1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
24 #include "libiberty.h"
27 #include "elf-vxworks.h"
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
62 static struct elf_backend_data elf32_arm_vxworks_bed
;
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
68 static reloc_howto_type elf32_arm_howto_table_1
[] =
71 HOWTO (R_ARM_NONE
, /* type */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
75 FALSE
, /* pc_relative */
77 complain_overflow_dont
,/* complain_on_overflow */
78 bfd_elf_generic_reloc
, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE
, /* partial_inplace */
83 FALSE
), /* pcrel_offset */
85 HOWTO (R_ARM_PC24
, /* type */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
89 TRUE
, /* pc_relative */
91 complain_overflow_signed
,/* complain_on_overflow */
92 bfd_elf_generic_reloc
, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE
, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE
), /* pcrel_offset */
100 HOWTO (R_ARM_ABS32
, /* type */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
104 FALSE
, /* pc_relative */
106 complain_overflow_bitfield
,/* complain_on_overflow */
107 bfd_elf_generic_reloc
, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE
, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE
), /* pcrel_offset */
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32
, /* type */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
119 TRUE
, /* pc_relative */
121 complain_overflow_bitfield
,/* complain_on_overflow */
122 bfd_elf_generic_reloc
, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE
, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE
), /* pcrel_offset */
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0
, /* type */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
134 TRUE
, /* pc_relative */
136 complain_overflow_dont
,/* complain_on_overflow */
137 bfd_elf_generic_reloc
, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE
, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE
), /* pcrel_offset */
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16
, /* type */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
149 FALSE
, /* pc_relative */
151 complain_overflow_bitfield
,/* complain_on_overflow */
152 bfd_elf_generic_reloc
, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE
, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE
), /* pcrel_offset */
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12
, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE
, /* pc_relative */
166 complain_overflow_bitfield
,/* complain_on_overflow */
167 bfd_elf_generic_reloc
, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE
, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE
), /* pcrel_offset */
174 HOWTO (R_ARM_THM_ABS5
, /* type */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
178 FALSE
, /* pc_relative */
180 complain_overflow_bitfield
,/* complain_on_overflow */
181 bfd_elf_generic_reloc
, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE
, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE
), /* pcrel_offset */
189 HOWTO (R_ARM_ABS8
, /* type */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
193 FALSE
, /* pc_relative */
195 complain_overflow_bitfield
,/* complain_on_overflow */
196 bfd_elf_generic_reloc
, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE
, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE
), /* pcrel_offset */
203 HOWTO (R_ARM_SBREL32
, /* type */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
207 FALSE
, /* pc_relative */
209 complain_overflow_dont
,/* complain_on_overflow */
210 bfd_elf_generic_reloc
, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE
, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE
), /* pcrel_offset */
217 HOWTO (R_ARM_THM_CALL
, /* type */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
221 TRUE
, /* pc_relative */
223 complain_overflow_signed
,/* complain_on_overflow */
224 bfd_elf_generic_reloc
, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE
, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE
), /* pcrel_offset */
231 HOWTO (R_ARM_THM_PC8
, /* type */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
235 TRUE
, /* pc_relative */
237 complain_overflow_signed
,/* complain_on_overflow */
238 bfd_elf_generic_reloc
, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE
, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE
), /* pcrel_offset */
245 HOWTO (R_ARM_BREL_ADJ
, /* type */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
249 FALSE
, /* pc_relative */
251 complain_overflow_signed
,/* complain_on_overflow */
252 bfd_elf_generic_reloc
, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE
, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE
), /* pcrel_offset */
259 HOWTO (R_ARM_SWI24
, /* type */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
263 FALSE
, /* pc_relative */
265 complain_overflow_signed
,/* complain_on_overflow */
266 bfd_elf_generic_reloc
, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE
, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE
), /* pcrel_offset */
273 HOWTO (R_ARM_THM_SWI8
, /* type */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
277 FALSE
, /* pc_relative */
279 complain_overflow_signed
,/* complain_on_overflow */
280 bfd_elf_generic_reloc
, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE
, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE
), /* pcrel_offset */
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25
, /* type */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
292 TRUE
, /* pc_relative */
294 complain_overflow_signed
,/* complain_on_overflow */
295 bfd_elf_generic_reloc
, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE
, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE
), /* pcrel_offset */
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22
, /* type */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
307 TRUE
, /* pc_relative */
309 complain_overflow_signed
,/* complain_on_overflow */
310 bfd_elf_generic_reloc
, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE
, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE
), /* pcrel_offset */
317 /* Dynamic TLS relocations. */
319 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
323 FALSE
, /* pc_relative */
325 complain_overflow_bitfield
,/* complain_on_overflow */
326 bfd_elf_generic_reloc
, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE
, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE
), /* pcrel_offset */
333 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE
, /* pc_relative */
339 complain_overflow_bitfield
,/* complain_on_overflow */
340 bfd_elf_generic_reloc
, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE
, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE
), /* pcrel_offset */
347 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
351 FALSE
, /* pc_relative */
353 complain_overflow_bitfield
,/* complain_on_overflow */
354 bfd_elf_generic_reloc
, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE
, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE
), /* pcrel_offset */
361 /* Relocs used in ARM Linux */
363 HOWTO (R_ARM_COPY
, /* type */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
367 FALSE
, /* pc_relative */
369 complain_overflow_bitfield
,/* complain_on_overflow */
370 bfd_elf_generic_reloc
, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE
, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE
), /* pcrel_offset */
377 HOWTO (R_ARM_GLOB_DAT
, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 FALSE
, /* pc_relative */
383 complain_overflow_bitfield
,/* complain_on_overflow */
384 bfd_elf_generic_reloc
, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE
, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE
), /* pcrel_offset */
391 HOWTO (R_ARM_JUMP_SLOT
, /* type */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
395 FALSE
, /* pc_relative */
397 complain_overflow_bitfield
,/* complain_on_overflow */
398 bfd_elf_generic_reloc
, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE
, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE
), /* pcrel_offset */
405 HOWTO (R_ARM_RELATIVE
, /* type */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
409 FALSE
, /* pc_relative */
411 complain_overflow_bitfield
,/* complain_on_overflow */
412 bfd_elf_generic_reloc
, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE
, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE
), /* pcrel_offset */
419 HOWTO (R_ARM_GOTOFF32
, /* type */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
423 FALSE
, /* pc_relative */
425 complain_overflow_bitfield
,/* complain_on_overflow */
426 bfd_elf_generic_reloc
, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE
, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE
), /* pcrel_offset */
433 HOWTO (R_ARM_GOTPC
, /* type */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
437 TRUE
, /* pc_relative */
439 complain_overflow_bitfield
,/* complain_on_overflow */
440 bfd_elf_generic_reloc
, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE
, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE
), /* pcrel_offset */
447 HOWTO (R_ARM_GOT32
, /* type */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
451 FALSE
, /* pc_relative */
453 complain_overflow_bitfield
,/* complain_on_overflow */
454 bfd_elf_generic_reloc
, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE
, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE
), /* pcrel_offset */
461 HOWTO (R_ARM_PLT32
, /* type */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
465 TRUE
, /* pc_relative */
467 complain_overflow_bitfield
,/* complain_on_overflow */
468 bfd_elf_generic_reloc
, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE
, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE
), /* pcrel_offset */
475 HOWTO (R_ARM_CALL
, /* type */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
479 TRUE
, /* pc_relative */
481 complain_overflow_signed
,/* complain_on_overflow */
482 bfd_elf_generic_reloc
, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE
, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE
), /* pcrel_offset */
489 HOWTO (R_ARM_JUMP24
, /* type */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
493 TRUE
, /* pc_relative */
495 complain_overflow_signed
,/* complain_on_overflow */
496 bfd_elf_generic_reloc
, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE
, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE
), /* pcrel_offset */
503 HOWTO (R_ARM_THM_JUMP24
, /* type */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
507 TRUE
, /* pc_relative */
509 complain_overflow_signed
,/* complain_on_overflow */
510 bfd_elf_generic_reloc
, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE
, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE
), /* pcrel_offset */
517 HOWTO (R_ARM_BASE_ABS
, /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 FALSE
, /* pc_relative */
523 complain_overflow_dont
,/* complain_on_overflow */
524 bfd_elf_generic_reloc
, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE
, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE
), /* pcrel_offset */
531 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 TRUE
, /* pc_relative */
537 complain_overflow_dont
,/* complain_on_overflow */
538 bfd_elf_generic_reloc
, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE
, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE
), /* pcrel_offset */
545 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 TRUE
, /* pc_relative */
551 complain_overflow_dont
