /* Indicate that we are only retrieving symbol values from this section. */
5859 void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);
5861 /* Do a link based on the link_order structures attached to each
5862 section of the BFD. */
5863 bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);
5865 /* Should this section be split up into smaller pieces during linking. */
5866 bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);
5868 /* Remove sections that are not referenced from the output. */
5869 bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);
5871 /* Attempt to merge SEC_MERGE sections. */
5872 bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);
5874 /* Is this section a member of a group? */
5875 bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);
5877 /* Discard members of a group. */
5878 bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);
5880 /* Check if SEC has been already linked during a reloceatable or
5882 void (*_section_already_linked) (bfd *, struct bfd_section *,
5883 struct bfd_link_info *);
5885 /* Routines to handle dynamic symbols and relocs. */
5886 #define BFD_JUMP_TABLE_DYNAMIC(NAME) \
5887 NAME##_get_dynamic_symtab_upper_bound, \
5888 NAME##_canonicalize_dynamic_symtab, \
5889 NAME##_get_synthetic_symtab, \
5890 NAME##_get_dynamic_reloc_upper_bound, \
5891 NAME##_canonicalize_dynamic_reloc
5893 /* Get the amount of memory required to hold the dynamic symbols. */
5894 long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
5895 /* Read in the dynamic symbols. */
5896 long (*_bfd_canonicalize_dynamic_symtab)
5897 (bfd *, struct bfd_symbol **);
5898 /* Create synthetized symbols. */
5899 long (*_bfd_get_synthetic_symtab)
5900 (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
5901 struct bfd_symbol **);
5902 /* Get the amount of memory required to hold the dynamic relocs. */
5903 long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
5904 /* Read in the dynamic relocs. */
5905 long (*_bfd_canonicalize_dynamic_reloc)
5906 (bfd *, arelent **, struct bfd_symbol **);
5907 A pointer to an alternative bfd_target in case the current one is not
5908 satisfactory. This can happen when the target cpu supports both big
5909 and little endian code, and target chosen by the linker has the wrong
5910 endianness. The function open_output() in ld/ldlang.c uses this field
5911 to find an alternative output format that is suitable.
5912 /* Opposite endian version of this target. */
5913 const struct bfd_target * alternative_target;
5915 /* Data for use by back-end routines, which isn't
5916 generic enough to belong in this structure. */
5917 const void *backend_data;
5921 2.12.1.1 `bfd_set_default_target'
5922 .................................
5925 bfd_boolean bfd_set_default_target (const char *name);
5927 Set the default target vector to use when recognizing a BFD. This
5928 takes the name of the target, which may be a BFD target name or a
5929 configuration triplet.
5931 2.12.1.2 `bfd_find_target'
5932 ..........................
5935 const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
5937 Return a pointer to the transfer vector for the object target named
5938 TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the
5939 environment variable `GNUTARGET'; if that is null or not defined, then
5940 choose the first entry in the target list. Passing in the string
5941 "default" or setting the environment variable to "default" will cause
5942 the first entry in the target list to be returned, and
5943 "target_defaulted" will be set in the BFD if ABFD isn't `NULL'. This
5944 causes `bfd_check_format' to loop over all the targets to find the one
5945 that matches the file being read.
5947 2.12.1.3 `bfd_target_list'
5948 ..........................
5951 const char ** bfd_target_list (void);
5953 Return a freshly malloced NULL-terminated vector of the names of all
5954 the valid BFD targets. Do not modify the names.
5956 2.12.1.4 `bfd_seach_for_target'
5957 ...............................
5960 const bfd_target *bfd_search_for_target
5961 (int (*search_func) (const bfd_target *, void *),
5964 Return a pointer to the first transfer vector in the list of transfer
5965 vectors maintained by BFD that produces a non-zero result when passed
5966 to the function SEARCH_FUNC. The parameter DATA is passed, unexamined,
5967 to the search function.
5970 File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end
5975 BFD keeps one atom in a BFD describing the architecture of the data
5976 attached to the BFD: a pointer to a `bfd_arch_info_type'.
5978 Pointers to structures can be requested independently of a BFD so
5979 that an architecture's information can be interrogated without access
5982 The architecture information is provided by each architecture
5983 package. The set of default architectures is selected by the macro
5984 `SELECT_ARCHITECTURES'. This is normally set up in the
5985 `config/TARGET.mt' file of your choice. If the name is not defined,
5986 then all the architectures supported are included.
5988 When BFD starts up, all the architectures are called with an
5989 initialize method. It is up to the architecture back end to insert as
5990 many items into the list of architectures as it wants to; generally
5991 this would be one for each machine and one for the default case (an
5992 item with a machine field of 0).
5994 BFD's idea of an architecture is implemented in `archures.c'.
5996 2.13.1 bfd_architecture
5997 -----------------------
6000 This enum gives the object file's CPU architecture, in a global
6001 sense--i.e., what processor family does it belong to? Another field
6002 indicates which processor within the family is in use. The machine
6003 gives a number which distinguishes different versions of the
6004 architecture, containing, for example, 2 and 3 for Intel i960 KA and
6005 i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
6006 enum bfd_architecture
6008 bfd_arch_unknown, /* File arch not known. */
6009 bfd_arch_obscure, /* Arch known, not one of these. */
6010 bfd_arch_m68k, /* Motorola 68xxx */
6011 #define bfd_mach_m68000 1
6012 #define bfd_mach_m68008 2
6013 #define bfd_mach_m68010 3
6014 #define bfd_mach_m68020 4
6015 #define bfd_mach_m68030 5
6016 #define bfd_mach_m68040 6
6017 #define bfd_mach_m68060 7
6018 #define bfd_mach_cpu32 8
6019 #define bfd_mach_fido 9
6020 #define bfd_mach_mcf_isa_a_nodiv 10
6021 #define bfd_mach_mcf_isa_a 11
6022 #define bfd_mach_mcf_isa_a_mac 12
6023 #define bfd_mach_mcf_isa_a_emac 13
6024 #define bfd_mach_mcf_isa_aplus 14
6025 #define bfd_mach_mcf_isa_aplus_mac 15
6026 #define bfd_mach_mcf_isa_aplus_emac 16
6027 #define bfd_mach_mcf_isa_b_nousp 17
6028 #define bfd_mach_mcf_isa_b_nousp_mac 18
6029 #define bfd_mach_mcf_isa_b_nousp_emac 19
6030 #define bfd_mach_mcf_isa_b 20
6031 #define bfd_mach_mcf_isa_b_mac 21
6032 #define bfd_mach_mcf_isa_b_emac 22
6033 #define bfd_mach_mcf_isa_b_float 23
6034 #define bfd_mach_mcf_isa_b_float_mac 24
6035 #define bfd_mach_mcf_isa_b_float_emac 25
6036 #define bfd_mach_mcf_isa_c 26
6037 #define bfd_mach_mcf_isa_c_mac 27
6038 #define bfd_mach_mcf_isa_c_emac 28
6039 #define bfd_mach_mcf_isa_c_nodiv 29
6040 #define bfd_mach_mcf_isa_c_nodiv_mac 30
6041 #define bfd_mach_mcf_isa_c_nodiv_emac 31
6042 bfd_arch_vax, /* DEC Vax */
6043 bfd_arch_i960, /* Intel 960 */
6044 /* The order of the following is important.
6045 lower number indicates a machine type that
6046 only accepts a subset of the instructions
6047 available to machines with higher numbers.
6048 The exception is the "ca", which is
6049 incompatible with all other machines except
6052 #define bfd_mach_i960_core 1
6053 #define bfd_mach_i960_ka_sa 2
6054 #define bfd_mach_i960_kb_sb 3
6055 #define bfd_mach_i960_mc 4
6056 #define bfd_mach_i960_xa 5
6057 #define bfd_mach_i960_ca 6
6058 #define bfd_mach_i960_jx 7
6059 #define bfd_mach_i960_hx 8
6061 bfd_arch_or32, /* OpenRISC 32 */
6063 bfd_arch_sparc, /* SPARC */
6064 #define bfd_mach_sparc 1
6065 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
6066 #define bfd_mach_sparc_sparclet 2
6067 #define bfd_mach_sparc_sparclite 3
6068 #define bfd_mach_sparc_v8plus 4
6069 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
6070 #define bfd_mach_sparc_sparclite_le 6
6071 #define bfd_mach_sparc_v9 7
6072 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
6073 #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
6074 #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
6075 /* Nonzero if MACH has the v9 instruction set. */
6076 #define bfd_mach_sparc_v9_p(mach) \
6077 ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
6078 && (mach) != bfd_mach_sparc_sparclite_le)
6079 /* Nonzero if MACH is a 64 bit sparc architecture. */
6080 #define bfd_mach_sparc_64bit_p(mach) \
6081 ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
6082 bfd_arch_spu, /* PowerPC SPU */
6083 #define bfd_mach_spu 256
6084 bfd_arch_mips, /* MIPS Rxxxx */
6085 #define bfd_mach_mips3000 3000
6086 #define bfd_mach_mips3900 3900
6087 #define bfd_mach_mips4000 4000
6088 #define bfd_mach_mips4010 4010
6089 #define bfd_mach_mips4100 4100
6090 #define bfd_mach_mips4111 4111
6091 #define bfd_mach_mips4120 4120
6092 #define bfd_mach_mips4300 4300
6093 #define bfd_mach_mips4400 4400
6094 #define bfd_mach_mips4600 4600
6095 #define bfd_mach_mips4650 4650
6096 #define bfd_mach_mips5000 5000
6097 #define bfd_mach_mips5400 5400
6098 #define bfd_mach_mips5500 5500
6099 #define bfd_mach_mips6000 6000
6100 #define bfd_mach_mips7000 7000
6101 #define bfd_mach_mips8000 8000
6102 #define bfd_mach_mips9000 9000
6103 #define bfd_mach_mips10000 10000
6104 #define bfd_mach_mips12000 12000
6105 #define bfd_mach_mips16 16
6106 #define bfd_mach_mips5 5
6107 #define bfd_mach_mips_loongson_2e 3001
6108 #define bfd_mach_mips_loongson_2f 3002
6109 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */
6110 #define bfd_mach_mips_octeon 6501
6111 #define bfd_mach_mipsisa32 32
6112 #define bfd_mach_mipsisa32r2 33
6113 #define bfd_mach_mipsisa64 64
6114 #define bfd_mach_mipsisa64r2 65
6115 bfd_arch_i386, /* Intel 386 */
6116 #define bfd_mach_i386_i386 1
6117 #define bfd_mach_i386_i8086 2
6118 #define bfd_mach_i386_i386_intel_syntax 3
6119 #define bfd_mach_x86_64 64
6120 #define bfd_mach_x86_64_intel_syntax 65
6121 bfd_arch_we32k, /* AT&T WE32xxx */
6122 bfd_arch_tahoe, /* CCI/Harris Tahoe */
6123 bfd_arch_i860, /* Intel 860 */
6124 bfd_arch_i370, /* IBM 360/370 Mainframes */
6125 bfd_arch_romp, /* IBM ROMP PC/RT */
6126 bfd_arch_convex, /* Convex */
6127 bfd_arch_m88k, /* Motorola 88xxx */
6128 bfd_arch_m98k, /* Motorola 98xxx */
6129 bfd_arch_pyramid, /* Pyramid Technology */
6130 bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */
6131 #define bfd_mach_h8300 1
6132 #define bfd_mach_h8300h 2
6133 #define bfd_mach_h8300s 3
6134 #define bfd_mach_h8300hn 4
6135 #define bfd_mach_h8300sn 5
6136 #define bfd_mach_h8300sx 6
6137 #define bfd_mach_h8300sxn 7
6138 bfd_arch_pdp11, /* DEC PDP-11 */
6139 bfd_arch_powerpc, /* PowerPC */
6140 #define bfd_mach_ppc 32
6141 #define bfd_mach_ppc64 64
6142 #define bfd_mach_ppc_403 403
6143 #define bfd_mach_ppc_403gc 4030
6144 #define bfd_mach_ppc_505 505
6145 #define bfd_mach_ppc_601 601
6146 #define bfd_mach_ppc_602 602
6147 #define bfd_mach_ppc_603 603
6148 #define bfd_mach_ppc_ec603e 6031
6149 #define bfd_mach_ppc_604 604
6150 #define bfd_mach_ppc_620 620
6151 #define bfd_mach_ppc_630 630
6152 #define bfd_mach_ppc_750 750
6153 #define bfd_mach_ppc_860 860
6154 #define bfd_mach_ppc_a35 35
6155 #define bfd_mach_ppc_rs64ii 642
6156 #define bfd_mach_ppc_rs64iii 643
6157 #define bfd_mach_ppc_7400 7400
6158 #define bfd_mach_ppc_e500 500
6159 #define bfd_mach_ppc_e500mc 5001
6160 bfd_arch_rs6000, /* IBM RS/6000 */
6161 #define bfd_mach_rs6k 6000
6162 #define bfd_mach_rs6k_rs1 6001
6163 #define bfd_mach_rs6k_rsc 6003
6164 #define bfd_mach_rs6k_rs2 6002
6165 bfd_arch_hppa, /* HP PA RISC */
6166 #define bfd_mach_hppa10 10
6167 #define bfd_mach_hppa11 11
6168 #define bfd_mach_hppa20 20
6169 #define bfd_mach_hppa20w 25
6170 bfd_arch_d10v, /* Mitsubishi D10V */
6171 #define bfd_mach_d10v 1
6172 #define bfd_mach_d10v_ts2 2
6173 #define bfd_mach_d10v_ts3 3
6174 bfd_arch_d30v, /* Mitsubishi D30V */
6175 bfd_arch_dlx, /* DLX */
6176 bfd_arch_m68hc11, /* Motorola 68HC11 */
6177 bfd_arch_m68hc12, /* Motorola 68HC12 */
6178 #define bfd_mach_m6812_default 0
6179 #define bfd_mach_m6812 1
6180 #define bfd_mach_m6812s 2
6181 bfd_arch_z8k, /* Zilog Z8000 */
6182 #define bfd_mach_z8001 1
6183 #define bfd_mach_z8002 2
6184 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
6185 bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */
6186 #define bfd_mach_sh 1
6187 #define bfd_mach_sh2 0x20
6188 #define bfd_mach_sh_dsp 0x2d
6189 #define bfd_mach_sh2a 0x2a
6190 #define bfd_mach_sh2a_nofpu 0x2b
6191 #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
6192 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
6193 #define bfd_mach_sh2a_or_sh4 0x2a3
6194 #define bfd_mach_sh2a_or_sh3e 0x2a4
6195 #define bfd_mach_sh2e 0x2e
6196 #define bfd_mach_sh3 0x30
6197 #define bfd_mach_sh3_nommu 0x31
6198 #define bfd_mach_sh3_dsp 0x3d
6199 #define bfd_mach_sh3e 0x3e
6200 #define bfd_mach_sh4 0x40
6201 #define bfd_mach_sh4_nofpu 0x41
6202 #define bfd_mach_sh4_nommu_nofpu 0x42
6203 #define bfd_mach_sh4a 0x4a
6204 #define bfd_mach_sh4a_nofpu 0x4b
6205 #define bfd_mach_sh4al_dsp 0x4d
6206 #define bfd_mach_sh5 0x50
6207 bfd_arch_alpha, /* Dec Alpha */
6208 #define bfd_mach_alpha_ev4 0x10
6209 #define bfd_mach_alpha_ev5 0x20
6210 #define bfd_mach_alpha_ev6 0x30
6211 bfd_arch_arm, /* Advanced Risc Machines ARM. */
6212 #define bfd_mach_arm_unknown 0
6213 #define bfd_mach_arm_2 1
6214 #define bfd_mach_arm_2a 2
6215 #define bfd_mach_arm_3 3
6216 #define bfd_mach_arm_3M 4
6217 #define bfd_mach_arm_4 5
6218 #define bfd_mach_arm_4T 6
6219 #define bfd_mach_arm_5 7
6220 #define bfd_mach_arm_5T 8
6221 #define bfd_mach_arm_5TE 9
6222 #define bfd_mach_arm_XScale 10
6223 #define bfd_mach_arm_ep9312 11
6224 #define bfd_mach_arm_iWMMXt 12
6225 #define bfd_mach_arm_iWMMXt2 13
6226 bfd_arch_ns32k, /* National Semiconductors ns32000 */
6227 bfd_arch_w65, /* WDC 65816 */
6228 bfd_arch_tic30, /* Texas Instruments TMS320C30 */
6229 bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */
6230 #define bfd_mach_tic3x 30
6231 #define bfd_mach_tic4x 40
6232 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
6233 bfd_arch_tic80, /* TI TMS320c80 (MVP) */
6234 bfd_arch_v850, /* NEC V850 */
6235 #define bfd_mach_v850 1
6236 #define bfd_mach_v850e 'E'
6237 #define bfd_mach_v850e1 '1'
6238 bfd_arch_arc, /* ARC Cores */
6239 #define bfd_mach_arc_5 5
6240 #define bfd_mach_arc_6 6
6241 #define bfd_mach_arc_7 7
6242 #define bfd_mach_arc_8 8
6243 bfd_arch_m32c, /* Renesas M16C/M32C. */
6244 #define bfd_mach_m16c 0x75
6245 #define bfd_mach_m32c 0x78
6246 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */
6247 #define bfd_mach_m32r 1 /* For backwards compatibility. */
6248 #define bfd_mach_m32rx 'x'
6249 #define bfd_mach_m32r2 '2'
6250 bfd_arch_mn10200, /* Matsushita MN10200 */
6251 bfd_arch_mn10300, /* Matsushita MN10300 */
6252 #define bfd_mach_mn10300 300
6253 #define bfd_mach_am33 330
6254 #define bfd_mach_am33_2 332
6256 #define bfd_mach_fr30 0x46523330
6258 #define bfd_mach_frv 1
6259 #define bfd_mach_frvsimple 2
6260 #define bfd_mach_fr300 300
6261 #define bfd_mach_fr400 400
6262 #define bfd_mach_fr450 450
6263 #define bfd_mach_frvtomcat 499 /* fr500 prototype */
6264 #define bfd_mach_fr500 500
6265 #define bfd_mach_fr550 550
6268 #define bfd_mach_mep 1
6269 #define bfd_mach_mep_h1 0x6831
6270 bfd_arch_ia64, /* HP/Intel ia64 */
6271 #define bfd_mach_ia64_elf64 64
6272 #define bfd_mach_ia64_elf32 32
6273 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */
6274 #define bfd_mach_ip2022 1
6275 #define bfd_mach_ip2022ext 2
6276 bfd_arch_iq2000, /* Vitesse IQ2000. */
6277 #define bfd_mach_iq2000 1
6278 #define bfd_mach_iq10 2
6280 #define bfd_mach_ms1 1
6281 #define bfd_mach_mrisc2 2
6282 #define bfd_mach_ms2 3
6284 bfd_arch_avr, /* Atmel AVR microcontrollers. */
6285 #define bfd_mach_avr1 1
6286 #define bfd_mach_avr2 2
6287 #define bfd_mach_avr25 25
6288 #define bfd_mach_avr3 3
6289 #define bfd_mach_avr31 31
6290 #define bfd_mach_avr35 35
6291 #define bfd_mach_avr4 4
6292 #define bfd_mach_avr5 5
6293 #define bfd_mach_avr51 51
6294 #define bfd_mach_avr6 6
6295 bfd_arch_bfin, /* ADI Blackfin */
6296 #define bfd_mach_bfin 1
6297 bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */
6298 #define bfd_mach_cr16 1
6299 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */
6300 #define bfd_mach_cr16c 1
6301 bfd_arch_crx, /* National Semiconductor CRX. */
6302 #define bfd_mach_crx 1
6303 bfd_arch_cris, /* Axis CRIS */
6304 #define bfd_mach_cris_v0_v10 255
6305 #define bfd_mach_cris_v32 32
6306 #define bfd_mach_cris_v10_v32 1032
6307 bfd_arch_s390, /* IBM s390 */
6308 #define bfd_mach_s390_31 31
6309 #define bfd_mach_s390_64 64
6310 bfd_arch_score, /* Sunplus score */
6311 bfd_arch_openrisc, /* OpenRISC */
6312 bfd_arch_mmix, /* Donald Knuth's educational processor. */
6314 #define bfd_mach_xstormy16 1
6315 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */
6316 #define bfd_mach_msp11 11
6317 #define bfd_mach_msp110 110
6318 #define bfd_mach_msp12 12
6319 #define bfd_mach_msp13 13
6320 #define bfd_mach_msp14 14
6321 #define bfd_mach_msp15 15
6322 #define bfd_mach_msp16 16
6323 #define bfd_mach_msp21 21
6324 #define bfd_mach_msp31 31
6325 #define bfd_mach_msp32 32
6326 #define bfd_mach_msp33 33
6327 #define bfd_mach_msp41 41
6328 #define bfd_mach_msp42 42
6329 #define bfd_mach_msp43 43
6330 #define bfd_mach_msp44 44
6331 bfd_arch_xc16x, /* Infineon's XC16X Series. */
6332 #define bfd_mach_xc16x 1
6333 #define bfd_mach_xc16xl 2
6334 #define bfd_mach_xc16xs 3
6335 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */
6336 #define bfd_mach_xtensa 1
6337 bfd_arch_maxq, /* Dallas MAXQ 10/20 */
6338 #define bfd_mach_maxq10 10
6339 #define bfd_mach_maxq20 20
6341 #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
6342 #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
6343 #define bfd_mach_z80full 7 /* All undocumented instructions. */
6344 #define bfd_mach_r800 11 /* R800: successor with multiplication. */
6348 2.13.2 bfd_arch_info
6349 --------------------
6352 This structure contains information on architectures for use within BFD.
6354 typedef struct bfd_arch_info
6357 int bits_per_address;
6359 enum bfd_architecture arch;
6361 const char *arch_name;
6362 const char *printable_name;
6363 unsigned int section_align_power;
6364 /* TRUE if this is the default machine for the architecture.
6365 The default arch should be the first entry for an arch so that
6366 all the entries for that arch can be accessed via `next'. */
6367 bfd_boolean the_default;
6368 const struct bfd_arch_info * (*compatible)
6369 (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
6371 bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
6373 const struct bfd_arch_info *next;
6377 2.13.2.1 `bfd_printable_name'
6378 .............................
6381 const char *bfd_printable_name (bfd *abfd);
6383 Return a printable string representing the architecture and machine
6384 from the pointer to the architecture info structure.
6386 2.13.2.2 `bfd_scan_arch'
6387 ........................
6390 const bfd_arch_info_type *bfd_scan_arch (const char *string);
6392 Figure out if BFD supports any cpu which could be described with the
6393 name STRING. Return a pointer to an `arch_info' structure if a machine
6394 is found, otherwise NULL.
6396 2.13.2.3 `bfd_arch_list'
6397 ........................
6400 const char **bfd_arch_list (void);
6402 Return a freshly malloced NULL-terminated vector of the names of all
6403 the valid BFD architectures. Do not modify the names.
6405 2.13.2.4 `bfd_arch_get_compatible'
6406 ..................................
6409 const bfd_arch_info_type *bfd_arch_get_compatible
6410 (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
6412 Determine whether two BFDs' architectures and machine types are
6413 compatible. Calculates the lowest common denominator between the two
6414 architectures and machine types implied by the BFDs and returns a
6415 pointer to an `arch_info' structure describing the compatible machine.
6417 2.13.2.5 `bfd_default_arch_struct'
6418 ..................................
6421 The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which
6422 has been initialized to a fairly generic state. A BFD starts life by
6423 pointing to this structure, until the correct back end has determined
6424 the real architecture of the file.
6425 extern const bfd_arch_info_type bfd_default_arch_struct;
6427 2.13.2.6 `bfd_set_arch_info'
6428 ............................
6431 void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
6433 Set the architecture info of ABFD to ARG.
6435 2.13.2.7 `bfd_default_set_arch_mach'
6436 ....................................
6439 bfd_boolean bfd_default_set_arch_mach
6440 (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
6442 Set the architecture and machine type in BFD ABFD to ARCH and MACH.
6443 Find the correct pointer to a structure and insert it into the
6444 `arch_info' pointer.
6446 2.13.2.8 `bfd_get_arch'
6447 .......................
6450 enum bfd_architecture bfd_get_arch (bfd *abfd);
6452 Return the enumerated type which describes the BFD ABFD's architecture.
6454 2.13.2.9 `bfd_get_mach'
6455 .......................
6458 unsigned long bfd_get_mach (bfd *abfd);
6460 Return the long type which describes the BFD ABFD's machine.
6462 2.13.2.10 `bfd_arch_bits_per_byte'
6463 ..................................
6466 unsigned int bfd_arch_bits_per_byte (bfd *abfd);
6468 Return the number of bits in one of the BFD ABFD's architecture's bytes.
6470 2.13.2.11 `bfd_arch_bits_per_address'
6471 .....................................
6474 unsigned int bfd_arch_bits_per_address (bfd *abfd);
6476 Return the number of bits in one of the BFD ABFD's architecture's
6479 2.13.2.12 `bfd_default_compatible'
6480 ..................................
6483 const bfd_arch_info_type *bfd_default_compatible
6484 (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
6486 The default function for testing for compatibility.
6488 2.13.2.13 `bfd_default_scan'
6489 ............................
6492 bfd_boolean bfd_default_scan
6493 (const struct bfd_arch_info *info, const char *string);
6495 The default function for working out whether this is an architecture
6496 hit and a machine hit.
6498 2.13.2.14 `bfd_get_arch_info'
6499 .............................
6502 const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
6504 Return the architecture info struct in ABFD.
6506 2.13.2.15 `bfd_lookup_arch'
6507 ...........................
6510 const bfd_arch_info_type *bfd_lookup_arch
6511 (enum bfd_architecture arch, unsigned long machine);
6513 Look for the architecture info structure which matches the arguments
6514 ARCH and MACHINE. A machine of 0 matches the machine/architecture
6515 structure which marks itself as the default.
6517 2.13.2.16 `bfd_printable_arch_mach'
6518 ...................................
6521 const char *bfd_printable_arch_mach
6522 (enum bfd_architecture arch, unsigned long machine);
6524 Return a printable string representing the architecture and machine
6527 This routine is depreciated.
6529 2.13.2.17 `bfd_octets_per_byte'
6530 ...............................
6533 unsigned int bfd_octets_per_byte (bfd *abfd);
6535 Return the number of octets (8-bit quantities) per target byte (minimum
6536 addressable unit). In most cases, this will be one, but some DSP
6537 targets have 16, 32, or even 48 bits per byte.
6539 2.13.2.18 `bfd_arch_mach_octets_per_byte'
6540 .........................................
6543 unsigned int bfd_arch_mach_octets_per_byte
6544 (enum bfd_architecture arch, unsigned long machine);
6546 See bfd_octets_per_byte.
6548 This routine is provided for those cases where a bfd * is not
6552 File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end
6554 2.14 Opening and closing BFDs
6555 =============================
6557 2.14.1 Functions for opening and closing
6558 ----------------------------------------
6560 2.14.1.1 `bfd_fopen'
6561 ....................
6564 bfd *bfd_fopen (const char *filename, const char *target,
6565 const char *mode, int fd);
6567 Open the file FILENAME with the target TARGET. Return a pointer to the
6568 created BFD. If FD is not -1, then `fdopen' is used to open the file;
6569 otherwise, `fopen' is used. MODE is passed directly to `fopen' or
6572 Calls `bfd_find_target', so TARGET is interpreted as by that
6575 The new BFD is marked as cacheable iff FD is -1.
6577 If `NULL' is returned then an error has occured. Possible errors
6578 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6581 2.14.1.2 `bfd_openr'
6582 ....................
6585 bfd *bfd_openr (const char *filename, const char *target);
6587 Open the file FILENAME (using `fopen') with the target TARGET. Return
6588 a pointer to the created BFD.
6590 Calls `bfd_find_target', so TARGET is interpreted as by that
6593 If `NULL' is returned then an error has occured. Possible errors
6594 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6597 2.14.1.3 `bfd_fdopenr'
6598 ......................
6601 bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
6603 `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It
6604 opens a BFD on a file already described by the FD supplied.
6606 When the file is later `bfd_close'd, the file descriptor will be
6607 closed. If the caller desires that this file descriptor be cached by
6608 BFD (opened as needed, closed as needed to free descriptors for other
6609 opens), with the supplied FD used as an initial file descriptor (but
6610 subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the
6611 returned BFD. The default is to assume no caching; the file descriptor
6612 will remain open until `bfd_close', and will not be affected by BFD
6613 operations on other files.
6615 Possible errors are `bfd_error_no_memory',
6616 `bfd_error_invalid_target' and `bfd_error_system_call'.
6618 2.14.1.4 `bfd_openstreamr'
6619 ..........................
6622 bfd *bfd_openstreamr (const char *, const char *, void *);
6624 Open a BFD for read access on an existing stdio stream. When the BFD
6625 is passed to `bfd_close', the stream will be closed.
6627 2.14.1.5 `bfd_openr_iovec'
6628 ..........................
