1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
36 /* For sparc64-cross-sparc32. */
44 #include "libiberty.h"
45 #include "safe-ctype.h"
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
49 static bfd_boolean
prep_headers (bfd
*);
50 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
51 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
52 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
59 /* Swap in a Verdef structure. */
62 _bfd_elf_swap_verdef_in (bfd
*abfd
,
63 const Elf_External_Verdef
*src
,
64 Elf_Internal_Verdef
*dst
)
66 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
67 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
68 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
69 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
70 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
71 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
72 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
75 /* Swap out a Verdef structure. */
78 _bfd_elf_swap_verdef_out (bfd
*abfd
,
79 const Elf_Internal_Verdef
*src
,
80 Elf_External_Verdef
*dst
)
82 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
83 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
84 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
85 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
86 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
87 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
88 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
91 /* Swap in a Verdaux structure. */
94 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
95 const Elf_External_Verdaux
*src
,
96 Elf_Internal_Verdaux
*dst
)
98 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
99 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
102 /* Swap out a Verdaux structure. */
105 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
106 const Elf_Internal_Verdaux
*src
,
107 Elf_External_Verdaux
*dst
)
109 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
110 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
113 /* Swap in a Verneed structure. */
116 _bfd_elf_swap_verneed_in (bfd
*abfd
,
117 const Elf_External_Verneed
*src
,
118 Elf_Internal_Verneed
*dst
)
120 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
121 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
122 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
123 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
124 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
127 /* Swap out a Verneed structure. */
130 _bfd_elf_swap_verneed_out (bfd
*abfd
,
131 const Elf_Internal_Verneed
*src
,
132 Elf_External_Verneed
*dst
)
134 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
135 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
136 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
137 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
138 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
141 /* Swap in a Vernaux structure. */
144 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
145 const Elf_External_Vernaux
*src
,
146 Elf_Internal_Vernaux
*dst
)
148 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
149 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
150 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
151 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
152 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
155 /* Swap out a Vernaux structure. */
158 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
159 const Elf_Internal_Vernaux
*src
,
160 Elf_External_Vernaux
*dst
)
162 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
163 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
164 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
165 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
166 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
169 /* Swap in a Versym structure. */
172 _bfd_elf_swap_versym_in (bfd
*abfd
,
173 const Elf_External_Versym
*src
,
174 Elf_Internal_Versym
*dst
)
176 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
179 /* Swap out a Versym structure. */
182 _bfd_elf_swap_versym_out (bfd
*abfd
,
183 const Elf_Internal_Versym
*src
,
184 Elf_External_Versym
*dst
)
186 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
193 bfd_elf_hash (const char *namearg
)
195 const unsigned char *name
= (const unsigned char *) namearg
;
200 while ((ch
= *name
++) != '\0')
203 if ((g
= (h
& 0xf0000000)) != 0)
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
211 return h
& 0xffffffff;
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
218 bfd_elf_gnu_hash (const char *namearg
)
220 const unsigned char *name
= (const unsigned char *) namearg
;
221 unsigned long h
= 5381;
224 while ((ch
= *name
++) != '\0')
225 h
= (h
<< 5) + h
+ ch
;
226 return h
& 0xffffffff;
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_elf_allocate_object (bfd
*abfd
,
234 enum elf_object_id object_id
)
236 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
237 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
238 if (abfd
->tdata
.any
== NULL
)
241 elf_object_id (abfd
) = object_id
;
242 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
248 bfd_elf_make_generic_object (bfd
*abfd
)
250 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
255 bfd_elf_mkcorefile (bfd
*abfd
)
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd
);
262 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
264 Elf_Internal_Shdr
**i_shdrp
;
265 bfd_byte
*shstrtab
= NULL
;
267 bfd_size_type shstrtabsize
;
269 i_shdrp
= elf_elfsections (abfd
);
271 || shindex
>= elf_numsections (abfd
)
272 || i_shdrp
[shindex
] == 0)
275 shstrtab
= i_shdrp
[shindex
]->contents
;
276 if (shstrtab
== NULL
)
278 /* No cached one, attempt to read, and cache what we read. */
279 offset
= i_shdrp
[shindex
]->sh_offset
;
280 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize
+ 1 <= 1
285 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
286 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
288 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
290 if (bfd_get_error () != bfd_error_system_call
)
291 bfd_set_error (bfd_error_file_truncated
);
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp
[shindex
]->sh_size
= 0;
299 shstrtab
[shstrtabsize
] = '\0';
300 i_shdrp
[shindex
]->contents
= shstrtab
;
302 return (char *) shstrtab
;
306 bfd_elf_string_from_elf_section (bfd
*abfd
,
307 unsigned int shindex
,
308 unsigned int strindex
)
310 Elf_Internal_Shdr
*hdr
;
315 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
318 hdr
= elf_elfsections (abfd
)[shindex
];
320 if (hdr
->contents
== NULL
321 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
324 if (strindex
>= hdr
->sh_size
)
326 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
327 (*_bfd_error_handler
)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
330 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
332 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
336 return ((char *) hdr
->contents
) + strindex
;
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
348 bfd_elf_get_elf_syms (bfd
*ibfd
,
349 Elf_Internal_Shdr
*symtab_hdr
,
352 Elf_Internal_Sym
*intsym_buf
,
354 Elf_External_Sym_Shndx
*extshndx_buf
)
356 Elf_Internal_Shdr
*shndx_hdr
;
358 const bfd_byte
*esym
;
359 Elf_External_Sym_Shndx
*alloc_extshndx
;
360 Elf_External_Sym_Shndx
*shndx
;
361 Elf_Internal_Sym
*alloc_intsym
;
362 Elf_Internal_Sym
*isym
;
363 Elf_Internal_Sym
*isymend
;
364 const struct elf_backend_data
*bed
;
369 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
375 /* Normal syms might have section extension entries. */
377 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
378 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
380 /* Read the symbols. */
382 alloc_extshndx
= NULL
;
384 bed
= get_elf_backend_data (ibfd
);
385 extsym_size
= bed
->s
->sizeof_sym
;
386 amt
= symcount
* extsym_size
;
387 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
388 if (extsym_buf
== NULL
)
390 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
391 extsym_buf
= alloc_ext
;
393 if (extsym_buf
== NULL
394 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
395 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
401 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
405 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
406 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
407 if (extshndx_buf
== NULL
)
409 alloc_extshndx
= bfd_malloc2 (symcount
,
410 sizeof (Elf_External_Sym_Shndx
));
411 extshndx_buf
= alloc_extshndx
;
413 if (extshndx_buf
== NULL
414 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
415 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
422 if (intsym_buf
== NULL
)
424 alloc_intsym
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
425 intsym_buf
= alloc_intsym
;
426 if (intsym_buf
== NULL
)
430 /* Convert the symbols to internal form. */
431 isymend
= intsym_buf
+ symcount
;
432 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
434 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
435 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
437 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
438 (*_bfd_error_handler
) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd
, (unsigned long) symoffset
);
441 if (alloc_intsym
!= NULL
)
448 if (alloc_ext
!= NULL
)
450 if (alloc_extshndx
!= NULL
)
451 free (alloc_extshndx
);
456 /* Look up a symbol name. */
458 bfd_elf_sym_name (bfd
*abfd
,
459 Elf_Internal_Shdr
*symtab_hdr
,
460 Elf_Internal_Sym
*isym
,
464 unsigned int iname
= isym
->st_name
;
465 unsigned int shindex
= symtab_hdr
->sh_link
;
467 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym
->st_shndx
< elf_numsections (abfd
))
471 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
472 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
475 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
478 else if (sym_sec
&& *name
== '\0')
479 name
= bfd_section_name (abfd
, sym_sec
);
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
488 typedef union elf_internal_group
{
489 Elf_Internal_Shdr
*shdr
;
491 } Elf_Internal_Group
;
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
497 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
499 Elf_Internal_Shdr
*hdr
;
500 unsigned char esym
[sizeof (Elf64_External_Sym
)];
501 Elf_External_Sym_Shndx eshndx
;
502 Elf_Internal_Sym isym
;
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr
->sh_link
>= elf_numsections (abfd
))
508 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
509 if (hdr
->sh_type
!= SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
513 /* Go read the symbol. */
514 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
515 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
516 &isym
, esym
, &eshndx
) == NULL
)
519 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
525 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
527 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
533 unsigned int i
, shnum
;
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum
= elf_numsections (abfd
);
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
546 for (i
= 0; i
< shnum
; i
++)
548 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
556 num_group
= (unsigned) -1;
557 elf_tdata (abfd
)->num_group
= num_group
;
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
565 elf_tdata (abfd
)->num_group
= num_group
;
566 elf_tdata (abfd
)->group_sect_ptr
567 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
568 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
572 for (i
= 0; i
< shnum
; i
++)
574 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
579 Elf_Internal_Group
*dest
;
581 /* Add to list of sections. */
582 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest
) >= 4);
587 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
588 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr
->contents
== NULL
)
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
595 bfd_set_error (bfd_error_bad_value
);
599 memset (shdr
->contents
, 0, amt
);
601 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
602 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
610 src
= shdr
->contents
+ shdr
->sh_size
;
611 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
618 idx
= H_GET_32 (abfd
, src
);
619 if (src
== shdr
->contents
)
622 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
623 shdr
->bfd_section
->flags
624 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
629 ((*_bfd_error_handler
)
630 (_("%B: invalid SHT_GROUP entry"), abfd
));
633 dest
->shdr
= elf_elfsections (abfd
)[idx
];
640 if (num_group
!= (unsigned) -1)
644 for (i
= 0; i
< num_group
; i
++)
646 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
647 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
648 unsigned int n_elt
= shdr
->sh_size
/ 4;
650 /* Look through this group's sections to see if current
651 section is a member. */
653 if ((++idx
)->shdr
== hdr
)
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
660 idx
= (Elf_Internal_Group
*) shdr
->contents
;
661 n_elt
= shdr
->sh_size
/ 4;
663 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
664 && elf_next_in_group (s
) != NULL
)
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect
) = elf_group_name (s
);
671 elf_next_in_group (newsect
) = elf_next_in_group (s
);
672 elf_next_in_group (s
) = newsect
;
678 gname
= group_signature (abfd
, shdr
);
681 elf_group_name (newsect
) = gname
;
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect
) = newsect
;
687 /* If the group section has been created, point to the
689 if (shdr
->bfd_section
!= NULL
)
690 elf_next_in_group (shdr
->bfd_section
) = newsect
;
698 if (elf_group_name (newsect
) == NULL
)
700 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
707 _bfd_elf_setup_sections (bfd
*abfd
)
710 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
711 bfd_boolean result
= TRUE
;
714 /* Process SHF_LINK_ORDER. */
715 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
717 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
718 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
720 unsigned int elfsec
= this_hdr
->sh_link
;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
726 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
727 if (bed
->link_order_error_handler
)
728 bed
->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
734 asection
*link
= NULL
;
736 if (elfsec
< elf_numsections (abfd
))
738 this_hdr
= elf_elfsections (abfd
)[elfsec
];
739 link
= this_hdr
->bfd_section
;
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
747 (*_bfd_error_handler
)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s
->owner
, s
, elfsec
);
753 elf_linked_to_section (s
) = link
;
758 /* Process section groups. */
759 if (num_group
== (unsigned) -1)
762 for (i
= 0; i
< num_group
; i
++)
764 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
765 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
766 unsigned int n_elt
= shdr
->sh_size
/ 4;
769 if ((++idx
)->shdr
->bfd_section
)
770 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
771 else if (idx
->shdr
->sh_type
== SHT_RELA
772 || idx
->shdr
->sh_type
== SHT_REL
)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
778 shdr
->bfd_section
->size
-= 4;
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler
)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
785 (unsigned int) idx
->shdr
->sh_type
,
786 bfd_elf_string_from_elf_section (abfd
,
787 (elf_elfheader (abfd
)
790 shdr
->bfd_section
->name
);
798 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
800 return elf_next_in_group (sec
) != NULL
;
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
807 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
808 Elf_Internal_Shdr
*hdr
,
814 const struct elf_backend_data
*bed
;
816 if (hdr
->bfd_section
!= NULL
)
818 BFD_ASSERT (strcmp (name
,
819 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
823 newsect
= bfd_make_section_anyway (abfd
, name
);
827 hdr
->bfd_section
= newsect
;
828 elf_section_data (newsect
)->this_hdr
= *hdr
;
829 elf_section_data (newsect
)->this_idx
= shindex
;
831 /* Always use the real type/flags. */
832 elf_section_type (newsect
) = hdr
->sh_type
;
833 elf_section_flags (newsect
) = hdr
->sh_flags
;
835 newsect
->filepos
= hdr
->sh_offset
;
837 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
838 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
839 || ! bfd_set_section_alignment (abfd
, newsect
,
840 bfd_log2 (hdr
->sh_addralign
)))
843 flags
= SEC_NO_FLAGS
;
844 if (hdr
->sh_type
!= SHT_NOBITS
)
845 flags
|= SEC_HAS_CONTENTS
;
846 if (hdr
->sh_type
== SHT_GROUP
)
847 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
848 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
851 if (hdr
->sh_type
!= SHT_NOBITS
)
854 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
855 flags
|= SEC_READONLY
;
856 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
858 else if ((flags
& SEC_LOAD
) != 0)
860 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
863 newsect
->entsize
= hdr
->sh_entsize
;
864 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
865 flags
|= SEC_STRINGS
;
867 if (hdr
->sh_flags
& SHF_GROUP
)
868 if (!setup_group (abfd
, hdr
, newsect
))
870 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
871 flags
|= SEC_THREAD_LOCAL
;
873 if ((flags
& SEC_ALLOC
) == 0)
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
881 } debug_sections
[] =
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL
, 0 }, /* 'e' */
885 { NULL
, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL
, 0 }, /* 'h' */
888 { NULL
, 0 }, /* 'i' */
889 { NULL
, 0 }, /* 'j' */
890 { NULL
, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL
, 0 }, /* 'm' */
893 { NULL
, 0 }, /* 'n' */
894 { NULL
, 0 }, /* 'o' */
895 { NULL
, 0 }, /* 'p' */
896 { NULL
, 0 }, /* 'q' */
897 { NULL
, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL
, 0 }, /* 't' */
900 { NULL
, 0 }, /* 'u' */
901 { NULL
, 0 }, /* 'v' */
902 { NULL
, 0 }, /* 'w' */
903 { NULL
, 0 }, /* 'x' */
904 { NULL
, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
910 int i
= name
[1] - 'd';
912 && i
< (int) ARRAY_SIZE (debug_sections
)
913 && debug_sections
[i
].name
!= NULL
914 && strncmp (&name
[1], debug_sections
[i
].name
,
915 debug_sections
[i
].len
) == 0)
916 flags
|= SEC_DEBUGGING
;
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name
, ".gnu.linkonce")
927 && elf_next_in_group (newsect
) == NULL
)
928 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
930 bed
= get_elf_backend_data (abfd
);
931 if (bed
->elf_backend_section_flags
)
932 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
935 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr
->sh_type
== SHT_NOTE
)
945 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
948 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
952 if ((flags
& SEC_ALLOC
) != 0)
954 Elf_Internal_Phdr
*phdr
;
955 unsigned int i
, nload
;
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr
= elf_tdata (abfd
)->phdr
;
962 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
963 if (phdr
->p_paddr
!= 0)
965 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
967 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
970 phdr
= elf_tdata (abfd
)->phdr
;
971 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr
->p_type
== PT_LOAD
986 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
987 && (hdr
->sh_offset
+ hdr
->sh_size
988 <= phdr
->p_offset
+ phdr
->p_memsz
)
989 && ((flags
& SEC_LOAD
) == 0
990 || (hdr
->sh_offset
+ hdr
->sh_size
991 <= phdr
->p_offset
+ phdr
->p_filesz
)))
993 if ((flags
& SEC_LOAD
) == 0)
994 newsect
->lma
= (phdr
->p_paddr
995 + hdr
->sh_addr
- phdr
->p_vaddr
);
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect
->lma
= (phdr
->p_paddr
1005 + hdr
->sh_offset
- phdr
->p_offset
);
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr
->sh_addr
>= phdr
->p_vaddr
1012 && (hdr
->sh_addr
+ hdr
->sh_size
1013 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1024 bfd_elf_find_section
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1037 struct elf_internal_shdr
*
1038 bfd_elf_find_section (bfd
*abfd
, char *name
)
1040 Elf_Internal_Shdr
**i_shdrp
;
1045 i_shdrp
= elf_elfsections (abfd
);
1046 if (i_shdrp
!= NULL
)
1048 shstrtab
= bfd_elf_get_str_section (abfd
,
1049 elf_elfheader (abfd
)->e_shstrndx
);
1050 if (shstrtab
!= NULL
)
1052 max
= elf_numsections (abfd
);
1053 for (i
= 1; i
< max
; i
++)
1054 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
1061 const char *const bfd_elf_section_type_names
[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1079 arelent
*reloc_entry
,
1081 void *data ATTRIBUTE_UNUSED
,
1082 asection
*input_section
,
1084 char **error_message ATTRIBUTE_UNUSED
)
1086 if (output_bfd
!= NULL
1087 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1088 && (! reloc_entry
->howto
->partial_inplace
1089 || reloc_entry
->addend
== 0))
1091 reloc_entry
->address
+= input_section
->output_offset
;
1092 return bfd_reloc_ok
;
1095 return bfd_reloc_continue
;
1098 /* Copy the program header and other data from one object module to
1102 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1104 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1108 BFD_ASSERT (!elf_flags_init (obfd
)
1109 || (elf_elfheader (obfd
)->e_flags
1110 == elf_elfheader (ibfd
)->e_flags
));
1112 elf_gp (obfd
) = elf_gp (ibfd
);
1113 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1114 elf_flags_init (obfd
) = TRUE
;
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1123 get_segment_type (unsigned int p_type
)
1128 case PT_NULL
: pt
= "NULL"; break;
1129 case PT_LOAD
: pt
= "LOAD"; break;
1130 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1131 case PT_INTERP
: pt
= "INTERP"; break;
1132 case PT_NOTE
: pt
= "NOTE"; break;
1133 case PT_SHLIB
: pt
= "SHLIB"; break;
1134 case PT_PHDR
: pt
= "PHDR"; break;
1135 case PT_TLS
: pt
= "TLS"; break;
1136 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1137 case PT_GNU_STACK
: pt
= "STACK"; break;
1138 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1139 default: pt
= NULL
; break;
1144 /* Print out the program headers. */
1147 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1150 Elf_Internal_Phdr
*p
;
1152 bfd_byte
*dynbuf
= NULL
;
1154 p
= elf_tdata (abfd
)->phdr
;
1159 fprintf (f
, _("\nProgram Header:\n"));
1160 c
= elf_elfheader (abfd
)->e_phnum
;
1161 for (i
= 0; i
< c
; i
++, p
++)
1163 const char *pt
= get_segment_type (p
->p_type
);
1168 sprintf (buf
, "0x%lx", p
->p_type
);
1171 fprintf (f
, "%8s off 0x", pt
);
1172 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1173 fprintf (f
, " vaddr 0x");
1174 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1175 fprintf (f
, " paddr 0x");
1176 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1177 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1178 fprintf (f
, " filesz 0x");
1179 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1180 fprintf (f
, " memsz 0x");
1181 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1182 fprintf (f
, " flags %c%c%c",
1183 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1184 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1185 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1186 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1187 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1192 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1195 unsigned int elfsec
;
1196 unsigned long shlink
;
1197 bfd_byte
*extdyn
, *extdynend
;
1199 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1201 fprintf (f
, _("\nDynamic Section:\n"));
1203 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1206 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1207 if (elfsec
== SHN_BAD
)
1209 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1211 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1212 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1215 extdynend
= extdyn
+ s
->size
;
1216 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1218 Elf_Internal_Dyn dyn
;
1219 const char *name
= "";
1221 bfd_boolean stringp
;
1222 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1224 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1226 if (dyn
.d_tag
== DT_NULL
)
1233 if (bed
->elf_backend_get_target_dtag
)
1234 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1236 if (!strcmp (name
, ""))
1238 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1243 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1244 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1245 case DT_PLTGOT
: name
= "PLTGOT"; break;
1246 case DT_HASH
: name
= "HASH"; break;
1247 case DT_STRTAB
: name
= "STRTAB"; break;
1248 case DT_SYMTAB
: name
= "SYMTAB"; break;
1249 case DT_RELA
: name
= "RELA"; break;
1250 case DT_RELASZ
: name
= "RELASZ"; break;
1251 case DT_RELAENT
: name
= "RELAENT"; break;
1252 case DT_STRSZ
: name
= "STRSZ"; break;
1253 case DT_SYMENT
: name
= "SYMENT"; break;
1254 case DT_INIT
: name
= "INIT"; break;
1255 case DT_FINI
: name
= "FINI"; break;
1256 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1257 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1258 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1259 case DT_REL
: name
= "REL"; break;
1260 case DT_RELSZ
: name
= "RELSZ"; break;
1261 case DT_RELENT
: name
= "RELENT"; break;
1262 case DT_PLTREL
: name
= "PLTREL"; break;
1263 case DT_DEBUG
: name
= "DEBUG"; break;
1264 case DT_TEXTREL
: name
= "TEXTREL"; break;
1265 case DT_JMPREL
: name
= "JMPREL"; break;
1266 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1267 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1272 case DT_FLAGS
: name
= "FLAGS"; break;
1273 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1276 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1277 case DT_MOVEENT
: name
= "MOVEENT"; break;
1278 case DT_MOVESZ
: name
= "MOVESZ"; break;
1279 case DT_FEATURE
: name
= "FEATURE"; break;
1280 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1281 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1282 case DT_SYMINENT
: name
= "SYMINENT"; break;
1283 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1284 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1285 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1286 case DT_PLTPAD
: name
= "PLTPAD"; break;
1287 case DT_MOVETAB
: name