,/* complain_on_overflow */
552 bfd_elf_generic_reloc
, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE
, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE
), /* pcrel_offset */
559 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
563 TRUE
, /* pc_relative */
565 complain_overflow_dont
,/* complain_on_overflow */
566 bfd_elf_generic_reloc
, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE
, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE
), /* pcrel_offset */
573 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
577 FALSE
, /* pc_relative */
579 complain_overflow_dont
,/* complain_on_overflow */
580 bfd_elf_generic_reloc
, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE
, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE
), /* pcrel_offset */
587 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
591 FALSE
, /* pc_relative */
593 complain_overflow_dont
,/* complain_on_overflow */
594 bfd_elf_generic_reloc
, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE
, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE
), /* pcrel_offset */
601 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
605 FALSE
, /* pc_relative */
607 complain_overflow_dont
,/* complain_on_overflow */
608 bfd_elf_generic_reloc
, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE
, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE
), /* pcrel_offset */
615 HOWTO (R_ARM_TARGET1
, /* type */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
619 FALSE
, /* pc_relative */
621 complain_overflow_dont
,/* complain_on_overflow */
622 bfd_elf_generic_reloc
, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE
, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE
), /* pcrel_offset */
629 HOWTO (R_ARM_ROSEGREL32
, /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 FALSE
, /* pc_relative */
635 complain_overflow_dont
,/* complain_on_overflow */
636 bfd_elf_generic_reloc
, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE
, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE
), /* pcrel_offset */
643 HOWTO (R_ARM_V4BX
, /* type */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
647 FALSE
, /* pc_relative */
649 complain_overflow_dont
,/* complain_on_overflow */
650 bfd_elf_generic_reloc
, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE
, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE
), /* pcrel_offset */
657 HOWTO (R_ARM_TARGET2
, /* type */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
661 FALSE
, /* pc_relative */
663 complain_overflow_signed
,/* complain_on_overflow */
664 bfd_elf_generic_reloc
, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE
, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE
), /* pcrel_offset */
671 HOWTO (R_ARM_PREL31
, /* type */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
675 TRUE
, /* pc_relative */
677 complain_overflow_signed
,/* complain_on_overflow */
678 bfd_elf_generic_reloc
, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE
, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE
), /* pcrel_offset */
685 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
689 FALSE
, /* pc_relative */
691 complain_overflow_dont
,/* complain_on_overflow */
692 bfd_elf_generic_reloc
, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE
, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE
), /* pcrel_offset */
699 HOWTO (R_ARM_MOVT_ABS
, /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE
, /* pc_relative */
705 complain_overflow_bitfield
,/* complain_on_overflow */
706 bfd_elf_generic_reloc
, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE
, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE
), /* pcrel_offset */
713 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
717 TRUE
, /* pc_relative */
719 complain_overflow_dont
,/* complain_on_overflow */
720 bfd_elf_generic_reloc
, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE
, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE
), /* pcrel_offset */
727 HOWTO (R_ARM_MOVT_PREL
, /* type */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
731 TRUE
, /* pc_relative */
733 complain_overflow_bitfield
,/* complain_on_overflow */
734 bfd_elf_generic_reloc
, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE
, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE
), /* pcrel_offset */
741 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE
, /* pc_relative */
747 complain_overflow_dont
,/* complain_on_overflow */
748 bfd_elf_generic_reloc
, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE
, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE
), /* pcrel_offset */
755 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
759 FALSE
, /* pc_relative */
761 complain_overflow_bitfield
,/* complain_on_overflow */
762 bfd_elf_generic_reloc
, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE
, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE
), /* pcrel_offset */
769 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
773 TRUE
, /* pc_relative */
775 complain_overflow_dont
,/* complain_on_overflow */
776 bfd_elf_generic_reloc
, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE
, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE
), /* pcrel_offset */
783 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
787 TRUE
, /* pc_relative */
789 complain_overflow_bitfield
,/* complain_on_overflow */
790 bfd_elf_generic_reloc
, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE
, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE
), /* pcrel_offset */
797 HOWTO (R_ARM_THM_JUMP19
, /* type */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
801 TRUE
, /* pc_relative */
803 complain_overflow_signed
,/* complain_on_overflow */
804 bfd_elf_generic_reloc
, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE
, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE
), /* pcrel_offset */
811 HOWTO (R_ARM_THM_JUMP6
, /* type */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
815 TRUE
, /* pc_relative */
817 complain_overflow_unsigned
,/* complain_on_overflow */
818 bfd_elf_generic_reloc
, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE
, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE
), /* pcrel_offset */
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
828 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
832 TRUE
, /* pc_relative */
834 complain_overflow_dont
,/* complain_on_overflow */
835 bfd_elf_generic_reloc
, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE
, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE
), /* pcrel_offset */
842 HOWTO (R_ARM_THM_PC12
, /* type */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
846 TRUE
, /* pc_relative */
848 complain_overflow_dont
,/* complain_on_overflow */
849 bfd_elf_generic_reloc
, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE
, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE
), /* pcrel_offset */
856 HOWTO (R_ARM_ABS32_NOI
, /* type */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
860 FALSE
, /* pc_relative */
862 complain_overflow_dont
,/* complain_on_overflow */
863 bfd_elf_generic_reloc
, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE
, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE
), /* pcrel_offset */
870 HOWTO (R_ARM_REL32_NOI
, /* type */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
874 TRUE
, /* pc_relative */
876 complain_overflow_dont
,/* complain_on_overflow */
877 bfd_elf_generic_reloc
, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE
, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE
), /* pcrel_offset */
884 /* Group relocations. */
886 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
890 TRUE
, /* pc_relative */
892 complain_overflow_dont
,/* complain_on_overflow */
893 bfd_elf_generic_reloc
, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE
, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE
), /* pcrel_offset */
900 HOWTO (R_ARM_ALU_PC_G0
, /* type */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
904 TRUE
, /* pc_relative */
906 complain_overflow_dont
,/* complain_on_overflow */
907 bfd_elf_generic_reloc
, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE
, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE
), /* pcrel_offset */
914 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
918 TRUE
, /* pc_relative */
920 complain_overflow_dont
,/* complain_on_overflow */
921 bfd_elf_generic_reloc
, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE
, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE
), /* pcrel_offset */
928 HOWTO (R_ARM_ALU_PC_G1
, /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 TRUE
, /* pc_relative */
934 complain_overflow_dont
,/* complain_on_overflow */
935 bfd_elf_generic_reloc
, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE
, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE
), /* pcrel_offset */
942 HOWTO (R_ARM_ALU_PC_G2
, /* type */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
946 TRUE
, /* pc_relative */
948 complain_overflow_dont
,/* complain_on_overflow */
949 bfd_elf_generic_reloc
, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE
, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE
), /* pcrel_offset */
956 HOWTO (R_ARM_LDR_PC_G1
, /* type */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
960 TRUE
, /* pc_relative */
962 complain_overflow_dont
,/* complain_on_overflow */
963 bfd_elf_generic_reloc
, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE
, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE
), /* pcrel_offset */
970 HOWTO (R_ARM_LDR_PC_G2
, /* type */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
974 TRUE
, /* pc_relative */
976 complain_overflow_dont
,/* complain_on_overflow */
977 bfd_elf_generic_reloc
, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE
, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE
), /* pcrel_offset */
984 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
988 TRUE
, /* pc_relative */
990 complain_overflow_dont
,/* complain_on_overflow */
991 bfd_elf_generic_reloc
, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE
, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE
), /* pcrel_offset */
998 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 TRUE
, /* pc_relative */
1004 complain_overflow_dont
,/* complain_on_overflow */
1005 bfd_elf_generic_reloc
, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE
, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE
), /* pcrel_offset */
1012 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1016 TRUE
, /* pc_relative */
1018 complain_overflow_dont
,/* complain_on_overflow */
1019 bfd_elf_generic_reloc
, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE
, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE
), /* pcrel_offset */
1026 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 TRUE
, /* pc_relative */
1032 complain_overflow_dont
,/* complain_on_overflow */
1033 bfd_elf_generic_reloc
, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE
, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE
), /* pcrel_offset */
1040 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 TRUE
, /* pc_relative */
1046 complain_overflow_dont
,/* complain_on_overflow */
1047 bfd_elf_generic_reloc
, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE
, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE
), /* pcrel_offset */
1054 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1058 TRUE
, /* pc_relative */
1060 complain_overflow_dont
,/* complain_on_overflow */
1061 bfd_elf_generic_reloc
, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE
, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE
), /* pcrel_offset */
1068 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 TRUE
, /* pc_relative */
1074 complain_overflow_dont
,/* complain_on_overflow */
1075 bfd_elf_generic_reloc
, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE
, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE
), /* pcrel_offset */
1082 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1086 TRUE
, /* pc_relative */
1088 complain_overflow_dont
,/* complain_on_overflow */
1089 bfd_elf_generic_reloc
, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE
, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE
), /* pcrel_offset */
1096 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1100 TRUE
, /* pc_relative */
1102 complain_overflow_dont
,/* complain_on_overflow */
1103 bfd_elf_generic_reloc
, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE
, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE
), /* pcrel_offset */
1110 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1114 TRUE
, /* pc_relative */
1116 complain_overflow_dont
,/* complain_on_overflow */
1117 bfd_elf_generic_reloc
, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE
, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE
), /* pcrel_offset */
1124 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 TRUE
, /* pc_relative */
1130 complain_overflow_dont
,/* complain_on_overflow */
1131 bfd_elf_generic_reloc
, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE
, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE
), /* pcrel_offset */
1138 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 TRUE
, /* pc_relative */
1144 complain_overflow_dont
,/* complain_on_overflow */
1145 bfd_elf_generic_reloc
, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE
, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE
), /* pcrel_offset */
1152 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1156 TRUE
, /* pc_relative */
1158 complain_overflow_dont
,/* complain_on_overflow */
1159 bfd_elf_generic_reloc
, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE
, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE
), /* pcrel_offset */
1166 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1170 TRUE
, /* pc_relative */
1172 complain_overflow_dont
,/* complain_on_overflow */
1173 bfd_elf_generic_reloc
, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE
, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE
), /* pcrel_offset */
1180 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 TRUE
, /* pc_relative */
1186 complain_overflow_dont
,/* complain_on_overflow */
1187 bfd_elf_generic_reloc
, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE
, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE
), /* pcrel_offset */
1194 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 TRUE
, /* pc_relative */
1200 complain_overflow_dont
,/* complain_on_overflow */
1201 bfd_elf_generic_reloc
, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE
, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE
), /* pcrel_offset */
1208 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 TRUE
, /* pc_relative */
1214 complain_overflow_dont
,/* complain_on_overflow */
1215 bfd_elf_generic_reloc
, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE
, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE
), /* pcrel_offset */
1222 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 TRUE
, /* pc_relative */
1228 complain_overflow_dont
,/* complain_on_overflow */
1229 bfd_elf_generic_reloc
, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE
, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE
), /* pcrel_offset */
1236 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1240 TRUE
, /* pc_relative */
1242 complain_overflow_dont
,/* complain_on_overflow */
1243 bfd_elf_generic_reloc
, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE
, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE
), /* pcrel_offset */
1250 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 TRUE
, /* pc_relative */
1256 complain_overflow_dont
,/* complain_on_overflow */
1257 bfd_elf_generic_reloc
, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE
, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE
), /* pcrel_offset */
1264 /* End of group relocations. */
1266 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 FALSE
, /* pc_relative */
1272 complain_overflow_dont
,/* complain_on_overflow */
1273 bfd_elf_generic_reloc
, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE
, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE
), /* pcrel_offset */
1280 HOWTO (R_ARM_MOVT_BREL
, /* type */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 FALSE
, /* pc_relative */
1286 complain_overflow_bitfield
,/* complain_on_overflow */
1287 bfd_elf_generic_reloc
, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE
, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE
), /* pcrel_offset */
1294 HOWTO (R_ARM_MOVW_BREL
, /* type */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 FALSE
, /* pc_relative */
1300 complain_overflow_dont
,/* complain_on_overflow */
1301 bfd_elf_generic_reloc
, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE
, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE
), /* pcrel_offset */
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 FALSE
, /* pc_relative */
1314 complain_overflow_dont
,/* complain_on_overflow */
1315 bfd_elf_generic_reloc
, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE
, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE
), /* pcrel_offset */
1322 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 FALSE
, /* pc_relative */
1328 complain_overflow_bitfield
,/* complain_on_overflow */
1329 bfd_elf_generic_reloc
, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE
, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE
), /* pcrel_offset */
1336 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1340 FALSE
, /* pc_relative */
1342 complain_overflow_dont
,/* complain_on_overflow */
1343 bfd_elf_generic_reloc
, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE
, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE
), /* pcrel_offset */
1350 EMPTY_HOWTO (90), /* Unallocated. */
1355 HOWTO (R_ARM_PLT32_ABS
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_dont
,/* complain_on_overflow */
1362 bfd_elf_generic_reloc
, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_GOT_ABS
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE
, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_GOT_PREL
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 TRUE
, /* pc_relative */
1389 complain_overflow_dont
, /* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE
, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE
), /* pcrel_offset */
1397 HOWTO (R_ARM_GOT_BREL12
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_bitfield
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_GOTOFF12
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_bitfield
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE
, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 FALSE
, /* pc_relative */
1434 complain_overflow_dont
, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE
, /* partial_inplace */
1440 FALSE
), /* pcrel_offset */
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 FALSE
, /* pc_relative */
1449 complain_overflow_dont
, /* complain_on_overflow */
1450 NULL
, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE
, /* partial_inplace */
1455 FALSE
), /* pcrel_offset */
1457 HOWTO (R_ARM_THM_JUMP11
, /* type */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1461 TRUE
, /* pc_relative */
1463 complain_overflow_signed
, /* complain_on_overflow */
1464 bfd_elf_generic_reloc
, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE
, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE
), /* pcrel_offset */
1471 HOWTO (R_ARM_THM_JUMP8
, /* type */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1475 TRUE
, /* pc_relative */
1477 complain_overflow_signed
, /* complain_on_overflow */
1478 bfd_elf_generic_reloc
, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE
, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE
), /* pcrel_offset */
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32
, /* type */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 FALSE
, /* pc_relative */
1492 complain_overflow_bitfield
,/* complain_on_overflow */
1493 NULL
, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE
, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE
), /* pcrel_offset */
1500 HOWTO (R_ARM_TLS_LDM32
, /* type */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1504 FALSE
, /* pc_relative */
1506 complain_overflow_bitfield
,/* complain_on_overflow */
1507 bfd_elf_generic_reloc
, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE
, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE
), /* pcrel_offset */
1514 HOWTO (R_ARM_TLS_LDO32
, /* type */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 FALSE
, /* pc_relative */
1520 complain_overflow_bitfield
,/* complain_on_overflow */
1521 bfd_elf_generic_reloc
, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE
, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE
), /* pcrel_offset */
1528 HOWTO (R_ARM_TLS_IE32
, /* type */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1532 FALSE
, /* pc_relative */
1534 complain_overflow_bitfield
,/* complain_on_overflow */
1535 NULL
, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE
, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE
), /* pcrel_offset */
1542 HOWTO (R_ARM_TLS_LE32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 bfd_elf_generic_reloc
, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDO12
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE
, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LE12
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE
, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 bfd_elf_generic_reloc
, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE
, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1603 249-255 extended, currently unused, relocations: */
1605 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1607 HOWTO (R_ARM_RREL32
, /* type */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1611 FALSE
, /* pc_relative */
1613 complain_overflow_dont
,/* complain_on_overflow */
1614 bfd_elf_generic_reloc
, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE
, /* partial_inplace */
1619 FALSE
), /* pcrel_offset */
1621 HOWTO (R_ARM_RABS32
, /* type */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1625 FALSE
, /* pc_relative */
1627 complain_overflow_dont
,/* complain_on_overflow */
1628 bfd_elf_generic_reloc
, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE
, /* partial_inplace */
1633 FALSE
), /* pcrel_offset */
1635 HOWTO (R_ARM_RPC24
, /* type */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1639 FALSE
, /* pc_relative */
1641 complain_overflow_dont
,/* complain_on_overflow */
1642 bfd_elf_generic_reloc
, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE
, /* partial_inplace */
1647 FALSE
), /* pcrel_offset */
1649 HOWTO (R_ARM_RBASE
, /* type */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1653 FALSE
, /* pc_relative */
1655 complain_overflow_dont
,/* complain_on_overflow */
1656 bfd_elf_generic_reloc
, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE
, /* partial_inplace */
1661 FALSE
) /* pcrel_offset */
1664 static reloc_howto_type
*