6631 bfd *bfd_openr_iovec (const char *filename, const char *target,
6632 void *(*open) (struct bfd *nbfd,
6633 void *open_closure),
6635 file_ptr (*pread) (struct bfd *nbfd,
6640 int (*close) (struct bfd *nbfd,
6642 int (*stat) (struct bfd *abfd,
6646 Create and return a BFD backed by a read-only STREAM. The STREAM is
6647 created using OPEN, accessed using PREAD and destroyed using CLOSE.
6649 Calls `bfd_find_target', so TARGET is interpreted as by that
6652 Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to
6653 obtain the read-only stream backing the BFD. OPEN either succeeds
6654 returning the non-`NULL' STREAM, or fails returning `NULL' (setting
6657 Calls PREAD to request NBYTES of data from STREAM starting at OFFSET
6658 (e.g., via a call to `bfd_read'). PREAD either succeeds returning the
6659 number of bytes read (which can be less than NBYTES when end-of-file),
6660 or fails returning -1 (setting `bfd_error').
6662 Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE
6663 either succeeds returning 0, or fails returning -1 (setting
6666 Calls STAT to fill in a stat structure for bfd_stat, bfd_get_size,
6667 and bfd_get_mtime calls. STAT returns 0 on success, or returns -1 on
6668 failure (setting `bfd_error').
6670 If `bfd_openr_iovec' returns `NULL' then an error has occurred.
6671 Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'
6672 and `bfd_error_system_call'.
6674 2.14.1.6 `bfd_openw'
6675 ....................
6678 bfd *bfd_openw (const char *filename, const char *target);
6680 Create a BFD, associated with file FILENAME, using the file format
6681 TARGET, and return a pointer to it.
6683 Possible errors are `bfd_error_system_call', `bfd_error_no_memory',
6684 `bfd_error_invalid_target'.
6686 2.14.1.7 `bfd_close'
6687 ....................
6690 bfd_boolean bfd_close (bfd *abfd);
6692 Close a BFD. If the BFD was open for writing, then pending operations
6693 are completed and the file written out and closed. If the created file
6694 is executable, then `chmod' is called to mark it as such.
6696 All memory attached to the BFD is released.
6698 The file descriptor associated with the BFD is closed (even if it
6699 was passed in to BFD by `bfd_fdopenr').
6702 `TRUE' is returned if all is ok, otherwise `FALSE'.
6704 2.14.1.8 `bfd_close_all_done'
6705 .............................
6708 bfd_boolean bfd_close_all_done (bfd *);
6710 Close a BFD. Differs from `bfd_close' since it does not complete any
6711 pending operations. This routine would be used if the application had
6712 just used BFD for swapping and didn't want to use any of the writing
6715 If the created file is executable, then `chmod' is called to mark it
6718 All memory attached to the BFD is released.
6721 `TRUE' is returned if all is ok, otherwise `FALSE'.
6723 2.14.1.9 `bfd_create'
6724 .....................
6727 bfd *bfd_create (const char *filename, bfd *templ);
6729 Create a new BFD in the manner of `bfd_openw', but without opening a
6730 file. The new BFD takes the target from the target used by TEMPLATE.
6731 The format is always set to `bfd_object'.
6733 2.14.1.10 `bfd_make_writable'
6734 .............................
6737 bfd_boolean bfd_make_writable (bfd *abfd);
6739 Takes a BFD as created by `bfd_create' and converts it into one like as
6740 returned by `bfd_openw'. It does this by converting the BFD to
6741 BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on
6745 `TRUE' is returned if all is ok, otherwise `FALSE'.
6747 2.14.1.11 `bfd_make_readable'
6748 .............................
6751 bfd_boolean bfd_make_readable (bfd *abfd);
6753 Takes a BFD as created by `bfd_create' and `bfd_make_writable' and
6754 converts it into one like as returned by `bfd_openr'. It does this by
6755 writing the contents out to the memory buffer, then reversing the
6759 `TRUE' is returned if all is ok, otherwise `FALSE'.
6761 2.14.1.12 `bfd_alloc'
6762 .....................
6765 void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
6767 Allocate a block of WANTED bytes of memory attached to `abfd' and
6768 return a pointer to it.
6770 2.14.1.13 `bfd_alloc2'
6771 ......................
6774 void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6776 Allocate a block of NMEMB elements of SIZE bytes each of memory
6777 attached to `abfd' and return a pointer to it.
6779 2.14.1.14 `bfd_zalloc'
6780 ......................
6783 void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
6785 Allocate a block of WANTED bytes of zeroed memory attached to `abfd'
6786 and return a pointer to it.
6788 2.14.1.15 `bfd_zalloc2'
6789 .......................
6792 void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6794 Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory
6795 attached to `abfd' and return a pointer to it.
6797 2.14.1.16 `bfd_calc_gnu_debuglink_crc32'
6798 ........................................
6801 unsigned long bfd_calc_gnu_debuglink_crc32
6802 (unsigned long crc, const unsigned char *buf, bfd_size_type len);
6804 Computes a CRC value as used in the .gnu_debuglink section. Advances
6805 the previously computed CRC value by computing and adding in the crc32
6806 for LEN bytes of BUF.
6809 Return the updated CRC32 value.
6811 2.14.1.17 `get_debug_link_info'
6812 ...............................
6815 char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
6817 fetch the filename and CRC32 value for any separate debuginfo
6818 associated with ABFD. Return NULL if no such info found, otherwise
6819 return filename and update CRC32_OUT.
6821 2.14.1.18 `separate_debug_file_exists'
6822 ......................................
6825 bfd_boolean separate_debug_file_exists
6826 (char *name, unsigned long crc32);
6828 Checks to see if NAME is a file and if its contents match CRC32.
6830 2.14.1.19 `find_separate_debug_file'
6831 ....................................
6834 char *find_separate_debug_file (bfd *abfd);
6836 Searches ABFD for a reference to separate debugging information, scans
6837 various locations in the filesystem, including the file tree rooted at
6838 DEBUG_FILE_DIRECTORY, and returns a filename of such debugging
6839 information if the file is found and has matching CRC32. Returns NULL
6840 if no reference to debugging file exists, or file cannot be found.
6842 2.14.1.20 `bfd_follow_gnu_debuglink'
6843 ....................................
6846 char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
6848 Takes a BFD and searches it for a .gnu_debuglink section. If this
6849 section is found, it examines the section for the name and checksum of
6850 a '.debug' file containing auxiliary debugging information. It then
6851 searches the filesystem for this .debug file in some standard
6852 locations, including the directory tree rooted at DIR, and if found
6853 returns the full filename.
6855 If DIR is NULL, it will search a default path configured into libbfd
6856 at build time. [XXX this feature is not currently implemented].
6859 `NULL' on any errors or failure to locate the .debug file, otherwise a
6860 pointer to a heap-allocated string containing the filename. The caller
6861 is responsible for freeing this string.
6863 2.14.1.21 `bfd_create_gnu_debuglink_section'
6864 ............................................
6867 struct bfd_section *bfd_create_gnu_debuglink_section
6868 (bfd *abfd, const char *filename);
6870 Takes a BFD and adds a .gnu_debuglink section to it. The section is
6871 sized to be big enough to contain a link to the specified FILENAME.
6874 A pointer to the new section is returned if all is ok. Otherwise
6875 `NULL' is returned and bfd_error is set.
6877 2.14.1.22 `bfd_fill_in_gnu_debuglink_section'
6878 .............................................
6881 bfd_boolean bfd_fill_in_gnu_debuglink_section
6882 (bfd *abfd, struct bfd_section *sect, const char *filename);
6884 Takes a BFD and containing a .gnu_debuglink section SECT and fills in
6885 the contents of the section to contain a link to the specified
6886 FILENAME. The filename should be relative to the current directory.
6889 `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and
6893 File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end
6895 2.15 Implementation details
6896 ===========================
6898 2.15.1 Internal functions
6899 -------------------------
6902 These routines are used within BFD. They are not intended for export,
6903 but are documented here for completeness.
6905 2.15.1.1 `bfd_write_bigendian_4byte_int'
6906 ........................................
6909 bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
6911 Write a 4 byte integer I to the output BFD ABFD, in big endian order
6912 regardless of what else is going on. This is useful in archives.
6914 2.15.1.2 `bfd_put_size'
6915 .......................
6917 2.15.1.3 `bfd_get_size'
6918 .......................
6921 These macros as used for reading and writing raw data in sections; each
6922 access (except for bytes) is vectored through the target format of the
6923 BFD and mangled accordingly. The mangling performs any necessary endian
6924 translations and removes alignment restrictions. Note that types
6925 accepted and returned by these macros are identical so they can be
6926 swapped around in macros--for example, `libaout.h' defines `GET_WORD'
6927 to either `bfd_get_32' or `bfd_get_64'.
6929 In the put routines, VAL must be a `bfd_vma'. If we are on a system
6930 without prototypes, the caller is responsible for making sure that is
6931 true, with a cast if necessary. We don't cast them in the macro
6932 definitions because that would prevent `lint' or `gcc -Wall' from
6933 detecting sins such as passing a pointer. To detect calling these with
6934 less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit
6937 /* Byte swapping macros for user section data. */
6939 #define bfd_put_8(abfd, val, ptr) \
6940 ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
6941 #define bfd_put_signed_8 \
6943 #define bfd_get_8(abfd, ptr) \
6944 (*(unsigned char *) (ptr) & 0xff)
6945 #define bfd_get_signed_8(abfd, ptr) \
6946 (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
6948 #define bfd_put_16(abfd, val, ptr) \
6949 BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
6950 #define bfd_put_signed_16 \
6952 #define bfd_get_16(abfd, ptr) \
6953 BFD_SEND (abfd, bfd_getx16, (ptr))
6954 #define bfd_get_signed_16(abfd, ptr) \
6955 BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
6957 #define bfd_put_32(abfd, val, ptr) \
6958 BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
6959 #define bfd_put_signed_32 \
6961 #define bfd_get_32(abfd, ptr) \
6962 BFD_SEND (abfd, bfd_getx32, (ptr))
6963 #define bfd_get_signed_32(abfd, ptr) \
6964 BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
6966 #define bfd_put_64(abfd, val, ptr) \
6967 BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
6968 #define bfd_put_signed_64 \
6970 #define bfd_get_64(abfd, ptr) \
6971 BFD_SEND (abfd, bfd_getx64, (ptr))
6972 #define bfd_get_signed_64(abfd, ptr) \
6973 BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
6975 #define bfd_get(bits, abfd, ptr) \
6976 ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
6977 : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
6978 : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
6979 : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
6980 : (abort (), (bfd_vma) - 1))
6982 #define bfd_put(bits, abfd, val, ptr) \
6983 ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
6984 : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
6985 : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
6986 : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
6987 : (abort (), (void) 0))
6989 2.15.1.4 `bfd_h_put_size'
6990 .........................
6993 These macros have the same function as their `bfd_get_x' brethren,
6994 except that they are used for removing information for the header
6995 records of object files. Believe it or not, some object files keep
6996 their header records in big endian order and their data in little
6999 /* Byte swapping macros for file header data. */
7001 #define bfd_h_put_8(abfd, val, ptr) \
7002 bfd_put_8 (abfd, val, ptr)
7003 #define bfd_h_put_signed_8(abfd, val, ptr) \
7004 bfd_put_8 (abfd, val, ptr)
7005 #define bfd_h_get_8(abfd, ptr) \
7006 bfd_get_8 (abfd, ptr)
7007 #define bfd_h_get_signed_8(abfd, ptr) \
7008 bfd_get_signed_8 (abfd, ptr)
7010 #define bfd_h_put_16(abfd, val, ptr) \
7011 BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
7012 #define bfd_h_put_signed_16 \
7014 #define bfd_h_get_16(abfd, ptr) \
7015 BFD_SEND (abfd, bfd_h_getx16, (ptr))
7016 #define bfd_h_get_signed_16(abfd, ptr) \
7017 BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
7019 #define bfd_h_put_32(abfd, val, ptr) \
7020 BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
7021 #define bfd_h_put_signed_32 \
7023 #define bfd_h_get_32(abfd, ptr) \
7024 BFD_SEND (abfd, bfd_h_getx32, (ptr))
7025 #define bfd_h_get_signed_32(abfd, ptr) \
7026 BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
7028 #define bfd_h_put_64(abfd, val, ptr) \
7029 BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
7030 #define bfd_h_put_signed_64 \
7032 #define bfd_h_get_64(abfd, ptr) \
7033 BFD_SEND (abfd, bfd_h_getx64, (ptr))
7034 #define bfd_h_get_signed_64(abfd, ptr) \
7035 BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
7037 /* Aliases for the above, which should eventually go away. */
7039 #define H_PUT_64 bfd_h_put_64
7040 #define H_PUT_32 bfd_h_put_32
7041 #define H_PUT_16 bfd_h_put_16
7042 #define H_PUT_8 bfd_h_put_8
7043 #define H_PUT_S64 bfd_h_put_signed_64
7044 #define H_PUT_S32 bfd_h_put_signed_32
7045 #define H_PUT_S16 bfd_h_put_signed_16
7046 #define H_PUT_S8 bfd_h_put_signed_8
7047 #define H_GET_64 bfd_h_get_64
7048 #define H_GET_32 bfd_h_get_32
7049 #define H_GET_16 bfd_h_get_16
7050 #define H_GET_8 bfd_h_get_8
7051 #define H_GET_S64 bfd_h_get_signed_64
7052 #define H_GET_S32 bfd_h_get_signed_32
7053 #define H_GET_S16 bfd_h_get_signed_16
7054 #define H_GET_S8 bfd_h_get_signed_8
7060 unsigned int bfd_log2 (bfd_vma x);
7062 Return the log base 2 of the value supplied, rounded up. E.g., an X of
7063 1025 returns 11. A X of 0 returns 0.
7066 File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end
7071 The file caching mechanism is embedded within BFD and allows the
7072 application to open as many BFDs as it wants without regard to the
7073 underlying operating system's file descriptor limit (often as low as 20
7074 open files). The module in `cache.c' maintains a least recently used
7075 list of `BFD_CACHE_MAX_OPEN' files, and exports the name
7076 `bfd_cache_lookup', which runs around and makes sure that the required
7077 BFD is open. If not, then it chooses a file to close, closes it and
7078 opens the one wanted, returning its file handle.
7080 2.16.1 Caching functions
7081 ------------------------
7083 2.16.1.1 `bfd_cache_init'
7084 .........................
7087 bfd_boolean bfd_cache_init (bfd *abfd);
7089 Add a newly opened BFD to the cache.
7091 2.16.1.2 `bfd_cache_close'
7092 ..........................
7095 bfd_boolean bfd_cache_close (bfd *abfd);
7097 Remove the BFD ABFD from the cache. If the attached file is open, then
7101 `FALSE' is returned if closing the file fails, `TRUE' is returned if
7104 2.16.1.3 `bfd_cache_close_all'
7105 ..............................
7108 bfd_boolean bfd_cache_close_all (void);
7110 Remove all BFDs from the cache. If the attached file is open, then
7114 `FALSE' is returned if closing one of the file fails, `TRUE' is
7115 returned if all is well.
7117 2.16.1.4 `bfd_open_file'
7118 ........................
7121 FILE* bfd_open_file (bfd *abfd);
7123 Call the OS to open a file for ABFD. Return the `FILE *' (possibly
7124 `NULL') that results from this operation. Set up the BFD so that
7125 future accesses know the file is open. If the `FILE *' returned is
7126 `NULL', then it won't have been put in the cache, so it won't have to
7130 File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end
7132 2.17 Linker Functions
7133 =====================
7135 The linker uses three special entry points in the BFD target vector.
7136 It is not necessary to write special routines for these entry points
7137 when creating a new BFD back end, since generic versions are provided.
7138 However, writing them can speed up linking and make it use
7139 significantly less runtime memory.
7141 The first routine creates a hash table used by the other routines.
7142 The second routine adds the symbols from an object file to the hash
7143 table. The third routine takes all the object files and links them
7144 together to create the output file. These routines are designed so
7145 that the linker proper does not need to know anything about the symbols
7146 in the object files that it is linking. The linker merely arranges the
7147 sections as directed by the linker script and lets BFD handle the
7148 details of symbols and relocs.
7150 The second routine and third routines are passed a pointer to a
7151 `struct bfd_link_info' structure (defined in `bfdlink.h') which holds
7152 information relevant to the link, including the linker hash table
7153 (which was created by the first routine) and a set of callback
7154 functions to the linker proper.
7156 The generic linker routines are in `linker.c', and use the header
7157 file `genlink.h'. As of this writing, the only back ends which have
7158 implemented versions of these routines are a.out (in `aoutx.h') and
7159 ECOFF (in `ecoff.c'). The a.out routines are used as examples
7160 throughout this section.
7164 * Creating a Linker Hash Table::
7165 * Adding Symbols to the Hash Table::
7166 * Performing the Final Link::
7169 File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions
7171 2.17.1 Creating a linker hash table
7172 -----------------------------------
7174 The linker routines must create a hash table, which must be derived
7175 from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash
7176 Tables::, for information on how to create a derived hash table. This
7177 entry point is called using the target vector of the linker output file.
7179 The `_bfd_link_hash_table_create' entry point must allocate and
7180 initialize an instance of the desired hash table. If the back end does
7181 not require any additional information to be stored with the entries in
7182 the hash table, the entry point may simply create a `struct
7183 bfd_link_hash_table'. Most likely, however, some additional
7184 information will be needed.
7186 For example, with each entry in the hash table the a.out linker
7187 keeps the index the symbol has in the final output file (this index
7188 number is used so that when doing a relocatable link the symbol index
7189 used in the output file can be quickly filled in when copying over a
7190 reloc). The a.out linker code defines the required structures and
7191 functions for a hash table derived from `struct bfd_link_hash_table'.
7192 The a.out linker hash table is created by the function
7193 `NAME(aout,link_hash_table_create)'; it simply allocates space for the
7194 hash table, initializes it, and returns a pointer to it.
7196 When writing the linker routines for a new back end, you will
7197 generally not know exactly which fields will be required until you have
7198 finished. You should simply create a new hash table which defines no
7199 additional fields, and then simply add fields as they become necessary.
7202 File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions
7204 2.17.2 Adding symbols to the hash table
7205 ---------------------------------------
7207 The linker proper will call the `_bfd_link_add_symbols' entry point for
7208 each object file or archive which is to be linked (typically these are
7209 the files named on the command line, but some may also come from the
7210 linker script). The entry point is responsible for examining the file.
7211 For an object file, BFD must add any relevant symbol information to
7212 the hash table. For an archive, BFD must determine which elements of
7213 the archive should be used and adding them to the link.
7215 The a.out version of this entry point is
7216 `NAME(aout,link_add_symbols)'.
7220 * Differing file formats::
7221 * Adding symbols from an object file::
7222 * Adding symbols from an archive::
7225 File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table
7227 2.17.2.1 Differing file formats
7228 ...............................
7230 Normally all the files involved in a link will be of the same format,
7231 but it is also possible to link together different format object files,
7232 and the back end must support that. The `_bfd_link_add_symbols' entry
7233 point is called via the target vector of the file to be added. This
7234 has an important consequence: the function may not assume that the hash
7235 table is the type created by the corresponding
7236 `_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols'
7237 function can assume about the hash table is that it is derived from
7238 `struct bfd_link_hash_table'.
7240 Sometimes the `_bfd_link_add_symbols' function must store some
7241 information in the hash table entry to be used by the `_bfd_final_link'
7242 function. In such a case the output bfd xvec must be checked to make
7243 sure that the hash table was created by an object file of the same
7246 The `_bfd_final_link' routine must be prepared to handle a hash
7247 entry without any extra information added by the
7248 `_bfd_link_add_symbols' function. A hash entry without extra
7249 information will also occur when the linker script directs the linker
7250 to create a symbol. Note that, regardless of how a hash table entry is
7251 added, all the fields will be initialized to some sort of null value by
7252 the hash table entry initialization function.
7254 See `ecoff_link_add_externals' for an example of how to check the
7255 output bfd before saving information (in this case, the ECOFF external
7256 symbol debugging information) in a hash table entry.
7259 File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table
7261 2.17.2.2 Adding symbols from an object file
7262 ...........................................
7264 When the `_bfd_link_add_symbols' routine is passed an object file, it
7265 must add all externally visible symbols in that object file to the hash
7266 table. The actual work of adding the symbol to the hash table is
7267 normally handled by the function `_bfd_generic_link_add_one_symbol'.
7268 The `_bfd_link_add_symbols' routine is responsible for reading all the
7269 symbols from the object file and passing the correct information to
7270 `_bfd_generic_link_add_one_symbol'.
7272 The `_bfd_link_add_symbols' routine should not use
7273 `bfd_canonicalize_symtab' to read the symbols. The point of providing
7274 this routine is to avoid the overhead of converting the symbols into
7275 generic `asymbol' structures.
7277 `_bfd_generic_link_add_one_symbol' handles the details of combining
7278 common symbols, warning about multiple definitions, and so forth. It
7279 takes arguments which describe the symbol to add, notably symbol flags,
7280 a section, and an offset. The symbol flags include such things as
7281 `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object
7282 file, or something like `bfd_und_section_ptr' for an undefined symbol
7283 or `bfd_com_section_ptr' for a common symbol.
7285 If the `_bfd_final_link' routine is also going to need to read the
7286 symbol information, the `_bfd_link_add_symbols' routine should save it
7287 somewhere attached to the object file BFD. However, the information
7288 should only be saved if the `keep_memory' field of the `info' argument
7289 is TRUE, so that the `-no-keep-memory' linker switch is effective.
7291 The a.out function which adds symbols from an object file is
7292 `aout_link_add_object_symbols', and most of the interesting work is in
7293 `aout_link_add_symbols'. The latter saves pointers to the hash tables
7294 entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol
7295 number, so that the `_bfd_final_link' routine does not have to call the
7296 hash table lookup routine to locate the entry.
7299 File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table
7301 2.17.2.3 Adding symbols from an archive
7302 .......................................
7304 When the `_bfd_link_add_symbols' routine is passed an archive, it must
7305 look through the symbols defined by the archive and decide which
7306 elements of the archive should be included in the link. For each such
7307 element it must call the `add_archive_element' linker callback, and it
7308 must add the symbols from the object file to the linker hash table.
7310 In most cases the work of looking through the symbols in the archive
7311 should be done by the `_bfd_generic_link_add_archive_symbols' function.
7312 This function builds a hash table from the archive symbol table and
7313 looks through the list of undefined symbols to see which elements
7314 should be included. `_bfd_generic_link_add_archive_symbols' is passed
7315 a function to call to make the final decision about adding an archive
7316 element to the link and to do the actual work of adding the symbols to
7317 the linker hash table.
7319 The function passed to `_bfd_generic_link_add_archive_symbols' must
7320 read the symbols of the archive element and decide whether the archive
7321 element should be included in the link. If the element is to be
7322 included, the `add_archive_element' linker callback routine must be
7323 called with the element as an argument, and the elements symbols must
7324 be added to the linker hash table just as though the element had itself
7325 been passed to the `_bfd_link_add_symbols' function.
7327 When the a.out `_bfd_link_add_symbols' function receives an archive,
7328 it calls `_bfd_generic_link_add_archive_symbols' passing
7329 `aout_link_check_archive_element' as the function argument.
7330 `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.
7331 If the latter decides to add the element (an element is only added if
7332 it provides a real, non-common, definition for a previously undefined
7333 or common symbol) it calls the `add_archive_element' callback and then
7334 `aout_link_check_archive_element' calls `aout_link_add_symbols' to
7335 actually add the symbols to the linker hash table.
7337 The ECOFF back end is unusual in that it does not normally call
7338 `_bfd_generic_link_add_archive_symbols', because ECOFF archives already
7339 contain a hash table of symbols. The ECOFF back end searches the
7340 archive itself to avoid the overhead of creating a new hash table.
7343 File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions
7345 2.17.3 Performing the final link
7346 --------------------------------
7348 When all the input files have been processed, the linker calls the
7349 `_bfd_final_link' entry point of the output BFD. This routine is
7350 responsible for producing the final output file, which has several
7351 aspects. It must relocate the contents of the input sections and copy
7352 the data into the output sections. It must build an output symbol
7353 table including any local symbols from the input files and the global
7354 symbols from the hash table. When producing relocatable output, it must
7355 modify the input relocs and write them into the output file. There may
7356 also be object format dependent work to be done.
7358 The linker will also call the `write_object_contents' entry point
7359 when the BFD is closed. The two entry points must work together in
7360 order to produce the correct output file.
7362 The details of how this works are inevitably dependent upon the
7363 specific object file format. The a.out `_bfd_final_link' routine is
7364 `NAME(aout,final_link)'.
7368 * Information provided by the linker::
7369 * Relocating the section contents::
7370 * Writing the symbol table::
7373 File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link
7375 2.17.3.1 Information provided by the linker
7376 ...........................................
7378 Before the linker calls the `_bfd_final_link' entry point, it sets up
7379 some data structures for the function to use.
7381 The `input_bfds' field of the `bfd_link_info' structure will point
7382 to a list of all the input files included in the link. These files are
7383 linked through the `link_next' field of the `bfd' structure.
7385 Each section in the output file will have a list of `link_order'
7386 structures attached to the `map_head.link_order' field (the
7387 `link_order' structure is defined in `bfdlink.h'). These structures
7388 describe how to create the contents of the output section in terms of
7389 the contents of various input sections, fill constants, and,
7390 eventually, other types of information. They also describe relocs that
7391 must be created by the BFD backend, but do not correspond to any input
7392 file; this is used to support -Ur, which builds constructors while
7393 generating a relocatable object file.
7396 File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link
7398 2.17.3.2 Relocating the section contents
7399 ........................................
7401 The `_bfd_final_link' function should look through the `link_order'
7402 structures attached to each section of the output file. Each
7403 `link_order' structure should either be handled specially, or it should
7404 be passed to the function `_bfd_default_link_order' which will do the
7405 right thing (`_bfd_default_link_order' is defined in `linker.c').
7407 For efficiency, a `link_order' of type `bfd_indirect_link_order'
7408 whose associated section belongs to a BFD of the same format as the
7409 output BFD must be handled specially. This type of `link_order'
7410 describes part of an output section in terms of a section belonging to
7411 one of the input files. The `_bfd_final_link' function should read the
7412 contents of the section and any associated relocs, apply the relocs to
7413 the section contents, and write out the modified section contents. If
7414 performing a relocatable link, the relocs themselves must also be
7415 modified and written out.
7417 The functions `_bfd_relocate_contents' and
7418 `_bfd_final_link_relocate' provide some general support for performing
7419 the actual relocations, notably overflow checking. Their arguments
7420 include information about the symbol the relocation is against and a
7421 `reloc_howto_type' argument which describes the relocation to perform.
7422 These functions are defined in `reloc.c'.
7424 The a.out function which handles reading, relocating, and writing
7425 section contents is `aout_link_input_section'. The actual relocation
7426 is done in `aout_link_input_section_std' and
7427 `aout_link_input_section_ext'.
7430 File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link
7432 2.17.3.3 Writing the symbol table
7433 .................................
7435 The `_bfd_final_link' function must gather all the symbols in the input
7436 files and write them out. It must also write out all the symbols in
7437 the global hash table. This must be controlled by the `strip' and
7438 `discard' fields of the `bfd_link_info' structure.
7440 The local symbols of the input files will not have been entered into
7441 the linker hash table. The `_bfd_final_link' routine must consider
7442 each input file and include the symbols in the output file. It may be
7443 convenient to do this when looking through the `link_order' structures,
7444 or it may be done by stepping through the `input_bfds' list.
7446 The `_bfd_final_link' routine must also traverse the global hash
7447 table to gather all the externally visible symbols. It is possible
7448 that most of the externally visible symbols may be written out when
7449 considering the symbols of each input file, but it is still necessary
7450 to traverse the hash table since the linker script may have defined
7451 some symbols that are not in any of the input files.
7453 The `strip' field of the `bfd_link_info' structure controls which
7454 symbols are written out. The possible values are listed in
7455 `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field
7456 of the `bfd_link_info' structure is a hash table of symbols to keep;
7457 each symbol should be looked up in this hash table, and only symbols
7458 which are present should be included in the output file.
7460 If the `strip' field of the `bfd_link_info' structure permits local
7461 symbols to be written out, the `discard' field is used to further
7462 controls which local symbols are included in the output file. If the
7463 value is `discard_l', then all local symbols which begin with a certain
7464 prefix are discarded; this is controlled by the
7465 `bfd_is_local_label_name' entry point.
7467 The a.out backend handles symbols by calling
7468 `aout_link_write_symbols' on each input BFD and then traversing the
7469 global hash table with the function `aout_link_write_other_symbol'. It
7470 builds a string table while writing out the symbols, which is written
7471 to the output file at the end of `NAME(aout,final_link)'.
7473 2.17.3.4 `bfd_link_split_section'
7474 .................................
7477 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
7479 Return nonzero if SEC should be split during a reloceatable or final
7481 #define bfd_link_split_section(abfd, sec) \
7482 BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
7484 2.17.3.5 `bfd_section_already_linked'
7485 .....................................