= "MOVETAB"; break;
1288 case DT_SYMINFO
: name
= "SYMINFO"; break;
1289 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1290 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1291 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1292 case DT_VERSYM
: name
= "VERSYM"; break;
1293 case DT_VERDEF
: name
= "VERDEF"; break;
1294 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1295 case DT_VERNEED
: name
= "VERNEED"; break;
1296 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1297 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1298 case DT_USED
: name
= "USED"; break;
1299 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1300 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1303 fprintf (f
, " %-20s ", name
);
1307 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1312 unsigned int tagv
= dyn
.d_un
.d_val
;
1314 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1317 fprintf (f
, "%s", string
);
1326 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1327 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1329 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1333 if (elf_dynverdef (abfd
) != 0)
1335 Elf_Internal_Verdef
*t
;
1337 fprintf (f
, _("\nVersion definitions:\n"));
1338 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1340 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1341 t
->vd_flags
, t
->vd_hash
,
1342 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1343 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1345 Elf_Internal_Verdaux
*a
;
1348 for (a
= t
->vd_auxptr
->vda_nextptr
;
1352 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1358 if (elf_dynverref (abfd
) != 0)
1360 Elf_Internal_Verneed
*t
;
1362 fprintf (f
, _("\nVersion References:\n"));
1363 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1365 Elf_Internal_Vernaux
*a
;
1367 fprintf (f
, _(" required from %s:\n"),
1368 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1369 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1370 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1371 a
->vna_flags
, a
->vna_other
,
1372 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1384 /* Display ELF-specific fields of a symbol. */
1387 bfd_elf_print_symbol (bfd
*abfd
,
1390 bfd_print_symbol_type how
)
1395 case bfd_print_symbol_name
:
1396 fprintf (file
, "%s", symbol
->name
);
1398 case bfd_print_symbol_more
:
1399 fprintf (file
, "elf ");
1400 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1401 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1403 case bfd_print_symbol_all
:
1405 const char *section_name
;
1406 const char *name
= NULL
;
1407 const struct elf_backend_data
*bed
;
1408 unsigned char st_other
;
1411 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1413 bed
= get_elf_backend_data (abfd
);
1414 if (bed
->elf_backend_print_symbol_all
)
1415 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1419 name
= symbol
->name
;
1420 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1423 fprintf (file
, " %s\t", section_name
);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1429 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1431 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1432 bfd_fprintf_vma (abfd
, file
, val
);
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd
)->dynversym_section
!= 0
1436 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1437 || elf_tdata (abfd
)->dynverref_section
!= 0))
1439 unsigned int vernum
;
1440 const char *version_string
;
1442 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1445 version_string
= "";
1446 else if (vernum
== 1)
1447 version_string
= "Base";
1448 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1450 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1453 Elf_Internal_Verneed
*t
;
1455 version_string
= "";
1456 for (t
= elf_tdata (abfd
)->verref
;
1460 Elf_Internal_Vernaux
*a
;
1462 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1464 if (a
->vna_other
== vernum
)
1466 version_string
= a
->vna_nodename
;
1473 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1474 fprintf (file
, " %-11s", version_string
);
1479 fprintf (file
, " (%s)", version_string
);
1480 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1485 /* If the st_other field is not zero, print it. */
1486 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1491 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1492 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1493 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1495 /* Some other non-defined flags are also present, so print
1497 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1500 fprintf (file
, " %s", name
);
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1508 struct bfd_strtab_hash
*
1509 _bfd_elf_stringtab_init (void)
1511 struct bfd_strtab_hash
*ret
;
1513 ret
= _bfd_stringtab_init ();
1518 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1519 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1520 if (loc
== (bfd_size_type
) -1)
1522 _bfd_stringtab_free (ret
);
1529 /* ELF .o/exec file reading */
1531 /* Create a new bfd section from an ELF section header. */
1534 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1536 Elf_Internal_Shdr
*hdr
;
1537 Elf_Internal_Ehdr
*ehdr
;
1538 const struct elf_backend_data
*bed
;
1541 if (shindex
>= elf_numsections (abfd
))
1544 hdr
= elf_elfsections (abfd
)[shindex
];
1545 ehdr
= elf_elfheader (abfd
);
1546 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1551 bed
= get_elf_backend_data (abfd
);
1552 switch (hdr
->sh_type
)
1555 /* Inactive section. Throw it away. */
1558 case SHT_PROGBITS
: /* Normal section with contents. */
1559 case SHT_NOBITS
: /* .bss section. */
1560 case SHT_HASH
: /* .hash section. */
1561 case SHT_NOTE
: /* .note section. */
1562 case SHT_INIT_ARRAY
: /* .init_array section. */
1563 case SHT_FINI_ARRAY
: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH
: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1569 case SHT_DYNAMIC
: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1572 if (hdr
->sh_link
> elf_numsections (abfd
)
1573 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1575 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1577 Elf_Internal_Shdr
*dynsymhdr
;
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd
) != 0)
1584 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1585 hdr
->sh_link
= dynsymhdr
->sh_link
;
1589 unsigned int i
, num_sec
;
1591 num_sec
= elf_numsections (abfd
);
1592 for (i
= 1; i
< num_sec
; i
++)
1594 dynsymhdr
= elf_elfsections (abfd
)[i
];
1595 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1597 hdr
->sh_link
= dynsymhdr
->sh_link
;
1605 case SHT_SYMTAB
: /* A symbol table */
1606 if (elf_onesymtab (abfd
) == shindex
)
1609 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1611 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1613 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1614 elf_onesymtab (abfd
) = shindex
;
1615 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1616 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1617 abfd
->flags
|= HAS_SYMS
;
1619 /* Sometimes a shared object will map in the symbol table. If
1620 SHF_ALLOC is set, and this is a shared object, then we also
1621 treat this section as a BFD section. We can not base the
1622 decision purely on SHF_ALLOC, because that flag is sometimes
1623 set in a relocatable object file, which would confuse the
1625 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1626 && (abfd
->flags
& DYNAMIC
) != 0
1627 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1631 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1632 can't read symbols without that section loaded as well. It
1633 is most likely specified by the next section header. */
1634 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1636 unsigned int i
, num_sec
;
1638 num_sec
= elf_numsections (abfd
);
1639 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1641 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1642 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1643 && hdr2
->sh_link
== shindex
)
1647 for (i
= 1; i
< shindex
; i
++)
1649 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1650 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1651 && hdr2
->sh_link
== shindex
)
1655 return bfd_section_from_shdr (abfd
, i
);
1659 case SHT_DYNSYM
: /* A dynamic symbol table */
1660 if (elf_dynsymtab (abfd
) == shindex
)
1663 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1665 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1666 elf_dynsymtab (abfd
) = shindex
;
1667 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1668 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1669 abfd
->flags
|= HAS_SYMS
;
1671 /* Besides being a symbol table, we also treat this as a regular
1672 section, so that objcopy can handle it. */
1673 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1675 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1676 if (elf_symtab_shndx (abfd
) == shindex
)
1679 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1680 elf_symtab_shndx (abfd
) = shindex
;
1681 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1682 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1685 case SHT_STRTAB
: /* A string table */
1686 if (hdr
->bfd_section
!= NULL
)
1688 if (ehdr
->e_shstrndx
== shindex
)
1690 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1691 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1694 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1697 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1698 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1701 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1704 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1705 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1706 elf_elfsections (abfd
)[shindex
] = hdr
;
1707 /* We also treat this as a regular section, so that objcopy
1709 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1713 /* If the string table isn't one of the above, then treat it as a
1714 regular section. We need to scan all the headers to be sure,
1715 just in case this strtab section appeared before the above. */
1716 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1718 unsigned int i
, num_sec
;
1720 num_sec
= elf_numsections (abfd
);
1721 for (i
= 1; i
< num_sec
; i
++)
1723 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1724 if (hdr2
->sh_link
== shindex
)
1726 /* Prevent endless recursion on broken objects. */
1729 if (! bfd_section_from_shdr (abfd
, i
))
1731 if (elf_onesymtab (abfd
) == i
)
1733 if (elf_dynsymtab (abfd
) == i
)
1734 goto dynsymtab_strtab
;
1738 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1742 /* *These* do a lot of work -- but build no sections! */
1744 asection
*target_sect
;
1745 Elf_Internal_Shdr
*hdr2
;
1746 unsigned int num_sec
= elf_numsections (abfd
);
1749 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1750 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1753 /* Check for a bogus link to avoid crashing. */
1754 if (hdr
->sh_link
>= num_sec
)
1756 ((*_bfd_error_handler
)
1757 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1758 abfd
, hdr
->sh_link
, name
, shindex
));
1759 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1763 /* For some incomprehensible reason Oracle distributes
1764 libraries for Solaris in which some of the objects have
1765 bogus sh_link fields. It would be nice if we could just
1766 reject them, but, unfortunately, some people need to use
1767 them. We scan through the section headers; if we find only
1768 one suitable symbol table, we clobber the sh_link to point
1769 to it. I hope this doesn't break anything. */
1770 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1771 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1777 for (scan
= 1; scan
< num_sec
; scan
++)
1779 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1780 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1791 hdr
->sh_link
= found
;
1794 /* Get the symbol table. */
1795 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1796 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1797 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1800 /* If this reloc section does not use the main symbol table we
1801 don't treat it as a reloc section. BFD can't adequately
1802 represent such a section, so at least for now, we don't
1803 try. We just present it as a normal section. We also
1804 can't use it as a reloc section if it points to the null
1805 section, an invalid section, or another reloc section. */
1806 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1807 || hdr
->sh_info
== SHN_UNDEF
1808 || hdr
->sh_info
>= num_sec
1809 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1810 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1811 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1814 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1816 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1817 if (target_sect
== NULL
)
1820 if ((target_sect
->flags
& SEC_RELOC
) == 0
1821 || target_sect
->reloc_count
== 0)
1822 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1826 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1827 amt
= sizeof (*hdr2
);
1828 hdr2
= bfd_alloc (abfd
, amt
);
1831 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1834 elf_elfsections (abfd
)[shindex
] = hdr2
;
1835 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1836 target_sect
->flags
|= SEC_RELOC
;
1837 target_sect
->relocation
= NULL
;
1838 target_sect
->rel_filepos
= hdr
->sh_offset
;
1839 /* In the section to which the relocations apply, mark whether
1840 its relocations are of the REL or RELA variety. */
1841 if (hdr
->sh_size
!= 0)
1842 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1843 abfd
->flags
|= HAS_RELOC
;
1847 case SHT_GNU_verdef
:
1848 elf_dynverdef (abfd
) = shindex
;
1849 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1850 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1852 case SHT_GNU_versym
:
1853 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1855 elf_dynversym (abfd
) = shindex
;
1856 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1857 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1859 case SHT_GNU_verneed
:
1860 elf_dynverref (abfd
) = shindex
;
1861 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1862 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1868 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1870 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1872 if (hdr
->contents
!= NULL
)
1874 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1875 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1878 if (idx
->flags
& GRP_COMDAT
)
1879 hdr
->bfd_section
->flags
1880 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1882 /* We try to keep the same section order as it comes in. */
1884 while (--n_elt
!= 0)
1888 if (idx
->shdr
!= NULL
1889 && (s
= idx
->shdr
->bfd_section
) != NULL
1890 && elf_next_in_group (s
) != NULL
)
1892 elf_next_in_group (hdr
->bfd_section
) = s
;
1900 /* Possibly an attributes section. */
1901 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1902 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1904 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1906 _bfd_elf_parse_attributes (abfd
, hdr
);
1910 /* Check for any processor-specific section types. */
1911 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1914 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1916 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1917 /* FIXME: How to properly handle allocated section reserved
1918 for applications? */
1919 (*_bfd_error_handler
)
1920 (_("%B: don't know how to handle allocated, application "
1921 "specific section `%s' [0x%8x]"),
1922 abfd
, name
, hdr
->sh_type
);
1924 /* Allow sections reserved for applications. */
1925 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1928 else if (hdr
->sh_type
>= SHT_LOPROC
1929 && hdr
->sh_type
<= SHT_HIPROC
)
1930 /* FIXME: We should handle this section. */
1931 (*_bfd_error_handler
)
1932 (_("%B: don't know how to handle processor specific section "
1934 abfd
, name
, hdr
->sh_type
);
1935 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1937 /* Unrecognised OS-specific sections. */
1938 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1939 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1940 required to correctly process the section and the file should
1941 be rejected with an error message. */
1942 (*_bfd_error_handler
)
1943 (_("%B: don't know how to handle OS specific section "
1945 abfd
, name
, hdr
->sh_type
);
1947 /* Otherwise it should be processed. */
1948 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1951 /* FIXME: We should handle this section. */
1952 (*_bfd_error_handler
)
1953 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1954 abfd
, name
, hdr
->sh_type
);
1962 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1963 Return SEC for sections that have no elf section, and NULL on error. */
1966 bfd_section_from_r_symndx (bfd
*abfd
,
1967 struct sym_sec_cache
*cache
,
1969 unsigned long r_symndx
)
1971 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1974 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1976 Elf_Internal_Shdr
*symtab_hdr
;
1977 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1978 Elf_External_Sym_Shndx eshndx
;
1979 Elf_Internal_Sym isym
;
1981 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1982 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1983 &isym
, esym
, &eshndx
) == NULL
)
1986 if (cache
->abfd
!= abfd
)
1988 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1991 cache
->indx
[ent
] = r_symndx
;
1992 cache
->shndx
[ent
] = isym
.st_shndx
;
1995 s
= bfd_section_from_elf_index (abfd
, cache
->shndx
[ent
]);
2002 /* Given an ELF section number, retrieve the corresponding BFD
2006 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2008 if (index
>= elf_numsections (abfd
))
2010 return elf_elfsections (abfd
)[index
]->bfd_section
;
2013 static const struct bfd_elf_special_section special_sections_b
[] =
2015 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2016 { NULL
, 0, 0, 0, 0 }
2019 static const struct bfd_elf_special_section special_sections_c
[] =
2021 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2022 { NULL
, 0, 0, 0, 0 }
2025 static const struct bfd_elf_special_section special_sections_d
[] =
2027 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2028 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2029 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2030 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2031 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2032 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2033 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2034 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2035 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2036 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2037 { NULL
, 0, 0, 0, 0 }
2040 static const struct bfd_elf_special_section special_sections_f
[] =
2042 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2043 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2044 { NULL
, 0, 0, 0, 0 }
2047 static const struct bfd_elf_special_section special_sections_g
[] =
2049 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2050 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2051 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2052 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2053 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2054 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2055 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2056 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2057 { NULL
, 0, 0, 0, 0 }
2060 static const struct bfd_elf_special_section special_sections_h
[] =
2062 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2063 { NULL
, 0, 0, 0, 0 }
2066 static const struct bfd_elf_special_section special_sections_i
[] =
2068 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2069 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2070 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2071 { NULL
, 0, 0, 0, 0 }
2074 static const struct bfd_elf_special_section special_sections_l
[] =
2076 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2077 { NULL
, 0, 0, 0, 0 }
2080 static const struct bfd_elf_special_section special_sections_n
[] =
2082 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2083 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2084 { NULL
, 0, 0, 0, 0 }
2087 static const struct bfd_elf_special_section special_sections_p
[] =
2089 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2090 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2091 { NULL
, 0, 0, 0, 0 }
2094 static const struct bfd_elf_special_section special_sections_r
[] =
2096 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2097 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2098 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2099 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2100 { NULL
, 0, 0, 0, 0 }
2103 static const struct bfd_elf_special_section special_sections_s
[] =
2105 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2106 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2107 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2108 /* See struct bfd_elf_special_section declaration for the semantics of
2109 this special case where .prefix_length != strlen (.prefix). */
2110 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2111 { NULL
, 0, 0, 0, 0 }
2114 static const struct bfd_elf_special_section special_sections_t
[] =
2116 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2117 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2118 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2119 { NULL
, 0, 0, 0, 0 }
2122 static const struct bfd_elf_special_section special_sections_z
[] =
2124 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2125 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2126 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2127 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2128 { NULL
, 0, 0, 0, 0 }
2131 static const struct bfd_elf_special_section
*special_sections
[] =
2133 special_sections_b
, /* 'b' */
2134 special_sections_c
, /* 'c' */
2135 special_sections_d
, /* 'd' */
2137 special_sections_f
, /* 'f' */
2138 special_sections_g
, /* 'g' */
2139 special_sections_h
, /* 'h' */
2140 special_sections_i
, /* 'i' */
2143 special_sections_l
, /* 'l' */
2145 special_sections_n
, /* 'n' */
2147 special_sections_p
, /* 'p' */
2149 special_sections_r
, /* 'r' */
2150 special_sections_s
, /* 's' */
2151 special_sections_t
, /* 't' */
2157 special_sections_z
/* 'z' */
2160 const struct bfd_elf_special_section
*
2161 _bfd_elf_get_special_section (const char *name
,
2162 const struct bfd_elf_special_section
*spec
,
2168 len
= strlen (name
);
2170 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2173 int prefix_len
= spec
[i
].prefix_length
;
2175 if (len
< prefix_len
)
2177 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2180 suffix_len
= spec
[i
].suffix_length
;
2181 if (suffix_len
<= 0)
2183 if (name
[prefix_len
] != 0)
2185 if (suffix_len
== 0)
2187 if (name
[prefix_len
] != '.'
2188 && (suffix_len
== -2
2189 || (rela
&& spec
[i
].type
== SHT_REL
)))
2195 if (len
< prefix_len
+ suffix_len
)
2197 if (memcmp (name
+ len
- suffix_len
,
2198 spec
[i
].prefix
+ prefix_len
,
2208 const struct bfd_elf_special_section
*
2209 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2212 const struct bfd_elf_special_section
*spec
;
2213 const struct elf_backend_data
*bed
;
2215 /* See if this is one of the special sections. */
2216 if (sec
->name
== NULL
)
2219 bed
= get_elf_backend_data (abfd
);
2220 spec
= bed
->special_sections
;
2223 spec
= _bfd_elf_get_special_section (sec
->name
,
2224 bed
->special_sections
,
2230 if (sec
->name
[0] != '.')
2233 i
= sec
->name
[1] - 'b';
2234 if (i
< 0 || i
> 'z' - 'b')
2237 spec
= special_sections
[i
];
2242 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2246 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2248 struct bfd_elf_section_data
*sdata
;
2249 const struct elf_backend_data
*bed
;
2250 const struct bfd_elf_special_section
*ssect
;
2252 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2255 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2258 sec
->used_by_bfd
= sdata
;
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 bed
= get_elf_backend_data (abfd
);
2263 sec
->use_rela_p
= bed
->default_use_rela_p
;
2265 /* When we read a file, we don't need to set ELF section type and
2266 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2267 anyway. We will set ELF section type and flags for all linker
2268 created sections. If user specifies BFD section flags, we will
2269 set ELF section type and flags based on BFD section flags in
2270 elf_fake_sections. */
2271 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2272 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2274 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2277 elf_section_type (sec
) = ssect
->type
;
2278 elf_section_flags (sec
) = ssect
->attr
;
2282 return _bfd_generic_new_section_hook (abfd
, sec
);
2285 /* Create a new bfd section from an ELF program header.
2287 Since program segments have no names, we generate a synthetic name
2288 of the form segment<NUM>, where NUM is generally the index in the
2289 program header table. For segments that are split (see below) we
2290 generate the names segment<NUM>a and segment<NUM>b.
2292 Note that some program segments may have a file size that is different than
2293 (less than) the memory size. All this means is that at execution the
2294 system must allocate the amount of memory specified by the memory size,
2295 but only initialize it with the first "file size" bytes read from the
2296 file. This would occur for example, with program segments consisting
2297 of combined data+bss.
2299 To handle the above situation, this routine generates TWO bfd sections
2300 for the single program segment. The first has the length specified by
2301 the file size of the segment, and the second has the length specified
2302 by the difference between the two sizes. In effect, the segment is split
2303 into its initialized and uninitialized parts.