7488 void bfd_section_already_linked (bfd *abfd, asection *sec,
7489 struct bfd_link_info *info);
7491 Check if SEC has been already linked during a reloceatable or final
7493 #define bfd_section_already_linked(abfd, sec, info) \
7494 BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
7497 File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end
7502 BFD provides a simple set of hash table functions. Routines are
7503 provided to initialize a hash table, to free a hash table, to look up a
7504 string in a hash table and optionally create an entry for it, and to
7505 traverse a hash table. There is currently no routine to delete an
7506 string from a hash table.
7508 The basic hash table does not permit any data to be stored with a
7509 string. However, a hash table is designed to present a base class from
7510 which other types of hash tables may be derived. These derived types
7511 may store additional information with the string. Hash tables were
7512 implemented in this way, rather than simply providing a data pointer in
7513 a hash table entry, because they were designed for use by the linker
7514 back ends. The linker may create thousands of hash table entries, and
7515 the overhead of allocating private data and storing and following
7516 pointers becomes noticeable.
7518 The basic hash table code is in `hash.c'.
7522 * Creating and Freeing a Hash Table::
7523 * Looking Up or Entering a String::
7524 * Traversing a Hash Table::
7525 * Deriving a New Hash Table Type::
7528 File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables
7530 2.18.1 Creating and freeing a hash table
7531 ----------------------------------------
7533 To create a hash table, create an instance of a `struct bfd_hash_table'
7534 (defined in `bfd.h') and call `bfd_hash_table_init' (if you know
7535 approximately how many entries you will need, the function
7536 `bfd_hash_table_init_n', which takes a SIZE argument, may be used).
7537 `bfd_hash_table_init' returns `FALSE' if some sort of error occurs.
7539 The function `bfd_hash_table_init' take as an argument a function to
7540 use to create new entries. For a basic hash table, use the function
7541 `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why
7542 you would want to use a different value for this argument.
7544 `bfd_hash_table_init' will create an objalloc which will be used to
7545 allocate new entries. You may allocate memory on this objalloc using
7546 `bfd_hash_allocate'.
7548 Use `bfd_hash_table_free' to free up all the memory that has been
7549 allocated for a hash table. This will not free up the `struct
7550 bfd_hash_table' itself, which you must provide.
7552 Use `bfd_hash_set_default_size' to set the default size of hash
7556 File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables
7558 2.18.2 Looking up or entering a string
7559 --------------------------------------
7561 The function `bfd_hash_lookup' is used both to look up a string in the
7562 hash table and to create a new entry.
7564 If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a
7565 string. If the string is found, it will returns a pointer to a `struct
7566 bfd_hash_entry'. If the string is not found in the table
7567 `bfd_hash_lookup' will return `NULL'. You should not modify any of the
7568 fields in the returns `struct bfd_hash_entry'.
7570 If the CREATE argument is `TRUE', the string will be entered into
7571 the hash table if it is not already there. Either way a pointer to a
7572 `struct bfd_hash_entry' will be returned, either to the existing
7573 structure or to a newly created one. In this case, a `NULL' return
7574 means that an error occurred.
7576 If the CREATE argument is `TRUE', and a new entry is created, the
7577 COPY argument is used to decide whether to copy the string onto the
7578 hash table objalloc or not. If COPY is passed as `FALSE', you must be
7579 careful not to deallocate or modify the string as long as the hash table
7583 File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables
7585 2.18.3 Traversing a hash table
7586 ------------------------------
7588 The function `bfd_hash_traverse' may be used to traverse a hash table,
7589 calling a function on each element. The traversal is done in a random
7592 `bfd_hash_traverse' takes as arguments a function and a generic
7593 `void *' pointer. The function is called with a hash table entry (a
7594 `struct bfd_hash_entry *') and the generic pointer passed to
7595 `bfd_hash_traverse'. The function must return a `boolean' value, which
7596 indicates whether to continue traversing the hash table. If the
7597 function returns `FALSE', `bfd_hash_traverse' will stop the traversal
7598 and return immediately.
7601 File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables
7603 2.18.4 Deriving a new hash table type
7604 -------------------------------------
7606 Many uses of hash tables want to store additional information which
7607 each entry in the hash table. Some also find it convenient to store
7608 additional information with the hash table itself. This may be done
7609 using a derived hash table.
7611 Since C is not an object oriented language, creating a derived hash
7612 table requires sticking together some boilerplate routines with a few
7613 differences specific to the type of hash table you want to create.
7615 An example of a derived hash table is the linker hash table. The
7616 structures for this are defined in `bfdlink.h'. The functions are in
7619 You may also derive a hash table from an already derived hash table.
7620 For example, the a.out linker backend code uses a hash table derived
7621 from the linker hash table.
7625 * Define the Derived Structures::
7626 * Write the Derived Creation Routine::
7627 * Write Other Derived Routines::
7630 File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type
7632 2.18.4.1 Define the derived structures
7633 ......................................
7635 You must define a structure for an entry in the hash table, and a
7636 structure for the hash table itself.
7638 The first field in the structure for an entry in the hash table must
7639 be of the type used for an entry in the hash table you are deriving
7640 from. If you are deriving from a basic hash table this is `struct
7641 bfd_hash_entry', which is defined in `bfd.h'. The first field in the
7642 structure for the hash table itself must be of the type of the hash
7643 table you are deriving from itself. If you are deriving from a basic
7644 hash table, this is `struct bfd_hash_table'.
7646 For example, the linker hash table defines `struct
7647 bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of
7648 type `struct bfd_hash_entry'. Similarly, the first field in `struct
7649 bfd_link_hash_table', `table', is of type `struct bfd_hash_table'.
7652 File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type
7654 2.18.4.2 Write the derived creation routine
7655 ...........................................
7657 You must write a routine which will create and initialize an entry in
7658 the hash table. This routine is passed as the function argument to
7659 `bfd_hash_table_init'.
7661 In order to permit other hash tables to be derived from the hash
7662 table you are creating, this routine must be written in a standard way.
7664 The first argument to the creation routine is a pointer to a hash
7665 table entry. This may be `NULL', in which case the routine should
7666 allocate the right amount of space. Otherwise the space has already
7667 been allocated by a hash table type derived from this one.
7669 After allocating space, the creation routine must call the creation
7670 routine of the hash table type it is derived from, passing in a pointer
7671 to the space it just allocated. This will initialize any fields used
7672 by the base hash table.
7674 Finally the creation routine must initialize any local fields for
7675 the new hash table type.
7677 Here is a boilerplate example of a creation routine. FUNCTION_NAME
7678 is the name of the routine. ENTRY_TYPE is the type of an entry in the
7679 hash table you are creating. BASE_NEWFUNC is the name of the creation
7680 routine of the hash table type your hash table is derived from.
7682 struct bfd_hash_entry *
7683 FUNCTION_NAME (struct bfd_hash_entry *entry,
7684 struct bfd_hash_table *table,
7687 struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;
7689 /* Allocate the structure if it has not already been allocated by a
7693 ret = bfd_hash_allocate (table, sizeof (* ret));
7698 /* Call the allocation method of the base class. */
7699 ret = ((ENTRY_TYPE *)
7700 BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));
7702 /* Initialize the local fields here. */
7704 return (struct bfd_hash_entry *) ret;
7707 The creation routine for the linker hash table, which is in `linker.c',
7708 looks just like this example. FUNCTION_NAME is
7709 `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.
7710 BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic
7713 `_bfd_link_hash_newfunc' also initializes the local fields in a
7714 linker hash table entry: `type', `written' and `next'.
7717 File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type
7719 2.18.4.3 Write other derived routines
7720 .....................................
7722 You will want to write other routines for your new hash table, as well.
7724 You will want an initialization routine which calls the
7725 initialization routine of the hash table you are deriving from and
7726 initializes any other local fields. For the linker hash table, this is
7727 `_bfd_link_hash_table_init' in `linker.c'.
7729 You will want a lookup routine which calls the lookup routine of the
7730 hash table you are deriving from and casts the result. The linker hash
7731 table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an
7732 additional argument which it uses to decide how to return the looked up
7735 You may want a traversal routine. This should just call the
7736 traversal routine of the hash table you are deriving from with
7737 appropriate casts. The linker hash table uses `bfd_link_hash_traverse'
7740 These routines may simply be defined as macros. For example, the
7741 a.out backend linker hash table, which is derived from the linker hash
7742 table, uses macros for the lookup and traversal routines. These are
7743 `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.
7746 File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top
7753 * What to Put Where::
7754 * aout :: a.out backends
7755 * coff :: coff backends
7756 * elf :: elf backends
7757 * mmo :: mmo backend
7760 File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends
7762 3.1 What to Put Where
7763 =====================
7765 All of BFD lives in one directory.
7768 File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends
7774 BFD supports a number of different flavours of a.out format, though the
7775 major differences are only the sizes of the structures on disk, and the
7776 shape of the relocation information.
7778 The support is split into a basic support file `aoutx.h' and other
7779 files which derive functions from the base. One derivation file is
7780 `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions
7781 support for sun3, sun4, 386 and 29k a.out files, to create a target
7782 jump vector for a specific target.
7784 This information is further split out into more specific files for
7785 each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for
7786 the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out
7789 The base file `aoutx.h' defines general mechanisms for reading and
7790 writing records to and from disk and various other methods which BFD
7791 requires. It is included by `aout32.c' and `aout64.c' to form the names
7792 `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.
7794 As an example, this is what goes on to make the back end for a sun4,
7797 #define ARCH_SIZE 32
7800 Which exports names:
7803 aout_32_canonicalize_reloc
7804 aout_32_find_nearest_line
7806 aout_32_get_reloc_upper_bound
7811 #define TARGET_NAME "a.out-sunos-big"
7812 #define VECNAME sunos_big_vec
7815 requires all the names from `aout32.c', and produces the jump vector
7819 The file `host-aout.c' is a special case. It is for a large set of
7820 hosts that use "more or less standard" a.out files, and for which
7821 cross-debugging is not interesting. It uses the standard 32-bit a.out
7822 support routines, but determines the file offsets and addresses of the
7823 text, data, and BSS sections, the machine architecture and machine
7824 type, and the entry point address, in a host-dependent manner. Once
7825 these values have been determined, generic code is used to handle the
7828 When porting it to run on a new system, you must supply:
7832 HOST_MACHINE_ARCH (optional)
7833 HOST_MACHINE_MACHINE (optional)
7834 HOST_TEXT_START_ADDR
7837 in the file `../include/sys/h-XXX.h' (for your host). These values,
7838 plus the structures and macros defined in `a.out.h' on your host
7839 system, will produce a BFD target that will access ordinary a.out files
7840 on your host. To configure a new machine to use `host-aout.c', specify:
7842 TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
7843 TDEPFILES= host-aout.o trad-core.o
7845 in the `config/XXX.mt' file, and modify `configure.in' to use the
7846 `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration
7853 The file `aoutx.h' provides for both the _standard_ and _extended_
7854 forms of a.out relocation records.
7856 The standard records contain only an address, a symbol index, and a
7857 type field. The extended records (used on 29ks and sparcs) also have a
7858 full integer for an addend.
7860 3.2.2 Internal entry points
7861 ---------------------------
7864 `aoutx.h' exports several routines for accessing the contents of an
7865 a.out file, which are gathered and exported in turn by various format
7866 specific files (eg sunos.c).
7868 3.2.2.1 `aout_SIZE_swap_exec_header_in'
7869 .......................................
7872 void aout_SIZE_swap_exec_header_in,
7874 struct external_exec *bytes,
7875 struct internal_exec *execp);
7877 Swap the information in an executable header RAW_BYTES taken from a raw
7878 byte stream memory image into the internal exec header structure EXECP.
7880 3.2.2.2 `aout_SIZE_swap_exec_header_out'
7881 ........................................
7884 void aout_SIZE_swap_exec_header_out
7886 struct internal_exec *execp,
7887 struct external_exec *raw_bytes);
7889 Swap the information in an internal exec header structure EXECP into
7890 the buffer RAW_BYTES ready for writing to disk.
7892 3.2.2.3 `aout_SIZE_some_aout_object_p'
7893 ......................................
7896 const bfd_target *aout_SIZE_some_aout_object_p
7898 struct internal_exec *execp,
7899 const bfd_target *(*callback_to_real_object_p) (bfd *));
7901 Some a.out variant thinks that the file open in ABFD checking is an
7902 a.out file. Do some more checking, and set up for access if it really
7903 is. Call back to the calling environment's "finish up" function just
7904 before returning, to handle any last-minute setup.
7906 3.2.2.4 `aout_SIZE_mkobject'
7907 ............................
7910 bfd_boolean aout_SIZE_mkobject, (bfd *abfd);
7912 Initialize BFD ABFD for use with a.out files.
7914 3.2.2.5 `aout_SIZE_machine_type'
7915 ................................
7918 enum machine_type aout_SIZE_machine_type
7919 (enum bfd_architecture arch,
7920 unsigned long machine,
7921 bfd_boolean *unknown);
7923 Keep track of machine architecture and machine type for a.out's. Return
7924 the `machine_type' for a particular architecture and machine, or
7925 `M_UNKNOWN' if that exact architecture and machine can't be represented
7928 If the architecture is understood, machine type 0 (default) is
7931 3.2.2.6 `aout_SIZE_set_arch_mach'
7932 .................................
7935 bfd_boolean aout_SIZE_set_arch_mach,
7937 enum bfd_architecture arch,
7938 unsigned long machine);
7940 Set the architecture and the machine of the BFD ABFD to the values ARCH
7941 and MACHINE. Verify that ABFD's format can support the architecture
7944 3.2.2.7 `aout_SIZE_new_section_hook'
7945 ....................................
7948 bfd_boolean aout_SIZE_new_section_hook,
7952 Called by the BFD in response to a `bfd_make_section' request.
7955 File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends
7960 BFD supports a number of different flavours of coff format. The major
7961 differences between formats are the sizes and alignments of fields in
7962 structures on disk, and the occasional extra field.
7964 Coff in all its varieties is implemented with a few common files and
7965 a number of implementation specific files. For example, The 88k bcs
7966 coff format is implemented in the file `coff-m88k.c'. This file
7967 `#include's `coff/m88k.h' which defines the external structure of the
7968 coff format for the 88k, and `coff/internal.h' which defines the
7969 internal structure. `coff-m88k.c' also defines the relocations used by
7970 the 88k format *Note Relocations::.
7972 The Intel i960 processor version of coff is implemented in
7973 `coff-i960.c'. This file has the same structure as `coff-m88k.c',
7974 except that it includes `coff/i960.h' rather than `coff-m88k.h'.
7976 3.3.1 Porting to a new version of coff
7977 --------------------------------------
7979 The recommended method is to select from the existing implementations
7980 the version of coff which is most like the one you want to use. For
7981 example, we'll say that i386 coff is the one you select, and that your
7982 coff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy
7983 `../include/coff/i386.h' to `../include/coff/foo.h', and add the lines
7984 to `targets.c' and `Makefile.in' so that your new back end is used.
7985 Alter the shapes of the structures in `../include/coff/foo.h' so that
7986 they match what you need. You will probably also have to add `#ifdef's
7987 to the code in `coff/internal.h' and `coffcode.h' if your version of
7990 You can verify that your new BFD backend works quite simply by
7991 building `objdump' from the `binutils' directory, and making sure that
7992 its version of what's going on and your host system's idea (assuming it
7993 has the pretty standard coff dump utility, usually called `att-dump' or
7994 just `dump') are the same. Then clean up your code, and send what
7995 you've done to Cygnus. Then your stuff will be in the next release, and
7996 you won't have to keep integrating it.
7998 3.3.2 How the coff backend works
7999 --------------------------------
8004 The Coff backend is split into generic routines that are applicable to
8005 any Coff target and routines that are specific to a particular target.
8006 The target-specific routines are further split into ones which are
8007 basically the same for all Coff targets except that they use the
8008 external symbol format or use different values for certain constants.
8010 The generic routines are in `coffgen.c'. These routines work for
8011 any Coff target. They use some hooks into the target specific code;
8012 the hooks are in a `bfd_coff_backend_data' structure, one of which
8013 exists for each target.
8015 The essentially similar target-specific routines are in
8016 `coffcode.h'. This header file includes executable C code. The
8017 various Coff targets first include the appropriate Coff header file,
8018 make any special defines that are needed, and then include `coffcode.h'.
8020 Some of the Coff targets then also have additional routines in the
8021 target source file itself.
8023 For example, `coff-i960.c' includes `coff/internal.h' and
8024 `coff/i960.h'. It then defines a few constants, such as `I960', and
8025 includes `coffcode.h'. Since the i960 has complex relocation types,
8026 `coff-i960.c' also includes some code to manipulate the i960 relocs.
8027 This code is not in `coffcode.h' because it would not be used by any
8030 3.3.2.2 Bit twiddling
8031 .....................
8033 Each flavour of coff supported in BFD has its own header file
8034 describing the external layout of the structures. There is also an
8035 internal description of the coff layout, in `coff/internal.h'. A major
8036 function of the coff backend is swapping the bytes and twiddling the
8037 bits to translate the external form of the structures into the normal
8038 internal form. This is all performed in the `bfd_swap'_thing_direction
8039 routines. Some elements are different sizes between different versions
8040 of coff; it is the duty of the coff version specific include file to
8041 override the definitions of various packing routines in `coffcode.h'.
8042 E.g., the size of line number entry in coff is sometimes 16 bits, and
8043 sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO'
8044 will select the correct one. No doubt, some day someone will find a
8045 version of coff which has a varying field size not catered to at the
8046 moment. To port BFD, that person will have to add more `#defines'.
8047 Three of the bit twiddling routines are exported to `gdb';
8048 `coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB'
8049 reads the symbol table on its own, but uses BFD to fix things up. More
8050 of the bit twiddlers are exported for `gas'; `coff_swap_aux_out',
8051 `coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out',
8052 `coff_swap_filehdr_out', `coff_swap_aouthdr_out',
8053 `coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol
8054 table and reloc drudgery itself, thereby saving the internal BFD
8055 overhead, but uses BFD to swap things on the way out, making cross
8056 ports much safer. Doing so also allows BFD (and thus the linker) to
8057 use the same header files as `gas', which makes one avenue to disaster
8060 3.3.2.3 Symbol reading
8061 ......................
8063 The simple canonical form for symbols used by BFD is not rich enough to
8064 keep all the information available in a coff symbol table. The back end
8065 gets around this problem by keeping the original symbol table around,
8066 "behind the scenes".
8068 When a symbol table is requested (through a call to
8069 `bfd_canonicalize_symtab'), a request gets through to
8070 `coff_get_normalized_symtab'. This reads the symbol table from the coff
8071 file and swaps all the structures inside into the internal form. It
8072 also fixes up all the pointers in the table (represented in the file by
8073 offsets from the first symbol in the table) into physical pointers to
8074 elements in the new internal table. This involves some work since the
8075 meanings of fields change depending upon context: a field that is a
8076 pointer to another structure in the symbol table at one moment may be
8077 the size in bytes of a structure at the next. Another pass is made
8078 over the table. All symbols which mark file names (`C_FILE' symbols)
8079 are modified so that the internal string points to the value in the
8080 auxent (the real filename) rather than the normal text associated with
8081 the symbol (`".file"').
8083 At this time the symbol names are moved around. Coff stores all
8084 symbols less than nine characters long physically within the symbol
8085 table; longer strings are kept at the end of the file in the string
8086 table. This pass moves all strings into memory and replaces them with
8087 pointers to the strings.
8089 The symbol table is massaged once again, this time to create the
8090 canonical table used by the BFD application. Each symbol is inspected
8091 in turn, and a decision made (using the `sclass' field) about the
8092 various flags to set in the `asymbol'. *Note Symbols::. The generated
8093 canonical table shares strings with the hidden internal symbol table.
8095 Any linenumbers are read from the coff file too, and attached to the
8096 symbols which own the functions the linenumbers belong to.
8098 3.3.2.4 Symbol writing
8099 ......................
8101 Writing a symbol to a coff file which didn't come from a coff file will
8102 lose any debugging information. The `asymbol' structure remembers the
8103 BFD from which the symbol was taken, and on output the back end makes
8104 sure that the same destination target as source target is present.
8106 When the symbols have come from a coff file then all the debugging
8107 information is preserved.
8109 Symbol tables are provided for writing to the back end in a vector
8110 of pointers to pointers. This allows applications like the linker to
8111 accumulate and output large symbol tables without having to do too much
8114 This function runs through the provided symbol table and patches
8115 each symbol marked as a file place holder (`C_FILE') to point to the
8116 next file place holder in the list. It also marks each `offset' field
8117 in the list with the offset from the first symbol of the current symbol.
8119 Another function of this procedure is to turn the canonical value
8120 form of BFD into the form used by coff. Internally, BFD expects symbol
8121 values to be offsets from a section base; so a symbol physically at
8122 0x120, but in a section starting at 0x100, would have the value 0x20.
8123 Coff expects symbols to contain their final value, so symbols have
8124 their values changed at this point to reflect their sum with their
8125 owning section. This transformation uses the `output_section' field of
8126 the `asymbol''s `asection' *Note Sections::.
8128 * `coff_mangle_symbols'
8129 This routine runs though the provided symbol table and uses the
8130 offsets generated by the previous pass and the pointers generated when
8131 the symbol table was read in to create the structured hierarchy
8132 required by coff. It changes each pointer to a symbol into the index
8133 into the symbol table of the asymbol.
8135 * `coff_write_symbols'
8136 This routine runs through the symbol table and patches up the
8137 symbols from their internal form into the coff way, calls the bit
8138 twiddlers, and writes out the table to the file.
8140 3.3.2.5 `coff_symbol_type'
8141 ..........................
8144 The hidden information for an `asymbol' is described in a
8145 `combined_entry_type':
8148 typedef struct coff_ptr_struct
8150 /* Remembers the offset from the first symbol in the file for
8151 this symbol. Generated by coff_renumber_symbols. */
8152 unsigned int offset;
8154 /* Should the value of this symbol be renumbered. Used for
8155 XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */
8156 unsigned int fix_value : 1;
8158 /* Should the tag field of this symbol be renumbered.
8159 Created by coff_pointerize_aux. */
8160 unsigned int fix_tag : 1;
8162 /* Should the endidx field of this symbol be renumbered.
8163 Created by coff_pointerize_aux. */
8164 unsigned int fix_end : 1;
8166 /* Should the x_csect.x_scnlen field be renumbered.
8167 Created by coff_pointerize_aux. */
8168 unsigned int fix_scnlen : 1;
8170 /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
8171 index into the line number entries. Set by coff_slurp_symbol_table. */
8172 unsigned int fix_line : 1;
8174 /* The container for the symbol structure as read and translated
8178 union internal_auxent auxent;
8179 struct internal_syment syment;
8181 } combined_entry_type;
8184 /* Each canonical asymbol really looks like this: */
8186 typedef struct coff_symbol_struct
8188 /* The actual symbol which the rest of BFD works with */
8191 /* A pointer to the hidden information for this symbol */
8192 combined_entry_type *native;
8194 /* A pointer to the linenumber information for this symbol */
8195 struct lineno_cache_entry *lineno;
8197 /* Have the line numbers been relocated yet ? */
8198 bfd_boolean done_lineno;
8201 3.3.2.6 `bfd_coff_backend_data'
8202 ...............................
8204 /* COFF symbol classifications. */
8206 enum coff_symbol_classification
8208 /* Global symbol. */
8210 /* Common symbol. */
8212 /* Undefined symbol. */
8213 COFF_SYMBOL_UNDEFINED,
8216 /* PE section symbol. */
8217 COFF_SYMBOL_PE_SECTION
8219 Special entry points for gdb to swap in coff symbol table parts:
8222 void (*_bfd_coff_swap_aux_in)
8223 (bfd *, void *, int, int, int, int, void *);
8225 void (*_bfd_coff_swap_sym_in)
8226 (bfd *, void *, void *);
8228 void (*_bfd_coff_swap_lineno_in)
8229 (bfd *, void *, void *);
8231 unsigned int (*_bfd_coff_swap_aux_out)
8232 (bfd *, void *, int, int, int, int, void *);
8234 unsigned int (*_bfd_coff_swap_sym_out)
8235 (bfd *, void *, void *);
8237 unsigned int (*_bfd_coff_swap_lineno_out)
8238 (bfd *, void *, void *);
8240 unsigned int (*_bfd_coff_swap_reloc_out)
8241 (bfd *, void *, void *);
8243 unsigned int (*_bfd_coff_swap_filehdr_out)
8244 (bfd *, void *, void *);
8246 unsigned int (*_bfd_coff_swap_aouthdr_out)
8247 (bfd *, void *, void *);
8249 unsigned int (*_bfd_coff_swap_scnhdr_out)
8250 (bfd *, void *, void *);
8252 unsigned int _bfd_filhsz;
8253 unsigned int _bfd_aoutsz;
8254 unsigned int _bfd_scnhsz;
8255 unsigned int _bfd_symesz;
8256 unsigned int _bfd_auxesz;
8257 unsigned int _bfd_relsz;
8258 unsigned int _bfd_linesz;
8259 unsigned int _bfd_filnmlen;
8260 bfd_boolean _bfd_coff_long_filenames;
8261 bfd_boolean _bfd_coff_long_section_names;
8262 unsigned int _bfd_coff_default_section_alignment_power;
8263 bfd_boolean _bfd_coff_force_symnames_in_strings;
8264 unsigned int _bfd_coff_debug_string_prefix_length;
8266 void (*_bfd_coff_swap_filehdr_in)
8267 (bfd *, void *, void *);
8269 void (*_bfd_coff_swap_aouthdr_in)
8270 (bfd *, void *, void *);
8272 void (*_bfd_coff_swap_scnhdr_in)
8273 (bfd *, void *, void *);
8275 void (*_bfd_coff_swap_reloc_in)
8276 (bfd *abfd, void *, void *);
8278 bfd_boolean (*_bfd_coff_bad_format_hook)
8281 bfd_boolean (*_bfd_coff_set_arch_mach_hook)
8284 void * (*_bfd_coff_mkobject_hook)
8285 (bfd *, void *, void *);
8287 bfd_boolean (*_bfd_styp_to_sec_flags_hook)
8288 (bfd *, void *, const char *, asection *, flagword *);
8290 void (*_bfd_set_alignment_hook)
8291 (bfd *, asection *, void *);
8293 bfd_boolean (*_bfd_coff_slurp_symbol_table)
8296 bfd_boolean (*_bfd_coff_symname_in_debug)
8297 (bfd *, struct internal_syment *);
8299 bfd_boolean (*_bfd_coff_pointerize_aux_hook)
8300 (bfd *, combined_entry_type *, combined_entry_type *,
8301 unsigned int, combined_entry_type *);
8303 bfd_boolean (*_bfd_coff_print_aux)
8304 (bfd *, FILE *, combined_entry_type *, combined_entry_type *,
8305 combined_entry_type *, unsigned int);
8307 void (*_bfd_coff_reloc16_extra_cases)
8308 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
8309 bfd_byte *, unsigned int *, unsigned int *);
8311 int (*_bfd_coff_reloc16_estimate)
8312 (bfd *, asection *, arelent *, unsigned int,
8313 struct bfd_link_info *);
8315 enum coff_symbol_classification (*_bfd_coff_classify_symbol)
8316 (bfd *, struct internal_syment *);
8318 bfd_boolean (*_bfd_coff_compute_section_file_positions)
8321 bfd_boolean (*_bfd_coff_start_final_link)
8322 (bfd *, struct bfd_link_info *);
8324 bfd_boolean (*_bfd_coff_relocate_section)
8325 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8326 struct internal_reloc *, struct internal_syment *, asection **);
8328 reloc_howto_type *(*_bfd_coff_rtype_to_howto)
8329 (bfd *, asection *, struct internal_reloc *,
8330 struct coff_link_hash_entry *, struct internal_syment *,
8333 bfd_boolean (*_bfd_coff_adjust_symndx)
8334 (bfd *, struct bfd_link_info *, bfd *, asection *,
8335 struct internal_reloc *, bfd_boolean *);
8337 bfd_boolean (*_bfd_coff_link_add_one_symbol)
8338 (struct bfd_link_info *, bfd *, const char *, flagword,
8339 asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,
8340 struct bfd_link_hash_entry **);
8342 bfd_boolean (*_bfd_coff_link_output_has_begun)
8343 (bfd *, struct coff_final_link_info *);
8345 bfd_boolean (*_bfd_coff_final_link_postscript)
8346 (bfd *, struct coff_final_link_info *);
8348 bfd_boolean (*_bfd_coff_print_pdata)
8351 } bfd_coff_backend_data;
8353 #define coff_backend_info(abfd) \
8354 ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)
8356 #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
8357 ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))
8359 #define bfd_coff_swap_sym_in(a,e,i) \
8360 ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))
8362 #define bfd_coff_swap_lineno_in(a,e,i) \
8363 ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))
8365 #define bfd_coff_swap_reloc_out(abfd, i, o) \
8366 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))
8368 #define bfd_coff_swap_lineno_out(abfd, i, o) \
8369 ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))
8371 #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
8372 ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))
8374 #define bfd_coff_swap_sym_out(abfd, i,o) \
8375 ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))
8377 #define bfd_coff_swap_scnhdr_out(abfd, i,o) \
8378 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))
8380 #define bfd_coff_swap_filehdr_out(abfd, i,o) \
8381 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))
8383 #define bfd_coff_swap_aouthdr_out(abfd, i,o) \
8384 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))
8386 #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
8387 #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
8388 #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
8389 #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
8390 #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
8391 #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
8392 #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
8393 #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
8394 #define bfd_coff_long_filenames(abfd) \
8395 (coff_backend_info (abfd)->_bfd_coff_long_filenames)
8396 #define bfd_coff_long_section_names(abfd) \
8397 (coff_backend_info (abfd)->_bfd_coff_long_section_names)
8398 #define bfd_coff_default_section_alignment_power(abfd) \
8399 (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)
8400 #define bfd_coff_swap_filehdr_in(abfd, i,o) \
8401 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))
8403 #define bfd_coff_swap_aouthdr_in(abfd, i,o) \
8404 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))
8406 #define bfd_coff_swap_scnhdr_in(abfd, i,o) \
8407 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))
8409 #define bfd_coff_swap_reloc_in(abfd, i, o) \
8410 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))
8412 #define bfd_coff_bad_format_hook(abfd, filehdr) \
8413 ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))
8415 #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
8416 ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))
8417 #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
8418 ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
8419 (abfd, filehdr, aouthdr))
8421 #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
8422 ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
8423 (abfd, scnhdr, name, section, flags_ptr))
8425 #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
8426 ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))
8428 #define bfd_coff_slurp_symbol_table(abfd)\
8429 ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))
8431 #define bfd_coff_symname_in_debug(abfd, sym)\
8432 ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))
8434 #define bfd_coff_force_symnames_in_strings(abfd)\
8435 (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)
8437 #define bfd_coff_debug_string_prefix_length(abfd)\
8438 (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)
8440 #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
8441 ((coff_backend_info (abfd)->_bfd_coff_print_aux)\
8442 (abfd, file, base, symbol, aux, indaux))
8444 #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
8445 reloc, data, src_ptr, dst_ptr)\
8446 ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
8447 (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))
8449 #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
8450 ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
8451 (abfd, section, reloc, shrink, link_info))
8453 #define bfd_coff_classify_symbol(abfd, sym)\
8454 ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
8457 #define bfd_coff_compute_section_file_positions(abfd)\
8458 ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
8461 #define bfd_coff_start_final_link(obfd, info)\
8462 ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
8464 #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
8465 ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
8466 (obfd, info, ibfd, o, con, rel, isyms, secs))
8467 #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
8468 ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
8469 (abfd, sec, rel, h, sym, addendp))
8470 #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
8471 ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
8472 (obfd, info, ibfd, sec, rel, adjustedp))
8473 #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
8474 value, string, cp, coll, hashp)\
8475 ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
8476 (info, abfd, name, flags, section, value, string, cp, coll, hashp))
8478 #define bfd_coff_link_output_has_begun(a,p) \
8479 ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))
8480 #define bfd_coff_final_link_postscript(a,p) \
8481 ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))
8483 #define bfd_coff_have_print_pdata(a) \
8484 (coff_backend_info (a)->_bfd_coff_print_pdata)
8485 #define bfd_coff_print_pdata(a,p) \
8486 ((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p))
8488 3.3.2.7 Writing relocations
8489 ...........................
8491 To write relocations, the back end steps though the canonical
8492 relocation table and create an `internal_reloc'. The symbol index to
8493 use is removed from the `offset' field in the symbol table supplied.
8494 The address comes directly from the sum of the section base address and
8495 the relocation offset; the type is dug directly from the howto field.
8496 Then the `internal_reloc' is swapped into the shape of an
8497 `external_reloc' and written out to disk.
8499 3.3.2.8 Reading linenumbers
8500 ...........................
8502 Creating the linenumber table is done by reading in the entire coff
8503 linenumber table, and creating another table for internal use.
8505 A coff linenumber table is structured so that each function is
8506 marked as having a line number of 0. Each line within the function is
8507 an offset from the first line in the function. The base of the line
8508 number information for the table is stored in the symbol associated
8511 Note: The PE format uses line number 0 for a flag indicating a new
8514 The information is copied from the external to the internal table,
8515 and each symbol which marks a function is marked by pointing its...
8517 How does this work ?
8519 3.3.2.9 Reading relocations
8520 ...........................
8522 Coff relocations are easily transformed into the internal BFD form
8525 Reading a coff relocation table is done in the following stages:
8527 * Read the entire coff relocation table into memory.
8529 * Process each relocation in turn; first swap it from the external
8530 to the internal form.
8532 * Turn the symbol referenced in the relocation's symbol index into a
8533 pointer into the canonical symbol table. This table is the same
8534 as the one returned by a call to `bfd_canonicalize_symtab'. The
8535 back end will call that routine and save the result if a
8536 canonicalization hasn't been done.
8538 * The reloc index is turned into a pointer to a howto structure, in
8539 a back end specific way. For instance, the 386 and 960 use the
8540 `r_type' to directly produce an index into a howto table vector;
8541 the 88k subtracts a number from the `r_type' field and creates an
8545 File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends
8550 BFD support for ELF formats is being worked on. Currently, the best
8551 supported back ends are for sparc and i386 (running svr4 or Solaris 2).
8553 Documentation of the internals of the support code still needs to be
8554 written. The code is changing quickly enough that we haven't bothered
8557 3.4.0.1 `bfd_elf_find_section'
8558 ..............................
8561 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
8563 Helper functions for GDB to locate the string tables. Since BFD hides
8564 string tables from callers, GDB needs to use an internal hook to find
8565 them. Sun's .stabstr, in particular, isn't even pointed to by the
8566 .stab section, so ordinary mechanisms wouldn't work to find it, even if
8570 File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends
8575 The mmo object format is used exclusively together with Professor
8576 Donald E. Knuth's educational 64-bit processor MMIX. The simulator
8577 `mmix' which is available at
8578 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'
8579 understands this format. That package also includes a combined
8580 assembler and linker called `mmixal'. The mmo format has no advantages
8581 feature-wise compared to e.g. ELF. It is a simple non-relocatable
8582 object format with no support for archives or debugging information,
8583 except for symbol value information and line numbers (which is not yet
8584 implemented in BFD). See
8585 `http://www-cs-faculty.stanford.edu/~knuth/mmix.html' for more
8586 information about MMIX. The ELF format is used for intermediate object
8587 files in the BFD implementation.
8593 * mmo section mapping::
8596 File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo
8601 The mmo file contents is not partitioned into named sections as with
8602 e.g. ELF. Memory areas is formed by specifying the location of the
8603 data that follows. Only the memory area `0x0000...00' to `0x01ff...ff'
8604 is executable, so it is used for code (and constants) and the area
8605 `0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo
8608 There is provision for specifying "special data" of 65536 different
8609 types. We use type 80 (decimal), arbitrarily chosen the same as the
8610 ELF `e_machine' number for MMIX, filling it with section information
8611 normally found in ELF objects. *Note mmo section mapping::.
8613 Contents is entered as 32-bit words, xor:ed over previous contents,
8614 always zero-initialized. A word that starts with the byte `0x98' forms
8615 a command called a `lopcode', where the next byte distinguished between
8616 the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z'
8617 fields, or the `YZ' field (a 16-bit big-endian number), are used for
8618 various purposes different for each lopcode. As documented in
8619 `http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz', the
8623 0x98000001. The next word is contents, regardless of whether it
8624 starts with 0x98 or not.
8627 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive,
8628 setting the location for the next data to the next 32-bit word
8629 (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally
8630 `Y' is 0 for the text segment and 2 for the data segment.
8633 0x9802YYZZ. Increase the current location by `YZ' bytes.
8636 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64
8637 bits into the location pointed to by the next 32-bit (Z = 1) or
8638 64-bit (Z = 2) word, plus Y * 2^56.
8641 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 *
8645 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the
8646 following 32-bit word are used in a manner similar to `YZ' in
8647 lop_fixr: it is xor:ed into the current location minus 4 * L. The
8648 first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24
8649 BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD).
8652 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words.
8653 Set the file number to `Y' and the line counter to 0. The next Z
8654 * 4 bytes contain the file name, padded with zeros if the count is
8655 not a multiple of four. The same `Y' may occur multiple times,
8656 but `Z' must be 0 for all but the first occurrence.
8659 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it
8660 forms the source location for the next 32-bit word. Note that for
8661 each non-lopcode 32-bit word, line numbers are assumed incremented
8665 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode
8666 other than lop_quote forms special data of type `YZ'. *Note mmo
8669 Other types than 80, (or type 80 with a content that does not
8670 parse) is stored in sections named `.MMIX.spec_data.N' where N is
8671 the `YZ'-type. The flags for such a sections say not to allocate
8672 or load the data. The vma is 0. Contents of multiple occurrences
8673 of special data N is concatenated to the data of the previous
8674 lop_spec Ns. The location in data or code at which the lop_spec
8678 0x980901ZZ. The first lopcode in a file. The `Z' field forms the
8679 length of header information in 32-bit words, where the first word
8680 tells the time in seconds since `00:00:00 GMT Jan 1 1970'.
8683 0x980a00ZZ. Z > 32. This lopcode follows after all
8684 content-generating lopcodes in a program. The `Z' field denotes
8685 the value of `rG' at the beginning of the program. The following
8686 256 - Z big-endian 64-bit words are loaded into global registers
8690 0x980b0000. The next-to-last lopcode in a program. Must follow
8691 immediately after the lop_post lopcode and its data. After this
8692 lopcode follows all symbols in a compressed format (*note
8696 0x980cYYZZ. The last lopcode in a program. It must follow the
8697 lop_stab lopcode and its data. The `YZ' field contains the number
8698 of 32-bit words of symbol table information after the preceding
8701 Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and
8702 `lop_fixo' are not generated by BFD, but are handled. They are
8703 generated by `mmixal'.
8705 This trivial one-label, one-instruction file:
8709 can be represented this way in mmo:
8711 0x98090101 - lop_pre, one 32-bit word with timestamp.
8713 0x98010002 - lop_loc, text segment, using a 64-bit address.
8714 Note that mmixal does not emit this for the file above.
8715 0x00000000 - Address, high 32 bits.
8716 0x00000000 - Address, low 32 bits.
8717 0x98060002 - lop_file, 2 32-bit words for file-name.
8719 0x2e730000 - ".s\0\0"
8720 0x98070001 - lop_line, line 1.
8721 0x00010203 - TRAP 1,2,3
8722 0x980a00ff - lop_post, setting $255 to 0.
8725 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8726 0x203a4040 *Note Symbol-table::.
8731 0x980c0005 - lop_end; symbol table contained five 32-bit words.
8734 File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo
8736 3.5.2 Symbol table format
8737 -------------------------
8739 From mmixal.w (or really, the generated mmixal.tex) in
8740 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'):
8741 "Symbols are stored and retrieved by means of a `ternary search trie',
8742 following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on
8743 Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C'
8744 (Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores
8745 a character, and there are branches to subtries for the cases where a
8746 given character is less than, equal to, or greater than the character
8747 in the trie. There also is a pointer to a symbol table entry if a
8748 symbol ends at the current node."
8750 So it's a tree encoded as a stream of bytes. The stream of bytes
8751 acts on a single virtual global symbol, adding and removing characters
8752 and signalling complete symbol points. Here, we read the stream and
8753 create symbols at the completion points.
8755 First, there's a control byte `m'. If any of the listed bits in `m'
8756 is nonzero, we execute what stands at the right, in the listed order:
8759 0x40 - Traverse left trie.
8760 (Read a new command byte and recurse.)
8763 0x2f - Read the next byte as a character and store it in the
8764 current character position; increment character position.
8765 Test the bits of `m':
8768 0x80 - The character is 16-bit (so read another byte,
8769 merge into current character.
8772 0xf - We have a complete symbol; parse the type, value
8773 and serial number and do what should be done
8774 with a symbol. The type and length information
8775 is in j = (m & 0xf).
8778 j == 0xf: A register variable. The following
8779 byte tells which register.
8780 j <= 8: An absolute symbol. Read j bytes as the
8781 big-endian number the symbol equals.
8782 A j = 2 with two zero bytes denotes an
8784 j > 8: As with j <= 8, but add (0x20 << 56)
8785 to the value in the following j - 8
8788 Then comes the serial number, as a variant of
8789 uleb128, but better named ubeb128:
8790 Read bytes and shift the previous value left 7
8791 (multiply by 128). Add in the new byte, repeat
8792 until a byte has bit 7 set. The serial number
8793 is the computed value minus 128.
8796 0x20 - Traverse middle trie. (Read a new command byte
8797 and recurse.) Decrement character position.
8800 0x10 - Traverse right trie. (Read a new command byte and
8803 Let's look again at the `lop_stab' for the trivial file (*note File
8806 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
8813 This forms the trivial trie (note that the path between ":" and "M"
8825 016e "n" is the last character in a full symbol, and
8826 with a value represented in one byte.
8828 81 The serial number is 1.
8831 File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo
8833 3.5.3 mmo section mapping
8834 -------------------------
8836 The implementation in BFD uses special data type 80 (decimal) to
8837 encapsulate and describe named sections, containing e.g. debug
8838 information. If needed, any datum in the encapsulation will be quoted
8839 using lop_quote. First comes a 32-bit word holding the number of
8840 32-bit words containing the zero-terminated zero-padded segment name.
8841 After the name there's a 32-bit word holding flags describing the
8842 section type. Then comes a 64-bit big-endian word with the section
8843 length (in bytes), then another with the section start address.
8844 Depending on the type of section, the contents might follow,
8845 zero-padded to 32-bit boundary. For a loadable section (such as data
8846 or code), the contents might follow at some later point, not
8847 necessarily immediately, as a lop_loc with the same start address as in
8848 the section description, followed by the contents. This in effect
8849 forms a descriptor that must be emitted before the actual contents.
8850 Sections described this way must not overlap.
8852 For areas that don't have such descriptors, synthetic sections are
8853 formed by BFD. Consecutive contents in the two memory areas
8854 `0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are
8855 entered in sections named `.text' and `.data' respectively. If an area
8856 is not otherwise described, but would together with a neighboring lower
8857 area be less than `0x40000000' bytes long, it is joined with the lower
8858 area and the gap is zero-filled. For other cases, a new section is
8859 formed, named `.MMIX.sec.N'. Here, N is a number, a running count
8860 through the mmo file, starting at 0.
8862 A loadable section specified as:
8864 .section secname,"ax"
8865 TETRA 1,2,3,4,-1,-2009
8868 and linked to address `0x4', is represented by the sequence:
8870 0x98080050 - lop_spec 80
8871 0x00000002 - two 32-bit words for the section name
8873 0x616d6500 - "ame\0"
8874 0x00000033 - flags CODE, READONLY, LOAD, ALLOC
8875 0x00000000 - high 32 bits of section length
8876 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
8877 0x00000000 - high 32 bits of section address
8878 0x00000004 - section address is 4
8879 0x98010002 - 64 bits with address of following data
8880 0x00000000 - high 32 bits of address
8881 0x00000004 - low 32 bits: data starts at address 4
8888 0x50000000 - 80 as a byte, padded with zeros.
8890 Note that the lop_spec wrapping does not include the section
8891 contents. Compare this to a non-loaded section specified as:
8897 This, when linked to address `0x200000000000001c', is represented by:
8899 0x98080050 - lop_spec 80
8900 0x00000002 - two 32-bit words for the section name
8903 0x00000010 - flag READONLY
8904 0x00000000 - high 32 bits of section length
8905 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
8906 0x20000000 - high 32 bits of address
8907 0x0000001c - low 32 bits of address 0x200000000000001c
8910 0x26280000 - 38, 40 as bytes, padded with zeros
8912 For the latter example, the section contents must not be loaded in
8913 memory, and is therefore specified as part of the special data. The
8914 address is usually unimportant but might provide information for e.g.
8915 the DWARF 2 debugging format.
8918 File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: Top
8920 Appendix A GNU Free Documentation License
8921 *****************************************
8923 Version 1.1, March 2000
8925 Copyright (C) 2000, 2003 Free Software Foundation, Inc.
8926 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
8928 Everyone is permitted to copy and distribute verbatim copies
8929 of this license document, but changing it is not allowed.
8934 The purpose of this License is to make a manual, textbook, or other
8935 written document "free" in the sense of freedom: to assure everyone
8936 the effective freedom to copy and redistribute it, with or without
8937 modifying it, either commercially or noncommercially. Secondarily,
8938 this License preserves for the author and publisher a way to get
8939 credit for their work, while not being considered responsible for
8940 modifications made by others.
8942 This License is a kind of "copyleft", which means that derivative
8943 works of the document must themselves be free in the same sense.
8944 It complements the GNU General Public License, which is a copyleft
8945 license designed for free software.
8947 We have designed this License in order to use it for manuals for
8948 free software, because free software needs free documentation: a
8949 free program should come with manuals providing the same freedoms
8950 that the software does. But this License is not limited to
8951 software manuals; it can be used for any textual work, regardless
8952 of subject matter or whether it is published as a printed book.
8953 We recommend this License principally for works whose purpose is
8954 instruction or reference.
8957 1. APPLICABILITY AND DEFINITIONS
8959 This License applies to any manual or other work that contains a
8960 notice placed by the copyright holder saying it can be distributed
8961 under the terms of this License. The "Document", below, refers to
8962 any such manual or work. Any member of the public is a licensee,
8963 and is addressed as "you."
8965 A "Modified Version" of the Document means any work containing the
8966 Document or a portion of it, either copied verbatim, or with
8967 modifications and/or translated into another language.
8969 A "Secondary Section" is a named appendix or a front-matter
8970 section of the Document that deals exclusively with the
8971 relationship of the publishers or authors of the Document to the
8972 Document's overall subject (or to related matters) and contains
8973 nothing that could fall directly within that overall subject.
8974 (For example, if the Document is in part a textbook of
8975 mathematics, a Secondary Section may not explain any mathematics.)
8976 The relationship could be a matter of historical connection with
8977 the subject or with related matters, or of legal, commercial,
8978 philosophical, ethical or political position regarding them.
8980 The "Invariant Sections" are certain Secondary Sections whose
8981 titles are designated, as being those of Invariant Sections, in
8982 the notice that says that the Document is released under this
8985 The "Cover Texts" are certain short passages of text that are
8986 listed, as Front-Cover Texts or Back-Cover Texts, in the notice
8987 that says that the Document is released under this License.
8989 A "Transparent" copy of the Document means a machine-readable copy,
8990 represented in a format whose specification is available to the
8991 general public, whose contents can be viewed and edited directly
8992 and straightforwardly with generic text editors or (for images
8993 composed of pixels) generic paint programs or (for drawings) some
8994 widely available drawing editor, and that is suitable for input to
8995 text formatters or for automatic translation to a variety of
8996 formats suitable for input to text formatters. A copy made in an
8997 otherwise Transparent file format whose markup has been designed
8998 to thwart or discourage subsequent modification by readers is not
8999 Transparent. A copy that is not "Transparent" is called "Opaque."
9001 Examples of suitable formats for Transparent copies include plain
9002 ASCII without markup, Texinfo input format, LaTeX input format,
9003 SGML or XML using a publicly available DTD, and
9004 standard-conforming simple HTML designed for human modification.
9005 Opaque formats include PostScript, PDF, proprietary formats that
9006 can be read and edited only by proprietary word processors, SGML
9007 or XML for which the DTD and/or processing tools are not generally
9008 available, and the machine-generated HTML produced by some word
9009 processors for output purposes only.
9011 The "Title Page" means, for a printed book, the title page itself,
9012 plus such following pages as are needed to hold, legibly, the
9013 material this License requires to appear in the title page. For
9014 works in formats which do not have any title page as such, "Title
9015 Page" means the text near the most prominent appearance of the
9016 work's title, preceding the beginning of the body of the text.
9020 You may copy and distribute the Document in any medium, either
9021 commercially or noncommercially, provided that this License, the
9022 copyright notices, and the license notice saying this License
9023 applies to the Document are reproduced in all copies, and that you
9024 add no other conditions whatsoever to those of this License. You
9025 may not use technical measures to obstruct or control the reading
9026 or further copying of the copies you make or distribute. However,
9027 you may accept compensation in exchange for copies. If you
9028 distribute a large enough number of copies you must also follow
9029 the conditions in section 3.
9031 You may also lend copies, under the same conditions stated above,
9032 and you may publicly display copies.
9034 3. COPYING IN QUANTITY
9036 If you publish printed copies of the Document numbering more than
9037 100, and the Document's license notice requires Cover Texts, you
9038 must enclose the copies in covers that carry, clearly and legibly,
9039 all these Cover Texts: Front-Cover Texts on the front cover, and
9040 Back-Cover Texts on the back cover. Both covers must also clearly
9041 and legibly identify you as the publisher of these copies. The
9042 front cover must present the full title with all words of the
9043 title equally prominent and visible. You may add other material
9044 on the covers in addition. Copying with changes limited to the
9045 covers, as long as they preserve the title of the Document and
9046 satisfy these conditions, can be treated as verbatim copying in
9049 If the required texts for either cover are too voluminous to fit
9050 legibly, you should put the first ones listed (as many as fit
9051 reasonably) on the actual cover, and continue the rest onto
9054 If you publish or distribute Opaque copies of the Document
9055 numbering more than 100, you must either include a
9056 machine-readable Transparent copy along with each Opaque copy, or
9057 state in or with each Opaque copy a publicly-accessible
9058 computer-network location containing a complete Transparent copy
9059 of the Document, free of added material, which the general
9060 network-using public has access to download anonymously at no
9061 charge using public-standard network protocols. If you use the
9062 latter option, you must take reasonably prudent steps, when you
9063 begin distribution of Opaque copies in quantity, to ensure that
9064 this Transparent copy will remain thus accessible at the stated
9065 location until at least one year after the last time you
9066 distribute an Opaque copy (directly or through your agents or
9067 retailers) of that edition to the public.
9069 It is requested, but not required, that you contact the authors of
9070 the Document well before redistributing any large number of
9071 copies, to give them a chance to provide you with an updated
9072 version of the Document.
9076 You may copy and distribute a Modified Version of the Document
9077 under the conditions of sections 2 and 3 above, provided that you
9078 release the Modified Version under precisely this License, with
9079 the Modified Version filling the role of the Document, thus
9080 licensing distribution and modification of the Modified Version to
9081 whoever possesses a copy of it. In addition, you must do these
9082 things in the Modified Version:
9084 A. Use in the Title Page (and on the covers, if any) a title
9085 distinct from that of the Document, and from those of previous
9086 versions (which should, if there were any, be listed in the
9087 History section of the Document). You may use the same title
9088 as a previous version if the original publisher of that version
9090 B. List on the Title Page, as authors, one or more persons or
9091 entities responsible for authorship of the modifications in the
9092 Modified Version, together with at least five of the principal
9093 authors of the Document (all of its principal authors, if it
9094 has less than five).
9095 C. State on the Title page the name of the publisher of the
9096 Modified Version, as the publisher.
9097 D. Preserve all the copyright notices of the Document.
9098 E. Add an appropriate copyright notice for your modifications
9099 adjacent to the other copyright notices.
9100 F. Include, immediately after the copyright notices, a license
9101 notice giving the public permission to use the Modified Version
9102 under the terms of this License, in the form shown in the
9104 G. Preserve in that license notice the full lists of Invariant
9105 Sections and required Cover Texts given in the Document's
9107 H. Include an unaltered copy of this License.
9108 I. Preserve the section entitled "History", and its title, and add
9109 to it an item stating at least the title, year, new authors, and
9110 publisher of the Modified Version as given on the Title Page.
9111 If there is no section entitled "History" in the Document,
9112 create one stating the title, year, authors, and publisher of
9113 the Document as given on its Title Page, then add an item
9114 describing the Modified Version as stated in the previous
9116 J. Preserve the network location, if any, given in the Document for
9117 public access to a Transparent copy of the Document, and
9118 likewise the network locations given in the Document for
9119 previous versions it was based on. These may be placed in the
9120 "History" section. You may omit a network location for a work
9121 that was published at least four years before the Document
9122 itself, or if the original publisher of the version it refers
9123 to gives permission.
9124 K. In any section entitled "Acknowledgements" or "Dedications",
9125 preserve the section's title, and preserve in the section all the
9126 substance and tone of each of the contributor acknowledgements
9127 and/or dedications given therein.
9128 L. Preserve all the Invariant Sections of the Document,
9129 unaltered in their text and in their titles. Section numbers
9130 or the equivalent are not considered part of the section titles.
9131 M. Delete any section entitled "Endorsements." Such a section
9132 may not be included in the Modified Version.
9133 N. Do not retitle any existing section as "Endorsements" or to
9134 conflict in title with any Invariant Section.
9136 If the Modified Version includes new front-matter sections or
9137 appendices that qualify as Secondary Sections and contain no
9138 material copied from the Document, you may at your option
9139 designate some or all of these sections as invariant. To do this,
9140 add their titles to the list of Invariant Sections in the Modified
9141 Version's license notice. These titles must be distinct from any
9142 other section titles.
9144 You may add a section entitled "Endorsements", provided it contains
9145 nothing but endorsements of your Modified Version by various
9146 parties-for example, statements of peer review or that the text has
9147 been approved by an organization as the authoritative definition
9150 You may add a passage of up to five words as a Front-Cover Text,
9151 and a passage of up to 25 words as a Back-Cover Text, to the end
9152 of the list of Cover Texts in the Modified Version. Only one
9153 passage of Front-Cover Text and one of Back-Cover Text may be
9154 added by (or through arrangements made by) any one entity. If the
9155 Document already includes a cover text for the same cover,
9156 previously added by you or by arrangement made by the same entity
9157 you are acting on behalf of, you may not add another; but you may
9158 replace the old one, on explicit permission from the previous
9159 publisher that added the old one.
9161 The author(s) and publisher(s) of the Document do not by this
9162 License give permission to use their names for publicity for or to
9163 assert or imply endorsement of any Modified Version.
9165 5. COMBINING DOCUMENTS
9167 You may combine the Document with other documents released under
9168 this License, under the terms defined in section 4 above for
9169 modified versions, provided that you include in the combination
9170 all of the Invariant Sections of all of the original documents,
9171 unmodified, and list them all as Invariant Sections of your
9172 combined work in its license notice.
9174 The combined work need only contain one copy of this License, and
9175 multiple identical Invariant Sections may be replaced with a single
9176 copy. If there are multiple Invariant Sections with the same name
9177 but different contents, make the title of each such section unique
9178 by adding at the end of it, in parentheses, the name of the
9179 original author or publisher of that section if known, or else a
9180 unique number. Make the same adjustment to the section titles in
9181 the list of Invariant Sections in the license notice of the
9184 In the combination, you must combine any sections entitled
9185 "History" in the various original documents, forming one section
9186 entitled "History"; likewise combine any sections entitled
9187 "Acknowledgements", and any sections entitled "Dedications." You
9188 must delete all sections entitled "Endorsements."
9190 6. COLLECTIONS OF DOCUMENTS
9192 You may make a collection consisting of the Document and other
9193 documents released under this License, and replace the individual
9194 copies of this License in the various documents with a single copy
9195 that is included in the collection, provided that you follow the
9196 rules of this License for verbatim copying of each of the
9197 documents in all other respects.
9199 You may extract a single document from such a collection, and
9200 distribute it individually under this License, provided you insert
9201 a copy of this License into the extracted document, and follow
9202 this License in all other respects regarding verbatim copying of
9205 7. AGGREGATION WITH INDEPENDENT WORKS
9207 A compilation of the Document or its derivatives with other
9208 separate and independent documents or works, in or on a volume of
9209 a storage or distribution medium, does not as a whole count as a
9210 Modified Version of the Document, provided no compilation
9211 copyright is claimed for the compilation. Such a compilation is
9212 called an "aggregate", and this License does not apply to the
9213 other self-contained works thus compiled with the Document, on
9214 account of their being thus compiled, if they are not themselves
9215 derivative works of the Document.
9217 If the Cover Text requirement of section 3 is applicable to these
9218 copies of the Document, then if the Document is less than one
9219 quarter of the entire aggregate, the Document's Cover Texts may be
9220 placed on covers that surround only the Document within the
9221 aggregate. Otherwise they must appear on covers around the whole
9226 Translation is considered a kind of modification, so you may
9227 distribute translations of the Document under the terms of section
9228 4. Replacing Invariant Sections with translations requires special
9229 permission from their copyright holders, but you may include
9230 translations of some or all Invariant Sections in addition to the
9231 original versions of these Invariant Sections. You may include a
9232 translation of this License provided that you also include the
9233 original English version of this License. In case of a
9234 disagreement between the translation and the original English
9235 version of this License, the original English version will prevail.
9239 You may not copy, modify, sublicense, or distribute the Document
9240 except as expressly provided for under this License. Any other
9241 attempt to copy, modify, sublicense or distribute the Document is
9242 void, and will automatically terminate your rights under this
9243 License. However, parties who have received copies, or rights,
9244 from you under this License will not have their licenses
9245 terminated so long as such parties remain in full compliance.