2308 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2309 Elf_Internal_Phdr
*hdr
,
2311 const char *typename
)
2319 split
= ((hdr
->p_memsz
> 0)
2320 && (hdr
->p_filesz
> 0)
2321 && (hdr
->p_memsz
> hdr
->p_filesz
));
2323 if (hdr
->p_filesz
> 0)
2325 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2326 len
= strlen (namebuf
) + 1;
2327 name
= bfd_alloc (abfd
, len
);
2330 memcpy (name
, namebuf
, len
);
2331 newsect
= bfd_make_section (abfd
, name
);
2332 if (newsect
== NULL
)
2334 newsect
->vma
= hdr
->p_vaddr
;
2335 newsect
->lma
= hdr
->p_paddr
;
2336 newsect
->size
= hdr
->p_filesz
;
2337 newsect
->filepos
= hdr
->p_offset
;
2338 newsect
->flags
|= SEC_HAS_CONTENTS
;
2339 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2340 if (hdr
->p_type
== PT_LOAD
)
2342 newsect
->flags
|= SEC_ALLOC
;
2343 newsect
->flags
|= SEC_LOAD
;
2344 if (hdr
->p_flags
& PF_X
)
2346 /* FIXME: all we known is that it has execute PERMISSION,
2348 newsect
->flags
|= SEC_CODE
;
2351 if (!(hdr
->p_flags
& PF_W
))
2353 newsect
->flags
|= SEC_READONLY
;
2357 if (hdr
->p_memsz
> hdr
->p_filesz
)
2361 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "b" : "");
2362 len
= strlen (namebuf
) + 1;
2363 name
= bfd_alloc (abfd
, len
);
2366 memcpy (name
, namebuf
, len
);
2367 newsect
= bfd_make_section (abfd
, name
);
2368 if (newsect
== NULL
)
2370 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2371 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2372 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2373 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2374 align
= newsect
->vma
& -newsect
->vma
;
2375 if (align
== 0 || align
> hdr
->p_align
)
2376 align
= hdr
->p_align
;
2377 newsect
->alignment_power
= bfd_log2 (align
);
2378 if (hdr
->p_type
== PT_LOAD
)
2380 /* Hack for gdb. Segments that have not been modified do
2381 not have their contents written to a core file, on the
2382 assumption that a debugger can find the contents in the
2383 executable. We flag this case by setting the fake
2384 section size to zero. Note that "real" bss sections will
2385 always have their contents dumped to the core file. */
2386 if (bfd_get_format (abfd
) == bfd_core
)
2388 newsect
->flags
|= SEC_ALLOC
;
2389 if (hdr
->p_flags
& PF_X
)
2390 newsect
->flags
|= SEC_CODE
;
2392 if (!(hdr
->p_flags
& PF_W
))
2393 newsect
->flags
|= SEC_READONLY
;
2400 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2402 const struct elf_backend_data
*bed
;
2404 switch (hdr
->p_type
)
2407 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2410 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2413 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2416 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2419 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2421 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2426 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2429 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2431 case PT_GNU_EH_FRAME
:
2432 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2436 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2439 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2442 /* Check for any processor-specific program segment types. */
2443 bed
= get_elf_backend_data (abfd
);
2444 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2448 /* Initialize REL_HDR, the section-header for new section, containing
2449 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2450 relocations; otherwise, we use REL relocations. */
2453 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2454 Elf_Internal_Shdr
*rel_hdr
,
2456 bfd_boolean use_rela_p
)
2459 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2460 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2462 name
= bfd_alloc (abfd
, amt
);
2465 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2467 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2469 if (rel_hdr
->sh_name
== (unsigned int) -1)
2471 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2472 rel_hdr
->sh_entsize
= (use_rela_p
2473 ? bed
->s
->sizeof_rela
2474 : bed
->s
->sizeof_rel
);
2475 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2476 rel_hdr
->sh_flags
= 0;
2477 rel_hdr
->sh_addr
= 0;
2478 rel_hdr
->sh_size
= 0;
2479 rel_hdr
->sh_offset
= 0;
2484 /* Set up an ELF internal section header for a section. */
2487 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2489 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2490 bfd_boolean
*failedptr
= failedptrarg
;
2491 Elf_Internal_Shdr
*this_hdr
;
2492 unsigned int sh_type
;
2496 /* We already failed; just get out of the bfd_map_over_sections
2501 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2503 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2504 asect
->name
, FALSE
);
2505 if (this_hdr
->sh_name
== (unsigned int) -1)
2511 /* Don't clear sh_flags. Assembler may set additional bits. */
2513 if ((asect
->flags
& SEC_ALLOC
) != 0
2514 || asect
->user_set_vma
)
2515 this_hdr
->sh_addr
= asect
->vma
;
2517 this_hdr
->sh_addr
= 0;
2519 this_hdr
->sh_offset
= 0;
2520 this_hdr
->sh_size
= asect
->size
;
2521 this_hdr
->sh_link
= 0;
2522 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2523 /* The sh_entsize and sh_info fields may have been set already by
2524 copy_private_section_data. */
2526 this_hdr
->bfd_section
= asect
;
2527 this_hdr
->contents
= NULL
;
2529 /* If the section type is unspecified, we set it based on
2531 if ((asect
->flags
& SEC_GROUP
) != 0)
2532 sh_type
= SHT_GROUP
;
2533 else if ((asect
->flags
& SEC_ALLOC
) != 0
2534 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2535 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2536 sh_type
= SHT_NOBITS
;
2538 sh_type
= SHT_PROGBITS
;
2540 if (this_hdr
->sh_type
== SHT_NULL
)
2541 this_hdr
->sh_type
= sh_type
;
2542 else if (this_hdr
->sh_type
== SHT_NOBITS
2543 && sh_type
== SHT_PROGBITS
2544 && (asect
->flags
& SEC_ALLOC
) != 0)
2546 /* Warn if we are changing a NOBITS section to PROGBITS, but
2547 allow the link to proceed. This can happen when users link
2548 non-bss input sections to bss output sections, or emit data
2549 to a bss output section via a linker script. */
2550 (*_bfd_error_handler
)
2551 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2552 this_hdr
->sh_type
= sh_type
;
2555 switch (this_hdr
->sh_type
)
2561 case SHT_INIT_ARRAY
:
2562 case SHT_FINI_ARRAY
:
2563 case SHT_PREINIT_ARRAY
:
2570 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2574 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2578 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2582 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2583 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2587 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2588 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2591 case SHT_GNU_versym
:
2592 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2595 case SHT_GNU_verdef
:
2596 this_hdr
->sh_entsize
= 0;
2597 /* objcopy or strip will copy over sh_info, but may not set
2598 cverdefs. The linker will set cverdefs, but sh_info will be
2600 if (this_hdr
->sh_info
== 0)
2601 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2603 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2604 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2607 case SHT_GNU_verneed
:
2608 this_hdr
->sh_entsize
= 0;
2609 /* objcopy or strip will copy over sh_info, but may not set
2610 cverrefs. The linker will set cverrefs, but sh_info will be
2612 if (this_hdr
->sh_info
== 0)
2613 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2615 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2616 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2620 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2624 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2628 if ((asect
->flags
& SEC_ALLOC
) != 0)
2629 this_hdr
->sh_flags
|= SHF_ALLOC
;
2630 if ((asect
->flags
& SEC_READONLY
) == 0)
2631 this_hdr
->sh_flags
|= SHF_WRITE
;
2632 if ((asect
->flags
& SEC_CODE
) != 0)
2633 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2634 if ((asect
->flags
& SEC_MERGE
) != 0)
2636 this_hdr
->sh_flags
|= SHF_MERGE
;
2637 this_hdr
->sh_entsize
= asect
->entsize
;
2638 if ((asect
->flags
& SEC_STRINGS
) != 0)
2639 this_hdr
->sh_flags
|= SHF_STRINGS
;
2641 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2642 this_hdr
->sh_flags
|= SHF_GROUP
;
2643 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2645 this_hdr
->sh_flags
|= SHF_TLS
;
2646 if (asect
->size
== 0
2647 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2649 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2651 this_hdr
->sh_size
= 0;
2654 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2655 if (this_hdr
->sh_size
!= 0)
2656 this_hdr
->sh_type
= SHT_NOBITS
;
2661 /* Check for processor-specific section types. */
2662 sh_type
= this_hdr
->sh_type
;
2663 if (bed
->elf_backend_fake_sections
2664 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2667 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2669 /* Don't change the header type from NOBITS if we are being
2670 called for objcopy --only-keep-debug. */
2671 this_hdr
->sh_type
= sh_type
;
2674 /* If the section has relocs, set up a section header for the
2675 SHT_REL[A] section. If two relocation sections are required for
2676 this section, it is up to the processor-specific back-end to
2677 create the other. */
2678 if ((asect
->flags
& SEC_RELOC
) != 0
2679 && !_bfd_elf_init_reloc_shdr (abfd
,
2680 &elf_section_data (asect
)->rel_hdr
,
2686 /* Fill in the contents of a SHT_GROUP section. Called from
2687 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2688 when ELF targets use the generic linker, ld. Called for ld -r
2689 from bfd_elf_final_link. */
2692 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2694 bfd_boolean
*failedptr
= failedptrarg
;
2695 asection
*elt
, *first
;
2699 /* Ignore linker created group section. See elfNN_ia64_object_p in
2701 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2705 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2707 unsigned long symindx
= 0;
2709 /* elf_group_id will have been set up by objcopy and the
2711 if (elf_group_id (sec
) != NULL
)
2712 symindx
= elf_group_id (sec
)->udata
.i
;
2716 /* If called from the assembler, swap_out_syms will have set up
2717 elf_section_syms. */
2718 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2719 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2721 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2723 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2725 /* The ELF backend linker sets sh_info to -2 when the group
2726 signature symbol is global, and thus the index can't be
2727 set until all local symbols are output. */
2728 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2729 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2730 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2731 unsigned long extsymoff
= 0;
2732 struct elf_link_hash_entry
*h
;
2734 if (!elf_bad_symtab (igroup
->owner
))
2736 Elf_Internal_Shdr
*symtab_hdr
;
2738 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2739 extsymoff
= symtab_hdr
->sh_info
;
2741 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2742 while (h
->root
.type
== bfd_link_hash_indirect
2743 || h
->root
.type
== bfd_link_hash_warning
)
2744 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2746 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2749 /* The contents won't be allocated for "ld -r" or objcopy. */
2751 if (sec
->contents
== NULL
)
2754 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2756 /* Arrange for the section to be written out. */
2757 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2758 if (sec
->contents
== NULL
)
2765 loc
= sec
->contents
+ sec
->size
;
2767 /* Get the pointer to the first section in the group that gas
2768 squirreled away here. objcopy arranges for this to be set to the
2769 start of the input section group. */
2770 first
= elt
= elf_next_in_group (sec
);
2772 /* First element is a flag word. Rest of section is elf section
2773 indices for all the sections of the group. Write them backwards
2774 just to keep the group in the same order as given in .section
2775 directives, not that it matters. */
2784 s
= s
->output_section
;
2787 idx
= elf_section_data (s
)->this_idx
;
2788 H_PUT_32 (abfd
, idx
, loc
);
2789 elt
= elf_next_in_group (elt
);
2794 if ((loc
-= 4) != sec
->contents
)
2797 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2800 /* Assign all ELF section numbers. The dummy first section is handled here
2801 too. The link/info pointers for the standard section types are filled
2802 in here too, while we're at it. */
2805 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2807 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2809 unsigned int section_number
, secn
;
2810 Elf_Internal_Shdr
**i_shdrp
;
2811 struct bfd_elf_section_data
*d
;
2815 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2817 /* SHT_GROUP sections are in relocatable files only. */
2818 if (link_info
== NULL
|| link_info
->relocatable
)
2820 /* Put SHT_GROUP sections first. */
2821 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2823 d
= elf_section_data (sec
);
2825 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2827 if (sec
->flags
& SEC_LINKER_CREATED
)
2829 /* Remove the linker created SHT_GROUP sections. */
2830 bfd_section_list_remove (abfd
, sec
);
2831 abfd
->section_count
--;
2834 d
->this_idx
= section_number
++;
2839 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2841 d
= elf_section_data (sec
);
2843 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2844 d
->this_idx
= section_number
++;
2845 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2846 if ((sec
->flags
& SEC_RELOC
) == 0)
2850 d
->rel_idx
= section_number
++;
2851 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2856 d
->rel_idx2
= section_number
++;
2857 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2863 t
->shstrtab_section
= section_number
++;
2864 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2865 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2867 if (bfd_get_symcount (abfd
) > 0)
2869 t
->symtab_section
= section_number
++;
2870 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2871 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2873 t
->symtab_shndx_section
= section_number
++;
2874 t
->symtab_shndx_hdr
.sh_name
2875 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2876 ".symtab_shndx", FALSE
);
2877 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2880 t
->strtab_section
= section_number
++;
2881 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2884 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2885 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2887 elf_numsections (abfd
) = section_number
;
2888 elf_elfheader (abfd
)->e_shnum
= section_number
;
2890 /* Set up the list of section header pointers, in agreement with the
2892 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
2893 if (i_shdrp
== NULL
)
2896 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2897 if (i_shdrp
[0] == NULL
)
2899 bfd_release (abfd
, i_shdrp
);
2903 elf_elfsections (abfd
) = i_shdrp
;
2905 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2906 if (bfd_get_symcount (abfd
) > 0)
2908 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2909 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2911 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2912 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2914 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2915 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2918 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2920 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2924 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2925 if (d
->rel_idx
!= 0)
2926 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2927 if (d
->rel_idx2
!= 0)
2928 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2930 /* Fill in the sh_link and sh_info fields while we're at it. */
2932 /* sh_link of a reloc section is the section index of the symbol
2933 table. sh_info is the section index of the section to which
2934 the relocation entries apply. */
2935 if (d
->rel_idx
!= 0)
2937 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2938 d
->rel_hdr
.sh_info
= d
->this_idx
;
2940 if (d
->rel_idx2
!= 0)
2942 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2943 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2946 /* We need to set up sh_link for SHF_LINK_ORDER. */
2947 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2949 s
= elf_linked_to_section (sec
);
2952 /* elf_linked_to_section points to the input section. */
2953 if (link_info
!= NULL
)
2955 /* Check discarded linkonce section. */
2956 if (elf_discarded_section (s
))
2959 (*_bfd_error_handler
)
2960 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2961 abfd
, d
->this_hdr
.bfd_section
,
2963 /* Point to the kept section if it has the same
2964 size as the discarded one. */
2965 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2968 bfd_set_error (bfd_error_bad_value
);
2974 s
= s
->output_section
;
2975 BFD_ASSERT (s
!= NULL
);
2979 /* Handle objcopy. */
2980 if (s
->output_section
== NULL
)
2982 (*_bfd_error_handler
)
2983 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2984 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2985 bfd_set_error (bfd_error_bad_value
);
2988 s
= s
->output_section
;
2990 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2995 The Intel C compiler generates SHT_IA_64_UNWIND with
2996 SHF_LINK_ORDER. But it doesn't set the sh_link or
2997 sh_info fields. Hence we could get the situation
2999 const struct elf_backend_data
*bed
3000 = get_elf_backend_data (abfd
);
3001 if (bed
->link_order_error_handler
)
3002 bed
->link_order_error_handler
3003 (_("%B: warning: sh_link not set for section `%A'"),
3008 switch (d
->this_hdr
.sh_type
)
3012 /* A reloc section which we are treating as a normal BFD
3013 section. sh_link is the section index of the symbol
3014 table. sh_info is the section index of the section to
3015 which the relocation entries apply. We assume that an
3016 allocated reloc section uses the dynamic symbol table.
3017 FIXME: How can we be sure? */
3018 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3020 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3022 /* We look up the section the relocs apply to by name. */
3024 if (d
->this_hdr
.sh_type
== SHT_REL
)
3028 s
= bfd_get_section_by_name (abfd
, name
);
3030 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3034 /* We assume that a section named .stab*str is a stabs
3035 string section. We look for a section with the same name
3036 but without the trailing ``str'', and set its sh_link
3037 field to point to this section. */
3038 if (CONST_STRNEQ (sec
->name
, ".stab")
3039 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3044 len
= strlen (sec
->name
);
3045 alc
= bfd_malloc (len
- 2);
3048 memcpy (alc
, sec
->name
, len
- 3);
3049 alc
[len
- 3] = '\0';
3050 s
= bfd_get_section_by_name (abfd
, alc
);
3054 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3056 /* This is a .stab section. */
3057 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3058 elf_section_data (s
)->this_hdr
.sh_entsize
3059 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3066 case SHT_GNU_verneed
:
3067 case SHT_GNU_verdef
:
3068 /* sh_link is the section header index of the string table
3069 used for the dynamic entries, or the symbol table, or the
3071 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3073 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3076 case SHT_GNU_LIBLIST
:
3077 /* sh_link is the section header index of the prelink library
3078 list used for the dynamic entries, or the symbol table, or
3079 the version strings. */
3080 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3081 ? ".dynstr" : ".gnu.libstr");
3083 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3088 case SHT_GNU_versym
:
3089 /* sh_link is the section header index of the symbol table
3090 this hash table or version table is for. */
3091 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3093 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3097 d
->this_hdr
.sh_link
= t
->symtab_section
;
3101 for (secn
= 1; secn
< section_number
; ++secn
)
3102 if (i_shdrp
[secn
] == NULL
)
3103 i_shdrp
[secn
] = i_shdrp
[0];
3105 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3106 i_shdrp
[secn
]->sh_name
);
3110 /* Map symbol from it's internal number to the external number, moving
3111 all local symbols to be at the head of the list. */
3114 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3116 /* If the backend has a special mapping, use it. */
3117 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3118 if (bed
->elf_backend_sym_is_global
)
3119 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3121 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3122 || bfd_is_und_section (bfd_get_section (sym
))
3123 || bfd_is_com_section (bfd_get_section (sym
)));
3126 /* Don't output section symbols for sections that are not going to be
3130 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3132 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3133 && !(sym
->section
->owner
== abfd
3134 || (sym
->section
->output_section
->owner
== abfd
3135 && sym
->section
->output_offset
== 0)));
3139 elf_map_symbols (bfd
*abfd
)
3141 unsigned int symcount
= bfd_get_symcount (abfd
);
3142 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3143 asymbol
**sect_syms
;
3144 unsigned int num_locals
= 0;
3145 unsigned int num_globals
= 0;
3146 unsigned int num_locals2
= 0;
3147 unsigned int num_globals2
= 0;
3154 fprintf (stderr
, "elf_map_symbols\n");
3158 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3160 if (max_index
< asect
->index
)
3161 max_index
= asect
->index
;
3165 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3166 if (sect_syms
== NULL
)
3168 elf_section_syms (abfd
) = sect_syms
;
3169 elf_num_section_syms (abfd
) = max_index
;
3171 /* Init sect_syms entries for any section symbols we have already
3172 decided to output. */
3173 for (idx
= 0; idx
< symcount
; idx
++)
3175 asymbol
*sym
= syms
[idx
];
3177 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3179 && !ignore_section_sym (abfd
, sym
))
3181 asection
*sec
= sym
->section
;
3183 if (sec
->owner
!= abfd
)
3184 sec
= sec
->output_section
;
3186 sect_syms
[sec
->index
] = syms
[idx
];
3190 /* Classify all of the symbols. */
3191 for (idx
= 0; idx
< symcount
; idx
++)
3193 if (ignore_section_sym (abfd
, syms
[idx
]))
3195 if (!sym_is_global (abfd
, syms
[idx
]))
3201 /* We will be adding a section symbol for each normal BFD section. Most
3202 sections will already have a section symbol in outsymbols, but
3203 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3204 at least in that case. */
3205 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3207 if (sect_syms
[asect
->index
] == NULL
)
3209 if (!sym_is_global (abfd
, asect
->symbol
))
3216 /* Now sort the symbols so the local symbols are first. */
3217 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3219 if (new_syms
== NULL
)
3222 for (idx
= 0; idx
< symcount
; idx
++)
3224 asymbol
*sym
= syms
[idx
];
3227 if (ignore_section_sym (abfd
, sym
))
3229 if (!sym_is_global (abfd
, sym
))
3232 i
= num_locals
+ num_globals2
++;
3234 sym
->udata
.i
= i
+ 1;
3236 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3238 if (sect_syms
[asect
->index
] == NULL
)
3240 asymbol
*sym
= asect
->symbol
;
3243 sect_syms
[asect
->index
] = sym
;
3244 if (!sym_is_global (abfd
, sym
))
3247 i
= num_locals
+ num_globals2
++;
3249 sym
->udata
.i
= i
+ 1;
3253 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3255 elf_num_locals (abfd
) = num_locals
;
3256 elf_num_globals (abfd
) = num_globals
;
3260 /* Align to the maximum file alignment that could be required for any
3261 ELF data structure. */
3263 static inline file_ptr
3264 align_file_position (file_ptr off
, int align
)
3266 return (off
+ align
- 1) & ~(align
- 1);
3269 /* Assign a file position to a section, optionally aligning to the
3270 required section alignment. */
3273 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3277 if (align
&& i_shdrp
->sh_addralign
> 1)
3278 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3279 i_shdrp
->sh_offset
= offset
;
3280 if (i_shdrp
->bfd_section
!= NULL
)
3281 i_shdrp
->bfd_section
->filepos
= offset
;
3282 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3283 offset
+= i_shdrp
->sh_size
;
3287 /* Compute the file positions we are going to put the sections at, and
3288 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3289 is not NULL, this is being called by the ELF backend linker. */
3292 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3293 struct bfd_link_info
*link_info
)
3295 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3297 struct bfd_strtab_hash
*strtab
= NULL
;
3298 Elf_Internal_Shdr
*shstrtab_hdr
;
3300 if (abfd
->output_has_begun
)
3303 /* Do any elf backend specific processing first. */
3304 if (bed
->elf_backend_begin_write_processing
)
3305 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3307 if (! prep_headers (abfd
))
3310 /* Post process the headers if necessary. */
3311 if (bed
->elf_backend_post_process_headers
)
3312 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3315 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3319 if (!assign_section_numbers (abfd
, link_info
))
3322 /* The backend linker builds symbol table information itself. */
3323 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3325 /* Non-zero if doing a relocatable link. */
3326 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3328 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3332 if (link_info
== NULL
)
3334 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3339 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3340 /* sh_name was set in prep_headers. */
3341 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3342 shstrtab_hdr
->sh_flags
= 0;
3343 shstrtab_hdr
->sh_addr
= 0;
3344 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3345 shstrtab_hdr
->sh_entsize
= 0;
3346 shstrtab_hdr
->sh_link
= 0;
3347 shstrtab_hdr
->sh_info
= 0;
3348 /* sh_offset is set in assign_file_positions_except_relocs. */
3349 shstrtab_hdr
->sh_addralign
= 1;
3351 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3354 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3357 Elf_Internal_Shdr
*hdr
;
3359 off
= elf_tdata (abfd
)->next_file_pos
;
3361 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3362 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3364 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3365 if (hdr
->sh_size
!= 0)
3366 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3368 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3369 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3371 elf_tdata (abfd
)->next_file_pos
= off
;
3373 /* Now that we know where the .strtab section goes, write it
3375 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3376 || ! _bfd_stringtab_emit (abfd
, strtab
))
3378 _bfd_stringtab_free (strtab
);
3381 abfd
->output_has_begun
= TRUE
;
3386 /* Make an initial estimate of the size of the program header. If we
3387 get the number wrong here, we'll redo section placement. */
3389 static bfd_size_type
3390 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3394 const struct elf_backend_data
*bed
;
3396 /* Assume we will need exactly two PT_LOAD segments: one for text
3397 and one for data. */
3400 s
= bfd_get_section_by_name (abfd
, ".interp");
3401 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3403 /* If we have a loadable interpreter section, we need a
3404 PT_INTERP segment. In this case, assume we also need a
3405 PT_PHDR segment, although that may not be true for all
3410 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3412 /* We need a PT_DYNAMIC segment. */
3416 if (info
!= NULL
&& info
->relro
)
3418 /* We need a PT_GNU_RELRO segment. */
3422 if (elf_tdata (abfd
)->eh_frame_hdr
)
3424 /* We need a PT_GNU_EH_FRAME segment. */
3428 if (elf_tdata (abfd
)->stack_flags
)
3430 /* We need a PT_GNU_STACK segment. */
3434 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3436 if ((s
->flags
& SEC_LOAD
) != 0
3437 && CONST_STRNEQ (s
->name
, ".note"))
3439 /* We need a PT_NOTE segment. */
3441 /* Try to create just one PT_NOTE segment
3442 for all adjacent loadable .note* sections.
3443 gABI requires that within a PT_NOTE segment
3444 (and also inside of each SHT_NOTE section)
3445 each note is padded to a multiple of 4 size,
3446 so we check whether the sections are correctly
3448 if (s
->alignment_power
== 2)
3449 while (s
->next
!= NULL
3450 && s
->next
->alignment_power
== 2
3451 && (s
->next
->flags
& SEC_LOAD
) != 0
3452 && CONST_STRNEQ (s
->next
->name
, ".note"))
3457 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3459 if (s
->flags
& SEC_THREAD_LOCAL
)
3461 /* We need a PT_TLS segment. */
3467 /* Let the backend count up any program headers it might need. */
3468 bed
= get_elf_backend_data (abfd
);
3469 if (bed
->elf_backend_additional_program_headers
)
3473 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3479 return segs
* bed
->s
->sizeof_phdr
;
3482 /* Find the segment that contains the output_section of section. */
3485 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3487 struct elf_segment_map
*m
;
3488 Elf_Internal_Phdr
*p
;
3490 for (m
= elf_tdata (abfd
)->segment_map
,
3491 p
= elf_tdata (abfd
)->phdr
;
3497 for (i
= m
->count
- 1; i
>= 0; i
--)
3498 if (m
->sections
[i
] == section
)
3505 /* Create a mapping from a set of sections to a program segment. */
3507 static struct elf_segment_map
*
3508 make_mapping (bfd
*abfd
,
3509 asection
**sections
,
3514 struct elf_segment_map
*m
;
3519 amt
= sizeof (struct elf_segment_map
);
3520 amt
+= (to
- from
- 1) * sizeof (asection
*);
3521 m
= bfd_zalloc (abfd
, amt
);
3525 m
->p_type
= PT_LOAD
;
3526 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3527 m
->sections
[i
- from
] = *hdrpp
;
3528 m
->count
= to
- from
;
3530 if (from
== 0 && phdr
)
3532 /* Include the headers in the first PT_LOAD segment. */
3533 m
->includes_filehdr
= 1;
3534 m
->includes_phdrs
= 1;
3540 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3543 struct elf_segment_map
*
3544 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3546 struct elf_segment_map
*m
;
3548 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3552 m
->p_type
= PT_DYNAMIC
;
3554 m
->sections
[0] = dynsec
;
3559 /* Possibly add or remove segments from the segment map. */
3562 elf_modify_segment_map (bfd
*abfd
,
3563 struct bfd_link_info
*info
,
3564 bfd_boolean remove_empty_load
)
3566 struct elf_segment_map
**m
;
3567 const struct elf_backend_data
*bed
;
3569 /* The placement algorithm assumes that non allocated sections are
3570 not in PT_LOAD segments. We ensure this here by removing such
3571 sections from the segment map. We also remove excluded
3572 sections. Finally, any PT_LOAD segment without sections is
3574 m
= &elf_tdata (abfd
)->segment_map
;
3577 unsigned int i
, new_count
;
3579 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3581 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3582 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3583 || (*m
)->p_type
!= PT_LOAD
))
3585 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3589 (*m
)->count
= new_count
;
3591 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3597 bed
= get_elf_backend_data (abfd
);
3598 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3600 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3607 /* Set up a mapping from BFD sections to program segments. */
3610 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3613 struct elf_segment_map
*m
;
3614 asection
**sections
= NULL
;
3615 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3616 bfd_boolean no_user_phdrs
;
3618 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3619 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3623 struct elf_segment_map
*mfirst
;
3624 struct elf_segment_map
**pm
;
3627 unsigned int phdr_index
;
3628 bfd_vma maxpagesize
;
3630 bfd_boolean phdr_in_segment
= TRUE
;
3631 bfd_boolean writable
;
3633 asection
*first_tls
= NULL
;
3634 asection
*dynsec
, *eh_frame_hdr
;
3637 /* Select the allocated sections, and sort them. */
3639 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3640 if (sections
== NULL
)
3644 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3646 if ((s
->flags
& SEC_ALLOC
) != 0)
3652 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3655 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3657 /* Build the mapping. */
3662 /* If we have a .interp section, then create a PT_PHDR segment for
3663 the program headers and a PT_INTERP segment for the .interp
3665 s
= bfd_get_section_by_name (abfd
, ".interp");
3666 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3668 amt
= sizeof (struct elf_segment_map
);
3669 m
= bfd_zalloc (abfd
, amt
);
3673 m
->p_type
= PT_PHDR
;
3674 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3675 m
->p_flags
= PF_R
| PF_X
;
3676 m
->p_flags_valid
= 1;
3677 m
->includes_phdrs
= 1;
3682 amt
= sizeof (struct elf_segment_map
);
3683 m
= bfd_zalloc (abfd
, amt
);
3687 m
->p_type
= PT_INTERP
;
3695 /* Look through the sections. We put sections in the same program
3696 segment when the start of the second section can be placed within
3697 a few bytes of the end of the first section. */
3701 maxpagesize
= bed
->maxpagesize
;
3703 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3705 && (dynsec
->flags
& SEC_LOAD
) == 0)
3708 /* Deal with -Ttext or something similar such that the first section
3709 is not adjacent to the program headers. This is an
3710 approximation, since at this point we don't know exactly how many
3711 program headers we will need. */
3714 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3716 if (phdr_size
== (bfd_size_type
) -1)
3717 phdr_size
= get_program_header_size (abfd
, info
);
3718 if ((abfd
->flags
& D_PAGED
) == 0
3719 || sections
[0]->lma
< phdr_size
3720 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3721 phdr_in_segment
= FALSE
;
3724 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3727 bfd_boolean new_segment
;
3731 /* See if this section and the last one will fit in the same
3734 if (last_hdr
== NULL
)
3736 /* If we don't have a segment yet, then we don't need a new
3737 one (we build the last one after this loop). */
3738 new_segment
= FALSE
;
3740 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3742 /* If this section has a different relation between the
3743 virtual address and the load address, then we need a new
3747 /* In the next test we have to be careful when last_hdr->lma is close
3748 to the end of the address space. If the aligned address wraps
3749 around to the start of the address space, then there are no more
3750 pages left in memory and it is OK to assume that the current
3751 section can be included in the current segment. */
3752 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3754 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3757 /* If putting this section in this segment would force us to
3758 skip a page in the segment, then we need a new segment. */
3761 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3762 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3764 /* We don't want to put a loadable section after a
3765 nonloadable section in the same segment.
3766 Consider .tbss sections as loadable for this purpose. */
3769 else if ((abfd
->flags
& D_PAGED
) == 0)
3771 /* If the file is not demand paged, which means that we
3772 don't require the sections to be correctly aligned in the
3773 file, then there is no other reason for a new segment. */
3774 new_segment
= FALSE
;
3777 && (hdr
->flags
& SEC_READONLY
) == 0
3778 && (((last_hdr
->lma
+ last_size
- 1)
3779 & ~(maxpagesize
- 1))
3780 != (hdr
->lma
& ~(maxpagesize
- 1))))
3782 /* We don't want to put a writable section in a read only
3783 segment, unless they are on the same page in memory
3784 anyhow. We already know that the last section does not
3785 bring us past the current section on the page, so the
3786 only case in which the new section is not on the same
3787 page as the previous section is when the previous section
3788 ends precisely on a page boundary. */
3793 /* Otherwise, we can use the same segment. */
3794 new_segment
= FALSE
;
3797 /* Allow interested parties a chance to override our decision. */
3798 if (last_hdr
!= NULL
3800 && info
->callbacks
->override_segment_assignment
!= NULL
)
3802 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3808 if ((hdr
->flags
& SEC_READONLY
) == 0)
3811 /* .tbss sections effectively have zero size. */
3812 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3813 != SEC_THREAD_LOCAL
)
3814 last_size
= hdr
->size
;
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3823 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3830 if ((hdr
->flags
& SEC_READONLY
) == 0)
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3838 last_size
= hdr
->size
;
3842 phdr_in_segment
= FALSE
;
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr
!= NULL
)
3848 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3859 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3866 /* For each batch of consecutive loadable .note sections,
3867 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3868 because if we link together nonloadable .note sections and
3869 loadable .note sections, we will generate two .note sections
3870 in the output file. FIXME: Using names for section types is
3872 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3874 if ((s
->flags
& SEC_LOAD
) != 0
3875 && CONST_STRNEQ (s
->name
, ".note"))
3879 amt
= sizeof (struct elf_segment_map
);
3880 if (s
->alignment_power
== 2)
3881 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3883 if (s2
->next
->alignment_power
== 2
3884 && (s2
->next
->flags
& SEC_LOAD
) != 0
3885 && CONST_STRNEQ (s2
->next
->name
, ".note")
3886 && align_power (s2
->vma
+ s2
->size
, 2)
3892 amt
+= (count
- 1) * sizeof (asection
*);
3893 m
= bfd_zalloc (abfd
, amt
);
3897 m
->p_type
= PT_NOTE
;
3901 m
->sections
[m
->count
- count
--] = s
;
3902 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3905 m
->sections
[m
->count
- 1] = s
;
3906 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3910 if (s
->flags
& SEC_THREAD_LOCAL
)
3918 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3923 amt
= sizeof (struct elf_segment_map
);
3924 amt
+= (tls_count
- 1) * sizeof (asection
*);
3925 m
= bfd_zalloc (abfd
, amt
);
3930 m
->count
= tls_count
;
3931 /* Mandated PF_R. */
3933 m
->p_flags_valid
= 1;
3934 for (i
= 0; i
< tls_count
; ++i
)
3936 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3937 m
->sections
[i
] = first_tls
;
3938 first_tls
= first_tls
->next
;
3945 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3947 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3948 if (eh_frame_hdr
!= NULL
3949 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3951 amt
= sizeof (struct elf_segment_map
);
3952 m
= bfd_zalloc (abfd
, amt
);
3956 m
->p_type
= PT_GNU_EH_FRAME
;
3958 m
->sections
[0] = eh_frame_hdr
->output_section
;
3964 if (elf_tdata (abfd
)->stack_flags
)
3966 amt
= sizeof (struct elf_segment_map
);
3967 m
= bfd_zalloc (abfd
, amt
);
3971 m
->p_type
= PT_GNU_STACK
;
3972 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3973 m
->p_flags_valid
= 1;
3979 if (info
!= NULL
&& info
->relro
)
3981 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3983 if (m
->p_type
== PT_LOAD
)
3985 asection
*last
= m
->sections
[m
->count
- 1];
3986 bfd_vma vaddr
= m
->sections
[0]->vma
;
3987 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3989 if (vaddr
< info
->relro_end
3990 && vaddr
>= info
->relro_start
3991 && (vaddr
+ filesz
) >= info
->relro_end
)
3996 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3999 amt
= sizeof (struct elf_segment_map
);
4000 m
= bfd_zalloc (abfd
, amt
);
4004 m
->p_type
= PT_GNU_RELRO
;
4006 m
->p_flags_valid
= 1;
4014 elf_tdata (abfd
)->segment_map
= mfirst
;
4017 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4020 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4022 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4027 if (sections
!= NULL
)
4032 /* Sort sections by address. */
4035 elf_sort_sections (const void *arg1
, const void *arg2
)
4037 const asection
*sec1
= *(const asection
**) arg1
;
4038 const asection
*sec2
= *(const asection
**) arg2
;
4039 bfd_size_type size1
, size2
;
4041 /* Sort by LMA first, since this is the address used to
4042 place the section into a segment. */
4043 if (sec1
->lma
< sec2
->lma
)
4045 else if (sec1
->lma
> sec2
->lma
)
4048 /* Then sort by VMA. Normally the LMA and the VMA will be
4049 the same, and this will do nothing. */
4050 if (sec1
->vma
< sec2
->vma
)
4052 else if (sec1
->vma
> sec2
->vma
)
4055 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4057 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4063 /* If the indicies are the same, do not return 0
4064 here, but continue to try the next comparison. */
4065 if (sec1
->target_index
- sec2
->target_index
!= 0)
4066 return sec1
->target_index
- sec2
->target_index
;
4071 else if (TOEND (sec2
))
4076 /* Sort by size, to put zero sized sections
4077 before others at the same address. */
4079 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4080 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4087 return sec1
->target_index
- sec2
->target_index
;
4090 /* Ian Lance Taylor writes:
4092 We shouldn't be using % with a negative signed number. That's just
4093 not good. We have to make sure either that the number is not
4094 negative, or that the number has an unsigned type. When the types
4095 are all the same size they wind up as unsigned. When file_ptr is a
4096 larger signed type, the arithmetic winds up as signed long long,
4099 What we're trying to say here is something like ``increase OFF by
4100 the least amount that will cause it to be equal to the VMA modulo
4102 /* In other words, something like:
4104 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4105 off_offset = off % bed->maxpagesize;
4106 if (vma_offset < off_offset)
4107 adjustment = vma_offset + bed->maxpagesize - off_offset;
4109 adjustment = vma_offset - off_offset;
4111 which can can be collapsed into the expression below. */
4114 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4116 return ((vma
- off
) % maxpagesize
);
4120 print_segment_map (const struct elf_segment_map
*m
)
4123 const char *pt
= get_segment_type (m
->p_type
);
4128 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4129 sprintf (buf
, "LOPROC+%7.7x",
4130 (unsigned int) (m
->p_type
- PT_LOPROC
));
4131 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4132 sprintf (buf
, "LOOS+%7.7x",
4133 (unsigned int) (m
->p_type
- PT_LOOS
));
4135 snprintf (buf
, sizeof (buf
), "%8.8x",
4136 (unsigned int) m
->p_type
);
4139 fprintf (stderr
, "%s:", pt
);
4140 for (j
= 0; j
< m
->count
; j
++)
4141 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4145 /* Assign file positions to the sections based on the mapping from
4146 sections to segments. This function also sets up some fields in
4150 assign_file_positions_for_load_sections (bfd
*abfd
,
4151 struct bfd_link_info
*link_info
)
4153 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4154 struct elf_segment_map
*m
;
4155 Elf_Internal_Phdr
*phdrs
;
4156 Elf_Internal_Phdr
*p
;
4158 bfd_size_type maxpagesize
;
4161 bfd_vma header_pad
= 0;
4163 if (link_info
== NULL
4164 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4168 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4172 header_pad
= m
->header_size
;
4175 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4176 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4177 elf_elfheader (abfd
)->e_phnum
= alloc
;
4179 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4180 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4182 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4183 >= alloc
* bed
->s
->sizeof_phdr
);
4187 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4191 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4192 see assign_file_positions_except_relocs, so make sure we have
4193 that amount allocated, with trailing space cleared.
4194 The variable alloc contains the computed need, while elf_tdata
4195 (abfd)->program_header_size contains the size used for the
4197 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4198 where the layout is forced to according to a larger size in the
4199 last iterations for the testcase ld-elf/header. */
4200 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4202 phdrs
= bfd_zalloc2 (abfd
,
4203 (elf_tdata (abfd
)->program_header_size
4204 / bed
->s
->sizeof_phdr
),
4205 sizeof (Elf_Internal_Phdr
));
4206 elf_tdata (abfd
)->phdr
= phdrs
;
4211 if ((abfd
->flags
& D_PAGED
) != 0)
4212 maxpagesize
= bed
->maxpagesize
;
4214 off
= bed
->s
->sizeof_ehdr
;
4215 off
+= alloc
* bed
->s
->sizeof_phdr
;
4216 if (header_pad
< (bfd_vma
) off
)
4222 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4224 m
= m
->next
, p
++, j
++)
4228 bfd_boolean no_contents
;
4230 /* If elf_segment_map is not from map_sections_to_segments, the
4231 sections may not be correctly ordered. NOTE: sorting should
4232 not be done to the PT_NOTE section of a corefile, which may
4233 contain several pseudo-sections artificially created by bfd.
4234 Sorting these pseudo-sections breaks things badly. */
4236 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4237 && m
->p_type
== PT_NOTE
))
4238 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4241 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4242 number of sections with contents contributing to both p_filesz
4243 and p_memsz, followed by a number of sections with no contents
4244 that just contribute to p_memsz. In this loop, OFF tracks next
4245 available file offset for PT_LOAD and PT_NOTE segments. */
4246 p
->p_type
= m
->p_type
;
4247 p
->p_flags
= m
->p_flags
;
4252 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4254 if (m
->p_paddr_valid
)
4255 p
->p_paddr
= m
->p_paddr
;
4256 else if (m
->count
== 0)
4259 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4261 if (p
->p_type
== PT_LOAD
4262 && (abfd
->flags
& D_PAGED
) != 0)
4264 /* p_align in demand paged PT_LOAD segments effectively stores
4265 the maximum page size. When copying an executable with
4266 objcopy, we set m->p_align from the input file. Use this
4267 value for maxpagesize rather than bed->maxpagesize, which
4268 may be different. Note that we use maxpagesize for PT_TLS
4269 segment alignment later in this function, so we are relying
4270 on at least one PT_LOAD segment appearing before a PT_TLS
4272 if (m
->p_align_valid
)
4273 maxpagesize
= m
->p_align
;
4275 p
->p_align
= maxpagesize
;
4277 else if (m
->p_align_valid
)
4278 p
->p_align
= m
->p_align
;
4279 else if (m
->count
== 0)
4280 p
->p_align
= 1 << bed
->s
->log_file_align
;
4284 no_contents
= FALSE
;
4286 if (p
->p_type
== PT_LOAD
4289 bfd_size_type align
;
4290 unsigned int align_power
= 0;
4292 if (m
->p_align_valid
)
4296 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4298 unsigned int secalign
;
4300 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4301 if (secalign
> align_power
)
4302 align_power
= secalign
;
4304 align
= (bfd_size_type
) 1 << align_power
;
4305 if (align
< maxpagesize
)
4306 align
= maxpagesize
;
4309 for (i
= 0; i
< m
->count
; i
++)
4310 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4311 /* If we aren't making room for this section, then
4312 it must be SHT_NOBITS regardless of what we've
4313 set via struct bfd_elf_special_section. */
4314 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4316 /* Find out whether this segment contains any loadable
4319 for (i
= 0; i
< m
->count
; i
++)
4320 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4322 no_contents
= FALSE
;
4326 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4330 /* We shouldn't need to align the segment on disk since
4331 the segment doesn't need file space, but the gABI
4332 arguably requires the alignment and glibc ld.so
4333 checks it. So to comply with the alignment
4334 requirement but not waste file space, we adjust
4335 p_offset for just this segment. (OFF_ADJUST is
4336 subtracted from OFF later.) This may put p_offset
4337 past the end of file, but that shouldn't matter. */
4342 /* Make sure the .dynamic section is the first section in the
4343 PT_DYNAMIC segment. */
4344 else if (p
->p_type
== PT_DYNAMIC
4346 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4349 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4351 bfd_set_error (bfd_error_bad_value
);
4354 /* Set the note section type to SHT_NOTE. */
4355 else if (p
->p_type
== PT_NOTE
)
4356 for (i
= 0; i
< m
->count
; i
++)
4357 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4363 if (m
->includes_filehdr
)
4365 if (!m
->p_flags_valid
)
4367 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4368 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4371 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4373 if (p
->p_vaddr
< (bfd_vma
) off
)
4375 (*_bfd_error_handler
)
4376 (_("%B: Not enough room for program headers, try linking with -N"),
4378 bfd_set_error (bfd_error_bad_value
);
4383 if (!m
->p_paddr_valid
)
4388 if (m
->includes_phdrs
)
4390 if (!m
->p_flags_valid
)
4393 if (!m
->includes_filehdr
)
4395 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4399 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4400 p
->p_vaddr
-= off
- p
->p_offset
;
4401 if (!m
->p_paddr_valid
)
4402 p
->p_paddr
-= off
- p
->p_offset
;
4406 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4407 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4410 p
->p_filesz
+= header_pad
;
4411 p
->p_memsz
+= header_pad
;
4415 if (p
->p_type
== PT_LOAD
4416 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4418 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4424 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4426 p
->p_filesz
+= adjust
;
4427 p
->p_memsz
+= adjust
;
4431 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4432 maps. Set filepos for sections in PT_LOAD segments, and in
4433 core files, for sections in PT_NOTE segments.
4434 assign_file_positions_for_non_load_sections will set filepos
4435 for other sections and update p_filesz for other segments. */
4436 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4439 bfd_size_type align
;
4440 Elf_Internal_Shdr
*this_hdr
;
4443 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4444 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4446 if ((p
->p_type
== PT_LOAD
4447 || p
->p_type
== PT_TLS
)
4448 && (this_hdr
->sh_type
!= SHT_NOBITS
4449 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4450 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4451 || p
->p_type
== PT_TLS
))))
4453 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4457 (*_bfd_error_handler
)
4458 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4459 abfd
, sec
, (unsigned long) sec
->vma
);
4462 p
->p_memsz
+= adjust
;
4464 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4467 p
->p_filesz
+= adjust
;
4471 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4473 /* The section at i == 0 is the one that actually contains
4477 this_hdr
->sh_offset
= sec
->filepos
= off
;
4478 off
+= this_hdr
->sh_size
;
4479 p
->p_filesz
= this_hdr
->sh_size
;
4485 /* The rest are fake sections that shouldn't be written. */
4494 if (p
->p_type
== PT_LOAD
)
4496 this_hdr
->sh_offset
= sec
->filepos
= off
;
4497 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4498 off
+= this_hdr
->sh_size
;
4501 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4503 p
->p_filesz
+= this_hdr
->sh_size
;
4504 /* A load section without SHF_ALLOC is something like
4505 a note section in a PT_NOTE segment. These take
4506 file space but are not loaded into memory. */
4507 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4508 p
->p_memsz
+= this_hdr
->sh_size
;
4510 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4512 if (p
->p_type
== PT_TLS
)
4513 p
->p_memsz
+= this_hdr
->sh_size
;
4515 /* .tbss is special. It doesn't contribute to p_memsz of
4517 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4518 p
->p_memsz
+= this_hdr
->sh_size
;
4521 if (align
> p
->p_align
4522 && !m
->p_align_valid
4523 && (p
->p_type
!= PT_LOAD
4524 || (abfd
->flags
& D_PAGED
) == 0))
4528 if (!m
->p_flags_valid
)
4531 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4533 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4539 /* Check that all sections are in a PT_LOAD segment.