9247 10. FUTURE REVISIONS OF THIS LICENSE
9249 The Free Software Foundation may publish new, revised versions of
9250 the GNU Free Documentation License from time to time. Such new
9251 versions will be similar in spirit to the present version, but may
9252 differ in detail to address new problems or concerns. See
9253 http://www.gnu.org/copyleft/.
9255 Each version of the License is given a distinguishing version
9256 number. If the Document specifies that a particular numbered
9257 version of this License "or any later version" applies to it, you
9258 have the option of following the terms and conditions either of
9259 that specified version or of any later version that has been
9260 published (not as a draft) by the Free Software Foundation. If
9261 the Document does not specify a version number of this License,
9262 you may choose any version ever published (not as a draft) by the
9263 Free Software Foundation.
9266 ADDENDUM: How to use this License for your documents
9267 ====================================================
9269 To use this License in a document you have written, include a copy of
9270 the License in the document and put the following copyright and license
9271 notices just after the title page:
9273 Copyright (C) YEAR YOUR NAME.
9274 Permission is granted to copy, distribute and/or modify this document
9275 under the terms of the GNU Free Documentation License, Version 1.1
9276 or any later version published by the Free Software Foundation;
9277 with the Invariant Sections being LIST THEIR TITLES, with the
9278 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
9279 A copy of the license is included in the section entitled "GNU
9280 Free Documentation License."
9282 If you have no Invariant Sections, write "with no Invariant Sections"
9283 instead of saying which ones are invariant. If you have no Front-Cover
9284 Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
9285 LIST"; likewise for Back-Cover Texts.
9287 If your document contains nontrivial examples of program code, we
9288 recommend releasing these examples in parallel under your choice of
9289 free software license, such as the GNU General Public License, to
9290 permit their use in free software.
9293 File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: Top
9301 * _bfd_final_link_relocate: Relocating the section contents.
9303 * _bfd_generic_link_add_archive_symbols: Adding symbols from an archive.
9305 * _bfd_generic_link_add_one_symbol: Adding symbols from an object file.
9307 * _bfd_generic_make_empty_symbol: symbol handling functions.
9309 * _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table.
9311 * _bfd_link_final_link in target vector: Performing the Final Link.
9313 * _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table.
9315 * _bfd_relocate_contents: Relocating the section contents.
9317 * aout_SIZE_machine_type: aout. (line 147)
9318 * aout_SIZE_mkobject: aout. (line 139)
9319 * aout_SIZE_new_section_hook: aout. (line 177)
9320 * aout_SIZE_set_arch_mach: aout. (line 164)
9321 * aout_SIZE_some_aout_object_p: aout. (line 125)
9322 * aout_SIZE_swap_exec_header_in: aout. (line 101)
9323 * aout_SIZE_swap_exec_header_out: aout. (line 113)
9324 * arelent_chain: typedef arelent. (line 339)
9325 * BFD: Overview. (line 6)
9326 * BFD canonical format: Canonical format. (line 11)
9327 * bfd_alloc: Opening and Closing.
9329 * bfd_alloc2: Opening and Closing.
9331 * bfd_alt_mach_code: BFD front end. (line 681)
9332 * bfd_arch_bits_per_address: Architectures. (line 501)
9333 * bfd_arch_bits_per_byte: Architectures. (line 493)
9334 * bfd_arch_get_compatible: Architectures. (line 436)
9335 * bfd_arch_list: Architectures. (line 427)
9336 * bfd_arch_mach_octets_per_byte: Architectures. (line 570)
9337 * BFD_ARELOC_BFIN_ADD: howto manager. (line 966)
9338 * BFD_ARELOC_BFIN_ADDR: howto manager. (line 1017)
9339 * BFD_ARELOC_BFIN_AND: howto manager. (line 987)
9340 * BFD_ARELOC_BFIN_COMP: howto manager. (line 1008)
9341 * BFD_ARELOC_BFIN_CONST: howto manager. (line 963)
9342 * BFD_ARELOC_BFIN_DIV: howto manager. (line 975)
9343 * BFD_ARELOC_BFIN_HWPAGE: howto manager. (line 1014)
9344 * BFD_ARELOC_BFIN_LAND: howto manager. (line 996)
9345 * BFD_ARELOC_BFIN_LEN: howto manager. (line 1002)
9346 * BFD_ARELOC_BFIN_LOR: howto manager. (line 999)
9347 * BFD_ARELOC_BFIN_LSHIFT: howto manager. (line 981)
9348 * BFD_ARELOC_BFIN_MOD: howto manager. (line 978)
9349 * BFD_ARELOC_BFIN_MULT: howto manager. (line 972)
9350 * BFD_ARELOC_BFIN_NEG: howto manager. (line 1005)
9351 * BFD_ARELOC_BFIN_OR: howto manager. (line 990)
9352 * BFD_ARELOC_BFIN_PAGE: howto manager. (line 1011)
9353 * BFD_ARELOC_BFIN_PUSH: howto manager. (line 960)
9354 * BFD_ARELOC_BFIN_RSHIFT: howto manager. (line 984)
9355 * BFD_ARELOC_BFIN_SUB: howto manager. (line 969)
9356 * BFD_ARELOC_BFIN_XOR: howto manager. (line 993)
9357 * bfd_cache_close: File Caching. (line 26)
9358 * bfd_cache_close_all: File Caching. (line 39)
9359 * bfd_cache_init: File Caching. (line 18)
9360 * bfd_calc_gnu_debuglink_crc32: Opening and Closing.
9362 * bfd_canonicalize_reloc: BFD front end. (line 400)
9363 * bfd_canonicalize_symtab: symbol handling functions.
9365 * bfd_check_format: Formats. (line 21)
9366 * bfd_check_format_matches: Formats. (line 52)
9367 * bfd_check_overflow: typedef arelent. (line 351)
9368 * bfd_close: Opening and Closing.
9370 * bfd_close_all_done: Opening and Closing.
9372 * bfd_coff_backend_data: coff. (line 246)
9373 * bfd_copy_private_bfd_data: BFD front end. (line 539)
9374 * bfd_copy_private_header_data: BFD front end. (line 521)
9375 * bfd_copy_private_section_data: section prototypes. (line 255)
9376 * bfd_copy_private_symbol_data: symbol handling functions.
9378 * bfd_core_file_failing_command: Core Files. (line 12)
9379 * bfd_core_file_failing_signal: Core Files. (line 21)
9380 * bfd_create: Opening and Closing.
9382 * bfd_create_gnu_debuglink_section: Opening and Closing.
9384 * bfd_decode_symclass: symbol handling functions.
9386 * bfd_default_arch_struct: Architectures. (line 448)
9387 * bfd_default_compatible: Architectures. (line 510)
9388 * bfd_default_reloc_type_lookup: howto manager. (line 2115)
9389 * bfd_default_scan: Architectures. (line 519)
9390 * bfd_default_set_arch_mach: Architectures. (line 466)
9391 * bfd_demangle: BFD front end. (line 779)
9392 * bfd_elf_find_section: elf. (line 13)
9393 * bfd_emul_get_commonpagesize: BFD front end. (line 759)
9394 * bfd_emul_get_maxpagesize: BFD front end. (line 739)
9395 * bfd_emul_set_commonpagesize: BFD front end. (line 770)
9396 * bfd_emul_set_maxpagesize: BFD front end. (line 750)
9397 * bfd_errmsg: BFD front end. (line 325)
9398 * bfd_fdopenr: Opening and Closing.
9400 * bfd_fill_in_gnu_debuglink_section: Opening and Closing.
9402 * bfd_find_target: bfd_target. (line 439)
9403 * bfd_follow_gnu_debuglink: Opening and Closing.
9405 * bfd_fopen: Opening and Closing.
9407 * bfd_format_string: Formats. (line 79)
9408 * bfd_generic_discard_group: section prototypes. (line 281)
9409 * bfd_generic_gc_sections: howto manager. (line 2146)
9410 * bfd_generic_get_relocated_section_contents: howto manager. (line 2166)
9411 * bfd_generic_is_group_section: section prototypes. (line 273)
9412 * bfd_generic_merge_sections: howto manager. (line 2156)
9413 * bfd_generic_relax_section: howto manager. (line 2133)
9414 * bfd_get_arch: Architectures. (line 477)
9415 * bfd_get_arch_info: Architectures. (line 529)
9416 * bfd_get_arch_size: BFD front end. (line 444)
9417 * bfd_get_error: BFD front end. (line 306)
9418 * bfd_get_error_handler: BFD front end. (line 376)
9419 * bfd_get_gp_size: BFD front end. (line 485)
9420 * bfd_get_mach: Architectures. (line 485)
9421 * bfd_get_mtime: BFD front end. (line 820)
9422 * bfd_get_next_mapent: Archives. (line 52)
9423 * bfd_get_reloc_code_name: howto manager. (line 2124)
9424 * bfd_get_reloc_size: typedef arelent. (line 330)
9425 * bfd_get_reloc_upper_bound: BFD front end. (line 390)
9426 * bfd_get_section_by_name: section prototypes. (line 17)
9427 * bfd_get_section_by_name_if: section prototypes. (line 31)
9428 * bfd_get_section_contents: section prototypes. (line 228)
9429 * bfd_get_sign_extend_vma: BFD front end. (line 457)
9430 * bfd_get_size <1>: Internal. (line 25)
9431 * bfd_get_size: BFD front end. (line 829)
9432 * bfd_get_symtab_upper_bound: symbol handling functions.
9434 * bfd_get_unique_section_name: section prototypes. (line 50)
9435 * bfd_h_put_size: Internal. (line 97)
9436 * bfd_hash_allocate: Creating and Freeing a Hash Table.
9438 * bfd_hash_lookup: Looking Up or Entering a String.
9440 * bfd_hash_newfunc: Creating and Freeing a Hash Table.
9442 * bfd_hash_set_default_size: Creating and Freeing a Hash Table.
9444 * bfd_hash_table_free: Creating and Freeing a Hash Table.
9446 * bfd_hash_table_init: Creating and Freeing a Hash Table.
9448 * bfd_hash_table_init_n: Creating and Freeing a Hash Table.
9450 * bfd_hash_traverse: Traversing a Hash Table.
9452 * bfd_init: Initialization. (line 11)
9453 * bfd_install_relocation: typedef arelent. (line 392)
9454 * bfd_is_local_label: symbol handling functions.
9456 * bfd_is_local_label_name: symbol handling functions.
9458 * bfd_is_target_special_symbol: symbol handling functions.
9460 * bfd_is_undefined_symclass: symbol handling functions.
9462 * bfd_link_split_section: Writing the symbol table.
9464 * bfd_log2: Internal. (line 164)
9465 * bfd_lookup_arch: Architectures. (line 537)
9466 * bfd_make_debug_symbol: symbol handling functions.
9468 * bfd_make_empty_symbol: symbol handling functions.
9470 * bfd_make_readable: Opening and Closing.
9472 * bfd_make_section: section prototypes. (line 129)
9473 * bfd_make_section_anyway: section prototypes. (line 100)
9474 * bfd_make_section_anyway_with_flags: section prototypes. (line 82)
9475 * bfd_make_section_old_way: section prototypes. (line 62)
9476 * bfd_make_section_with_flags: section prototypes. (line 116)
9477 * bfd_make_writable: Opening and Closing.
9479 * bfd_malloc_and_get_section: section prototypes. (line 245)
9480 * bfd_map_over_sections: section prototypes. (line 155)
9481 * bfd_merge_private_bfd_data: BFD front end. (line 555)
9482 * bfd_octets_per_byte: Architectures. (line 560)
9483 * bfd_open_file: File Caching. (line 52)
9484 * bfd_openr: Opening and Closing.
9486 * bfd_openr_iovec: Opening and Closing.
9488 * bfd_openr_next_archived_file: Archives. (line 78)
9489 * bfd_openstreamr: Opening and Closing.
9491 * bfd_openw: Opening and Closing.
9493 * bfd_perform_relocation: typedef arelent. (line 367)
9494 * bfd_perror: BFD front end. (line 334)
9495 * bfd_preserve_finish: BFD front end. (line 729)
9496 * bfd_preserve_restore: BFD front end. (line 719)
9497 * bfd_preserve_save: BFD front end. (line 703)
9498 * bfd_print_symbol_vandf: symbol handling functions.
9500 * bfd_printable_arch_mach: Architectures. (line 548)
9501 * bfd_printable_name: Architectures. (line 408)
9502 * bfd_put_size: Internal. (line 22)
9503 * BFD_RELOC_12_PCREL: howto manager. (line 39)
9504 * BFD_RELOC_14: howto manager. (line 31)
9505 * BFD_RELOC_16: howto manager. (line 30)
9506 * BFD_RELOC_16_BASEREL: howto manager. (line 80)
9507 * BFD_RELOC_16_GOT_PCREL: howto manager. (line 52)
9508 * BFD_RELOC_16_GOTOFF: howto manager. (line 55)
9509 * BFD_RELOC_16_PCREL: howto manager. (line 38)
9510 * BFD_RELOC_16_PCREL_S2: howto manager. (line 92)
9511 * BFD_RELOC_16_PLT_PCREL: howto manager. (line 63)
9512 * BFD_RELOC_16_PLTOFF: howto manager. (line 67)
9513 * BFD_RELOC_16C_ABS20: howto manager. (line 1793)
9514 * BFD_RELOC_16C_ABS20_C: howto manager. (line 1794)
9515 * BFD_RELOC_16C_ABS24: howto manager. (line 1795)
9516 * BFD_RELOC_16C_ABS24_C: howto manager. (line 1796)
9517 * BFD_RELOC_16C_DISP04: howto manager. (line 1773)
9518 * BFD_RELOC_16C_DISP04_C: howto manager. (line 1774)
9519 * BFD_RELOC_16C_DISP08: howto manager. (line 1775)
9520 * BFD_RELOC_16C_DISP08_C: howto manager. (line 1776)
9521 * BFD_RELOC_16C_DISP16: howto manager. (line 1777)
9522 * BFD_RELOC_16C_DISP16_C: howto manager. (line 1778)
9523 * BFD_RELOC_16C_DISP24: howto manager. (line 1779)
9524 * BFD_RELOC_16C_DISP24_C: howto manager. (line 1780)
9525 * BFD_RELOC_16C_DISP24a: howto manager. (line 1781)
9526 * BFD_RELOC_16C_DISP24a_C: howto manager. (line 1782)
9527 * BFD_RELOC_16C_IMM04: howto manager. (line 1797)
9528 * BFD_RELOC_16C_IMM04_C: howto manager. (line 1798)
9529 * BFD_RELOC_16C_IMM16: howto manager. (line 1799)
9530 * BFD_RELOC_16C_IMM16_C: howto manager. (line 1800)
9531 * BFD_RELOC_16C_IMM20: howto manager. (line 1801)
9532 * BFD_RELOC_16C_IMM20_C: howto manager. (line 1802)
9533 * BFD_RELOC_16C_IMM24: howto manager. (line 1803)
9534 * BFD_RELOC_16C_IMM24_C: howto manager. (line 1804)
9535 * BFD_RELOC_16C_IMM32: howto manager. (line 1805)
9536 * BFD_RELOC_16C_IMM32_C: howto manager. (line 1806)
9537 * BFD_RELOC_16C_NUM08: howto manager. (line 1767)
9538 * BFD_RELOC_16C_NUM08_C: howto manager. (line 1768)
9539 * BFD_RELOC_16C_NUM16: howto manager. (line 1769)
9540 * BFD_RELOC_16C_NUM16_C: howto manager. (line 1770)
9541 * BFD_RELOC_16C_NUM32: howto manager. (line 1771)
9542 * BFD_RELOC_16C_NUM32_C: howto manager. (line 1772)
9543 * BFD_RELOC_16C_REG04: howto manager. (line 1783)
9544 * BFD_RELOC_16C_REG04_C: howto manager. (line 1784)
9545 * BFD_RELOC_16C_REG04a: howto manager. (line 1785)
9546 * BFD_RELOC_16C_REG04a_C: howto manager. (line 1786)
9547 * BFD_RELOC_16C_REG14: howto manager. (line 1787)
9548 * BFD_RELOC_16C_REG14_C: howto manager. (line 1788)
9549 * BFD_RELOC_16C_REG16: howto manager. (line 1789)
9550 * BFD_RELOC_16C_REG16_C: howto manager. (line 1790)
9551 * BFD_RELOC_16C_REG20: howto manager. (line 1791)
9552 * BFD_RELOC_16C_REG20_C: howto manager. (line 1792)
9553 * BFD_RELOC_23_PCREL_S2: howto manager. (line 93)
9554 * BFD_RELOC_24: howto manager. (line 29)
9555 * BFD_RELOC_24_PCREL: howto manager. (line 37)
9556 * BFD_RELOC_24_PLT_PCREL: howto manager. (line 62)
9557 * BFD_RELOC_26: howto manager. (line 28)
9558 * BFD_RELOC_32: howto manager. (line 27)
9559 * BFD_RELOC_32_BASEREL: howto manager. (line 79)
9560 * BFD_RELOC_32_GOT_PCREL: howto manager. (line 51)
9561 * BFD_RELOC_32_GOTOFF: howto manager. (line 54)
9562 * BFD_RELOC_32_PCREL: howto manager. (line 36)
9563 * BFD_RELOC_32_PCREL_S2: howto manager. (line 91)
9564 * BFD_RELOC_32_PLT_PCREL: howto manager. (line 61)
9565 * BFD_RELOC_32_PLTOFF: howto manager. (line 66)
9566 * BFD_RELOC_32_SECREL: howto manager. (line 48)
9567 * BFD_RELOC_386_COPY: howto manager. (line 470)
9568 * BFD_RELOC_386_GLOB_DAT: howto manager. (line 471)
9569 * BFD_RELOC_386_GOT32: howto manager. (line 468)
9570 * BFD_RELOC_386_GOTOFF: howto manager. (line 474)
9571 * BFD_RELOC_386_GOTPC: howto manager. (line 475)
9572 * BFD_RELOC_386_JUMP_SLOT: howto manager. (line 472)
9573 * BFD_RELOC_386_PLT32: howto manager. (line 469)
9574 * BFD_RELOC_386_RELATIVE: howto manager. (line 473)
9575 * BFD_RELOC_386_TLS_DESC: howto manager. (line 490)
9576 * BFD_RELOC_386_TLS_DESC_CALL: howto manager. (line 489)
9577 * BFD_RELOC_386_TLS_DTPMOD32: howto manager. (line 485)
9578 * BFD_RELOC_386_TLS_DTPOFF32: howto manager. (line 486)
9579 * BFD_RELOC_386_TLS_GD: howto manager. (line 480)
9580 * BFD_RELOC_386_TLS_GOTDESC: howto manager. (line 488)
9581 * BFD_RELOC_386_TLS_GOTIE: howto manager. (line 478)
9582 * BFD_RELOC_386_TLS_IE: howto manager. (line 477)
9583 * BFD_RELOC_386_TLS_IE_32: howto manager. (line 483)
9584 * BFD_RELOC_386_TLS_LDM: howto manager. (line 481)
9585 * BFD_RELOC_386_TLS_LDO_32: howto manager. (line 482)
9586 * BFD_RELOC_386_TLS_LE: howto manager. (line 479)
9587 * BFD_RELOC_386_TLS_LE_32: howto manager. (line 484)
9588 * BFD_RELOC_386_TLS_TPOFF: howto manager. (line 476)
9589 * BFD_RELOC_386_TLS_TPOFF32: howto manager. (line 487)
9590 * BFD_RELOC_390_12: howto manager. (line 1459)
9591 * BFD_RELOC_390_20: howto manager. (line 1559)
9592 * BFD_RELOC_390_COPY: howto manager. (line 1468)
9593 * BFD_RELOC_390_GLOB_DAT: howto manager. (line 1471)
9594 * BFD_RELOC_390_GOT12: howto manager. (line 1462)
9595 * BFD_RELOC_390_GOT16: howto manager. (line 1483)
9596 * BFD_RELOC_390_GOT20: howto manager. (line 1560)
9597 * BFD_RELOC_390_GOT64: howto manager. (line 1501)
9598 * BFD_RELOC_390_GOTENT: howto manager. (line 1507)
9599 * BFD_RELOC_390_GOTOFF64: howto manager. (line 1510)
9600 * BFD_RELOC_390_GOTPC: howto manager. (line 1480)
9601 * BFD_RELOC_390_GOTPCDBL: howto manager. (line 1498)
9602 * BFD_RELOC_390_GOTPLT12: howto manager. (line 1513)
9603 * BFD_RELOC_390_GOTPLT16: howto manager. (line 1516)
9604 * BFD_RELOC_390_GOTPLT20: howto manager. (line 1561)
9605 * BFD_RELOC_390_GOTPLT32: howto manager. (line 1519)
9606 * BFD_RELOC_390_GOTPLT64: howto manager. (line 1522)
9607 * BFD_RELOC_390_GOTPLTENT: howto manager. (line 1525)
9608 * BFD_RELOC_390_JMP_SLOT: howto manager. (line 1474)
9609 * BFD_RELOC_390_PC16DBL: howto manager. (line 1486)
9610 * BFD_RELOC_390_PC32DBL: howto manager. (line 1492)
9611 * BFD_RELOC_390_PLT16DBL: howto manager. (line 1489)
9612 * BFD_RELOC_390_PLT32: howto manager. (line 1465)
9613 * BFD_RELOC_390_PLT32DBL: howto manager. (line 1495)
9614 * BFD_RELOC_390_PLT64: howto manager. (line 1504)
9615 * BFD_RELOC_390_PLTOFF16: howto manager. (line 1528)
9616 * BFD_RELOC_390_PLTOFF32: howto manager. (line 1531)
9617 * BFD_RELOC_390_PLTOFF64: howto manager. (line 1534)
9618 * BFD_RELOC_390_RELATIVE: howto manager. (line 1477)
9619 * BFD_RELOC_390_TLS_DTPMOD: howto manager. (line 1554)
9620 * BFD_RELOC_390_TLS_DTPOFF: howto manager. (line 1555)
9621 * BFD_RELOC_390_TLS_GD32: howto manager. (line 1540)
9622 * BFD_RELOC_390_TLS_GD64: howto manager. (line 1541)
9623 * BFD_RELOC_390_TLS_GDCALL: howto manager. (line 1538)
9624 * BFD_RELOC_390_TLS_GOTIE12: howto manager. (line 1542)
9625 * BFD_RELOC_390_TLS_GOTIE20: howto manager. (line 1562)
9626 * BFD_RELOC_390_TLS_GOTIE32: howto manager. (line 1543)
9627 * BFD_RELOC_390_TLS_GOTIE64: howto manager. (line 1544)
9628 * BFD_RELOC_390_TLS_IE32: howto manager. (line 1547)
9629 * BFD_RELOC_390_TLS_IE64: howto manager. (line 1548)
9630 * BFD_RELOC_390_TLS_IEENT: howto manager. (line 1549)
9631 * BFD_RELOC_390_TLS_LDCALL: howto manager. (line 1539)
9632 * BFD_RELOC_390_TLS_LDM32: howto manager. (line 1545)
9633 * BFD_RELOC_390_TLS_LDM64: howto manager. (line 1546)
9634 * BFD_RELOC_390_TLS_LDO32: howto manager. (line 1552)
9635 * BFD_RELOC_390_TLS_LDO64: howto manager. (line 1553)
9636 * BFD_RELOC_390_TLS_LE32: howto manager. (line 1550)
9637 * BFD_RELOC_390_TLS_LE64: howto manager. (line 1551)
9638 * BFD_RELOC_390_TLS_LOAD: howto manager. (line 1537)
9639 * BFD_RELOC_390_TLS_TPOFF: howto manager. (line 1556)
9640 * BFD_RELOC_64: howto manager. (line 26)
9641 * BFD_RELOC_64_PCREL: howto manager. (line 35)
9642 * BFD_RELOC_64_PLT_PCREL: howto manager. (line 60)
9643 * BFD_RELOC_64_PLTOFF: howto manager. (line 65)
9644 * BFD_RELOC_68K_GLOB_DAT: howto manager. (line 74)
9645 * BFD_RELOC_68K_JMP_SLOT: howto manager. (line 75)
9646 * BFD_RELOC_68K_RELATIVE: howto manager. (line 76)
9647 * BFD_RELOC_8: howto manager. (line 32)
9648 * BFD_RELOC_860_COPY: howto manager. (line 1904)
9649 * BFD_RELOC_860_GLOB_DAT: howto manager. (line 1905)
9650 * BFD_RELOC_860_HAGOT: howto manager. (line 1930)
9651 * BFD_RELOC_860_HAGOTOFF: howto manager. (line 1931)
9652 * BFD_RELOC_860_HAPC: howto manager. (line 1932)
9653 * BFD_RELOC_860_HIGH: howto manager. (line 1933)
9654 * BFD_RELOC_860_HIGHADJ: howto manager. (line 1929)
9655 * BFD_RELOC_860_HIGOT: howto manager. (line 1934)
9656 * BFD_RELOC_860_HIGOTOFF: howto manager. (line 1935)
9657 * BFD_RELOC_860_JUMP_SLOT: howto manager. (line 1906)
9658 * BFD_RELOC_860_LOGOT0: howto manager. (line 1918)
9659 * BFD_RELOC_860_LOGOT1: howto manager. (line 1920)
9660 * BFD_RELOC_860_LOGOTOFF0: howto manager. (line 1922)
9661 * BFD_RELOC_860_LOGOTOFF1: howto manager. (line 1924)
9662 * BFD_RELOC_860_LOGOTOFF2: howto manager. (line 1926)
9663 * BFD_RELOC_860_LOGOTOFF3: howto manager. (line 1927)
9664 * BFD_RELOC_860_LOPC: howto manager. (line 1928)
9665 * BFD_RELOC_860_LOW0: howto manager. (line 1911)
9666 * BFD_RELOC_860_LOW1: howto manager. (line 1913)
9667 * BFD_RELOC_860_LOW2: howto manager. (line 1915)
9668 * BFD_RELOC_860_LOW3: howto manager. (line 1917)
9669 * BFD_RELOC_860_PC16: howto manager. (line 1910)
9670 * BFD_RELOC_860_PC26: howto manager. (line 1908)
9671 * BFD_RELOC_860_PLT26: howto manager. (line 1909)
9672 * BFD_RELOC_860_RELATIVE: howto manager. (line 1907)
9673 * BFD_RELOC_860_SPGOT0: howto manager. (line 1919)
9674 * BFD_RELOC_860_SPGOT1: howto manager. (line 1921)
9675 * BFD_RELOC_860_SPGOTOFF0: howto manager. (line 1923)
9676 * BFD_RELOC_860_SPGOTOFF1: howto manager. (line 1925)
9677 * BFD_RELOC_860_SPLIT0: howto manager. (line 1912)
9678 * BFD_RELOC_860_SPLIT1: howto manager. (line 1914)
9679 * BFD_RELOC_860_SPLIT2: howto manager. (line 1916)
9680 * BFD_RELOC_8_BASEREL: howto manager. (line 84)
9681 * BFD_RELOC_8_FFnn: howto manager. (line 88)
9682 * BFD_RELOC_8_GOT_PCREL: howto manager. (line 53)
9683 * BFD_RELOC_8_GOTOFF: howto manager. (line 59)
9684 * BFD_RELOC_8_PCREL: howto manager. (line 40)
9685 * BFD_RELOC_8_PLT_PCREL: howto manager. (line 64)
9686 * BFD_RELOC_8_PLTOFF: howto manager. (line 71)
9687 * BFD_RELOC_ALPHA_BRSGP: howto manager. (line 280)
9688 * BFD_RELOC_ALPHA_CODEADDR: howto manager. (line 271)
9689 * BFD_RELOC_ALPHA_DTPMOD64: howto manager. (line 287)
9690 * BFD_RELOC_ALPHA_DTPREL16: howto manager. (line 292)
9691 * BFD_RELOC_ALPHA_DTPREL64: howto manager. (line 289)
9692 * BFD_RELOC_ALPHA_DTPREL_HI16: howto manager. (line 290)
9693 * BFD_RELOC_ALPHA_DTPREL_LO16: howto manager. (line 291)
9694 * BFD_RELOC_ALPHA_ELF_LITERAL: howto manager. (line 236)
9695 * BFD_RELOC_ALPHA_GOTDTPREL16: howto manager. (line 288)
9696 * BFD_RELOC_ALPHA_GOTTPREL16: howto manager. (line 293)
9697 * BFD_RELOC_ALPHA_GPDISP: howto manager. (line 230)
9698 * BFD_RELOC_ALPHA_GPDISP_HI16: howto manager. (line 216)
9699 * BFD_RELOC_ALPHA_GPDISP_LO16: howto manager. (line 224)