4540 Don't check funky gdb generated core files. */
4541 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4542 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4544 Elf_Internal_Shdr
*this_hdr
;
4548 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4549 if (this_hdr
->sh_size
!= 0
4550 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4552 (*_bfd_error_handler
)
4553 (_("%B: section `%A' can't be allocated in segment %d"),
4555 print_segment_map (m
);
4556 bfd_set_error (bfd_error_bad_value
);
4562 elf_tdata (abfd
)->next_file_pos
= off
;
4566 /* Assign file positions for the other sections. */
4569 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4570 struct bfd_link_info
*link_info
)
4572 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4573 Elf_Internal_Shdr
**i_shdrpp
;
4574 Elf_Internal_Shdr
**hdrpp
;
4575 Elf_Internal_Phdr
*phdrs
;
4576 Elf_Internal_Phdr
*p
;
4577 struct elf_segment_map
*m
;
4578 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4579 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4581 unsigned int num_sec
;
4585 i_shdrpp
= elf_elfsections (abfd
);
4586 num_sec
= elf_numsections (abfd
);
4587 off
= elf_tdata (abfd
)->next_file_pos
;
4588 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4590 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4591 Elf_Internal_Shdr
*hdr
;
4594 if (hdr
->bfd_section
!= NULL
4595 && (hdr
->bfd_section
->filepos
!= 0
4596 || (hdr
->sh_type
== SHT_NOBITS
4597 && hdr
->contents
== NULL
)))
4598 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4599 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4601 if (hdr
->sh_size
!= 0)
4602 ((*_bfd_error_handler
)
4603 (_("%B: warning: allocated section `%s' not in segment"),
4605 (hdr
->bfd_section
== NULL
4607 : hdr
->bfd_section
->name
)));
4608 /* We don't need to page align empty sections. */
4609 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4610 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4613 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4615 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4618 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4619 && hdr
->bfd_section
== NULL
)
4620 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4621 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4622 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4623 hdr
->sh_offset
= -1;
4625 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4628 /* Now that we have set the section file positions, we can set up
4629 the file positions for the non PT_LOAD segments. */
4633 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4635 phdrs
= elf_tdata (abfd
)->phdr
;
4636 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4641 if (p
->p_type
!= PT_LOAD
)
4644 if (m
->includes_filehdr
)
4646 filehdr_vaddr
= p
->p_vaddr
;
4647 filehdr_paddr
= p
->p_paddr
;
4649 if (m
->includes_phdrs
)
4651 phdrs_vaddr
= p
->p_vaddr
;
4652 phdrs_paddr
= p
->p_paddr
;
4653 if (m
->includes_filehdr
)
4655 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4656 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4661 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4665 if (p
->p_type
== PT_GNU_RELRO
)
4667 const Elf_Internal_Phdr
*lp
;
4669 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4671 if (link_info
!= NULL
)
4673 /* During linking the range of the RELRO segment is passed
4675 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4677 if (lp
->p_type
== PT_LOAD
4678 && lp
->p_vaddr
>= link_info
->relro_start
4679 && lp
->p_vaddr
< link_info
->relro_end
4680 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4686 /* Otherwise we are copying an executable or shared
4687 library, but we need to use the same linker logic. */
4688 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4690 if (lp
->p_type
== PT_LOAD
4691 && lp
->p_paddr
== p
->p_paddr
)
4696 if (lp
< phdrs
+ count
)
4698 p
->p_vaddr
= lp
->p_vaddr
;
4699 p
->p_paddr
= lp
->p_paddr
;
4700 p
->p_offset
= lp
->p_offset
;
4701 if (link_info
!= NULL
)
4702 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4703 else if (m
->p_size_valid
)
4704 p
->p_filesz
= m
->p_size
;
4707 p
->p_memsz
= p
->p_filesz
;
4709 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4711 else if (link_info
!= NULL
)
4713 memset (p
, 0, sizeof *p
);
4714 p
->p_type
= PT_NULL
;
4719 else if (m
->count
!= 0)
4721 if (p
->p_type
!= PT_LOAD
4722 && (p
->p_type
!= PT_NOTE
4723 || bfd_get_format (abfd
) != bfd_core
))
4725 Elf_Internal_Shdr
*hdr
;
4728 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4730 sect
= m
->sections
[m
->count
- 1];
4731 hdr
= &elf_section_data (sect
)->this_hdr
;
4732 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4733 if (hdr
->sh_type
!= SHT_NOBITS
)
4734 p
->p_filesz
+= hdr
->sh_size
;
4735 p
->p_offset
= m
->sections
[0]->filepos
;
4738 else if (m
->includes_filehdr
)
4740 p
->p_vaddr
= filehdr_vaddr
;
4741 if (! m
->p_paddr_valid
)
4742 p
->p_paddr
= filehdr_paddr
;
4744 else if (m
->includes_phdrs
)
4746 p
->p_vaddr
= phdrs_vaddr
;
4747 if (! m
->p_paddr_valid
)
4748 p
->p_paddr
= phdrs_paddr
;
4752 elf_tdata (abfd
)->next_file_pos
= off
;
4757 /* Work out the file positions of all the sections. This is called by
4758 _bfd_elf_compute_section_file_positions. All the section sizes and
4759 VMAs must be known before this is called.
4761 Reloc sections come in two flavours: Those processed specially as
4762 "side-channel" data attached to a section to which they apply, and
4763 those that bfd doesn't process as relocations. The latter sort are
4764 stored in a normal bfd section by bfd_section_from_shdr. We don't
4765 consider the former sort here, unless they form part of the loadable
4766 image. Reloc sections not assigned here will be handled later by
4767 assign_file_positions_for_relocs.
4769 We also don't set the positions of the .symtab and .strtab here. */
4772 assign_file_positions_except_relocs (bfd
*abfd
,
4773 struct bfd_link_info
*link_info
)
4775 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4776 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4778 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4780 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4781 && bfd_get_format (abfd
) != bfd_core
)
4783 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4784 unsigned int num_sec
= elf_numsections (abfd
);
4785 Elf_Internal_Shdr
**hdrpp
;
4788 /* Start after the ELF header. */
4789 off
= i_ehdrp
->e_ehsize
;
4791 /* We are not creating an executable, which means that we are
4792 not creating a program header, and that the actual order of
4793 the sections in the file is unimportant. */
4794 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4796 Elf_Internal_Shdr
*hdr
;
4799 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4800 && hdr
->bfd_section
== NULL
)
4801 || i
== tdata
->symtab_section
4802 || i
== tdata
->symtab_shndx_section
4803 || i
== tdata
->strtab_section
)
4805 hdr
->sh_offset
= -1;
4808 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4815 /* Assign file positions for the loaded sections based on the
4816 assignment of sections to segments. */
4817 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4820 /* And for non-load sections. */
4821 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4824 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4826 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4830 /* Write out the program headers. */
4831 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4832 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4833 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4836 off
= tdata
->next_file_pos
;
4839 /* Place the section headers. */
4840 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4841 i_ehdrp
->e_shoff
= off
;
4842 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4844 tdata
->next_file_pos
= off
;
4850 prep_headers (bfd
*abfd
)
4852 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4853 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4854 struct elf_strtab_hash
*shstrtab
;
4855 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4857 i_ehdrp
= elf_elfheader (abfd
);
4859 shstrtab
= _bfd_elf_strtab_init ();
4860 if (shstrtab
== NULL
)
4863 elf_shstrtab (abfd
) = shstrtab
;
4865 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4866 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4867 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4868 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4870 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4871 i_ehdrp
->e_ident
[EI_DATA
] =
4872 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4873 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4875 if ((abfd
->flags
& DYNAMIC
) != 0)
4876 i_ehdrp
->e_type
= ET_DYN
;
4877 else if ((abfd
->flags
& EXEC_P
) != 0)
4878 i_ehdrp
->e_type
= ET_EXEC
;
4879 else if (bfd_get_format (abfd
) == bfd_core
)
4880 i_ehdrp
->e_type
= ET_CORE
;
4882 i_ehdrp
->e_type
= ET_REL
;
4884 switch (bfd_get_arch (abfd
))
4886 case bfd_arch_unknown
:
4887 i_ehdrp
->e_machine
= EM_NONE
;
4890 /* There used to be a long list of cases here, each one setting
4891 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4892 in the corresponding bfd definition. To avoid duplication,
4893 the switch was removed. Machines that need special handling
4894 can generally do it in elf_backend_final_write_processing(),
4895 unless they need the information earlier than the final write.
4896 Such need can generally be supplied by replacing the tests for
4897 e_machine with the conditions used to determine it. */
4899 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4902 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4903 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4905 /* No program header, for now. */
4906 i_ehdrp
->e_phoff
= 0;
4907 i_ehdrp
->e_phentsize
= 0;
4908 i_ehdrp
->e_phnum
= 0;
4910 /* Each bfd section is section header entry. */
4911 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4912 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4914 /* If we're building an executable, we'll need a program header table. */
4915 if (abfd
->flags
& EXEC_P
)
4916 /* It all happens later. */
4920 i_ehdrp
->e_phentsize
= 0;
4922 i_ehdrp
->e_phoff
= 0;
4925 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4926 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4927 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4928 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4929 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4930 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4931 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4932 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4933 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4939 /* Assign file positions for all the reloc sections which are not part
4940 of the loadable file image. */
4943 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4946 unsigned int i
, num_sec
;
4947 Elf_Internal_Shdr
**shdrpp
;
4949 off
= elf_tdata (abfd
)->next_file_pos
;
4951 num_sec
= elf_numsections (abfd
);
4952 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4954 Elf_Internal_Shdr
*shdrp
;
4957 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4958 && shdrp
->sh_offset
== -1)
4959 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4962 elf_tdata (abfd
)->next_file_pos
= off
;
4966 _bfd_elf_write_object_contents (bfd
*abfd
)
4968 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4969 Elf_Internal_Ehdr
*i_ehdrp
;
4970 Elf_Internal_Shdr
**i_shdrp
;
4972 unsigned int count
, num_sec
;
4974 if (! abfd
->output_has_begun
4975 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4978 i_shdrp
= elf_elfsections (abfd
);
4979 i_ehdrp
= elf_elfheader (abfd
);
4982 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4986 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4988 /* After writing the headers, we need to write the sections too... */
4989 num_sec
= elf_numsections (abfd
);
4990 for (count
= 1; count
< num_sec
; count
++)
4992 if (bed
->elf_backend_section_processing
)
4993 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4994 if (i_shdrp
[count
]->contents
)
4996 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4998 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4999 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5004 /* Write out the section header names. */
5005 if (elf_shstrtab (abfd
) != NULL
5006 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5007 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5010 if (bed
->elf_backend_final_write_processing
)
5011 (*bed
->elf_backend_final_write_processing
) (abfd
,
5012 elf_tdata (abfd
)->linker
);
5014 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5017 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5018 if (elf_tdata (abfd
)->after_write_object_contents
)
5019 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5025 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5027 /* Hopefully this can be done just like an object file. */
5028 return _bfd_elf_write_object_contents (abfd
);
5031 /* Given a section, search the header to find them. */
5034 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5036 const struct elf_backend_data
*bed
;
5039 if (elf_section_data (asect
) != NULL
5040 && elf_section_data (asect
)->this_idx
!= 0)
5041 return elf_section_data (asect
)->this_idx
;
5043 if (bfd_is_abs_section (asect
))
5045 else if (bfd_is_com_section (asect
))
5047 else if (bfd_is_und_section (asect
))
5052 bed
= get_elf_backend_data (abfd
);
5053 if (bed
->elf_backend_section_from_bfd_section
)
5057 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5061 if (index
== SHN_BAD
)
5062 bfd_set_error (bfd_error_nonrepresentable_section
);
5067 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5071 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5073 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5075 flagword flags
= asym_ptr
->flags
;
5077 /* When gas creates relocations against local labels, it creates its
5078 own symbol for the section, but does put the symbol into the
5079 symbol chain, so udata is 0. When the linker is generating
5080 relocatable output, this section symbol may be for one of the
5081 input sections rather than the output section. */
5082 if (asym_ptr
->udata
.i
== 0
5083 && (flags
& BSF_SECTION_SYM
)
5084 && asym_ptr
->section
)
5089 sec
= asym_ptr
->section
;
5090 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5091 sec
= sec
->output_section
;
5092 if (sec
->owner
== abfd
5093 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5094 && elf_section_syms (abfd
)[indx
] != NULL
)
5095 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5098 idx
= asym_ptr
->udata
.i
;
5102 /* This case can occur when using --strip-symbol on a symbol
5103 which is used in a relocation entry. */
5104 (*_bfd_error_handler
)
5105 (_("%B: symbol `%s' required but not present"),
5106 abfd
, bfd_asymbol_name (asym_ptr
));
5107 bfd_set_error (bfd_error_no_symbols
);
5114 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5115 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5116 elf_symbol_flags (flags
));
5124 /* Rewrite program header information. */
5127 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5129 Elf_Internal_Ehdr
*iehdr
;
5130 struct elf_segment_map
*map
;
5131 struct elf_segment_map
*map_first
;
5132 struct elf_segment_map
**pointer_to_map
;
5133 Elf_Internal_Phdr
*segment
;
5136 unsigned int num_segments
;
5137 bfd_boolean phdr_included
= FALSE
;
5138 bfd_boolean p_paddr_valid
;
5139 bfd_vma maxpagesize
;
5140 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5141 unsigned int phdr_adjust_num
= 0;
5142 const struct elf_backend_data
*bed
;
5144 bed
= get_elf_backend_data (ibfd
);
5145 iehdr
= elf_elfheader (ibfd
);
5148 pointer_to_map
= &map_first
;
5150 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5151 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5153 /* Returns the end address of the segment + 1. */
5154 #define SEGMENT_END(segment, start) \
5155 (start + (segment->p_memsz > segment->p_filesz \
5156 ? segment->p_memsz : segment->p_filesz))
5158 #define SECTION_SIZE(section, segment) \
5159 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5160 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5161 ? section->size : 0)
5163 /* Returns TRUE if the given section is contained within
5164 the given segment. VMA addresses are compared. */
5165 #define IS_CONTAINED_BY_VMA(section, segment) \
5166 (section->vma >= segment->p_vaddr \
5167 && (section->vma + SECTION_SIZE (section, segment) \
5168 <= (SEGMENT_END (segment, segment->p_vaddr))))
5170 /* Returns TRUE if the given section is contained within
5171 the given segment. LMA addresses are compared. */
5172 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5173 (section->lma >= base \
5174 && (section->lma + SECTION_SIZE (section, segment) \
5175 <= SEGMENT_END (segment, base)))
5177 /* Handle PT_NOTE segment. */
5178 #define IS_NOTE(p, s) \
5179 (p->p_type == PT_NOTE \
5180 && elf_section_type (s) == SHT_NOTE \
5181 && (bfd_vma) s->filepos >= p->p_offset \
5182 && ((bfd_vma) s->filepos + s->size \
5183 <= p->p_offset + p->p_filesz))
5185 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5187 #define IS_COREFILE_NOTE(p, s) \
5189 && bfd_get_format (ibfd) == bfd_core \
5193 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5194 linker, which generates a PT_INTERP section with p_vaddr and
5195 p_memsz set to 0. */
5196 #define IS_SOLARIS_PT_INTERP(p, s) \
5198 && p->p_paddr == 0 \
5199 && p->p_memsz == 0 \
5200 && p->p_filesz > 0 \
5201 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5203 && (bfd_vma) s->filepos >= p->p_offset \
5204 && ((bfd_vma) s->filepos + s->size \
5205 <= p->p_offset + p->p_filesz))
5207 /* Decide if the given section should be included in the given segment.
5208 A section will be included if:
5209 1. It is within the address space of the segment -- we use the LMA
5210 if that is set for the segment and the VMA otherwise,
5211 2. It is an allocated section or a NOTE section in a PT_NOTE
5213 3. There is an output section associated with it,
5214 4. The section has not already been allocated to a previous segment.
5215 5. PT_GNU_STACK segments do not include any sections.
5216 6. PT_TLS segment includes only SHF_TLS sections.
5217 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5218 8. PT_DYNAMIC should not contain empty sections at the beginning
5219 (with the possible exception of .dynamic). */
5220 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5221 ((((segment->p_paddr \
5222 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5223 : IS_CONTAINED_BY_VMA (section, segment)) \
5224 && (section->flags & SEC_ALLOC) != 0) \
5225 || IS_NOTE (segment, section)) \
5226 && segment->p_type != PT_GNU_STACK \
5227 && (segment->p_type != PT_TLS \
5228 || (section->flags & SEC_THREAD_LOCAL)) \
5229 && (segment->p_type == PT_LOAD \
5230 || segment->p_type == PT_TLS \
5231 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5232 && (segment->p_type != PT_DYNAMIC \
5233 || SECTION_SIZE (section, segment) > 0 \
5234 || (segment->p_paddr \
5235 ? segment->p_paddr != section->lma \
5236 : segment->p_vaddr != section->vma) \
5237 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5239 && !section->segment_mark)
5241 /* If the output section of a section in the input segment is NULL,
5242 it is removed from the corresponding output segment. */
5243 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5244 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5245 && section->output_section != NULL)
5247 /* Returns TRUE iff seg1 starts after the end of seg2. */
5248 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5249 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5251 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5252 their VMA address ranges and their LMA address ranges overlap.
5253 It is possible to have overlapping VMA ranges without overlapping LMA
5254 ranges. RedBoot images for example can have both .data and .bss mapped
5255 to the same VMA range, but with the .data section mapped to a different
5257 #define SEGMENT_OVERLAPS(seg1, seg2) \
5258 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5259 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5260 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5261 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5263 /* Initialise the segment mark field. */
5264 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5265 section
->segment_mark
= FALSE
;
5267 /* The Solaris linker creates program headers in which all the
5268 p_paddr fields are zero. When we try to objcopy or strip such a
5269 file, we get confused. Check for this case, and if we find it
5270 don't set the p_paddr_valid fields. */
5271 p_paddr_valid
= FALSE
;
5272 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5275 if (segment
->p_paddr
!= 0)
5277 p_paddr_valid
= TRUE
;
5281 /* Scan through the segments specified in the program header
5282 of the input BFD. For this first scan we look for overlaps
5283 in the loadable segments. These can be created by weird
5284 parameters to objcopy. Also, fix some solaris weirdness. */
5285 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5290 Elf_Internal_Phdr
*segment2
;
5292 if (segment
->p_type
== PT_INTERP
)
5293 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5294 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5296 /* Mininal change so that the normal section to segment
5297 assignment code will work. */
5298 segment
->p_vaddr
= section
->vma
;
5302 if (segment
->p_type
!= PT_LOAD
)
5304 /* Remove PT_GNU_RELRO segment. */
5305 if (segment
->p_type
== PT_GNU_RELRO
)
5306 segment
->p_type
= PT_NULL
;
5310 /* Determine if this segment overlaps any previous segments. */
5311 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5313 bfd_signed_vma extra_length
;
5315 if (segment2
->p_type
!= PT_LOAD
5316 || !SEGMENT_OVERLAPS (segment
, segment2
))
5319 /* Merge the two segments together. */
5320 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5322 /* Extend SEGMENT2 to include SEGMENT and then delete
5324 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5325 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5327 if (extra_length
> 0)
5329 segment2
->p_memsz
+= extra_length
;
5330 segment2
->p_filesz
+= extra_length
;
5333 segment
->p_type
= PT_NULL
;
5335 /* Since we have deleted P we must restart the outer loop. */
5337 segment
= elf_tdata (ibfd
)->phdr
;
5342 /* Extend SEGMENT to include SEGMENT2 and then delete
5344 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5345 - SEGMENT_END (segment
, segment
->p_vaddr
));
5347 if (extra_length
> 0)
5349 segment
->p_memsz
+= extra_length
;
5350 segment
->p_filesz
+= extra_length
;
5353 segment2
->p_type
= PT_NULL
;
5358 /* The second scan attempts to assign sections to segments. */
5359 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5363 unsigned int section_count
;
5364 asection
**sections
;
5365 asection
*output_section
;
5367 bfd_vma matching_lma
;
5368 bfd_vma suggested_lma
;
5371 asection
*first_section
;
5372 bfd_boolean first_matching_lma
;
5373 bfd_boolean first_suggested_lma
;
5375 if (segment
->p_type
== PT_NULL
)
5378 first_section
= NULL
;
5379 /* Compute how many sections might be placed into this segment. */
5380 for (section
= ibfd
->sections
, section_count
= 0;
5382 section
= section
->next
)
5384 /* Find the first section in the input segment, which may be
5385 removed from the corresponding output segment. */
5386 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5388 if (first_section
== NULL
)
5389 first_section
= section
;
5390 if (section
->output_section
!= NULL
)
5395 /* Allocate a segment map big enough to contain
5396 all of the sections we have selected. */
5397 amt
= sizeof (struct elf_segment_map
);
5398 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5399 map
= bfd_zalloc (obfd
, amt
);
5403 /* Initialise the fields of the segment map. Default to
5404 using the physical address of the segment in the input BFD. */
5406 map
->p_type
= segment
->p_type
;
5407 map
->p_flags
= segment
->p_flags
;
5408 map
->p_flags_valid
= 1;
5410 /* If the first section in the input segment is removed, there is
5411 no need to preserve segment physical address in the corresponding
5413 if (!first_section
|| first_section
->output_section
!= NULL
)
5415 map
->p_paddr
= segment
->p_paddr
;
5416 map
->p_paddr_valid
= p_paddr_valid
;
5419 /* Determine if this segment contains the ELF file header
5420 and if it contains the program headers themselves. */
5421 map
->includes_filehdr
= (segment
->p_offset
== 0
5422 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5423 map
->includes_phdrs
= 0;
5425 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5427 map
->includes_phdrs
=
5428 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5429 && (segment
->p_offset
+ segment
->p_filesz
5430 >= ((bfd_vma
) iehdr
->e_phoff
5431 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5433 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5434 phdr_included
= TRUE
;
5437 if (section_count
== 0)
5439 /* Special segments, such as the PT_PHDR segment, may contain
5440 no sections, but ordinary, loadable segments should contain
5441 something. They are allowed by the ELF spec however, so only
5442 a warning is produced. */
5443 if (segment
->p_type
== PT_LOAD
)
5444 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5445 " detected, is this intentional ?\n"),
5449 *pointer_to_map
= map
;
5450 pointer_to_map
= &map
->next
;
5455 /* Now scan the sections in the input BFD again and attempt
5456 to add their corresponding output sections to the segment map.
5457 The problem here is how to handle an output section which has
5458 been moved (ie had its LMA changed). There are four possibilities:
5460 1. None of the sections have been moved.
5461 In this case we can continue to use the segment LMA from the
5464 2. All of the sections have been moved by the same amount.
5465 In this case we can change the segment's LMA to match the LMA
5466 of the first section.
5468 3. Some of the sections have been moved, others have not.
5469 In this case those sections which have not been moved can be
5470 placed in the current segment which will have to have its size,
5471 and possibly its LMA changed, and a new segment or segments will
5472 have to be created to contain the other sections.
5474 4. The sections have been moved, but not by the same amount.
5475 In this case we can change the segment's LMA to match the LMA
5476 of the first section and we will have to create a new segment
5477 or segments to contain the other sections.
5479 In order to save time, we allocate an array to hold the section
5480 pointers that we are interested in. As these sections get assigned
5481 to a segment, they are removed from this array. */
5483 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5484 if (sections
== NULL
)
5487 /* Step One: Scan for segment vs section LMA conflicts.
5488 Also add the sections to the section array allocated above.
5489 Also add the sections to the current segment. In the common
5490 case, where the sections have not been moved, this means that
5491 we have completely filled the segment, and there is nothing
5496 first_matching_lma
= TRUE
;
5497 first_suggested_lma
= TRUE
;
5499 for (section
= ibfd
->sections
;
5501 section
= section
->next
)
5502 if (section
== first_section
)
5505 for (j
= 0; section
!= NULL
; section
= section
->next
)
5507 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5509 output_section
= section
->output_section
;
5511 sections
[j
++] = section
;
5513 /* The Solaris native linker always sets p_paddr to 0.
5514 We try to catch that case here, and set it to the
5515 correct value. Note - some backends require that
5516 p_paddr be left as zero. */
5518 && segment
->p_vaddr
!= 0
5519 && !bed
->want_p_paddr_set_to_zero
5521 && output_section
->lma
!= 0
5522 && output_section
->vma
== (segment
->p_vaddr
5523 + (map
->includes_filehdr
5526 + (map
->includes_phdrs
5528 * iehdr
->e_phentsize
)
5530 map
->p_paddr
= segment
->p_vaddr
;
5532 /* Match up the physical address of the segment with the
5533 LMA address of the output section. */
5534 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5535 || IS_COREFILE_NOTE (segment
, section
)
5536 || (bed
->want_p_paddr_set_to_zero
5537 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5539 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5541 matching_lma
= output_section
->lma
;
5542 first_matching_lma
= FALSE
;
5545 /* We assume that if the section fits within the segment
5546 then it does not overlap any other section within that
5548 map
->sections
[isec
++] = output_section
;
5550 else if (first_suggested_lma
)
5552 suggested_lma
= output_section
->lma
;
5553 first_suggested_lma
= FALSE
;
5556 if (j
== section_count
)
5561 BFD_ASSERT (j
== section_count
);
5563 /* Step Two: Adjust the physical address of the current segment,
5565 if (isec
== section_count
)
5567 /* All of the sections fitted within the segment as currently
5568 specified. This is the default case. Add the segment to
5569 the list of built segments and carry on to process the next
5570 program header in the input BFD. */
5571 map
->count
= section_count
;
5572 *pointer_to_map
= map
;
5573 pointer_to_map
= &map
->next
;
5576 && !bed
->want_p_paddr_set_to_zero
5577 && matching_lma
!= map
->p_paddr
5578 && !map
->includes_filehdr
5579 && !map
->includes_phdrs
)
5580 /* There is some padding before the first section in the
5581 segment. So, we must account for that in the output
5583 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5590 if (!first_matching_lma
)
5592 /* At least one section fits inside the current segment.
5593 Keep it, but modify its physical address to match the
5594 LMA of the first section that fitted. */
5595 map
->p_paddr
= matching_lma
;
5599 /* None of the sections fitted inside the current segment.
5600 Change the current segment's physical address to match
5601 the LMA of the first section. */
5602 map
->p_paddr
= suggested_lma
;
5605 /* Offset the segment physical address from the lma
5606 to allow for space taken up by elf headers. */
5607 if (map
->includes_filehdr
)
5609 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5610 map
->p_paddr
-= iehdr
->e_ehsize
;
5613 map
->includes_filehdr
= FALSE
;
5614 map
->includes_phdrs
= FALSE
;
5618 if (map
->includes_phdrs
)
5620 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5622 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5624 /* iehdr->e_phnum is just an estimate of the number
5625 of program headers that we will need. Make a note
5626 here of the number we used and the segment we chose
5627 to hold these headers, so that we can adjust the
5628 offset when we know the correct value. */
5629 phdr_adjust_num
= iehdr
->e_phnum
;
5630 phdr_adjust_seg
= map
;
5633 map
->includes_phdrs
= FALSE
;
5637 /* Step Three: Loop over the sections again, this time assigning
5638 those that fit to the current segment and removing them from the
5639 sections array; but making sure not to leave large gaps. Once all
5640 possible sections have been assigned to the current segment it is
5641 added to the list of built segments and if sections still remain
5642 to be assigned, a new segment is constructed before repeating
5649 first_suggested_lma
= TRUE
;
5651 /* Fill the current segment with sections that fit. */
5652 for (j
= 0; j
< section_count
; j
++)
5654 section
= sections
[j
];
5656 if (section
== NULL
)
5659 output_section
= section
->output_section
;
5661 BFD_ASSERT (output_section
!= NULL
);
5663 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5664 || IS_COREFILE_NOTE (segment
, section
))
5666 if (map
->count
== 0)
5668 /* If the first section in a segment does not start at
5669 the beginning of the segment, then something is
5671 if (output_section
->lma
5673 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5674 + (map
->includes_phdrs
5675 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5683 prev_sec
= map
->sections
[map
->count
- 1];
5685 /* If the gap between the end of the previous section
5686 and the start of this section is more than
5687 maxpagesize then we need to start a new segment. */
5688 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5690 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5691 || (prev_sec
->lma
+ prev_sec
->size
5692 > output_section
->lma
))
5694 if (first_suggested_lma
)
5696 suggested_lma
= output_section
->lma
;
5697 first_suggested_lma
= FALSE
;
5704 map
->sections
[map
->count
++] = output_section
;
5707 section
->segment_mark
= TRUE
;
5709 else if (first_suggested_lma
)
5711 suggested_lma
= output_section
->lma
;
5712 first_suggested_lma
= FALSE
;
5716 BFD_ASSERT (map
->count
> 0);
5718 /* Add the current segment to the list of built segments. */
5719 *pointer_to_map
= map
;
5720 pointer_to_map
= &map
->next
;
5722 if (isec
< section_count
)
5724 /* We still have not allocated all of the sections to
5725 segments. Create a new segment here, initialise it
5726 and carry on looping. */
5727 amt
= sizeof (struct elf_segment_map
);
5728 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5729 map
= bfd_alloc (obfd
, amt
);
5736 /* Initialise the fields of the segment map. Set the physical
5737 physical address to the LMA of the first section that has
5738 not yet been assigned. */
5740 map
->p_type
= segment
->p_type
;
5741 map
->p_flags
= segment
->p_flags
;
5742 map
->p_flags_valid
= 1;
5743 map
->p_paddr
= suggested_lma
;
5744 map
->p_paddr_valid
= p_paddr_valid
;
5745 map
->includes_filehdr
= 0;
5746 map
->includes_phdrs
= 0;
5749 while (isec
< section_count
);
5754 elf_tdata (obfd
)->segment_map
= map_first
;
5756 /* If we had to estimate the number of program headers that were
5757 going to be needed, then check our estimate now and adjust
5758 the offset if necessary. */
5759 if (phdr_adjust_seg
!= NULL
)
5763 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5766 if (count
> phdr_adjust_num
)
5767 phdr_adjust_seg
->p_paddr
5768 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5773 #undef IS_CONTAINED_BY_VMA
5774 #undef IS_CONTAINED_BY_LMA
5776 #undef IS_COREFILE_NOTE
5777 #undef IS_SOLARIS_PT_INTERP
5778 #undef IS_SECTION_IN_INPUT_SEGMENT
5779 #undef INCLUDE_SECTION_IN_SEGMENT
5780 #undef SEGMENT_AFTER_SEGMENT
5781 #undef SEGMENT_OVERLAPS
5785 /* Copy ELF program header information. */
5788 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5790 Elf_Internal_Ehdr
*iehdr
;
5791 struct elf_segment_map
*map
;
5792 struct elf_segment_map
*map_first
;
5793 struct elf_segment_map
**pointer_to_map
;
5794 Elf_Internal_Phdr
*segment
;
5796 unsigned int num_segments
;
5797 bfd_boolean phdr_included
= FALSE
;
5798 bfd_boolean p_paddr_valid
;
5800 iehdr
= elf_elfheader (ibfd
);
5803 pointer_to_map
= &map_first
;
5805 /* If all the segment p_paddr fields are zero, don't set
5806 map->p_paddr_valid. */
5807 p_paddr_valid
= FALSE
;
5808 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5809 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5812 if (segment
->p_paddr
!= 0)
5814 p_paddr_valid
= TRUE
;
5818 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5823 unsigned int section_count
;
5825 Elf_Internal_Shdr
*this_hdr
;
5826 asection
*first_section
= NULL
;
5827 asection
*lowest_section
= NULL
;
5829 /* Compute how many sections are in this segment. */
5830 for (section
= ibfd
->sections
, section_count
= 0;
5832 section
= section
->next
)
5834 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5835 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5838 first_section
= lowest_section
= section
;
5839 if (section
->lma
< lowest_section
->lma
)
5840 lowest_section
= section
;
5845 /* Allocate a segment map big enough to contain
5846 all of the sections we have selected. */
5847 amt
= sizeof (struct elf_segment_map
);
5848 if (section_count
!= 0)
5849 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5850 map
= bfd_zalloc (obfd
, amt
);
5854 /* Initialize the fields of the output segment map with the
5857 map
->p_type
= segment
->p_type
;
5858 map
->p_flags
= segment
->p_flags
;
5859 map
->p_flags_valid
= 1;
5860 map
->p_paddr
= segment
->p_paddr
;
5861 map
->p_paddr_valid
= p_paddr_valid
;
5862 map
->p_align
= segment
->p_align
;
5863 map
->p_align_valid
= 1;
5864 map
->p_vaddr_offset
= 0;
5866 if (map
->p_type
== PT_GNU_RELRO
5867 && segment
->p_filesz
== segment
->p_memsz
)
5869 /* The PT_GNU_RELRO segment may contain the first a few
5870 bytes in the .got.plt section even if the whole .got.plt
5871 section isn't in the PT_GNU_RELRO segment. We won't
5872 change the size of the PT_GNU_RELRO segment. */
5873 map
->p_size
= segment
->p_filesz
;
5874 map
->p_size_valid
= 1;
5877 /* Determine if this segment contains the ELF file header
5878 and if it contains the program headers themselves. */
5879 map
->includes_filehdr
= (segment
->p_offset
== 0
5880 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5882 map
->includes_phdrs
= 0;
5883 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5885 map
->includes_phdrs
=
5886 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5887 && (segment
->p_offset
+ segment
->p_filesz
5888 >= ((bfd_vma
) iehdr
->e_phoff
5889 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5891 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5892 phdr_included
= TRUE
;
5895 if (map
->includes_filehdr
&& first_section
)
5896 /* We need to keep the space used by the headers fixed. */
5897 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5899 if (!map
->includes_phdrs
5900 && !map
->includes_filehdr
5901 && map
->p_paddr_valid
)
5902 /* There is some other padding before the first section. */
5903 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5904 - segment
->p_paddr
);
5906 if (section_count
!= 0)
5908 unsigned int isec
= 0;
5910 for (section
= first_section
;
5912 section
= section
->next
)
5914 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5915 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5917 map
->sections
[isec
++] = section
->output_section
;
5918 if (isec
== section_count
)
5924 map
->count
= section_count
;
5925 *pointer_to_map
= map
;
5926 pointer_to_map
= &map
->next
;
5929 elf_tdata (obfd
)->segment_map
= map_first
;
5933 /* Copy private BFD data. This copies or rewrites ELF program header
5937 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5939 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5940 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5943 if (elf_tdata (ibfd
)->phdr
== NULL
)
5946 if (ibfd
->xvec
== obfd
->xvec
)
5948 /* Check to see if any sections in the input BFD
5949 covered by ELF program header have changed. */
5950 Elf_Internal_Phdr
*segment
;
5951 asection
*section
, *osec
;
5952 unsigned int i
, num_segments
;
5953 Elf_Internal_Shdr
*this_hdr
;
5954 const struct elf_backend_data
*bed
;
5956 bed
= get_elf_backend_data (ibfd
);
5958 /* Regenerate the segment map if p_paddr is set to 0. */
5959 if (bed
->want_p_paddr_set_to_zero
)
5962 /* Initialize the segment mark field. */
5963 for (section
= obfd
->sections
; section
!= NULL
;
5964 section
= section
->next
)
5965 section
->segment_mark
= FALSE
;
5967 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5968 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5972 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5973 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5974 which severly confuses things, so always regenerate the segment
5975 map in this case. */
5976 if (segment
->p_paddr
== 0
5977 && segment
->p_memsz
== 0
5978 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5981 for (section
= ibfd
->sections
;
5982 section
!= NULL
; section
= section
->next
)
5984 /* We mark the output section so that we know it comes
5985 from the input BFD. */
5986 osec
= section
->output_section
;
5988 osec
->segment_mark
= TRUE
;
5990 /* Check if this section is covered by the segment. */
5991 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5992 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5994 /* FIXME: Check if its output section is changed or
5995 removed. What else do we need to check? */
5997 || section
->flags
!= osec
->flags
5998 || section
->lma
!= osec
->lma
5999 || section
->vma
!= osec
->vma
6000 || section
->size
!= osec
->size
6001 || section
->rawsize
!= osec
->rawsize
6002 || section
->alignment_power
!= osec
->alignment_power
)
6008 /* Check to see if any output section do not come from the
6010 for (section
= obfd
->sections
; section
!= NULL
;
6011 section
= section
->next
)
6013 if (section
->segment_mark
== FALSE
)
6016 section
->segment_mark
= FALSE
;
6019 return copy_elf_program_header (ibfd
, obfd
);
6023 return rewrite_elf_program_header (ibfd
, obfd
);
6026 /* Initialize private output section information from input section. */
6029 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6033 struct bfd_link_info
*link_info
)
6036 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6037 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6039 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6040 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6043 /* Don't copy the output ELF section type from input if the
6044 output BFD section flags have been set to something different.
6045 elf_fake_sections will set ELF section type based on BFD
6047 if (elf_section_type (osec
) == SHT_NULL
6048 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6049 elf_section_type (osec
) = elf_section_type (isec
);
6051 /* FIXME: Is this correct for all OS/PROC specific flags? */
6052 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6053 & (SHF_MASKOS
| SHF_MASKPROC
));
6055 /* Set things up for objcopy and relocatable link. The output
6056 SHT_GROUP section will have its elf_next_in_group pointing back
6057 to the input group members. Ignore linker created group section.
6058 See elfNN_ia64_object_p in elfxx-ia64.c. */
6061 if (elf_sec_group (isec
) == NULL
6062 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6064 if (elf_section_flags (isec
) & SHF_GROUP
)
6065 elf_section_flags (osec
) |= SHF_GROUP
;
6066 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6067 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6071 ihdr
= &elf_section_data (isec
)->this_hdr
;
6073 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6074 don't use the output section of the linked-to section since it
6075 may be NULL at this point. */
6076 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6078 ohdr
= &elf_section_data (osec
)->this_hdr
;
6079 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6080 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6083 osec
->use_rela_p
= isec
->use_rela_p
;
6088 /* Copy private section information. This copies over the entsize
6089 field, and sometimes the info field. */
6092 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6097 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6099 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6100 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6103 ihdr
= &elf_section_data (isec
)->this_hdr
;
6104 ohdr
= &elf_section_data (osec
)->this_hdr
;
6106 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6108 if (ihdr
->sh_type
== SHT_SYMTAB
6109 || ihdr
->sh_type
== SHT_DYNSYM
6110 || ihdr
->sh_type
== SHT_GNU_verneed
6111 || ihdr
->sh_type
== SHT_GNU_verdef
)
6112 ohdr
->sh_info
= ihdr
->sh_info
;
6114 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6118 /* Copy private header information. */
6121 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6125 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6126 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6129 /* Copy over private BFD data if it has not already been copied.
6130 This must be done here, rather than in the copy_private_bfd_data
6131 entry point, because the latter is called after the section
6132 contents have been set, which means that the program headers have
6133 already been worked out. */
6134 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6136 if (! copy_private_bfd_data (ibfd
, obfd
))
6140 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6141 but this might be wrong if we deleted the group section. */
6142 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6143 if (elf_section_type (isec
) == SHT_GROUP
6144 && isec
->output_section
== NULL
)
6146 asection
*first
= elf_next_in_group (isec
);
6147 asection
*s
= first
;
6150 if (s
->output_section
!= NULL
)
6152 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6153 elf_group_name (s
->output_section
) = NULL
;
6155 s
= elf_next_in_group (s
);
6164 /* Copy private symbol information. If this symbol is in a section
6165 which we did not map into a BFD section, try to map the section
6166 index correctly. We use special macro definitions for the mapped
6167 section indices; these definitions are interpreted by the
6168 swap_out_syms function. */
6170 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6171 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6172 #define MAP_STRTAB (SHN_HIOS + 3)
6173 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6174 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6177 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6182 elf_symbol_type
*isym
, *osym
;
6184 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6185 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6188 isym
= elf_symbol_from (ibfd
, isymarg
);
6189 osym
= elf_symbol_from (obfd
, osymarg
);
6192 && isym
->internal_elf_sym
.st_shndx
!= 0
6194 && bfd_is_abs_section (isym
->symbol
.section
))
6198 shndx
= isym
->internal_elf_sym
.st_shndx
;
6199 if (shndx
== elf_onesymtab (ibfd
))
6200 shndx
= MAP_ONESYMTAB
;
6201 else if (shndx
== elf_dynsymtab (ibfd
))
6202 shndx
= MAP_DYNSYMTAB
;
6203 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6205 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6206 shndx
= MAP_SHSTRTAB
;
6207 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6208 shndx
= MAP_SYM_SHNDX
;
6209 osym
->internal_elf_sym
.st_shndx
= shndx
;
6215 /* Swap out the symbols. */
6218 swap_out_syms (bfd
*abfd
,
6219 struct bfd_strtab_hash
**sttp
,
6222 const struct elf_backend_data
*bed
;
6225 struct bfd_strtab_hash
*stt
;
6226 Elf_Internal_Shdr
*symtab_hdr
;
6227 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6228 Elf_Internal_Shdr
*symstrtab_hdr
;
6229 bfd_byte
*outbound_syms
;
6230 bfd_byte
*outbound_shndx
;
6233 bfd_boolean name_local_sections
;
6235 if (!elf_map_symbols (abfd
))
6238 /* Dump out the symtabs. */
6239 stt
= _bfd_elf_stringtab_init ();
6243 bed
= get_elf_backend_data (abfd
);
6244 symcount
= bfd_get_symcount (abfd
);
6245 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6246 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6247 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6248 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6249 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6250 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6252 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6253 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6255 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6256 if (outbound_syms
== NULL
)
6258 _bfd_stringtab_free (stt
);
6261 symtab_hdr
->contents
= outbound_syms
;
6263 outbound_shndx
= NULL
;
6264 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6265 if (symtab_shndx_hdr
->sh_name
!= 0)
6267 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6268 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6269 sizeof (Elf_External_Sym_Shndx
));
6270 if (outbound_shndx
== NULL
)
6272 _bfd_stringtab_free (stt
);
6276 symtab_shndx_hdr
->contents
= outbound_shndx
;
6277 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6278 symtab_shndx_hdr
->sh_size
= amt
;
6279 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6280 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6283 /* Now generate the data (for "contents"). */
6285 /* Fill in zeroth symbol and swap it out. */
6286 Elf_Internal_Sym sym
;
6292 sym
.st_shndx
= SHN_UNDEF
;
6293 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6294 outbound_syms
+= bed
->s
->sizeof_sym
;
6295 if (outbound_shndx
!= NULL
)
6296 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6300 = (bed
->elf_backend_name_local_section_symbols
6301 && bed
->elf_backend_name_local_section_symbols (abfd
));
6303 syms
= bfd_get_outsymbols (abfd
);
6304 for (idx
= 0; idx
< symcount
; idx
++)
6306 Elf_Internal_Sym sym
;
6307 bfd_vma value
= syms
[idx
]->value
;
6308 elf_symbol_type
*type_ptr
;
6309 flagword flags
= syms
[idx
]->flags
;
6312 if (!name_local_sections
6313 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6315 /* Local section symbols have no name. */
6320 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6323 if (sym
.st_name
== (unsigned long) -1)
6325 _bfd_stringtab_free (stt
);
6330 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6332 if ((flags
& BSF_SECTION_SYM
) == 0
6333 && bfd_is_com_section (syms
[idx
]->section
))
6335 /* ELF common symbols put the alignment into the `value' field,
6336 and the size into the `size' field. This is backwards from
6337 how BFD handles it, so reverse it here. */
6338 sym
.st_size
= value
;
6339 if (type_ptr
== NULL
6340 || type_ptr
->internal_elf_sym
.st_value
== 0)
6341 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6343 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6344 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6345 (abfd
, syms
[idx
]->section
);
6349 asection
*sec
= syms
[idx
]->section
;
6352 if (sec
->output_section
)
6354 value
+= sec
->output_offset
;
6355 sec
= sec
->output_section
;
6358 /* Don't add in the section vma for relocatable output. */
6359 if (! relocatable_p
)
6361 sym
.st_value
= value
;
6362 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6364 if (bfd_is_abs_section (sec
)
6366 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6368 /* This symbol is in a real ELF section which we did
6369 not create as a BFD section. Undo the mapping done
6370 by copy_private_symbol_data. */
6371 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6375 shndx
= elf_onesymtab (abfd
);
6378 shndx
= elf_dynsymtab (abfd
);
6381 shndx
= elf_tdata (abfd
)->strtab_section
;
6384 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6387 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6395 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6397 if (shndx
== SHN_BAD
)
6401 /* Writing this would be a hell of a lot easier if
6402 we had some decent documentation on bfd, and
6403 knew what to expect of the library, and what to
6404 demand of applications. For example, it
6405 appears that `objcopy' might not set the
6406 section of a symbol to be a section that is
6407 actually in the output file. */
6408 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6411 _bfd_error_handler (_("\
6412 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6413 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6415 bfd_set_error (bfd_error_invalid_operation
);
6416 _bfd_stringtab_free (stt
);
6420 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6421 BFD_ASSERT (shndx
!= SHN_BAD
);
6425 sym
.st_shndx
= shndx
;
6428 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6430 else if ((flags
& BSF_FUNCTION
) != 0)
6432 else if ((flags
& BSF_OBJECT
) != 0)
6434 else if ((flags
& BSF_RELC
) != 0)
6436 else if ((flags
& BSF_SRELC
) != 0)
6441 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6444 /* Processor-specific types. */
6445 if (type_ptr
!= NULL
6446 && bed
->elf_backend_get_symbol_type
)
6447 type
= ((*bed
->elf_backend_get_symbol_type
)
6448 (&type_ptr
->internal_elf_sym
, type
));
6450 if (flags
& BSF_SECTION_SYM
)
6452 if (flags
& BSF_GLOBAL
)
6453 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6455 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6457 else if (bfd_is_com_section (syms
[idx
]->section
))
6459 #ifdef USE_STT_COMMON
6460 if (type
== STT_OBJECT
)
6461 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6464 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6467 else if (bfd_is_und_section (syms
[idx
]->section
))
6468 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6472 else if (flags
& BSF_FILE
)
6473 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6476 int bind
= STB_LOCAL
;
6478 if (flags
& BSF_LOCAL
)
6480 else if (flags
& BSF_WEAK
)
6482 else if (flags
& BSF_GLOBAL
)
6485 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6488 if (type_ptr
!= NULL
)
6489 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6493 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6494 outbound_syms
+= bed
->s
->sizeof_sym
;
6495 if (outbound_shndx
!= NULL
)
6496 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6500 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6501 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6503 symstrtab_hdr
->sh_flags
= 0;
6504 symstrtab_hdr
->sh_addr
= 0;
6505 symstrtab_hdr
->sh_entsize
= 0;
6506 symstrtab_hdr
->sh_link
= 0;
6507 symstrtab_hdr
->sh_info
= 0;
6508 symstrtab_hdr
->sh_addralign
= 1;
6513 /* Return the number of bytes required to hold the symtab vector.