9700 * BFD_RELOC_ALPHA_GPREL_HI16: howto manager. (line 275)
9701 * BFD_RELOC_ALPHA_GPREL_LO16: howto manager. (line 276)
9702 * BFD_RELOC_ALPHA_HINT: howto manager. (line 262)
9703 * BFD_RELOC_ALPHA_LINKAGE: howto manager. (line 267)
9704 * BFD_RELOC_ALPHA_LITERAL: howto manager. (line 235)
9705 * BFD_RELOC_ALPHA_LITUSE: howto manager. (line 237)
9706 * BFD_RELOC_ALPHA_TLSGD: howto manager. (line 285)
9707 * BFD_RELOC_ALPHA_TLSLDM: howto manager. (line 286)
9708 * BFD_RELOC_ALPHA_TPREL16: howto manager. (line 297)
9709 * BFD_RELOC_ALPHA_TPREL64: howto manager. (line 294)
9710 * BFD_RELOC_ALPHA_TPREL_HI16: howto manager. (line 295)
9711 * BFD_RELOC_ALPHA_TPREL_LO16: howto manager. (line 296)
9712 * BFD_RELOC_ARC_B22_PCREL: howto manager. (line 895)
9713 * BFD_RELOC_ARC_B26: howto manager. (line 900)
9714 * BFD_RELOC_ARM_ADR_IMM: howto manager. (line 788)
9715 * BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager. (line 775)
9716 * BFD_RELOC_ARM_ALU_PC_G0: howto manager. (line 742)
9717 * BFD_RELOC_ARM_ALU_PC_G0_NC: howto manager. (line 741)
9718 * BFD_RELOC_ARM_ALU_PC_G1: howto manager. (line 744)
9719 * BFD_RELOC_ARM_ALU_PC_G1_NC: howto manager. (line 743)
9720 * BFD_RELOC_ARM_ALU_PC_G2: howto manager. (line 745)
9721 * BFD_RELOC_ARM_ALU_SB_G0: howto manager. (line 756)
9722 * BFD_RELOC_ARM_ALU_SB_G0_NC: howto manager. (line 755)
9723 * BFD_RELOC_ARM_ALU_SB_G1: howto manager. (line 758)
9724 * BFD_RELOC_ARM_ALU_SB_G1_NC: howto manager. (line 757)
9725 * BFD_RELOC_ARM_ALU_SB_G2: howto manager. (line 759)
9726 * BFD_RELOC_ARM_CP_OFF_IMM: howto manager. (line 784)
9727 * BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager. (line 785)
9728 * BFD_RELOC_ARM_GLOB_DAT: howto manager. (line 723)
9729 * BFD_RELOC_ARM_GOT32: howto manager. (line 724)
9730 * BFD_RELOC_ARM_GOTOFF: howto manager. (line 727)
9731 * BFD_RELOC_ARM_GOTPC: howto manager. (line 728)
9732 * BFD_RELOC_ARM_HWLITERAL: howto manager. (line 795)
9733 * BFD_RELOC_ARM_IMMEDIATE: howto manager. (line 774)
9734 * BFD_RELOC_ARM_IN_POOL: howto manager. (line 791)
9735 * BFD_RELOC_ARM_JUMP_SLOT: howto manager. (line 722)
9736 * BFD_RELOC_ARM_LDC_PC_G0: howto manager. (line 752)
9737 * BFD_RELOC_ARM_LDC_PC_G1: howto manager. (line 753)
9738 * BFD_RELOC_ARM_LDC_PC_G2: howto manager. (line 754)
9739 * BFD_RELOC_ARM_LDC_SB_G0: howto manager. (line 766)
9740 * BFD_RELOC_ARM_LDC_SB_G1: howto manager. (line 767)
9741 * BFD_RELOC_ARM_LDC_SB_G2: howto manager. (line 768)
9742 * BFD_RELOC_ARM_LDR_IMM: howto manager. (line 789)
9743 * BFD_RELOC_ARM_LDR_PC_G0: howto manager. (line 746)
9744 * BFD_RELOC_ARM_LDR_PC_G1: howto manager. (line 747)
9745 * BFD_RELOC_ARM_LDR_PC_G2: howto manager. (line 748)
9746 * BFD_RELOC_ARM_LDR_SB_G0: howto manager. (line 760)
9747 * BFD_RELOC_ARM_LDR_SB_G1: howto manager. (line 761)
9748 * BFD_RELOC_ARM_LDR_SB_G2: howto manager. (line 762)
9749 * BFD_RELOC_ARM_LDRS_PC_G0: howto manager. (line 749)
9750 * BFD_RELOC_ARM_LDRS_PC_G1: howto manager. (line 750)
9751 * BFD_RELOC_ARM_LDRS_PC_G2: howto manager. (line 751)
9752 * BFD_RELOC_ARM_LDRS_SB_G0: howto manager. (line 763)
9753 * BFD_RELOC_ARM_LDRS_SB_G1: howto manager. (line 764)
9754 * BFD_RELOC_ARM_LDRS_SB_G2: howto manager. (line 765)
9755 * BFD_RELOC_ARM_LITERAL: howto manager. (line 790)
9756 * BFD_RELOC_ARM_MOVT: howto manager. (line 713)
9757 * BFD_RELOC_ARM_MOVT_PCREL: howto manager. (line 715)
9758 * BFD_RELOC_ARM_MOVW: howto manager. (line 712)
9759 * BFD_RELOC_ARM_MOVW_PCREL: howto manager. (line 714)
9760 * BFD_RELOC_ARM_MULTI: howto manager. (line 783)
9761 * BFD_RELOC_ARM_OFFSET_IMM: howto manager. (line 686)
9762 * BFD_RELOC_ARM_OFFSET_IMM8: howto manager. (line 792)
9763 * BFD_RELOC_ARM_PCREL_BLX: howto manager. (line 657)
9764 * BFD_RELOC_ARM_PCREL_BRANCH: howto manager. (line 653)
9765 * BFD_RELOC_ARM_PCREL_CALL: howto manager. (line 667)
9766 * BFD_RELOC_ARM_PCREL_JUMP: howto manager. (line 671)
9767 * BFD_RELOC_ARM_PLT32: howto manager. (line 725)
9768 * BFD_RELOC_ARM_PREL31: howto manager. (line 709)
9769 * BFD_RELOC_ARM_RELATIVE: howto manager. (line 726)
9770 * BFD_RELOC_ARM_ROSEGREL32: howto manager. (line 698)
9771 * BFD_RELOC_ARM_SBREL32: howto manager. (line 701)
9772 * BFD_RELOC_ARM_SHIFT_IMM: howto manager. (line 780)
9773 * BFD_RELOC_ARM_SMC: howto manager. (line 781)
9774 * BFD_RELOC_ARM_SWI: howto manager. (line 782)
9775 * BFD_RELOC_ARM_T32_ADD_IMM: howto manager. (line 777)
9776 * BFD_RELOC_ARM_T32_ADD_PC12: howto manager. (line 779)
9777 * BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager. (line 786)
9778 * BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager. (line 787)
9779 * BFD_RELOC_ARM_T32_IMM12: howto manager. (line 778)
9780 * BFD_RELOC_ARM_T32_IMMEDIATE: howto manager. (line 776)
9781 * BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager. (line 794)
9782 * BFD_RELOC_ARM_T32_OFFSET_U8: howto manager. (line 793)
9783 * BFD_RELOC_ARM_TARGET1: howto manager. (line 694)
9784 * BFD_RELOC_ARM_TARGET2: howto manager. (line 704)
9785 * BFD_RELOC_ARM_THUMB_ADD: howto manager. (line 796)
9786 * BFD_RELOC_ARM_THUMB_IMM: howto manager. (line 797)
9787 * BFD_RELOC_ARM_THUMB_MOVT: howto manager. (line 717)
9788 * BFD_RELOC_ARM_THUMB_MOVT_PCREL: howto manager. (line 719)
9789 * BFD_RELOC_ARM_THUMB_MOVW: howto manager. (line 716)
9790 * BFD_RELOC_ARM_THUMB_MOVW_PCREL: howto manager. (line 718)
9791 * BFD_RELOC_ARM_THUMB_OFFSET: howto manager. (line 690)
9792 * BFD_RELOC_ARM_THUMB_SHIFT: howto manager. (line 798)
9793 * BFD_RELOC_ARM_TLS_DTPMOD32: howto manager. (line 735)
9794 * BFD_RELOC_ARM_TLS_DTPOFF32: howto manager. (line 734)
9795 * BFD_RELOC_ARM_TLS_GD32: howto manager. (line 731)
9796 * BFD_RELOC_ARM_TLS_IE32: howto manager. (line 737)
9797 * BFD_RELOC_ARM_TLS_LDM32: howto manager. (line 733)
9798 * BFD_RELOC_ARM_TLS_LDO32: howto manager. (line 732)
9799 * BFD_RELOC_ARM_TLS_LE32: howto manager. (line 738)
9800 * BFD_RELOC_ARM_TLS_TPOFF32: howto manager. (line 736)
9801 * BFD_RELOC_ARM_V4BX: howto manager. (line 771)
9802 * BFD_RELOC_AVR_13_PCREL: howto manager. (line 1360)
9803 * BFD_RELOC_AVR_16_PM: howto manager. (line 1364)
9804 * BFD_RELOC_AVR_6: howto manager. (line 1451)
9805 * BFD_RELOC_AVR_6_ADIW: howto manager. (line 1455)
9806 * BFD_RELOC_AVR_7_PCREL: howto manager. (line 1356)
9807 * BFD_RELOC_AVR_CALL: howto manager. (line 1443)
9808 * BFD_RELOC_AVR_HH8_LDI: howto manager. (line 1376)
9809 * BFD_RELOC_AVR_HH8_LDI_NEG: howto manager. (line 1395)
9810 * BFD_RELOC_AVR_HH8_LDI_PM: howto manager. (line 1424)
9811 * BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager. (line 1438)
9812 * BFD_RELOC_AVR_HI8_LDI: howto manager. (line 1372)
9813 * BFD_RELOC_AVR_HI8_LDI_GS: howto manager. (line 1418)
9814 * BFD_RELOC_AVR_HI8_LDI_NEG: howto manager. (line 1390)
9815 * BFD_RELOC_AVR_HI8_LDI_PM: howto manager. (line 1414)
9816 * BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager. (line 1433)
9817 * BFD_RELOC_AVR_LDI: howto manager. (line 1447)
9818 * BFD_RELOC_AVR_LO8_LDI: howto manager. (line 1368)
9819 * BFD_RELOC_AVR_LO8_LDI_GS: howto manager. (line 1408)
9820 * BFD_RELOC_AVR_LO8_LDI_NEG: howto manager. (line 1385)
9821 * BFD_RELOC_AVR_LO8_LDI_PM: howto manager. (line 1404)
9822 * BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager. (line 1429)
9823 * BFD_RELOC_AVR_MS8_LDI: howto manager. (line 1381)
9824 * BFD_RELOC_AVR_MS8_LDI_NEG: howto manager. (line 1400)
9825 * BFD_RELOC_BFIN_10_PCREL: howto manager. (line 920)
9826 * BFD_RELOC_BFIN_11_PCREL: howto manager. (line 923)
9827 * BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager. (line 926)
9828 * BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager. (line 929)
9829 * BFD_RELOC_BFIN_16_HIGH: howto manager. (line 908)
9830 * BFD_RELOC_BFIN_16_IMM: howto manager. (line 905)
9831 * BFD_RELOC_BFIN_16_LOW: howto manager. (line 917)
9832 * BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager. (line 932)
9833 * BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager. (line 935)
9834 * BFD_RELOC_BFIN_4_PCREL: howto manager. (line 911)
9835 * BFD_RELOC_BFIN_5_PCREL: howto manager. (line 914)
9836 * BFD_RELOC_BFIN_FUNCDESC: howto manager. (line 941)
9837 * BFD_RELOC_BFIN_FUNCDESC_GOT17M4: howto manager. (line 942)
9838 * BFD_RELOC_BFIN_FUNCDESC_GOTHI: howto manager. (line 943)
9839 * BFD_RELOC_BFIN_FUNCDESC_GOTLO: howto manager. (line 944)
9840 * BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4: howto manager. (line 946)
9841 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI: howto manager. (line 947)
9842 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO: howto manager. (line 948)
9843 * BFD_RELOC_BFIN_FUNCDESC_VALUE: howto manager. (line 945)
9844 * BFD_RELOC_BFIN_GOT: howto manager. (line 954)
9845 * BFD_RELOC_BFIN_GOT17M4: howto manager. (line 938)
9846 * BFD_RELOC_BFIN_GOTHI: howto manager. (line 939)
9847 * BFD_RELOC_BFIN_GOTLO: howto manager. (line 940)
9848 * BFD_RELOC_BFIN_GOTOFF17M4: howto manager. (line 949)
9849 * BFD_RELOC_BFIN_GOTOFFHI: howto manager. (line 950)
9850 * BFD_RELOC_BFIN_GOTOFFLO: howto manager. (line 951)
9851 * BFD_RELOC_BFIN_PLTPC: howto manager. (line 957)
9852 * bfd_reloc_code_type: howto manager. (line 10)
9853 * BFD_RELOC_CR16_ABS20: howto manager. (line 1821)
9854 * BFD_RELOC_CR16_ABS24: howto manager. (line 1822)
9855 * BFD_RELOC_CR16_DISP16: howto manager. (line 1832)
9856 * BFD_RELOC_CR16_DISP20: howto manager. (line 1833)
9857 * BFD_RELOC_CR16_DISP24: howto manager. (line 1834)
9858 * BFD_RELOC_CR16_DISP24a: howto manager. (line 1835)
9859 * BFD_RELOC_CR16_DISP4: howto manager. (line 1830)
9860 * BFD_RELOC_CR16_DISP8: howto manager. (line 1831)
9861 * BFD_RELOC_CR16_IMM16: howto manager. (line 1825)
9862 * BFD_RELOC_CR16_IMM20: howto manager. (line 1826)
9863 * BFD_RELOC_CR16_IMM24: howto manager. (line 1827)
9864 * BFD_RELOC_CR16_IMM32: howto manager. (line 1828)
9865 * BFD_RELOC_CR16_IMM32a: howto manager. (line 1829)
9866 * BFD_RELOC_CR16_IMM4: howto manager. (line 1823)
9867 * BFD_RELOC_CR16_IMM8: howto manager. (line 1824)
9868 * BFD_RELOC_CR16_NUM16: howto manager. (line 1810)
9869 * BFD_RELOC_CR16_NUM32: howto manager. (line 1811)
9870 * BFD_RELOC_CR16_NUM32a: howto manager. (line 1812)
9871 * BFD_RELOC_CR16_NUM8: howto manager. (line 1809)
9872 * BFD_RELOC_CR16_REGREL0: howto manager. (line 1813)
9873 * BFD_RELOC_CR16_REGREL14: howto manager. (line 1816)
9874 * BFD_RELOC_CR16_REGREL14a: howto manager. (line 1817)
9875 * BFD_RELOC_CR16_REGREL16: howto manager. (line 1818)
9876 * BFD_RELOC_CR16_REGREL20: howto manager. (line 1819)
9877 * BFD_RELOC_CR16_REGREL20a: howto manager. (line 1820)
9878 * BFD_RELOC_CR16_REGREL4: howto manager. (line 1814)
9879 * BFD_RELOC_CR16_REGREL4a: howto manager. (line 1815)
9880 * BFD_RELOC_CR16_SWITCH16: howto manager. (line 1837)
9881 * BFD_RELOC_CR16_SWITCH32: howto manager. (line 1838)
9882 * BFD_RELOC_CR16_SWITCH8: howto manager. (line 1836)
9883 * BFD_RELOC_CRIS_16_GOT: howto manager. (line 1885)
9884 * BFD_RELOC_CRIS_16_GOTPLT: howto manager. (line 1891)
9885 * BFD_RELOC_CRIS_32_GOT: howto manager. (line 1882)
9886 * BFD_RELOC_CRIS_32_GOTPLT: howto manager. (line 1888)
9887 * BFD_RELOC_CRIS_32_GOTREL: howto manager. (line 1894)
9888 * BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager. (line 1897)
9889 * BFD_RELOC_CRIS_32_PLT_PCREL: howto manager. (line 1900)
9890 * BFD_RELOC_CRIS_BDISP8: howto manager. (line 1863)
9891 * BFD_RELOC_CRIS_COPY: howto manager. (line 1876)
9892 * BFD_RELOC_CRIS_GLOB_DAT: howto manager. (line 1877)
9893 * BFD_RELOC_CRIS_JUMP_SLOT: howto manager. (line 1878)
9894 * BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager. (line 1871)
9895 * BFD_RELOC_CRIS_RELATIVE: howto manager. (line 1879)
9896 * BFD_RELOC_CRIS_SIGNED_16: howto manager. (line 1869)
9897 * BFD_RELOC_CRIS_SIGNED_6: howto manager. (line 1865)
9898 * BFD_RELOC_CRIS_SIGNED_8: howto manager. (line 1867)
9899 * BFD_RELOC_CRIS_UNSIGNED_16: howto manager. (line 1870)
9900 * BFD_RELOC_CRIS_UNSIGNED_4: howto manager. (line 1872)
9901 * BFD_RELOC_CRIS_UNSIGNED_5: howto manager. (line 1864)
9902 * BFD_RELOC_CRIS_UNSIGNED_6: howto manager. (line 1866)
9903 * BFD_RELOC_CRIS_UNSIGNED_8: howto manager. (line 1868)
9904 * BFD_RELOC_CRX_ABS16: howto manager. (line 1851)
9905 * BFD_RELOC_CRX_ABS32: howto manager. (line 1852)
9906 * BFD_RELOC_CRX_IMM16: howto manager. (line 1856)
9907 * BFD_RELOC_CRX_IMM32: howto manager. (line 1857)
9908 * BFD_RELOC_CRX_NUM16: howto manager. (line 1854)
9909 * BFD_RELOC_CRX_NUM32: howto manager. (line 1855)
9910 * BFD_RELOC_CRX_NUM8: howto manager. (line 1853)
9911 * BFD_RELOC_CRX_REGREL12: howto manager. (line 1847)
9912 * BFD_RELOC_CRX_REGREL22: howto manager. (line 1848)
9913 * BFD_RELOC_CRX_REGREL28: howto manager. (line 1849)
9914 * BFD_RELOC_CRX_REGREL32: howto manager. (line 1850)
9915 * BFD_RELOC_CRX_REL16: howto manager. (line 1844)
9916 * BFD_RELOC_CRX_REL24: howto manager. (line 1845)
9917 * BFD_RELOC_CRX_REL32: howto manager. (line 1846)
9918 * BFD_RELOC_CRX_REL4: howto manager. (line 1841)
9919 * BFD_RELOC_CRX_REL8: howto manager. (line 1842)
9920 * BFD_RELOC_CRX_REL8_CMP: howto manager. (line 1843)
9921 * BFD_RELOC_CRX_SWITCH16: howto manager. (line 1859)
9922 * BFD_RELOC_CRX_SWITCH32: howto manager. (line 1860)
9923 * BFD_RELOC_CRX_SWITCH8: howto manager. (line 1858)
9924 * BFD_RELOC_CTOR: howto manager. (line 647)
9925 * BFD_RELOC_D10V_10_PCREL_L: howto manager. (line 1024)
9926 * BFD_RELOC_D10V_10_PCREL_R: howto manager. (line 1020)
9927 * BFD_RELOC_D10V_18: howto manager. (line 1029)
9928 * BFD_RELOC_D10V_18_PCREL: howto manager. (line 1032)
9929 * BFD_RELOC_D30V_15: howto manager. (line 1047)
9930 * BFD_RELOC_D30V_15_PCREL: howto manager. (line 1051)
9931 * BFD_RELOC_D30V_15_PCREL_R: howto manager. (line 1055)
9932 * BFD_RELOC_D30V_21: howto manager. (line 1060)
9933 * BFD_RELOC_D30V_21_PCREL: howto manager. (line 1064)
9934 * BFD_RELOC_D30V_21_PCREL_R: howto manager. (line 1068)
9935 * BFD_RELOC_D30V_32: howto manager. (line 1073)
9936 * BFD_RELOC_D30V_32_PCREL: howto manager. (line 1076)
9937 * BFD_RELOC_D30V_6: howto manager. (line 1035)
9938 * BFD_RELOC_D30V_9_PCREL: howto manager. (line 1038)
9939 * BFD_RELOC_D30V_9_PCREL_R: howto manager. (line 1042)
9940 * BFD_RELOC_DLX_HI16_S: howto manager. (line 1079)
9941 * BFD_RELOC_DLX_JMP26: howto manager. (line 1085)
9942 * BFD_RELOC_DLX_LO16: howto manager. (line 1082)
9943 * BFD_RELOC_FR30_10_IN_8: howto manager. (line 1264)
9944 * BFD_RELOC_FR30_12_PCREL: howto manager. (line 1272)
9945 * BFD_RELOC_FR30_20: howto manager. (line 1248)
9946 * BFD_RELOC_FR30_48: howto manager. (line 1245)
9947 * BFD_RELOC_FR30_6_IN_4: howto manager. (line 1252)
9948 * BFD_RELOC_FR30_8_IN_8: howto manager. (line 1256)
9949 * BFD_RELOC_FR30_9_IN_8: howto manager. (line 1260)
9950 * BFD_RELOC_FR30_9_PCREL: howto manager. (line 1268)
9951 * BFD_RELOC_FRV_FUNCDESC: howto manager. (line 403)
9952 * BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager. (line 404)
9953 * BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager. (line 405)
9954 * BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager. (line 406)
9955 * BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager. (line 408)
9956 * BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager. (line 409)
9957 * BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager. (line 410)
9958 * BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager. (line 407)
9959 * BFD_RELOC_FRV_GETTLSOFF: howto manager. (line 414)
9960 * BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager. (line 427)
9961 * BFD_RELOC_FRV_GOT12: howto manager. (line 400)
9962 * BFD_RELOC_FRV_GOTHI: howto manager. (line 401)
9963 * BFD_RELOC_FRV_GOTLO: howto manager. (line 402)
9964 * BFD_RELOC_FRV_GOTOFF12: howto manager. (line 411)
9965 * BFD_RELOC_FRV_GOTOFFHI: howto manager. (line 412)
9966 * BFD_RELOC_FRV_GOTOFFLO: howto manager. (line 413)
9967 * BFD_RELOC_FRV_GOTTLSDESC12: howto manager. (line 416)
9968 * BFD_RELOC_FRV_GOTTLSDESCHI: howto manager. (line 417)
9969 * BFD_RELOC_FRV_GOTTLSDESCLO: howto manager. (line 418)
9970 * BFD_RELOC_FRV_GOTTLSOFF12: howto manager. (line 422)
9971 * BFD_RELOC_FRV_GOTTLSOFFHI: howto manager. (line 423)
9972 * BFD_RELOC_FRV_GOTTLSOFFLO: howto manager. (line 424)
9973 * BFD_RELOC_FRV_GPREL12: howto manager. (line 395)
9974 * BFD_RELOC_FRV_GPREL32: howto manager. (line 397)
9975 * BFD_RELOC_FRV_GPRELHI: howto manager. (line 398)
9976 * BFD_RELOC_FRV_GPRELLO: howto manager. (line 399)
9977 * BFD_RELOC_FRV_GPRELU12: howto manager. (line 396)
9978 * BFD_RELOC_FRV_HI16: howto manager. (line 394)
9979 * BFD_RELOC_FRV_LABEL16: howto manager. (line 391)
9980 * BFD_RELOC_FRV_LABEL24: howto manager. (line 392)
9981 * BFD_RELOC_FRV_LO16: howto manager. (line 393)
9982 * BFD_RELOC_FRV_TLSDESC_RELAX: howto manager. (line 426)
9983 * BFD_RELOC_FRV_TLSDESC_VALUE: howto manager. (line 415)
9984 * BFD_RELOC_FRV_TLSMOFF: howto manager. (line 429)
9985 * BFD_RELOC_FRV_TLSMOFF12: howto manager. (line 419)
9986 * BFD_RELOC_FRV_TLSMOFFHI: howto manager. (line 420)
9987 * BFD_RELOC_FRV_TLSMOFFLO: howto manager. (line 421)
9988 * BFD_RELOC_FRV_TLSOFF: howto manager. (line 425)
9989 * BFD_RELOC_FRV_TLSOFF_RELAX: howto manager. (line 428)
9990 * BFD_RELOC_GPREL16: howto manager. (line 106)
9991 * BFD_RELOC_GPREL32: howto manager. (line 107)
9992 * BFD_RELOC_H8_DIR16A8: howto manager. (line 1942)
9993 * BFD_RELOC_H8_DIR16R8: howto manager. (line 1943)
9994 * BFD_RELOC_H8_DIR24A8: howto manager. (line 1944)
9995 * BFD_RELOC_H8_DIR24R8: howto manager. (line 1945)
9996 * BFD_RELOC_H8_DIR32A16: howto manager. (line 1946)
9997 * BFD_RELOC_HI16: howto manager. (line 310)
9998 * BFD_RELOC_HI16_BASEREL: howto manager. (line 82)
9999 * BFD_RELOC_HI16_GOTOFF: howto manager. (line 57)
10000 * BFD_RELOC_HI16_PCREL: howto manager. (line 322)
10001 * BFD_RELOC_HI16_PLTOFF: howto manager. (line 69)
10002 * BFD_RELOC_HI16_S: howto manager. (line 313)
10003 * BFD_RELOC_HI16_S_BASEREL: howto manager. (line 83)
10004 * BFD_RELOC_HI16_S_GOTOFF: howto manager. (line 58)
10005 * BFD_RELOC_HI16_S_PCREL: howto manager. (line 325)
10006 * BFD_RELOC_HI16_S_PLTOFF: howto manager. (line 70)
10007 * BFD_RELOC_HI22: howto manager. (line 101)
10008 * BFD_RELOC_I370_D12: howto manager. (line 644)
10009 * BFD_RELOC_I960_CALLJ: howto manager. (line 113)
10010 * BFD_RELOC_IA64_COPY: howto manager. (line 1703)
10011 * BFD_RELOC_IA64_DIR32LSB: howto manager. (line 1648)
10012 * BFD_RELOC_IA64_DIR32MSB: howto manager. (line 1647)
10013 * BFD_RELOC_IA64_DIR64LSB: howto manager. (line 1650)
10014 * BFD_RELOC_IA64_DIR64MSB: howto manager. (line 1649)
10015 * BFD_RELOC_IA64_DTPMOD64LSB: howto manager. (line 1713)
10016 * BFD_RELOC_IA64_DTPMOD64MSB: howto manager. (line 1712)
10017 * BFD_RELOC_IA64_DTPREL14: howto manager. (line 1715)
10018 * BFD_RELOC_IA64_DTPREL22: howto manager. (line 1716)
10019 * BFD_RELOC_IA64_DTPREL32LSB: howto manager. (line 1719)
10020 * BFD_RELOC_IA64_DTPREL32MSB: howto manager. (line 1718)
10021 * BFD_RELOC_IA64_DTPREL64I: howto manager. (line 1717)
10022 * BFD_RELOC_IA64_DTPREL64LSB: howto manager. (line 1721)
10023 * BFD_RELOC_IA64_DTPREL64MSB: howto manager. (line 1720)
10024 * BFD_RELOC_IA64_FPTR32LSB: howto manager. (line 1665)
10025 * BFD_RELOC_IA64_FPTR32MSB: howto manager. (line 1664)
10026 * BFD_RELOC_IA64_FPTR64I: howto manager. (line 1663)
10027 * BFD_RELOC_IA64_FPTR64LSB: howto manager. (line 1667)
10028 * BFD_RELOC_IA64_FPTR64MSB: howto manager. (line 1666)
10029 * BFD_RELOC_IA64_GPREL22: howto manager. (line 1651)
10030 * BFD_RELOC_IA64_GPREL32LSB: howto manager. (line 1654)
10031 * BFD_RELOC_IA64_GPREL32MSB: howto manager. (line 1653)
10032 * BFD_RELOC_IA64_GPREL64I: howto manager. (line 1652)
10033 * BFD_RELOC_IA64_GPREL64LSB: howto manager. (line 1656)
10034 * BFD_RELOC_IA64_GPREL64MSB: howto manager. (line 1655)
10035 * BFD_RELOC_IA64_IMM14: howto manager. (line 1644)
10036 * BFD_RELOC_IA64_IMM22: howto manager. (line 1645)
10037 * BFD_RELOC_IA64_IMM64: howto manager. (line 1646)
10038 * BFD_RELOC_IA64_IPLTLSB: howto manager. (line 1702)
10039 * BFD_RELOC_IA64_IPLTMSB: howto manager. (line 1701)
10040 * BFD_RELOC_IA64_LDXMOV: howto manager. (line 1705)
10041 * BFD_RELOC_IA64_LTOFF22: howto manager. (line 1657)
10042 * BFD_RELOC_IA64_LTOFF22X: howto manager. (line 1704)
10043 * BFD_RELOC_IA64_LTOFF64I: howto manager. (line 1658)
10044 * BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager. (line 1714)
10045 * BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager. (line 1722)
10046 * BFD_RELOC_IA64_LTOFF_FPTR22: howto manager. (line 1679)
10047 * BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager. (line 1682)
10048 * BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager. (line 1681)
10049 * BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager. (line 1680)
10050 * BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager. (line 1684)
10051 * BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager. (line 1683)
10052 * BFD_RELOC_IA64_LTOFF_TPREL22: howto manager. (line 1711)
10053 * BFD_RELOC_IA64_LTV32LSB: howto manager. (line 1698)
10054 * BFD_RELOC_IA64_LTV32MSB: howto manager. (line 1697)
10055 * BFD_RELOC_IA64_LTV64LSB: howto manager. (line 1700)
10056 * BFD_RELOC_IA64_LTV64MSB: howto manager. (line 1699)
10057 * BFD_RELOC_IA64_PCREL21B: howto manager. (line 1668)
10058 * BFD_RELOC_IA64_PCREL21BI: howto manager. (line 1669)
10059 * BFD_RELOC_IA64_PCREL21F: howto manager. (line 1671)
10060 * BFD_RELOC_IA64_PCREL21M: howto manager. (line 1670)
10061 * BFD_RELOC_IA64_PCREL22: howto manager. (line 1672)
10062 * BFD_RELOC_IA64_PCREL32LSB: howto manager. (line 1676)
10063 * BFD_RELOC_IA64_PCREL32MSB: howto manager. (line 1675)
10064 * BFD_RELOC_IA64_PCREL60B: howto manager. (line 1673)
10065 * BFD_RELOC_IA64_PCREL64I: howto manager. (line 1674)
10066 * BFD_RELOC_IA64_PCREL64LSB: howto manager. (line 1678)
10067 * BFD_RELOC_IA64_PCREL64MSB: howto manager. (line 1677)
10068 * BFD_RELOC_IA64_PLTOFF22: howto manager. (line 1659)
10069 * BFD_RELOC_IA64_PLTOFF64I: howto manager. (line 1660)
10070 * BFD_RELOC_IA64_PLTOFF64LSB: howto manager. (line 1662)
10071 * BFD_RELOC_IA64_PLTOFF64MSB: howto manager. (line 1661)
10072 * BFD_RELOC_IA64_REL32LSB: howto manager. (line 1694)
10073 * BFD_RELOC_IA64_REL32MSB: howto manager. (line 1693)
10074 * BFD_RELOC_IA64_REL64LSB: howto manager. (line 1696)
10075 * BFD_RELOC_IA64_REL64MSB: howto manager. (line 1695)
10076 * BFD_RELOC_IA64_SECREL32LSB: howto manager. (line 1690)
10077 * BFD_RELOC_IA64_SECREL32MSB: howto manager. (line 1689)
10078 * BFD_RELOC_IA64_SECREL64LSB: howto manager. (line 1692)
10079 * BFD_RELOC_IA64_SECREL64MSB: howto manager. (line 1691)
10080 * BFD_RELOC_IA64_SEGREL32LSB: howto manager. (line 1686)
10081 * BFD_RELOC_IA64_SEGREL32MSB: howto manager. (line 1685)
10082 * BFD_RELOC_IA64_SEGREL64LSB: howto manager. (line 1688)
10083 * BFD_RELOC_IA64_SEGREL64MSB: howto manager. (line 1687)
10084 * BFD_RELOC_IA64_TPREL14: howto manager. (line 1706)
10085 * BFD_RELOC_IA64_TPREL22: howto manager. (line 1707)
10086 * BFD_RELOC_IA64_TPREL64I: howto manager. (line 1708)
10087 * BFD_RELOC_IA64_TPREL64LSB: howto manager. (line 1710)
10088 * BFD_RELOC_IA64_TPREL64MSB: howto manager. (line 1709)
10089 * BFD_RELOC_IP2K_ADDR16CJP: howto manager. (line 1596)
10090 * BFD_RELOC_IP2K_BANK: howto manager. (line 1593)
10091 * BFD_RELOC_IP2K_EX8DATA: howto manager. (line 1604)
10092 * BFD_RELOC_IP2K_FR9: howto manager. (line 1590)
10093 * BFD_RELOC_IP2K_FR_OFFSET: howto manager. (line 1617)
10094 * BFD_RELOC_IP2K_HI8DATA: howto manager. (line 1603)
10095 * BFD_RELOC_IP2K_HI8INSN: howto manager. (line 1608)
10096 * BFD_RELOC_IP2K_LO8DATA: howto manager. (line 1602)
10097 * BFD_RELOC_IP2K_LO8INSN: howto manager. (line 1607)
10098 * BFD_RELOC_IP2K_PAGE3: howto manager. (line 1599)
10099 * BFD_RELOC_IP2K_PC_SKIP: howto manager. (line 1611)
10100 * BFD_RELOC_IP2K_TEXT: howto manager. (line 1614)
10101 * BFD_RELOC_IQ2000_OFFSET_16: howto manager. (line 1996)
10102 * BFD_RELOC_IQ2000_OFFSET_21: howto manager. (line 1997)
10103 * BFD_RELOC_IQ2000_UHI16: howto manager. (line 1998)
10104 * BFD_RELOC_LO10: howto manager. (line 102)
10105 * BFD_RELOC_LO16: howto manager. (line 319)
10106 * BFD_RELOC_LO16_BASEREL: howto manager. (line 81)
10107 * BFD_RELOC_LO16_GOTOFF: howto manager. (line 56)
10108 * BFD_RELOC_LO16_PCREL: howto manager. (line 328)
10109 * BFD_RELOC_LO16_PLTOFF: howto manager. (line 68)
10110 * BFD_RELOC_M32C_HI8: howto manager. (line 1088)
10111 * BFD_RELOC_M32C_RL_1ADDR: howto manager. (line 1090)
10112 * BFD_RELOC_M32C_RL_2ADDR: howto manager. (line 1091)
10113 * BFD_RELOC_M32C_RL_JUMP: howto manager. (line 1089)
10114 * BFD_RELOC_M32R_10_PCREL: howto manager. (line 1098)
10115 * BFD_RELOC_M32R_18_PCREL: howto manager. (line 1102)
10116 * BFD_RELOC_M32R_24: howto manager. (line 1094)
10117 * BFD_RELOC_M32R_26_PCREL: howto manager. (line 1105)
10118 * BFD_RELOC_M32R_26_PLTREL: howto manager. (line 1124)
10119 * BFD_RELOC_M32R_COPY: howto manager. (line 1125)
10120 * BFD_RELOC_M32R_GLOB_DAT: howto manager. (line 1126)
10121 * BFD_RELOC_M32R_GOT16_HI_SLO: howto manager. (line 1135)
10122 * BFD_RELOC_M32R_GOT16_HI_ULO: howto manager. (line 1134)
10123 * BFD_RELOC_M32R_GOT16_LO: howto manager. (line 1136)
10124 * BFD_RELOC_M32R_GOT24: howto manager. (line 1123)
10125 * BFD_RELOC_M32R_GOTOFF: howto manager. (line 1129)
10126 * BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager. (line 1131)
10127 * BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager. (line 1130)
10128 * BFD_RELOC_M32R_GOTOFF_LO: howto manager. (line 1132)
10129 * BFD_RELOC_M32R_GOTPC24: howto manager. (line 1133)
10130 * BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager. (line 1138)
10131 * BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager. (line 1137)
10132 * BFD_RELOC_M32R_GOTPC_LO: howto manager. (line 1139)
10133 * BFD_RELOC_M32R_HI16_SLO: howto manager. (line 1112)
10134 * BFD_RELOC_M32R_HI16_ULO: howto manager. (line 1108)
10135 * BFD_RELOC_M32R_JMP_SLOT: howto manager. (line 1127)
10136 * BFD_RELOC_M32R_LO16: howto manager. (line 1116)
10137 * BFD_RELOC_M32R_RELATIVE: howto manager. (line 1128)
10138 * BFD_RELOC_M32R_SDA16: howto manager. (line 1119)
10139 * BFD_RELOC_M68HC11_24: howto manager. (line 1758)
10140 * BFD_RELOC_M68HC11_3B: howto manager. (line 1733)
10141 * BFD_RELOC_M68HC11_HI8: howto manager. (line 1725)
10142 * BFD_RELOC_M68HC11_LO16: howto manager. (line 1747)
10143 * BFD_RELOC_M68HC11_LO8: howto manager. (line 1729)
10144 * BFD_RELOC_M68HC11_PAGE: howto manager. (line 1753)
10145 * BFD_RELOC_M68HC11_RL_GROUP: howto manager. (line 1742)
10146 * BFD_RELOC_M68HC11_RL_JUMP: howto manager. (line 1736)
10147 * BFD_RELOC_M68HC12_5B: howto manager. (line 1764)
10148 * BFD_RELOC_MCORE_PCREL_32: howto manager. (line 1279)
10149 * BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager. (line 1277)
10150 * BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager. (line 1278)
10151 * BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager. (line 1276)
10152 * BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager. (line 1280)
10153 * BFD_RELOC_MCORE_RVA: howto manager. (line 1281)
10154 * BFD_RELOC_MEP_16: howto manager. (line 1285)
10155 * BFD_RELOC_MEP_32: howto manager. (line 1286)
10156 * BFD_RELOC_MEP_8: howto manager. (line 1284)
10157 * BFD_RELOC_MEP_ADDR24A4: howto manager. (line 1301)
10158 * BFD_RELOC_MEP_GNU_VTENTRY: howto manager. (line 1303)
10159 * BFD_RELOC_MEP_GNU_VTINHERIT: howto manager. (line 1302)
10160 * BFD_RELOC_MEP_GPREL: howto manager. (line 1295)
10161 * BFD_RELOC_MEP_HI16S: howto manager. (line 1294)
10162 * BFD_RELOC_MEP_HI16U: howto manager. (line 1293)
10163 * BFD_RELOC_MEP_LOW16: howto manager. (line 1292)
10164 * BFD_RELOC_MEP_PCABS24A2: howto manager. (line 1291)
10165 * BFD_RELOC_MEP_PCREL12A2: howto manager. (line 1288)
10166 * BFD_RELOC_MEP_PCREL17A2: howto manager. (line 1289)
10167 * BFD_RELOC_MEP_PCREL24A2: howto manager. (line 1290)
10168 * BFD_RELOC_MEP_PCREL8A2: howto manager. (line 1287)
10169 * BFD_RELOC_MEP_TPREL: howto manager. (line 1296)
10170 * BFD_RELOC_MEP_TPREL7: howto manager. (line 1297)
10171 * BFD_RELOC_MEP_TPREL7A2: howto manager. (line 1298)
10172 * BFD_RELOC_MEP_TPREL7A4: howto manager. (line 1299)
10173 * BFD_RELOC_MEP_UIMM24: howto manager. (line 1300)
10174 * BFD_RELOC_MIPS16_CALL16: howto manager. (line 332)
10175 * BFD_RELOC_MIPS16_GOT16: howto manager. (line 331)
10176 * BFD_RELOC_MIPS16_GPREL: howto manager. (line 307)
10177 * BFD_RELOC_MIPS16_HI16: howto manager. (line 336)
10178 * BFD_RELOC_MIPS16_HI16_S: howto manager. (line 339)
10179 * BFD_RELOC_MIPS16_JMP: howto manager. (line 304)
10180 * BFD_RELOC_MIPS16_LO16: howto manager. (line 345)
10181 * BFD_RELOC_MIPS_CALL16: howto manager. (line 352)
10182 * BFD_RELOC_MIPS_CALL_HI16: howto manager. (line 355)
10183 * BFD_RELOC_MIPS_CALL_LO16: howto manager. (line 356)
10184 * BFD_RELOC_MIPS_COPY: howto manager. (line 387)
10185 * BFD_RELOC_MIPS_DELETE: howto manager. (line 365)
10186 * BFD_RELOC_MIPS_GOT16: howto manager. (line 351)
10187 * BFD_RELOC_MIPS_GOT_DISP: howto manager. (line 360)
10188 * BFD_RELOC_MIPS_GOT_HI16: howto manager. (line 353)
10189 * BFD_RELOC_MIPS_GOT_LO16: howto manager. (line 354)
10190 * BFD_RELOC_MIPS_GOT_OFST: howto manager. (line 359)
10191 * BFD_RELOC_MIPS_GOT_PAGE: howto manager. (line 358)
10192 * BFD_RELOC_MIPS_HIGHER: howto manager. (line 367)
10193 * BFD_RELOC_MIPS_HIGHEST: howto manager. (line 366)
10194 * BFD_RELOC_MIPS_INSERT_A: howto manager. (line 363)
10195 * BFD_RELOC_MIPS_INSERT_B: howto manager. (line 364)
10196 * BFD_RELOC_MIPS_JALR: howto manager. (line 371)
10197 * BFD_RELOC_MIPS_JMP: howto manager. (line 300)
10198 * BFD_RELOC_MIPS_JUMP_SLOT: howto manager. (line 388)
10199 * BFD_RELOC_MIPS_LITERAL: howto manager. (line 348)
10200 * BFD_RELOC_MIPS_REL16: howto manager. (line 369)
10201 * BFD_RELOC_MIPS_RELGOT: howto manager. (line 370)
10202 * BFD_RELOC_MIPS_SCN_DISP: howto manager. (line 368)
10203 * BFD_RELOC_MIPS_SHIFT5: howto manager. (line 361)
10204 * BFD_RELOC_MIPS_SHIFT6: howto manager. (line 362)
10205 * BFD_RELOC_MIPS_SUB: howto manager. (line 357)
10206 * BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager. (line 372)
10207 * BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager. (line 374)
10208 * BFD_RELOC_MIPS_TLS_DTPREL32: howto manager. (line 373)
10209 * BFD_RELOC_MIPS_TLS_DTPREL64: howto manager. (line 375)
10210 * BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager. (line 378)
10211 * BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager. (line 379)
10212 * BFD_RELOC_MIPS_TLS_GD: howto manager. (line 376)
10213 * BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager. (line 380)
10214 * BFD_RELOC_MIPS_TLS_LDM: howto manager. (line 377)
10215 * BFD_RELOC_MIPS_TLS_TPREL32: howto manager. (line 381)
10216 * BFD_RELOC_MIPS_TLS_TPREL64: howto manager. (line 382)
10217 * BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager. (line 383)
10218 * BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager. (line 384)
10219 * BFD_RELOC_MMIX_ADDR19: howto manager. (line 1332)
10220 * BFD_RELOC_MMIX_ADDR27: howto manager. (line 1336)
10221 * BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager. (line 1348)
10222 * BFD_RELOC_MMIX_CBRANCH: howto manager. (line 1312)
10223 * BFD_RELOC_MMIX_CBRANCH_1: howto manager. (line 1314)
10224 * BFD_RELOC_MMIX_CBRANCH_2: howto manager. (line 1315)
10225 * BFD_RELOC_MMIX_CBRANCH_3: howto manager. (line 1316)
10226 * BFD_RELOC_MMIX_CBRANCH_J: howto manager. (line 1313)
10227 * BFD_RELOC_MMIX_GETA: howto manager. (line 1306)
10228 * BFD_RELOC_MMIX_GETA_1: howto manager. (line 1307)
10229 * BFD_RELOC_MMIX_GETA_2: howto manager. (line 1308)
10230 * BFD_RELOC_MMIX_GETA_3: howto manager. (line 1309)
10231 * BFD_RELOC_MMIX_JMP: howto manager. (line 1326)
10232 * BFD_RELOC_MMIX_JMP_1: howto manager. (line 1327)
10233 * BFD_RELOC_MMIX_JMP_2: howto manager. (line 1328)
10234 * BFD_RELOC_MMIX_JMP_3: howto manager. (line 1329)
10235 * BFD_RELOC_MMIX_LOCAL: howto manager. (line 1352)
10236 * BFD_RELOC_MMIX_PUSHJ: howto manager. (line 1319)
10237 * BFD_RELOC_MMIX_PUSHJ_1: howto manager. (line 1320)
10238 * BFD_RELOC_MMIX_PUSHJ_2: howto manager. (line 1321)
10239 * BFD_RELOC_MMIX_PUSHJ_3: howto manager. (line 1322)
10240 * BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager. (line 1323)
10241 * BFD_RELOC_MMIX_REG: howto manager. (line 1344)
10242 * BFD_RELOC_MMIX_REG_OR_BYTE: howto manager. (line 1340)
10243 * BFD_RELOC_MN10300_16_PCREL: howto manager. (line 1214)
10244 * BFD_RELOC_MN10300_32_PCREL: howto manager. (line 1210)
10245 * BFD_RELOC_MN10300_ALIGN: howto manager. (line 464)
10246 * BFD_RELOC_MN10300_COPY: howto manager. (line 447)
10247 * BFD_RELOC_MN10300_GLOB_DAT: howto manager. (line 450)
10248 * BFD_RELOC_MN10300_GOT16: howto manager. (line 443)
10249 * BFD_RELOC_MN10300_GOT24: howto manager. (line 439)
10250 * BFD_RELOC_MN10300_GOT32: howto manager. (line 435)
10251 * BFD_RELOC_MN10300_GOTOFF24: howto manager. (line 432)
10252 * BFD_RELOC_MN10300_JMP_SLOT: howto manager. (line 453)
10253 * BFD_RELOC_MN10300_RELATIVE: howto manager. (line 456)
10254 * BFD_RELOC_MN10300_SYM_DIFF: howto manager. (line 459)
10255 * BFD_RELOC_MSP430_10_PCREL: howto manager. (line 1987)
10256 * BFD_RELOC_MSP430_16: howto manager. (line 1989)
10257 * BFD_RELOC_MSP430_16_BYTE: howto manager. (line 1991)
10258 * BFD_RELOC_MSP430_16_PCREL: howto manager. (line 1988)
10259 * BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager. (line 1990)
10260 * BFD_RELOC_MSP430_2X_PCREL: howto manager. (line 1992)
10261 * BFD_RELOC_MSP430_RL_PCREL: howto manager. (line 1993)
10262 * BFD_RELOC_MT_GNU_VTENTRY: howto manager. (line 1981)
10263 * BFD_RELOC_MT_GNU_VTINHERIT: howto manager. (line 1978)
10264 * BFD_RELOC_MT_HI16: howto manager. (line 1972)
10265 * BFD_RELOC_MT_LO16: howto manager. (line 1975)
10266 * BFD_RELOC_MT_PC16: howto manager. (line 1969)
10267 * BFD_RELOC_MT_PCINSN8: howto manager. (line 1984)
10268 * BFD_RELOC_NONE: howto manager. (line 116)
10269 * BFD_RELOC_NS32K_DISP_16: howto manager. (line 528)
10270 * BFD_RELOC_NS32K_DISP_16_PCREL: howto manager. (line 531)
10271 * BFD_RELOC_NS32K_DISP_32: howto manager. (line 529)
10272 * BFD_RELOC_NS32K_DISP_32_PCREL: howto manager. (line 532)
10273 * BFD_RELOC_NS32K_DISP_8: howto manager. (line 527)
10274 * BFD_RELOC_NS32K_DISP_8_PCREL: howto manager. (line 530)
10275 * BFD_RELOC_NS32K_IMM_16: howto manager. (line 522)
10276 * BFD_RELOC_NS32K_IMM_16_PCREL: howto manager. (line 525)
10277 * BFD_RELOC_NS32K_IMM_32: howto manager. (line 523)
10278 * BFD_RELOC_NS32K_IMM_32_PCREL: howto manager. (line 526)
10279 * BFD_RELOC_NS32K_IMM_8: howto manager. (line 521)
10280 * BFD_RELOC_NS32K_IMM_8_PCREL: howto manager. (line 524)
10281 * BFD_RELOC_OPENRISC_ABS_26: howto manager. (line 1938)
10282 * BFD_RELOC_OPENRISC_REL_26: howto manager. (line 1939)
10283 * BFD_RELOC_PDP11_DISP_6_PCREL: howto manager. (line 536)
10284 * BFD_RELOC_PDP11_DISP_8_PCREL: howto manager. (line 535)
10285 * BFD_RELOC_PJ_CODE_DIR16: howto manager. (line 541)
10286 * BFD_RELOC_PJ_CODE_DIR32: howto manager. (line 542)
10287 * BFD_RELOC_PJ_CODE_HI16: howto manager. (line 539)
10288 * BFD_RELOC_PJ_CODE_LO16: howto manager. (line 540)
10289 * BFD_RELOC_PJ_CODE_REL16: howto manager. (line 543)
10290 * BFD_RELOC_PJ_CODE_REL32: howto manager. (line 544)
10291 * BFD_RELOC_PPC64_ADDR16_DS: howto manager. (line 589)
10292 * BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager. (line 590)
10293 * BFD_RELOC_PPC64_DTPREL16_DS: howto manager. (line 636)
10294 * BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager. (line 638)
10295 * BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager. (line 639)
10296 * BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager. (line 640)
10297 * BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager. (line 641)
10298 * BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager. (line 637)
10299 * BFD_RELOC_PPC64_GOT16_DS: howto manager. (line 591)
10300 * BFD_RELOC_PPC64_GOT16_LO_DS: howto manager. (line 592)
10301 * BFD_RELOC_PPC64_HIGHER: howto manager. (line 577)
10302 * BFD_RELOC_PPC64_HIGHER_S: howto manager. (line 578)
10303 * BFD_RELOC_PPC64_HIGHEST: howto manager. (line 579)
10304 * BFD_RELOC_PPC64_HIGHEST_S: howto manager. (line 580)
10305 * BFD_RELOC_PPC64_PLT16_LO_DS: howto manager. (line 593)
10306 * BFD_RELOC_PPC64_PLTGOT16: howto manager. (line 585)
10307 * BFD_RELOC_PPC64_PLTGOT16_DS: howto manager. (line 598)
10308 * BFD_RELOC_PPC64_PLTGOT16_HA: howto manager. (line 588)
10309 * BFD_RELOC_PPC64_PLTGOT16_HI: howto manager. (line 587)
10310 * BFD_RELOC_PPC64_PLTGOT16_LO: howto manager. (line 586)
10311 * BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager. (line 599)
10312 * BFD_RELOC_PPC64_SECTOFF_DS: howto manager. (line 594)
10313 * BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager. (line 595)
10314 * BFD_RELOC_PPC64_TOC: howto manager. (line 584)
10315 * BFD_RELOC_PPC64_TOC16_DS: howto manager. (line 596)
10316 * BFD_RELOC_PPC64_TOC16_HA: howto manager. (line 583)
10317 * BFD_RELOC_PPC64_TOC16_HI: howto manager. (line 582)
10318 * BFD_RELOC_PPC64_TOC16_LO: howto manager. (line 581)
10319 * BFD_RELOC_PPC64_TOC16_LO_DS: howto manager. (line 597)
10320 * BFD_RELOC_PPC64_TPREL16_DS: howto manager. (line 630)
10321 * BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager. (line 632)
10322 * BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager. (line 633)
10323 * BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager. (line 634)
10324 * BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager. (line 635)
10325 * BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager. (line 631)
10326 * BFD_RELOC_PPC_B16: howto manager. (line 550)
10327 * BFD_RELOC_PPC_B16_BRNTAKEN: howto manager. (line 552)
10328 * BFD_RELOC_PPC_B16_BRTAKEN: howto manager. (line 551)
10329 * BFD_RELOC_PPC_B26: howto manager. (line 547)
10330 * BFD_RELOC_PPC_BA16: howto manager. (line 553)
10331 * BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager. (line 555)
10332 * BFD_RELOC_PPC_BA16_BRTAKEN: howto manager. (line 554)
10333 * BFD_RELOC_PPC_BA26: howto manager. (line 548)
10334 * BFD_RELOC_PPC_COPY: howto manager. (line 556)
10335 * BFD_RELOC_PPC_DTPMOD: howto manager. (line 603)
10336 * BFD_RELOC_PPC_DTPREL: howto manager. (line 613)
10337 * BFD_RELOC_PPC_DTPREL16: howto manager. (line 609)
10338 * BFD_RELOC_PPC_DTPREL16_HA: howto manager. (line 612)
10339 * BFD_RELOC_PPC_DTPREL16_HI: howto manager. (line 611)
10340 * BFD_RELOC_PPC_DTPREL16_LO: howto manager. (line 610)
10341 * BFD_RELOC_PPC_EMB_BIT_FLD: howto manager. (line 575)
10342 * BFD_RELOC_PPC_EMB_MRKREF: howto manager. (line 570)
10343 * BFD_RELOC_PPC_EMB_NADDR16: howto manager. (line 562)
10344 * BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager. (line 565)
10345 * BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager. (line 564)
10346 * BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager. (line 563)
10347 * BFD_RELOC_PPC_EMB_NADDR32: howto manager. (line 561)
10348 * BFD_RELOC_PPC_EMB_RELSDA: howto manager. (line 576)
10349 * BFD_RELOC_PPC_EMB_RELSEC16: howto manager. (line 571)
10350 * BFD_RELOC_PPC_EMB_RELST_HA: howto manager. (line 574)
10351 * BFD_RELOC_PPC_EMB_RELST_HI: howto manager. (line 573)
10352 * BFD_RELOC_PPC_EMB_RELST_LO: howto manager. (line 572)
10353 * BFD_RELOC_PPC_EMB_SDA21: howto manager. (line 569)
10354 * BFD_RELOC_PPC_EMB_SDA2I16: howto manager. (line 567)
10355 * BFD_RELOC_PPC_EMB_SDA2REL: howto manager. (line 568)
10356 * BFD_RELOC_PPC_EMB_SDAI16: howto manager. (line 566)
10357 * BFD_RELOC_PPC_GLOB_DAT: howto manager. (line 557)
10358 * BFD_RELOC_PPC_GOT_DTPREL16: howto manager. (line 626)
10359 * BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager. (line 629)
10360 * BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager. (line 628)
10361 * BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager. (line 627)
10362 * BFD_RELOC_PPC_GOT_TLSGD16: howto manager. (line 614)
10363 * BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager. (line 617)
10364 * BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager. (line 616)
10365 * BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager. (line 615)
10366 * BFD_RELOC_PPC_GOT_TLSLD16: howto manager. (line 618)
10367 * BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager. (line 621)
10368 * BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager. (line 620)
10369 * BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager. (line 619)
10370 * BFD_RELOC_PPC_GOT_TPREL16: howto manager. (line 622)
10371 * BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager. (line 625)
10372 * BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager. (line 624)
10373 * BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager. (line 623)
10374 * BFD_RELOC_PPC_JMP_SLOT: howto manager. (line 558)
10375 * BFD_RELOC_PPC_LOCAL24PC: howto manager. (line 560)
10376 * BFD_RELOC_PPC_RELATIVE: howto manager. (line 559)
10377 * BFD_RELOC_PPC_TLS: howto manager. (line 602)
10378 * BFD_RELOC_PPC_TOC16: howto manager. (line 549)
10379 * BFD_RELOC_PPC_TPREL: howto manager. (line 608)
10380 * BFD_RELOC_PPC_TPREL16: howto manager. (line 604)
10381 * BFD_RELOC_PPC_TPREL16_HA: howto manager. (line 607)
10382 * BFD_RELOC_PPC_TPREL16_HI: howto manager. (line 606)
10383 * BFD_RELOC_PPC_TPREL16_LO: howto manager. (line 605)
10384 * BFD_RELOC_RELC: howto manager. (line 1955)
10385 * BFD_RELOC_RVA: howto manager. (line 85)
10386 * BFD_RELOC_SCORE16_BRANCH: howto manager. (line 1581)
10387 * BFD_RELOC_SCORE16_JMP: howto manager. (line 1578)
10388 * BFD_RELOC_SCORE_BRANCH: howto manager. (line 1575)
10389 * BFD_RELOC_SCORE_CALL15: howto manager. (line 1586)
10390 * BFD_RELOC_SCORE_DUMMY1: howto manager. (line 1565)
10391 * BFD_RELOC_SCORE_DUMMY2: howto manager. (line 1571)
10392 * BFD_RELOC_SCORE_DUMMY_HI16: howto manager. (line 1587)
10393 * BFD_RELOC_SCORE_GOT15: howto manager. (line 1584)
10394 * BFD_RELOC_SCORE_GOT_LO16: howto manager. (line 1585)
10395 * BFD_RELOC_SCORE_GPREL15: howto manager. (line 1568)
10396 * BFD_RELOC_SCORE_JMP: howto manager. (line 1572)
10397 * BFD_RELOC_SH_ALIGN: howto manager. (line 824)
10398 * BFD_RELOC_SH_CODE: howto manager. (line 825)
10399 * BFD_RELOC_SH_COPY: howto manager. (line 830)
10400 * BFD_RELOC_SH_COPY64: howto manager. (line 855)
10401 * BFD_RELOC_SH_COUNT: howto manager. (line 823)
10402 * BFD_RELOC_SH_DATA: howto manager. (line 826)
10403 * BFD_RELOC_SH_DISP12: howto manager. (line 806)
10404 * BFD_RELOC_SH_DISP12BY2: howto manager. (line 807)
10405 * BFD_RELOC_SH_DISP12BY4: howto manager. (line 808)
10406 * BFD_RELOC_SH_DISP12BY8: howto manager. (line 809)
10407 * BFD_RELOC_SH_DISP20: howto manager. (line 810)
10408 * BFD_RELOC_SH_DISP20BY8: howto manager. (line 811)
10409 * BFD_RELOC_SH_GLOB_DAT: howto manager. (line 831)
10410 * BFD_RELOC_SH_GLOB_DAT64: howto manager. (line 856)
10411 * BFD_RELOC_SH_GOT10BY4: howto manager. (line 859)
10412 * BFD_RELOC_SH_GOT10BY8: howto manager. (line 860)
10413 * BFD_RELOC_SH_GOT_HI16: howto manager. (line 838)
10414 * BFD_RELOC_SH_GOT_LOW16: howto manager. (line 835)
10415 * BFD_RELOC_SH_GOT_MEDHI16: howto manager. (line 837)
10416 * BFD_RELOC_SH_GOT_MEDLOW16: howto manager. (line 836)
10417 * BFD_RELOC_SH_GOTOFF_HI16: howto manager. (line 850)
10418 * BFD_RELOC_SH_GOTOFF_LOW16: howto manager. (line 847)
10419 * BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager. (line 849)
10420 * BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager. (line 848)
10421 * BFD_RELOC_SH_GOTPC: howto manager. (line 834)
10422 * BFD_RELOC_SH_GOTPC_HI16: howto manager. (line 854)
10423 * BFD_RELOC_SH_GOTPC_LOW16: howto manager. (line 851)
10424 * BFD_RELOC_SH_GOTPC_MEDHI16: howto manager. (line 853)