6515 Note that we base it on the count plus 1, since we will null terminate
6516 the vector allocated based on this size. However, the ELF symbol table
6517 always has a dummy entry as symbol #0, so it ends up even. */
6520 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6524 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6526 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6527 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6529 symtab_size
-= sizeof (asymbol
*);
6535 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6539 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6541 if (elf_dynsymtab (abfd
) == 0)
6543 bfd_set_error (bfd_error_invalid_operation
);
6547 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6548 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6550 symtab_size
-= sizeof (asymbol
*);
6556 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6559 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6562 /* Canonicalize the relocs. */
6565 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6572 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6574 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6577 tblptr
= section
->relocation
;
6578 for (i
= 0; i
< section
->reloc_count
; i
++)
6579 *relptr
++ = tblptr
++;
6583 return section
->reloc_count
;
6587 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6589 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6590 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6593 bfd_get_symcount (abfd
) = symcount
;
6598 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6599 asymbol
**allocation
)
6601 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6602 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6605 bfd_get_dynamic_symcount (abfd
) = symcount
;
6609 /* Return the size required for the dynamic reloc entries. Any loadable
6610 section that was actually installed in the BFD, and has type SHT_REL
6611 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6612 dynamic reloc section. */
6615 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6620 if (elf_dynsymtab (abfd
) == 0)
6622 bfd_set_error (bfd_error_invalid_operation
);
6626 ret
= sizeof (arelent
*);
6627 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6628 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6629 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6630 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6631 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6632 * sizeof (arelent
*));
6637 /* Canonicalize the dynamic relocation entries. Note that we return the
6638 dynamic relocations as a single block, although they are actually
6639 associated with particular sections; the interface, which was
6640 designed for SunOS style shared libraries, expects that there is only
6641 one set of dynamic relocs. Any loadable section that was actually
6642 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6643 dynamic symbol table, is considered to be a dynamic reloc section. */
6646 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6650 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6654 if (elf_dynsymtab (abfd
) == 0)
6656 bfd_set_error (bfd_error_invalid_operation
);
6660 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6662 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6664 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6665 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6666 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6671 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6673 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6675 for (i
= 0; i
< count
; i
++)
6686 /* Read in the version information. */
6689 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6691 bfd_byte
*contents
= NULL
;
6692 unsigned int freeidx
= 0;
6694 if (elf_dynverref (abfd
) != 0)
6696 Elf_Internal_Shdr
*hdr
;
6697 Elf_External_Verneed
*everneed
;
6698 Elf_Internal_Verneed
*iverneed
;
6700 bfd_byte
*contents_end
;
6702 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6704 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6705 sizeof (Elf_Internal_Verneed
));
6706 if (elf_tdata (abfd
)->verref
== NULL
)
6709 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6711 contents
= bfd_malloc (hdr
->sh_size
);
6712 if (contents
== NULL
)
6714 error_return_verref
:
6715 elf_tdata (abfd
)->verref
= NULL
;
6716 elf_tdata (abfd
)->cverrefs
= 0;
6719 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6720 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6721 goto error_return_verref
;
6723 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6724 goto error_return_verref
;
6726 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6727 == sizeof (Elf_External_Vernaux
));
6728 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6729 everneed
= (Elf_External_Verneed
*) contents
;
6730 iverneed
= elf_tdata (abfd
)->verref
;
6731 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6733 Elf_External_Vernaux
*evernaux
;
6734 Elf_Internal_Vernaux
*ivernaux
;
6737 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6739 iverneed
->vn_bfd
= abfd
;
6741 iverneed
->vn_filename
=
6742 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6744 if (iverneed
->vn_filename
== NULL
)
6745 goto error_return_verref
;
6747 if (iverneed
->vn_cnt
== 0)
6748 iverneed
->vn_auxptr
= NULL
;
6751 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6752 sizeof (Elf_Internal_Vernaux
));
6753 if (iverneed
->vn_auxptr
== NULL
)
6754 goto error_return_verref
;
6757 if (iverneed
->vn_aux
6758 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6759 goto error_return_verref
;
6761 evernaux
= ((Elf_External_Vernaux
*)
6762 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6763 ivernaux
= iverneed
->vn_auxptr
;
6764 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6766 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6768 ivernaux
->vna_nodename
=
6769 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6770 ivernaux
->vna_name
);
6771 if (ivernaux
->vna_nodename
== NULL
)
6772 goto error_return_verref
;
6774 if (j
+ 1 < iverneed
->vn_cnt
)
6775 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6777 ivernaux
->vna_nextptr
= NULL
;
6779 if (ivernaux
->vna_next
6780 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6781 goto error_return_verref
;
6783 evernaux
= ((Elf_External_Vernaux
*)
6784 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6786 if (ivernaux
->vna_other
> freeidx
)
6787 freeidx
= ivernaux
->vna_other
;
6790 if (i
+ 1 < hdr
->sh_info
)
6791 iverneed
->vn_nextref
= iverneed
+ 1;
6793 iverneed
->vn_nextref
= NULL
;
6795 if (iverneed
->vn_next
6796 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6797 goto error_return_verref
;
6799 everneed
= ((Elf_External_Verneed
*)
6800 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6807 if (elf_dynverdef (abfd
) != 0)
6809 Elf_Internal_Shdr
*hdr
;
6810 Elf_External_Verdef
*everdef
;
6811 Elf_Internal_Verdef
*iverdef
;
6812 Elf_Internal_Verdef
*iverdefarr
;
6813 Elf_Internal_Verdef iverdefmem
;
6815 unsigned int maxidx
;
6816 bfd_byte
*contents_end_def
, *contents_end_aux
;
6818 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6820 contents
= bfd_malloc (hdr
->sh_size
);
6821 if (contents
== NULL
)
6823 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6824 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6827 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6830 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6831 >= sizeof (Elf_External_Verdaux
));
6832 contents_end_def
= contents
+ hdr
->sh_size
6833 - sizeof (Elf_External_Verdef
);
6834 contents_end_aux
= contents
+ hdr
->sh_size
6835 - sizeof (Elf_External_Verdaux
);
6837 /* We know the number of entries in the section but not the maximum
6838 index. Therefore we have to run through all entries and find
6840 everdef
= (Elf_External_Verdef
*) contents
;
6842 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6844 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6846 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6847 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6849 if (iverdefmem
.vd_next
6850 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6853 everdef
= ((Elf_External_Verdef
*)
6854 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6857 if (default_imported_symver
)
6859 if (freeidx
> maxidx
)
6864 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6865 sizeof (Elf_Internal_Verdef
));
6866 if (elf_tdata (abfd
)->verdef
== NULL
)
6869 elf_tdata (abfd
)->cverdefs
= maxidx
;
6871 everdef
= (Elf_External_Verdef
*) contents
;
6872 iverdefarr
= elf_tdata (abfd
)->verdef
;
6873 for (i
= 0; i
< hdr
->sh_info
; i
++)
6875 Elf_External_Verdaux
*everdaux
;
6876 Elf_Internal_Verdaux
*iverdaux
;
6879 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6881 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6883 error_return_verdef
:
6884 elf_tdata (abfd
)->verdef
= NULL
;
6885 elf_tdata (abfd
)->cverdefs
= 0;
6889 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6890 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6892 iverdef
->vd_bfd
= abfd
;
6894 if (iverdef
->vd_cnt
== 0)
6895 iverdef
->vd_auxptr
= NULL
;
6898 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6899 sizeof (Elf_Internal_Verdaux
));
6900 if (iverdef
->vd_auxptr
== NULL
)
6901 goto error_return_verdef
;
6905 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6906 goto error_return_verdef
;
6908 everdaux
= ((Elf_External_Verdaux
*)
6909 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6910 iverdaux
= iverdef
->vd_auxptr
;
6911 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6913 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6915 iverdaux
->vda_nodename
=
6916 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6917 iverdaux
->vda_name
);
6918 if (iverdaux
->vda_nodename
== NULL
)
6919 goto error_return_verdef
;
6921 if (j
+ 1 < iverdef
->vd_cnt
)
6922 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6924 iverdaux
->vda_nextptr
= NULL
;
6926 if (iverdaux
->vda_next
6927 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6928 goto error_return_verdef
;
6930 everdaux
= ((Elf_External_Verdaux
*)
6931 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6934 if (iverdef
->vd_cnt
)
6935 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6937 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6938 iverdef
->vd_nextdef
= iverdef
+ 1;
6940 iverdef
->vd_nextdef
= NULL
;
6942 everdef
= ((Elf_External_Verdef
*)
6943 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6949 else if (default_imported_symver
)
6956 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6957 sizeof (Elf_Internal_Verdef
));
6958 if (elf_tdata (abfd
)->verdef
== NULL
)
6961 elf_tdata (abfd
)->cverdefs
= freeidx
;
6964 /* Create a default version based on the soname. */
6965 if (default_imported_symver
)
6967 Elf_Internal_Verdef
*iverdef
;
6968 Elf_Internal_Verdaux
*iverdaux
;
6970 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6972 iverdef
->vd_version
= VER_DEF_CURRENT
;
6973 iverdef
->vd_flags
= 0;
6974 iverdef
->vd_ndx
= freeidx
;
6975 iverdef
->vd_cnt
= 1;
6977 iverdef
->vd_bfd
= abfd
;
6979 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6980 if (iverdef
->vd_nodename
== NULL
)
6981 goto error_return_verdef
;
6982 iverdef
->vd_nextdef
= NULL
;
6983 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6984 if (iverdef
->vd_auxptr
== NULL
)
6985 goto error_return_verdef
;
6987 iverdaux
= iverdef
->vd_auxptr
;
6988 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6989 iverdaux
->vda_nextptr
= NULL
;
6995 if (contents
!= NULL
)
7001 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7003 elf_symbol_type
*newsym
;
7004 bfd_size_type amt
= sizeof (elf_symbol_type
);
7006 newsym
= bfd_zalloc (abfd
, amt
);
7011 newsym
->symbol
.the_bfd
= abfd
;
7012 return &newsym
->symbol
;
7017 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7021 bfd_symbol_info (symbol
, ret
);
7024 /* Return whether a symbol name implies a local symbol. Most targets
7025 use this function for the is_local_label_name entry point, but some
7029 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7032 /* Normal local symbols start with ``.L''. */
7033 if (name
[0] == '.' && name
[1] == 'L')
7036 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7037 DWARF debugging symbols starting with ``..''. */
7038 if (name
[0] == '.' && name
[1] == '.')
7041 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7042 emitting DWARF debugging output. I suspect this is actually a
7043 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7044 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7045 underscore to be emitted on some ELF targets). For ease of use,
7046 we treat such symbols as local. */
7047 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7054 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7055 asymbol
*symbol ATTRIBUTE_UNUSED
)
7062 _bfd_elf_set_arch_mach (bfd
*abfd
,
7063 enum bfd_architecture arch
,
7064 unsigned long machine
)
7066 /* If this isn't the right architecture for this backend, and this
7067 isn't the generic backend, fail. */
7068 if (arch
!= get_elf_backend_data (abfd
)->arch
7069 && arch
!= bfd_arch_unknown
7070 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7073 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7076 /* Find the function to a particular section and offset,
7077 for error reporting. */
7080 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7084 const char **filename_ptr
,
7085 const char **functionname_ptr
)
7087 const char *filename
;
7088 asymbol
*func
, *file
;
7091 /* ??? Given multiple file symbols, it is impossible to reliably
7092 choose the right file name for global symbols. File symbols are
7093 local symbols, and thus all file symbols must sort before any
7094 global symbols. The ELF spec may be interpreted to say that a
7095 file symbol must sort before other local symbols, but currently
7096 ld -r doesn't do this. So, for ld -r output, it is possible to
7097 make a better choice of file name for local symbols by ignoring
7098 file symbols appearing after a given local symbol. */
7099 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7105 state
= nothing_seen
;
7107 for (p
= symbols
; *p
!= NULL
; p
++)
7111 q
= (elf_symbol_type
*) *p
;
7113 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7119 if (state
== symbol_seen
)
7120 state
= file_after_symbol_seen
;
7124 if (bfd_get_section (&q
->symbol
) == section
7125 && q
->symbol
.value
>= low_func
7126 && q
->symbol
.value
<= offset
)
7128 func
= (asymbol
*) q
;
7129 low_func
= q
->symbol
.value
;
7132 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7133 || state
!= file_after_symbol_seen
))
7134 filename
= bfd_asymbol_name (file
);
7138 if (state
== nothing_seen
)
7139 state
= symbol_seen
;
7146 *filename_ptr
= filename
;
7147 if (functionname_ptr
)
7148 *functionname_ptr
= bfd_asymbol_name (func
);
7153 /* Find the nearest line to a particular section and offset,
7154 for error reporting. */
7157 _bfd_elf_find_nearest_line (bfd
*abfd
,
7161 const char **filename_ptr
,
7162 const char **functionname_ptr
,
7163 unsigned int *line_ptr
)
7167 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7168 filename_ptr
, functionname_ptr
,
7171 if (!*functionname_ptr
)
7172 elf_find_function (abfd
, section
, symbols
, offset
,
7173 *filename_ptr
? NULL
: filename_ptr
,
7179 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7180 filename_ptr
, functionname_ptr
,
7182 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7184 if (!*functionname_ptr
)
7185 elf_find_function (abfd
, section
, symbols
, offset
,
7186 *filename_ptr
? NULL
: filename_ptr
,
7192 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7193 &found
, filename_ptr
,
7194 functionname_ptr
, line_ptr
,
7195 &elf_tdata (abfd
)->line_info
))
7197 if (found
&& (*functionname_ptr
|| *line_ptr
))
7200 if (symbols
== NULL
)
7203 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7204 filename_ptr
, functionname_ptr
))
7211 /* Find the line for a symbol. */
7214 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7215 const char **filename_ptr
, unsigned int *line_ptr
)
7217 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7218 filename_ptr
, line_ptr
, 0,
7219 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7222 /* After a call to bfd_find_nearest_line, successive calls to
7223 bfd_find_inliner_info can be used to get source information about
7224 each level of function inlining that terminated at the address
7225 passed to bfd_find_nearest_line. Currently this is only supported
7226 for DWARF2 with appropriate DWARF3 extensions. */
7229 _bfd_elf_find_inliner_info (bfd
*abfd
,
7230 const char **filename_ptr
,
7231 const char **functionname_ptr
,
7232 unsigned int *line_ptr
)
7235 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7236 functionname_ptr
, line_ptr
,
7237 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7242 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7244 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7245 int ret
= bed
->s
->sizeof_ehdr
;
7247 if (!info
->relocatable
)
7249 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7251 if (phdr_size
== (bfd_size_type
) -1)
7253 struct elf_segment_map
*m
;
7256 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7257 phdr_size
+= bed
->s
->sizeof_phdr
;
7260 phdr_size
= get_program_header_size (abfd
, info
);
7263 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7271 _bfd_elf_set_section_contents (bfd
*abfd
,
7273 const void *location
,
7275 bfd_size_type count
)
7277 Elf_Internal_Shdr
*hdr
;
7280 if (! abfd
->output_has_begun
7281 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7284 hdr
= &elf_section_data (section
)->this_hdr
;
7285 pos
= hdr
->sh_offset
+ offset
;
7286 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7287 || bfd_bwrite (location
, count
, abfd
) != count
)
7294 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7295 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7296 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7301 /* Try to convert a non-ELF reloc into an ELF one. */
7304 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7306 /* Check whether we really have an ELF howto. */
7308 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7310 bfd_reloc_code_real_type code
;
7311 reloc_howto_type
*howto
;
7313 /* Alien reloc: Try to determine its type to replace it with an
7314 equivalent ELF reloc. */
7316 if (areloc
->howto
->pc_relative
)
7318 switch (areloc
->howto
->bitsize
)
7321 code
= BFD_RELOC_8_PCREL
;
7324 code
= BFD_RELOC_12_PCREL
;
7327 code
= BFD_RELOC_16_PCREL
;
7330 code
= BFD_RELOC_24_PCREL
;
7333 code
= BFD_RELOC_32_PCREL
;
7336 code
= BFD_RELOC_64_PCREL
;
7342 howto
= bfd_reloc_type_lookup (abfd
, code
);
7344 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7346 if (howto
->pcrel_offset
)
7347 areloc
->addend
+= areloc
->address
;
7349 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7354 switch (areloc
->howto
->bitsize
)
7360 code
= BFD_RELOC_14
;
7363 code
= BFD_RELOC_16
;
7366 code
= BFD_RELOC_26
;
7369 code
= BFD_RELOC_32
;
7372 code
= BFD_RELOC_64
;
7378 howto
= bfd_reloc_type_lookup (abfd
, code
);
7382 areloc
->howto
= howto
;
7390 (*_bfd_error_handler
)
7391 (_("%B: unsupported relocation type %s"),
7392 abfd
, areloc
->howto
->name
);
7393 bfd_set_error (bfd_error_bad_value
);
7398 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7400 if (bfd_get_format (abfd
) == bfd_object
)
7402 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7403 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7404 _bfd_dwarf2_cleanup_debug_info (abfd
);
7407 return _bfd_generic_close_and_cleanup (abfd
);
7410 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7411 in the relocation's offset. Thus we cannot allow any sort of sanity
7412 range-checking to interfere. There is nothing else to do in processing
7415 bfd_reloc_status_type
7416 _bfd_elf_rel_vtable_reloc_fn
7417 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7418 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7419 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7420 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7422 return bfd_reloc_ok
;
7425 /* Elf core file support. Much of this only works on native
7426 toolchains, since we rely on knowing the
7427 machine-dependent procfs structure in order to pick
7428 out details about the corefile. */
7430 #ifdef HAVE_SYS_PROCFS_H
7431 # include <sys/procfs.h>
7434 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7437 elfcore_make_pid (bfd
*abfd
)
7439 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7440 + (elf_tdata (abfd
)->core_pid
));
7443 /* If there isn't a section called NAME, make one, using
7444 data from SECT. Note, this function will generate a
7445 reference to NAME, so you shouldn't deallocate or
7449 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7453 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7456 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7460 sect2
->size
= sect
->size
;
7461 sect2
->filepos
= sect
->filepos
;
7462 sect2
->alignment_power
= sect
->alignment_power
;
7466 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7467 actually creates up to two pseudosections:
7468 - For the single-threaded case, a section named NAME, unless
7469 such a section already exists.
7470 - For the multi-threaded case, a section named "NAME/PID", where
7471 PID is elfcore_make_pid (abfd).
7472 Both pseudosections have identical contents. */
7474 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7480 char *threaded_name
;
7484 /* Build the section name. */
7486 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7487 len
= strlen (buf
) + 1;
7488 threaded_name
= bfd_alloc (abfd
, len
);
7489 if (threaded_name
== NULL
)
7491 memcpy (threaded_name
, buf
, len
);
7493 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7498 sect
->filepos
= filepos
;
7499 sect
->alignment_power
= 2;
7501 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7504 /* prstatus_t exists on:
7506 linux 2.[01] + glibc
7510 #if defined (HAVE_PRSTATUS_T)
7513 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7518 if (note
->descsz
== sizeof (prstatus_t
))
7522 size
= sizeof (prstat
.pr_reg
);
7523 offset
= offsetof (prstatus_t
, pr_reg
);
7524 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7526 /* Do not overwrite the core signal if it
7527 has already been set by another thread. */
7528 if (elf_tdata (abfd
)->core_signal
== 0)
7529 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7530 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7532 /* pr_who exists on:
7535 pr_who doesn't exist on:
7538 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7539 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7542 #if defined (HAVE_PRSTATUS32_T)
7543 else if (note
->descsz
== sizeof (prstatus32_t
))
7545 /* 64-bit host, 32-bit corefile */
7546 prstatus32_t prstat
;
7548 size
= sizeof (prstat
.pr_reg
);
7549 offset
= offsetof (prstatus32_t
, pr_reg
);
7550 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7552 /* Do not overwrite the core signal if it
7553 has already been set by another thread. */
7554 if (elf_tdata (abfd
)->core_signal
== 0)
7555 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7556 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7558 /* pr_who exists on:
7561 pr_who doesn't exist on:
7564 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7565 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7568 #endif /* HAVE_PRSTATUS32_T */
7571 /* Fail - we don't know how to handle any other
7572 note size (ie. data object type). */
7576 /* Make a ".reg/999" section and a ".reg" section. */
7577 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7578 size
, note
->descpos
+ offset
);
7580 #endif /* defined (HAVE_PRSTATUS_T) */
7582 /* Create a pseudosection containing the exact contents of NOTE. */
7584 elfcore_make_note_pseudosection (bfd
*abfd
,
7586 Elf_Internal_Note
*note
)
7588 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7589 note
->descsz
, note
->descpos
);
7592 /* There isn't a consistent prfpregset_t across platforms,
7593 but it doesn't matter, because we don't have to pick this
7594 data structure apart. */
7597 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7599 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7602 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7603 type of NT_PRXFPREG. Just include the whole note's contents
7607 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7609 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7613 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7615 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7619 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7621 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7624 #if defined (HAVE_PRPSINFO_T)
7625 typedef prpsinfo_t elfcore_psinfo_t
;
7626 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7627 typedef prpsinfo32_t elfcore_psinfo32_t
;
7631 #if defined (HAVE_PSINFO_T)
7632 typedef psinfo_t elfcore_psinfo_t
;
7633 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7634 typedef psinfo32_t elfcore_psinfo32_t
;
7638 /* return a malloc'ed copy of a string at START which is at
7639 most MAX bytes long, possibly without a terminating '\0'.