10425 * BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager. (line 852)
10426 * BFD_RELOC_SH_GOTPLT10BY4: howto manager. (line 861)
10427 * BFD_RELOC_SH_GOTPLT10BY8: howto manager. (line 862)
10428 * BFD_RELOC_SH_GOTPLT32: howto manager. (line 863)
10429 * BFD_RELOC_SH_GOTPLT_HI16: howto manager. (line 842)
10430 * BFD_RELOC_SH_GOTPLT_LOW16: howto manager. (line 839)
10431 * BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager. (line 841)
10432 * BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager. (line 840)
10433 * BFD_RELOC_SH_IMM3: howto manager. (line 804)
10434 * BFD_RELOC_SH_IMM3U: howto manager. (line 805)
10435 * BFD_RELOC_SH_IMM4: howto manager. (line 812)
10436 * BFD_RELOC_SH_IMM4BY2: howto manager. (line 813)
10437 * BFD_RELOC_SH_IMM4BY4: howto manager. (line 814)
10438 * BFD_RELOC_SH_IMM8: howto manager. (line 815)
10439 * BFD_RELOC_SH_IMM8BY2: howto manager. (line 816)
10440 * BFD_RELOC_SH_IMM8BY4: howto manager. (line 817)
10441 * BFD_RELOC_SH_IMM_HI16: howto manager. (line 881)
10442 * BFD_RELOC_SH_IMM_HI16_PCREL: howto manager. (line 882)
10443 * BFD_RELOC_SH_IMM_LOW16: howto manager. (line 875)
10444 * BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager. (line 876)
10445 * BFD_RELOC_SH_IMM_MEDHI16: howto manager. (line 879)
10446 * BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager. (line 880)
10447 * BFD_RELOC_SH_IMM_MEDLOW16: howto manager. (line 877)
10448 * BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager. (line 878)
10449 * BFD_RELOC_SH_IMMS10: howto manager. (line 869)
10450 * BFD_RELOC_SH_IMMS10BY2: howto manager. (line 870)
10451 * BFD_RELOC_SH_IMMS10BY4: howto manager. (line 871)
10452 * BFD_RELOC_SH_IMMS10BY8: howto manager. (line 872)
10453 * BFD_RELOC_SH_IMMS16: howto manager. (line 873)
10454 * BFD_RELOC_SH_IMMS6: howto manager. (line 866)
10455 * BFD_RELOC_SH_IMMS6BY32: howto manager. (line 867)
10456 * BFD_RELOC_SH_IMMU16: howto manager. (line 874)
10457 * BFD_RELOC_SH_IMMU5: howto manager. (line 865)
10458 * BFD_RELOC_SH_IMMU6: howto manager. (line 868)
10459 * BFD_RELOC_SH_JMP_SLOT: howto manager. (line 832)
10460 * BFD_RELOC_SH_JMP_SLOT64: howto manager. (line 857)
10461 * BFD_RELOC_SH_LABEL: howto manager. (line 827)
10462 * BFD_RELOC_SH_LOOP_END: howto manager. (line 829)
10463 * BFD_RELOC_SH_LOOP_START: howto manager. (line 828)
10464 * BFD_RELOC_SH_PCDISP12BY2: howto manager. (line 803)
10465 * BFD_RELOC_SH_PCDISP8BY2: howto manager. (line 802)
10466 * BFD_RELOC_SH_PCRELIMM8BY2: howto manager. (line 818)
10467 * BFD_RELOC_SH_PCRELIMM8BY4: howto manager. (line 819)
10468 * BFD_RELOC_SH_PLT_HI16: howto manager. (line 846)
10469 * BFD_RELOC_SH_PLT_LOW16: howto manager. (line 843)
10470 * BFD_RELOC_SH_PLT_MEDHI16: howto manager. (line 845)
10471 * BFD_RELOC_SH_PLT_MEDLOW16: howto manager. (line 844)
10472 * BFD_RELOC_SH_PT_16: howto manager. (line 883)
10473 * BFD_RELOC_SH_RELATIVE: howto manager. (line 833)
10474 * BFD_RELOC_SH_RELATIVE64: howto manager. (line 858)
10475 * BFD_RELOC_SH_SHMEDIA_CODE: howto manager. (line 864)
10476 * BFD_RELOC_SH_SWITCH16: howto manager. (line 820)
10477 * BFD_RELOC_SH_SWITCH32: howto manager. (line 821)
10478 * BFD_RELOC_SH_TLS_DTPMOD32: howto manager. (line 889)
10479 * BFD_RELOC_SH_TLS_DTPOFF32: howto manager. (line 890)
10480 * BFD_RELOC_SH_TLS_GD_32: howto manager. (line 884)
10481 * BFD_RELOC_SH_TLS_IE_32: howto manager. (line 887)
10482 * BFD_RELOC_SH_TLS_LD_32: howto manager. (line 885)
10483 * BFD_RELOC_SH_TLS_LDO_32: howto manager. (line 886)
10484 * BFD_RELOC_SH_TLS_LE_32: howto manager. (line 888)
10485 * BFD_RELOC_SH_TLS_TPOFF32: howto manager. (line 891)
10486 * BFD_RELOC_SH_USES: howto manager. (line 822)
10487 * BFD_RELOC_SPARC13: howto manager. (line 119)
10488 * BFD_RELOC_SPARC22: howto manager. (line 118)
10489 * BFD_RELOC_SPARC_10: howto manager. (line 146)
10490 * BFD_RELOC_SPARC_11: howto manager. (line 147)
10491 * BFD_RELOC_SPARC_5: howto manager. (line 159)
10492 * BFD_RELOC_SPARC_6: howto manager. (line 158)
10493 * BFD_RELOC_SPARC_64: howto manager. (line 145)
10494 * BFD_RELOC_SPARC_7: howto manager. (line 157)
10495 * BFD_RELOC_SPARC_BASE13: howto manager. (line 141)
10496 * BFD_RELOC_SPARC_BASE22: howto manager. (line 142)
10497 * BFD_RELOC_SPARC_COPY: howto manager. (line 126)
10498 * BFD_RELOC_SPARC_DISP64: howto manager. (line 160)
10499 * BFD_RELOC_SPARC_GLOB_DAT: howto manager. (line 127)
10500 * BFD_RELOC_SPARC_GOT10: howto manager. (line 120)
10501 * BFD_RELOC_SPARC_GOT13: howto manager. (line 121)
10502 * BFD_RELOC_SPARC_GOT22: howto manager. (line 122)
10503 * BFD_RELOC_SPARC_GOTDATA_HIX22: howto manager. (line 133)
10504 * BFD_RELOC_SPARC_GOTDATA_LOX10: howto manager. (line 134)
10505 * BFD_RELOC_SPARC_GOTDATA_OP: howto manager. (line 137)
10506 * BFD_RELOC_SPARC_GOTDATA_OP_HIX22: howto manager. (line 135)
10507 * BFD_RELOC_SPARC_GOTDATA_OP_LOX10: howto manager. (line 136)
10508 * BFD_RELOC_SPARC_H44: howto manager. (line 165)
10509 * BFD_RELOC_SPARC_HH22: howto manager. (line 149)
10510 * BFD_RELOC_SPARC_HIX22: howto manager. (line 163)
10511 * BFD_RELOC_SPARC_HM10: howto manager. (line 150)
10512 * BFD_RELOC_SPARC_JMP_SLOT: howto manager. (line 128)
10513 * BFD_RELOC_SPARC_L44: howto manager. (line 167)
10514 * BFD_RELOC_SPARC_LM22: howto manager. (line 151)
10515 * BFD_RELOC_SPARC_LOX10: howto manager. (line 164)
10516 * BFD_RELOC_SPARC_M44: howto manager. (line 166)
10517 * BFD_RELOC_SPARC_OLO10: howto manager. (line 148)
10518 * BFD_RELOC_SPARC_PC10: howto manager. (line 123)
10519 * BFD_RELOC_SPARC_PC22: howto manager. (line 124)
10520 * BFD_RELOC_SPARC_PC_HH22: howto manager. (line 152)
10521 * BFD_RELOC_SPARC_PC_HM10: howto manager. (line 153)
10522 * BFD_RELOC_SPARC_PC_LM22: howto manager. (line 154)
10523 * BFD_RELOC_SPARC_PLT32: howto manager. (line 161)
10524 * BFD_RELOC_SPARC_PLT64: howto manager. (line 162)
10525 * BFD_RELOC_SPARC_REGISTER: howto manager. (line 168)
10526 * BFD_RELOC_SPARC_RELATIVE: howto manager. (line 129)
10527 * BFD_RELOC_SPARC_REV32: howto manager. (line 171)
10528 * BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager. (line 192)
10529 * BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager. (line 193)
10530 * BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager. (line 194)
10531 * BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager. (line 195)
10532 * BFD_RELOC_SPARC_TLS_GD_ADD: howto manager. (line 176)
10533 * BFD_RELOC_SPARC_TLS_GD_CALL: howto manager. (line 177)
10534 * BFD_RELOC_SPARC_TLS_GD_HI22: howto manager. (line 174)
10535 * BFD_RELOC_SPARC_TLS_GD_LO10: howto manager. (line 175)
10536 * BFD_RELOC_SPARC_TLS_IE_ADD: howto manager. (line 189)
10537 * BFD_RELOC_SPARC_TLS_IE_HI22: howto manager. (line 185)
10538 * BFD_RELOC_SPARC_TLS_IE_LD: howto manager. (line 187)
10539 * BFD_RELOC_SPARC_TLS_IE_LDX: howto manager. (line 188)
10540 * BFD_RELOC_SPARC_TLS_IE_LO10: howto manager. (line 186)
10541 * BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager. (line 180)
10542 * BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager. (line 181)
10543 * BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager. (line 178)
10544 * BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager. (line 179)
10545 * BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager. (line 184)
10546 * BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager. (line 182)
10547 * BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager. (line 183)
10548 * BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager. (line 190)
10549 * BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager. (line 191)
10550 * BFD_RELOC_SPARC_TLS_TPOFF32: howto manager. (line 196)
10551 * BFD_RELOC_SPARC_TLS_TPOFF64: howto manager. (line 197)
10552 * BFD_RELOC_SPARC_UA16: howto manager. (line 130)
10553 * BFD_RELOC_SPARC_UA32: howto manager. (line 131)
10554 * BFD_RELOC_SPARC_UA64: howto manager. (line 132)
10555 * BFD_RELOC_SPARC_WDISP16: howto manager. (line 155)
10556 * BFD_RELOC_SPARC_WDISP19: howto manager. (line 156)
10557 * BFD_RELOC_SPARC_WDISP22: howto manager. (line 117)
10558 * BFD_RELOC_SPARC_WPLT30: howto manager. (line 125)
10559 * BFD_RELOC_SPU_HI16: howto manager. (line 211)
10560 * BFD_RELOC_SPU_IMM10: howto manager. (line 202)
10561 * BFD_RELOC_SPU_IMM10W: howto manager. (line 203)
10562 * BFD_RELOC_SPU_IMM16: howto manager. (line 204)
10563 * BFD_RELOC_SPU_IMM16W: howto manager. (line 205)
10564 * BFD_RELOC_SPU_IMM18: howto manager. (line 206)
10565 * BFD_RELOC_SPU_IMM7: howto manager. (line 200)
10566 * BFD_RELOC_SPU_IMM8: howto manager. (line 201)
10567 * BFD_RELOC_SPU_LO16: howto manager. (line 210)
10568 * BFD_RELOC_SPU_PCREL16: howto manager. (line 209)
10569 * BFD_RELOC_SPU_PCREL9a: howto manager. (line 207)
10570 * BFD_RELOC_SPU_PCREL9b: howto manager. (line 208)
10571 * BFD_RELOC_SPU_PPU32: howto manager. (line 212)
10572 * BFD_RELOC_SPU_PPU64: howto manager. (line 213)
10573 * BFD_RELOC_THUMB_PCREL_BLX: howto manager. (line 662)
10574 * BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager. (line 676)
10575 * BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager. (line 677)
10576 * BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager. (line 678)
10577 * BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager. (line 679)
10578 * BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager. (line 674)
10579 * BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager. (line 675)
10580 * BFD_RELOC_TIC30_LDP: howto manager. (line 1218)
10581 * BFD_RELOC_TIC54X_16_OF_23: howto manager. (line 1236)
10582 * BFD_RELOC_TIC54X_23: howto manager. (line 1233)
10583 * BFD_RELOC_TIC54X_MS7_OF_23: howto manager. (line 1241)
10584 * BFD_RELOC_TIC54X_PARTLS7: howto manager. (line 1223)
10585 * BFD_RELOC_TIC54X_PARTMS9: howto manager. (line 1228)
10586 * bfd_reloc_type_lookup: howto manager. (line 2102)
10587 * BFD_RELOC_V850_22_PCREL: howto manager. (line 1145)
10588 * BFD_RELOC_V850_9_PCREL: howto manager. (line 1142)
10589 * BFD_RELOC_V850_ALIGN: howto manager. (line 1203)
10590 * BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager. (line 1194)
10591 * BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager. (line 1191)
10592 * BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager. (line 1206)
10593 * BFD_RELOC_V850_LONGCALL: howto manager. (line 1197)
10594 * BFD_RELOC_V850_LONGJUMP: howto manager. (line 1200)
10595 * BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager. (line 1151)
10596 * BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager. (line 1148)
10597 * BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager. (line 1183)
10598 * BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager. (line 1173)
10599 * BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager. (line 1180)
10600 * BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager. (line 1176)
10601 * BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager. (line 1162)
10602 * BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager. (line 1170)
10603 * BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager. (line 1166)
10604 * BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager. (line 1158)
10605 * BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager. (line 1155)
10606 * BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager. (line 1187)
10607 * BFD_RELOC_VAX_GLOB_DAT: howto manager. (line 1964)
10608 * BFD_RELOC_VAX_JMP_SLOT: howto manager. (line 1965)
10609 * BFD_RELOC_VAX_RELATIVE: howto manager. (line 1966)
10610 * BFD_RELOC_VPE4KMATH_DATA: howto manager. (line 1620)
10611 * BFD_RELOC_VPE4KMATH_INSN: howto manager. (line 1621)
10612 * BFD_RELOC_VTABLE_ENTRY: howto manager. (line 1625)
10613 * BFD_RELOC_VTABLE_INHERIT: howto manager. (line 1624)
10614 * BFD_RELOC_X86_64_32S: howto manager. (line 500)
10615 * BFD_RELOC_X86_64_COPY: howto manager. (line 495)
10616 * BFD_RELOC_X86_64_DTPMOD64: howto manager. (line 501)
10617 * BFD_RELOC_X86_64_DTPOFF32: howto manager. (line 506)
10618 * BFD_RELOC_X86_64_DTPOFF64: howto manager. (line 502)
10619 * BFD_RELOC_X86_64_GLOB_DAT: howto manager. (line 496)
10620 * BFD_RELOC_X86_64_GOT32: howto manager. (line 493)
10621 * BFD_RELOC_X86_64_GOT64: howto manager. (line 511)
10622 * BFD_RELOC_X86_64_GOTOFF64: howto manager. (line 509)
10623 * BFD_RELOC_X86_64_GOTPC32: howto manager. (line 510)
10624 * BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager. (line 516)
10625 * BFD_RELOC_X86_64_GOTPC64: howto manager. (line 513)
10626 * BFD_RELOC_X86_64_GOTPCREL: howto manager. (line 499)
10627 * BFD_RELOC_X86_64_GOTPCREL64: howto manager. (line 512)
10628 * BFD_RELOC_X86_64_GOTPLT64: howto manager. (line 514)
10629 * BFD_RELOC_X86_64_GOTTPOFF: howto manager. (line 507)
10630 * BFD_RELOC_X86_64_JUMP_SLOT: howto manager. (line 497)
10631 * BFD_RELOC_X86_64_PLT32: howto manager. (line 494)
10632 * BFD_RELOC_X86_64_PLTOFF64: howto manager. (line 515)
10633 * BFD_RELOC_X86_64_RELATIVE: howto manager. (line 498)
10634 * BFD_RELOC_X86_64_TLSDESC: howto manager. (line 518)
10635 * BFD_RELOC_X86_64_TLSDESC_CALL: howto manager. (line 517)
10636 * BFD_RELOC_X86_64_TLSGD: howto manager. (line 504)
10637 * BFD_RELOC_X86_64_TLSLD: howto manager. (line 505)
10638 * BFD_RELOC_X86_64_TPOFF32: howto manager. (line 508)
10639 * BFD_RELOC_X86_64_TPOFF64: howto manager. (line 503)
10640 * BFD_RELOC_XC16X_PAG: howto manager. (line 1958)
10641 * BFD_RELOC_XC16X_POF: howto manager. (line 1959)
10642 * BFD_RELOC_XC16X_SEG: howto manager. (line 1960)
10643 * BFD_RELOC_XC16X_SOF: howto manager. (line 1961)
10644 * BFD_RELOC_XSTORMY16_12: howto manager. (line 1950)
10645 * BFD_RELOC_XSTORMY16_24: howto manager. (line 1951)
10646 * BFD_RELOC_XSTORMY16_FPTR16: howto manager. (line 1952)
10647 * BFD_RELOC_XSTORMY16_REL_12: howto manager. (line 1949)
10648 * BFD_RELOC_XTENSA_ASM_EXPAND: howto manager. (line 2070)
10649 * BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager. (line 2075)
10650 * BFD_RELOC_XTENSA_DIFF16: howto manager. (line 2017)
10651 * BFD_RELOC_XTENSA_DIFF32: howto manager. (line 2018)
10652 * BFD_RELOC_XTENSA_DIFF8: howto manager. (line 2016)
10653 * BFD_RELOC_XTENSA_GLOB_DAT: howto manager. (line 2006)
10654 * BFD_RELOC_XTENSA_JMP_SLOT: howto manager. (line 2007)
10655 * BFD_RELOC_XTENSA_OP0: howto manager. (line 2064)
10656 * BFD_RELOC_XTENSA_OP1: howto manager. (line 2065)
10657 * BFD_RELOC_XTENSA_OP2: howto manager. (line 2066)
10658 * BFD_RELOC_XTENSA_PLT: howto manager. (line 2011)
10659 * BFD_RELOC_XTENSA_RELATIVE: howto manager. (line 2008)
10660 * BFD_RELOC_XTENSA_RTLD: howto manager. (line 2001)
10661 * BFD_RELOC_XTENSA_SLOT0_ALT: howto manager. (line 2046)
10662 * BFD_RELOC_XTENSA_SLOT0_OP: howto manager. (line 2026)
10663 * BFD_RELOC_XTENSA_SLOT10_ALT: howto manager. (line 2056)
10664 * BFD_RELOC_XTENSA_SLOT10_OP: howto manager. (line 2036)
10665 * BFD_RELOC_XTENSA_SLOT11_ALT: howto manager. (line 2057)
10666 * BFD_RELOC_XTENSA_SLOT11_OP: howto manager. (line 2037)
10667 * BFD_RELOC_XTENSA_SLOT12_ALT: howto manager. (line 2058)
10668 * BFD_RELOC_XTENSA_SLOT12_OP: howto manager. (line 2038)
10669 * BFD_RELOC_XTENSA_SLOT13_ALT: howto manager. (line 2059)
10670 * BFD_RELOC_XTENSA_SLOT13_OP: howto manager. (line 2039)
10671 * BFD_RELOC_XTENSA_SLOT14_ALT: howto manager. (line 2060)
10672 * BFD_RELOC_XTENSA_SLOT14_OP: howto manager. (line 2040)
10673 * BFD_RELOC_XTENSA_SLOT1_ALT: howto manager. (line 2047)
10674 * BFD_RELOC_XTENSA_SLOT1_OP: howto manager. (line 2027)
10675 * BFD_RELOC_XTENSA_SLOT2_ALT: howto manager. (line 2048)
10676 * BFD_RELOC_XTENSA_SLOT2_OP: howto manager. (line 2028)
10677 * BFD_RELOC_XTENSA_SLOT3_ALT: howto manager. (line 2049)
10678 * BFD_RELOC_XTENSA_SLOT3_OP: howto manager. (line 2029)
10679 * BFD_RELOC_XTENSA_SLOT4_ALT: howto manager. (line 2050)
10680 * BFD_RELOC_XTENSA_SLOT4_OP: howto manager. (line 2030)
10681 * BFD_RELOC_XTENSA_SLOT5_ALT: howto manager. (line 2051)
10682 * BFD_RELOC_XTENSA_SLOT5_OP: howto manager. (line 2031)
10683 * BFD_RELOC_XTENSA_SLOT6_ALT: howto manager. (line 2052)
10684 * BFD_RELOC_XTENSA_SLOT6_OP: howto manager. (line 2032)
10685 * BFD_RELOC_XTENSA_SLOT7_ALT: howto manager. (line 2053)
10686 * BFD_RELOC_XTENSA_SLOT7_OP: howto manager. (line 2033)
10687 * BFD_RELOC_XTENSA_SLOT8_ALT: howto manager. (line 2054)
10688 * BFD_RELOC_XTENSA_SLOT8_OP: howto manager. (line 2034)
10689 * BFD_RELOC_XTENSA_SLOT9_ALT: howto manager. (line 2055)
10690 * BFD_RELOC_XTENSA_SLOT9_OP: howto manager. (line 2035)
10691 * BFD_RELOC_XTENSA_TLS_ARG: howto manager. (line 2085)
10692 * BFD_RELOC_XTENSA_TLS_CALL: howto manager. (line 2086)
10693 * BFD_RELOC_XTENSA_TLS_DTPOFF: howto manager. (line 2082)
10694 * BFD_RELOC_XTENSA_TLS_FUNC: howto manager. (line 2084)
10695 * BFD_RELOC_XTENSA_TLS_TPOFF: howto manager. (line 2083)
10696 * BFD_RELOC_XTENSA_TLSDESC_ARG: howto manager. (line 2081)
10697 * BFD_RELOC_XTENSA_TLSDESC_FN: howto manager. (line 2080)
10698 * BFD_RELOC_Z80_DISP8: howto manager. (line 2089)
10699 * BFD_RELOC_Z8K_CALLR: howto manager. (line 2095)
10700 * BFD_RELOC_Z8K_DISP7: howto manager. (line 2092)
10701 * BFD_RELOC_Z8K_IMM4L: howto manager. (line 2098)
10702 * bfd_scan_arch: Architectures. (line 417)
10703 * bfd_scan_vma: BFD front end. (line 505)
10704 * bfd_seach_for_target: bfd_target. (line 464)
10705 * bfd_section_already_linked: Writing the symbol table.
10707 * bfd_section_list_clear: section prototypes. (line 8)
10708 * bfd_sections_find_if: section prototypes. (line 176)
10709 * bfd_set_arch_info: Architectures. (line 458)
10710 * bfd_set_archive_head: Archives. (line 69)
10711 * bfd_set_default_target: bfd_target. (line 429)
10712 * bfd_set_error: BFD front end. (line 315)
10713 * bfd_set_error_handler: BFD front end. (line 357)
10714 * bfd_set_error_program_name: BFD front end. (line 366)
10715 * bfd_set_file_flags: BFD front end. (line 425)
10716 * bfd_set_format: Formats. (line 68)
10717 * bfd_set_gp_size: BFD front end. (line 495)
10718 * bfd_set_private_flags: BFD front end. (line 572)
10719 * bfd_set_reloc: BFD front end. (line 415)
10720 * bfd_set_section_contents: section prototypes. (line 207)
10721 * bfd_set_section_flags: section prototypes. (line 140)
10722 * bfd_set_section_size: section prototypes. (line 193)
10723 * bfd_set_start_address: BFD front end. (line 474)
10724 * bfd_set_symtab: symbol handling functions.
10726 * bfd_symbol_info: symbol handling functions.
10728 * bfd_target_list: bfd_target. (line 455)
10729 * bfd_write_bigendian_4byte_int: Internal. (line 13)
10730 * bfd_zalloc: Opening and Closing.
10732 * bfd_zalloc2: Opening and Closing.
10734 * coff_symbol_type: coff. (line 186)
10735 * core_file_matches_executable_p: Core Files. (line 30)
10736 * find_separate_debug_file: Opening and Closing.
10738 * generic_core_file_matches_executable_p: Core Files. (line 40)
10739 * get_debug_link_info: Opening and Closing.
10741 * Hash tables: Hash Tables. (line 6)
10742 * internal object-file format: Canonical format. (line 11)
10743 * Linker: Linker Functions. (line 6)
10744 * Other functions: BFD front end. (line 587)
10745 * separate_debug_file_exists: Opening and Closing.
10747 * struct bfd_iovec: BFD front end. (line 790)
10748 * target vector (_bfd_final_link): Performing the Final Link.
10750 * target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table.
10752 * target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table.
10754 * The HOWTO Macro: typedef arelent. (line 291)
10755 * what is it?: Overview. (line 6)
10761 Node: Overview
\x7f1384
10762 Node: History
\x7f2435
10763 Node: How It Works
\x7f3381
10764 Node: What BFD Version 2 Can Do
\x7f4924
10765 Node: BFD information loss
\x7f6239
10766 Node: Canonical format
\x7f8771
10767 Node: BFD front end
\x7f13143
10768 Node: Memory Usage
\x7f43650
10769 Node: Initialization
\x7f44878
10770 Node: Sections
\x7f45337
10771 Node: Section Input
\x7f45820
10772 Node: Section Output
\x7f47185
10773 Node: typedef asection
\x7f49671
10774 Node: section prototypes
\x7f74252
10775 Node: Symbols
\x7f83932
10776 Node: Reading Symbols
\x7f85527
10777 Node: Writing Symbols
\x7f86634
10778 Node: Mini Symbols
\x7f88343
10779 Node: typedef asymbol
\x7f89317
10780 Node: symbol handling functions
\x7f94682
10781 Node: Archives
\x7f100024
10782 Node: Formats
\x7f103750
10783 Node: Relocations
\x7f106698
10784 Node: typedef arelent
\x7f107425
10785 Node: howto manager
\x7f123236
10786 Node: Core Files
\x7f191032
10787 Node: Targets
\x7f192849
10788 Node: bfd_target
\x7f194819
10789 Node: Architectures
\x7f215124
10790 Node: Opening and Closing
\x7f237607
10791 Node: Internal
\x7f248871
10792 Node: File Caching
\x7f255204
10793 Node: Linker Functions
\x7f257118
10794 Node: Creating a Linker Hash Table
\x7f258791
10795 Node: Adding Symbols to the Hash Table
\x7f260529
10796 Node: Differing file formats
\x7f261429
10797 Node: Adding symbols from an object file
\x7f263154
10798 Node: Adding symbols from an archive
\x7f265305
10799 Node: Performing the Final Link
\x7f267719
10800 Node: Information provided by the linker
\x7f268961
10801 Node: Relocating the section contents
\x7f270115
10802 Node: Writing the symbol table
\x7f271866
10803 Node: Hash Tables
\x7f274908
10804 Node: Creating and Freeing a Hash Table
\x7f276106
10805 Node: Looking Up or Entering a String
\x7f277356
10806 Node: Traversing a Hash Table
\x7f278609
10807 Node: Deriving a New Hash Table Type
\x7f279398
10808 Node: Define the Derived Structures
\x7f280464
10809 Node: Write the Derived Creation Routine
\x7f281545
10810 Node: Write Other Derived Routines
\x7f284169
10811 Node: BFD back ends
\x7f285484
10812 Node: What to Put Where
\x7f285754
10813 Node: aout
\x7f285934
10814 Node: coff
\x7f292252
10815 Node: elf
\x7f317003
10816 Node: mmo
\x7f317866
10817 Node: File layout
\x7f318794
10818 Node: Symbol-table
\x7f324441
10819 Node: mmo section mapping
\x7f328210
10820 Node: GNU Free Documentation License
\x7f331862
10821 Node: BFD Index
\x7f351591