7640 the copy will always have a terminating '\0'. */
7643 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7646 char *end
= memchr (start
, '\0', max
);
7654 dups
= bfd_alloc (abfd
, len
+ 1);
7658 memcpy (dups
, start
, len
);
7664 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7666 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7668 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7670 elfcore_psinfo_t psinfo
;
7672 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7674 elf_tdata (abfd
)->core_program
7675 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7676 sizeof (psinfo
.pr_fname
));
7678 elf_tdata (abfd
)->core_command
7679 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7680 sizeof (psinfo
.pr_psargs
));
7682 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7683 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7685 /* 64-bit host, 32-bit corefile */
7686 elfcore_psinfo32_t psinfo
;
7688 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7690 elf_tdata (abfd
)->core_program
7691 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7692 sizeof (psinfo
.pr_fname
));
7694 elf_tdata (abfd
)->core_command
7695 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7696 sizeof (psinfo
.pr_psargs
));
7702 /* Fail - we don't know how to handle any other
7703 note size (ie. data object type). */
7707 /* Note that for some reason, a spurious space is tacked
7708 onto the end of the args in some (at least one anyway)
7709 implementations, so strip it off if it exists. */
7712 char *command
= elf_tdata (abfd
)->core_command
;
7713 int n
= strlen (command
);
7715 if (0 < n
&& command
[n
- 1] == ' ')
7716 command
[n
- 1] = '\0';
7721 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7723 #if defined (HAVE_PSTATUS_T)
7725 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7727 if (note
->descsz
== sizeof (pstatus_t
)
7728 #if defined (HAVE_PXSTATUS_T)
7729 || note
->descsz
== sizeof (pxstatus_t
)
7735 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7737 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7739 #if defined (HAVE_PSTATUS32_T)
7740 else if (note
->descsz
== sizeof (pstatus32_t
))
7742 /* 64-bit host, 32-bit corefile */
7745 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7747 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7750 /* Could grab some more details from the "representative"
7751 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7752 NT_LWPSTATUS note, presumably. */
7756 #endif /* defined (HAVE_PSTATUS_T) */
7758 #if defined (HAVE_LWPSTATUS_T)
7760 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7762 lwpstatus_t lwpstat
;
7768 if (note
->descsz
!= sizeof (lwpstat
)
7769 #if defined (HAVE_LWPXSTATUS_T)
7770 && note
->descsz
!= sizeof (lwpxstatus_t
)
7775 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7777 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7778 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7780 /* Make a ".reg/999" section. */
7782 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7783 len
= strlen (buf
) + 1;
7784 name
= bfd_alloc (abfd
, len
);
7787 memcpy (name
, buf
, len
);
7789 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7793 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7794 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7795 sect
->filepos
= note
->descpos
7796 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7799 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7800 sect
->size
= sizeof (lwpstat
.pr_reg
);
7801 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7804 sect
->alignment_power
= 2;
7806 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7809 /* Make a ".reg2/999" section */
7811 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7812 len
= strlen (buf
) + 1;
7813 name
= bfd_alloc (abfd
, len
);
7816 memcpy (name
, buf
, len
);
7818 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7822 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7823 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7824 sect
->filepos
= note
->descpos
7825 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7828 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7829 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7830 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7833 sect
->alignment_power
= 2;
7835 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7837 #endif /* defined (HAVE_LWPSTATUS_T) */
7840 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7847 int is_active_thread
;
7850 if (note
->descsz
< 728)
7853 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7856 type
= bfd_get_32 (abfd
, note
->descdata
);
7860 case 1 /* NOTE_INFO_PROCESS */:
7861 /* FIXME: need to add ->core_command. */
7862 /* process_info.pid */
7863 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7864 /* process_info.signal */
7865 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7868 case 2 /* NOTE_INFO_THREAD */:
7869 /* Make a ".reg/999" section. */
7870 /* thread_info.tid */
7871 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7873 len
= strlen (buf
) + 1;
7874 name
= bfd_alloc (abfd
, len
);
7878 memcpy (name
, buf
, len
);
7880 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7884 /* sizeof (thread_info.thread_context) */
7886 /* offsetof (thread_info.thread_context) */
7887 sect
->filepos
= note
->descpos
+ 12;
7888 sect
->alignment_power
= 2;
7890 /* thread_info.is_active_thread */
7891 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7893 if (is_active_thread
)
7894 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7898 case 3 /* NOTE_INFO_MODULE */:
7899 /* Make a ".module/xxxxxxxx" section. */
7900 /* module_info.base_address */
7901 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7902 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7904 len
= strlen (buf
) + 1;
7905 name
= bfd_alloc (abfd
, len
);
7909 memcpy (name
, buf
, len
);
7911 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7916 sect
->size
= note
->descsz
;
7917 sect
->filepos
= note
->descpos
;
7918 sect
->alignment_power
= 2;
7929 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7931 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7939 if (bed
->elf_backend_grok_prstatus
)
7940 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7942 #if defined (HAVE_PRSTATUS_T)
7943 return elfcore_grok_prstatus (abfd
, note
);
7948 #if defined (HAVE_PSTATUS_T)
7950 return elfcore_grok_pstatus (abfd
, note
);
7953 #if defined (HAVE_LWPSTATUS_T)
7955 return elfcore_grok_lwpstatus (abfd
, note
);
7958 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7959 return elfcore_grok_prfpreg (abfd
, note
);
7961 case NT_WIN32PSTATUS
:
7962 return elfcore_grok_win32pstatus (abfd
, note
);
7964 case NT_PRXFPREG
: /* Linux SSE extension */
7965 if (note
->namesz
== 6
7966 && strcmp (note
->namedata
, "LINUX") == 0)
7967 return elfcore_grok_prxfpreg (abfd
, note
);
7972 if (note
->namesz
== 6
7973 && strcmp (note
->namedata
, "LINUX") == 0)
7974 return elfcore_grok_ppc_vmx (abfd
, note
);
7979 if (note
->namesz
== 6
7980 && strcmp (note
->namedata
, "LINUX") == 0)
7981 return elfcore_grok_ppc_vsx (abfd
, note
);
7987 if (bed
->elf_backend_grok_psinfo
)
7988 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7990 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7991 return elfcore_grok_psinfo (abfd
, note
);
7998 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8003 sect
->size
= note
->descsz
;
8004 sect
->filepos
= note
->descpos
;
8005 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8013 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8015 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8016 elf_tdata (abfd
)->build_id
= bfd_alloc (abfd
, note
->descsz
);
8017 if (elf_tdata (abfd
)->build_id
== NULL
)
8020 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8026 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8033 case NT_GNU_BUILD_ID
:
8034 return elfobj_grok_gnu_build_id (abfd
, note
);
8039 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8043 cp
= strchr (note
->namedata
, '@');
8046 *lwpidp
= atoi(cp
+ 1);
8053 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8055 /* Signal number at offset 0x08. */
8056 elf_tdata (abfd
)->core_signal
8057 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8059 /* Process ID at offset 0x50. */
8060 elf_tdata (abfd
)->core_pid
8061 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8063 /* Command name at 0x7c (max 32 bytes, including nul). */
8064 elf_tdata (abfd
)->core_command
8065 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8067 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8072 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8076 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8077 elf_tdata (abfd
)->core_lwpid
= lwp
;
8079 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8081 /* NetBSD-specific core "procinfo". Note that we expect to
8082 find this note before any of the others, which is fine,
8083 since the kernel writes this note out first when it
8084 creates a core file. */
8086 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8089 /* As of Jan 2002 there are no other machine-independent notes
8090 defined for NetBSD core files. If the note type is less
8091 than the start of the machine-dependent note types, we don't
8094 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8098 switch (bfd_get_arch (abfd
))
8100 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8101 PT_GETFPREGS == mach+2. */
8103 case bfd_arch_alpha
:
8104 case bfd_arch_sparc
:
8107 case NT_NETBSDCORE_FIRSTMACH
+0:
8108 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8110 case NT_NETBSDCORE_FIRSTMACH
+2:
8111 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8117 /* On all other arch's, PT_GETREGS == mach+1 and
8118 PT_GETFPREGS == mach+3. */
8123 case NT_NETBSDCORE_FIRSTMACH
+1:
8124 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8126 case NT_NETBSDCORE_FIRSTMACH
+3:
8127 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8137 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8139 void *ddata
= note
->descdata
;
8146 /* nto_procfs_status 'pid' field is at offset 0. */
8147 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8149 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8150 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8152 /* nto_procfs_status 'flags' field is at offset 8. */
8153 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8155 /* nto_procfs_status 'what' field is at offset 14. */
8156 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8158 elf_tdata (abfd
)->core_signal
= sig
;
8159 elf_tdata (abfd
)->core_lwpid
= *tid
;
8162 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8163 do not come from signals so we make sure we set the current
8164 thread just in case. */
8165 if (flags
& 0x00000080)
8166 elf_tdata (abfd
)->core_lwpid
= *tid
;
8168 /* Make a ".qnx_core_status/%d" section. */
8169 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8171 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8176 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8180 sect
->size
= note
->descsz
;
8181 sect
->filepos
= note
->descpos
;
8182 sect
->alignment_power
= 2;
8184 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8188 elfcore_grok_nto_regs (bfd
*abfd
,
8189 Elf_Internal_Note
*note
,
8197 /* Make a "(base)/%d" section. */
8198 sprintf (buf
, "%s/%ld", base
, tid
);
8200 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8205 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8209 sect
->size
= note
->descsz
;
8210 sect
->filepos
= note
->descpos
;
8211 sect
->alignment_power
= 2;
8213 /* This is the current thread. */
8214 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8215 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8220 #define BFD_QNT_CORE_INFO 7
8221 #define BFD_QNT_CORE_STATUS 8
8222 #define BFD_QNT_CORE_GREG 9
8223 #define BFD_QNT_CORE_FPREG 10
8226 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8228 /* Every GREG section has a STATUS section before it. Store the
8229 tid from the previous call to pass down to the next gregs
8231 static long tid
= 1;
8235 case BFD_QNT_CORE_INFO
:
8236 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8237 case BFD_QNT_CORE_STATUS
:
8238 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8239 case BFD_QNT_CORE_GREG
:
8240 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8241 case BFD_QNT_CORE_FPREG
:
8242 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8249 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8255 /* Use note name as section name. */
8257 name
= bfd_alloc (abfd
, len
);
8260 memcpy (name
, note
->namedata
, len
);
8261 name
[len
- 1] = '\0';
8263 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8267 sect
->size
= note
->descsz
;
8268 sect
->filepos
= note
->descpos
;
8269 sect
->alignment_power
= 1;
8274 /* Function: elfcore_write_note
8277 buffer to hold note, and current size of buffer
8281 size of data for note
8283 Writes note to end of buffer. ELF64 notes are written exactly as
8284 for ELF32, despite the current (as of 2006) ELF gabi specifying
8285 that they ought to have 8-byte namesz and descsz field, and have
8286 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8289 Pointer to realloc'd buffer, *BUFSIZ updated. */
8292 elfcore_write_note (bfd
*abfd
,
8300 Elf_External_Note
*xnp
;
8307 namesz
= strlen (name
) + 1;
8309 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8311 buf
= realloc (buf
, *bufsiz
+ newspace
);
8314 dest
= buf
+ *bufsiz
;
8315 *bufsiz
+= newspace
;
8316 xnp
= (Elf_External_Note
*) dest
;
8317 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8318 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8319 H_PUT_32 (abfd
, type
, xnp
->type
);
8323 memcpy (dest
, name
, namesz
);
8331 memcpy (dest
, input
, size
);
8341 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8343 elfcore_write_prpsinfo (bfd
*abfd
,
8349 const char *note_name
= "CORE";
8350 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8352 if (bed
->elf_backend_write_core_note
!= NULL
)
8355 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8356 NT_PRPSINFO
, fname
, psargs
);
8361 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8362 if (bed
->s
->elfclass
== ELFCLASS32
)
8364 #if defined (HAVE_PSINFO32_T)
8366 int note_type
= NT_PSINFO
;
8369 int note_type
= NT_PRPSINFO
;
8372 memset (&data
, 0, sizeof (data
));
8373 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8374 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8375 return elfcore_write_note (abfd
, buf
, bufsiz
,
8376 note_name
, note_type
, &data
, sizeof (data
));
8381 #if defined (HAVE_PSINFO_T)
8383 int note_type
= NT_PSINFO
;
8386 int note_type
= NT_PRPSINFO
;
8389 memset (&data
, 0, sizeof (data
));
8390 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8391 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8392 return elfcore_write_note (abfd
, buf
, bufsiz
,
8393 note_name
, note_type
, &data
, sizeof (data
));
8396 #endif /* PSINFO_T or PRPSINFO_T */
8398 #if defined (HAVE_PRSTATUS_T)
8400 elfcore_write_prstatus (bfd
*abfd
,
8407 const char *note_name
= "CORE";
8408 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8410 if (bed
->elf_backend_write_core_note
!= NULL
)
8413 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8415 pid
, cursig
, gregs
);
8420 #if defined (HAVE_PRSTATUS32_T)
8421 if (bed
->s
->elfclass
== ELFCLASS32
)
8423 prstatus32_t prstat
;
8425 memset (&prstat
, 0, sizeof (prstat
));
8426 prstat
.pr_pid
= pid
;
8427 prstat
.pr_cursig
= cursig
;
8428 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8429 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8430 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8437 memset (&prstat
, 0, sizeof (prstat
));
8438 prstat
.pr_pid
= pid
;
8439 prstat
.pr_cursig
= cursig
;
8440 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8441 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8442 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8445 #endif /* HAVE_PRSTATUS_T */
8447 #if defined (HAVE_LWPSTATUS_T)
8449 elfcore_write_lwpstatus (bfd
*abfd
,
8456 lwpstatus_t lwpstat
;
8457 const char *note_name
= "CORE";
8459 memset (&lwpstat
, 0, sizeof (lwpstat
));
8460 lwpstat
.pr_lwpid
= pid
>> 16;
8461 lwpstat
.pr_cursig
= cursig
;
8462 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8463 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8464 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8466 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8467 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8469 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8470 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8473 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8474 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8476 #endif /* HAVE_LWPSTATUS_T */
8478 #if defined (HAVE_PSTATUS_T)
8480 elfcore_write_pstatus (bfd
*abfd
,
8484 int cursig ATTRIBUTE_UNUSED
,
8485 const void *gregs ATTRIBUTE_UNUSED
)
8487 const char *note_name
= "CORE";
8488 #if defined (HAVE_PSTATUS32_T)
8489 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8491 if (bed
->s
->elfclass
== ELFCLASS32
)
8495 memset (&pstat
, 0, sizeof (pstat
));
8496 pstat
.pr_pid
= pid
& 0xffff;
8497 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8498 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8506 memset (&pstat
, 0, sizeof (pstat
));
8507 pstat
.pr_pid
= pid
& 0xffff;
8508 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8509 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8513 #endif /* HAVE_PSTATUS_T */
8516 elfcore_write_prfpreg (bfd
*abfd
,
8522 const char *note_name
= "CORE";
8523 return elfcore_write_note (abfd
, buf
, bufsiz
,
8524 note_name
, NT_FPREGSET
, fpregs
, size
);
8528 elfcore_write_prxfpreg (bfd
*abfd
,
8531 const void *xfpregs
,
8534 char *note_name
= "LINUX";
8535 return elfcore_write_note (abfd
, buf
, bufsiz
,
8536 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8540 elfcore_write_ppc_vmx (bfd
*abfd
,
8543 const void *ppc_vmx
,
8546 char *note_name
= "LINUX";
8547 return elfcore_write_note (abfd
, buf
, bufsiz
,
8548 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8552 elfcore_write_ppc_vsx (bfd
*abfd
,
8555 const void *ppc_vsx
,
8558 char *note_name
= "LINUX";
8559 return elfcore_write_note (abfd
, buf
, bufsiz
,
8560 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8564 elfcore_write_register_note (bfd
*abfd
,
8567 const char *section
,
8571 if (strcmp (section
, ".reg2") == 0)
8572 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8573 if (strcmp (section
, ".reg-xfp") == 0)
8574 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8575 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8576 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8577 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8578 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8583 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8588 while (p
< buf
+ size
)
8590 /* FIXME: bad alignment assumption. */
8591 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8592 Elf_Internal_Note in
;
8594 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8597 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8599 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8600 in
.namedata
= xnp
->name
;
8601 if (in
.namesz
> buf
- in
.namedata
+ size
)
8604 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8605 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8606 in
.descpos
= offset
+ (in
.descdata
- buf
);
8608 && (in
.descdata
>= buf
+ size
8609 || in
.descsz
> buf
- in
.descdata
+ size
))
8612 switch (bfd_get_format (abfd
))
8618 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8620 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8623 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8625 if (! elfcore_grok_nto_note (abfd
, &in
))
8628 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8630 if (! elfcore_grok_spu_note (abfd
, &in
))
8635 if (! elfcore_grok_note (abfd
, &in
))
8641 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8643 if (! elfobj_grok_gnu_note (abfd
, &in
))
8649 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8656 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8663 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8666 buf
= bfd_malloc (size
);
8670 if (bfd_bread (buf
, size
, abfd
) != size
8671 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8681 /* Providing external access to the ELF program header table. */
8683 /* Return an upper bound on the number of bytes required to store a
8684 copy of ABFD's program header table entries. Return -1 if an error
8685 occurs; bfd_get_error will return an appropriate code. */
8688 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8690 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8692 bfd_set_error (bfd_error_wrong_format
);
8696 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8699 /* Copy ABFD's program header table entries to *PHDRS. The entries
8700 will be stored as an array of Elf_Internal_Phdr structures, as
8701 defined in include/elf/internal.h. To find out how large the
8702 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8704 Return the number of program header table entries read, or -1 if an
8705 error occurs; bfd_get_error will return an appropriate code. */
8708 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8712 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8714 bfd_set_error (bfd_error_wrong_format
);
8718 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8719 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8720 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8725 enum elf_reloc_type_class
8726 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8728 return reloc_class_normal
;
8731 /* For RELA architectures, return the relocation value for a
8732 relocation against a local symbol. */
8735 _bfd_elf_rela_local_sym (bfd
*abfd
,
8736 Elf_Internal_Sym
*sym
,
8738 Elf_Internal_Rela
*rel
)
8740 asection
*sec
= *psec
;
8743 relocation
= (sec
->output_section
->vma
8744 + sec
->output_offset
8746 if ((sec
->flags
& SEC_MERGE
)
8747 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8748 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8751 _bfd_merged_section_offset (abfd
, psec
,
8752 elf_section_data (sec
)->sec_info
,
8753 sym
->st_value
+ rel
->r_addend
);
8756 /* If we have changed the section, and our original section is
8757 marked with SEC_EXCLUDE, it means that the original
8758 SEC_MERGE section has been completely subsumed in some
8759 other SEC_MERGE section. In this case, we need to leave
8760 some info around for --emit-relocs. */
8761 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8762 sec
->kept_section
= *psec
;
8765 rel
->r_addend
-= relocation
;
8766 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8772 _bfd_elf_rel_local_sym (bfd
*abfd
,
8773 Elf_Internal_Sym
*sym
,
8777 asection
*sec
= *psec
;
8779 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8780 return sym
->st_value
+ addend
;
8782 return _bfd_merged_section_offset (abfd
, psec
,
8783 elf_section_data (sec
)->sec_info
,
8784 sym
->st_value
+ addend
);
8788 _bfd_elf_section_offset (bfd
*abfd
,
8789 struct bfd_link_info
*info
,
8793 switch (sec
->sec_info_type
)
8795 case ELF_INFO_TYPE_STABS
:
8796 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8798 case ELF_INFO_TYPE_EH_FRAME
:
8799 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8805 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8806 reconstruct an ELF file by reading the segments out of remote memory
8807 based on the ELF file header at EHDR_VMA and the ELF program headers it
8808 points to. If not null, *LOADBASEP is filled in with the difference
8809 between the VMAs from which the segments were read, and the VMAs the
8810 file headers (and hence BFD's idea of each section's VMA) put them at.
8812 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8813 remote memory at target address VMA into the local buffer at MYADDR; it
8814 should return zero on success or an `errno' code on failure. TEMPL must
8815 be a BFD for an ELF target with the word size and byte order found in
8816 the remote memory. */
8819 bfd_elf_bfd_from_remote_memory
8823 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8825 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8826 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8830 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8831 long symcount ATTRIBUTE_UNUSED
,
8832 asymbol
**syms ATTRIBUTE_UNUSED
,
8837 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8840 const char *relplt_name
;
8841 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8845 Elf_Internal_Shdr
*hdr
;
8851 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8854 if (dynsymcount
<= 0)
8857 if (!bed
->plt_sym_val
)
8860 relplt_name
= bed
->relplt_name
;
8861 if (relplt_name
== NULL
)
8862 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8863 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8867 hdr
= &elf_section_data (relplt
)->this_hdr
;
8868 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8869 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8872 plt
= bfd_get_section_by_name (abfd
, ".plt");
8876 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8877 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8880 count
= relplt
->size
/ hdr
->sh_entsize
;
8881 size
= count
* sizeof (asymbol
);
8882 p
= relplt
->relocation
;
8883 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8884 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8886 s
= *ret
= bfd_malloc (size
);
8890 names
= (char *) (s
+ count
);
8891 p
= relplt
->relocation
;
8893 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8898 addr
= bed
->plt_sym_val (i
, plt
, p
);
8899 if (addr
== (bfd_vma
) -1)
8902 *s
= **p
->sym_ptr_ptr
;
8903 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8904 we are defining a symbol, ensure one of them is set. */
8905 if ((s
->flags
& BSF_LOCAL
) == 0)
8906 s
->flags
|= BSF_GLOBAL
;
8907 s
->flags
|= BSF_SYNTHETIC
;
8909 s
->value
= addr
- plt
->vma
;
8912 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8913 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8915 memcpy (names
, "@plt", sizeof ("@plt"));
8916 names
+= sizeof ("@plt");
8923 /* It is only used by x86-64 so far. */
8924 asection _bfd_elf_large_com_section
8925 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8926 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8929 _bfd_elf_set_osabi (bfd
* abfd
,
8930 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
8932 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
8934 i_ehdrp
= elf_elfheader (abfd
);
8936 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
8940 /* Return TRUE for ELF symbol types that represent functions.
8941 This is the default version of this function, which is sufficient for
8942 most targets. It returns true if TYPE is STT_FUNC. */
8945 _bfd_elf_is_function_type (unsigned int type
)
8947 return (type
== STT_FUNC
);