1665 elf32_arm_howto_from_type (unsigned int r_type
)
1667 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1668 return &elf32_arm_howto_table_1
[r_type
];
1670 if (r_type
>= R_ARM_RREL32
1671 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1672 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1678 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1679 Elf_Internal_Rela
* elf_reloc
)
1681 unsigned int r_type
;
1683 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1684 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1687 struct elf32_arm_reloc_map
1689 bfd_reloc_code_real_type bfd_reloc_val
;
1690 unsigned char elf_reloc_val
;
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1696 {BFD_RELOC_NONE
, R_ARM_NONE
},
1697 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1698 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1699 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1700 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1701 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1702 {BFD_RELOC_32
, R_ARM_ABS32
},
1703 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1704 {BFD_RELOC_8
, R_ARM_ABS8
},
1705 {BFD_RELOC_16
, R_ARM_ABS16
},
1706 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1707 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1714 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1715 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1716 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1717 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1718 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1719 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1720 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1721 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1722 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1723 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1724 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1725 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1726 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1727 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1728 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1729 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1732 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1733 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1734 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1735 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1736 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1737 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1738 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1739 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1740 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1741 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1742 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1746 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1748 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1749 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1750 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1751 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1752 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1753 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1754 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1755 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1756 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1757 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1758 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1760 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1762 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1763 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1764 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1765 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1766 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1767 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1768 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1769 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1770 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1771 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1772 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1773 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1776 static reloc_howto_type
*
1777 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1778 bfd_reloc_code_real_type code
)
1782 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1783 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1789 static reloc_howto_type
*
1790 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1795 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1796 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1797 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1798 return &elf32_arm_howto_table_1
[i
];
1800 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1801 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1802 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1803 return &elf32_arm_howto_table_2
[i
];
1808 /* Support for core dump NOTE sections. */
1811 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1816 switch (note
->descsz
)
1821 case 148: /* Linux/ARM 32-bit. */
1823 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1826 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1837 size
, note
->descpos
+ offset
);
1841 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1843 switch (note
->descsz
)
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd
)->core_program
1850 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1851 elf_tdata (abfd
)->core_command
1852 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1859 char *command
= elf_tdata (abfd
)->core_command
;
1860 int n
= strlen (command
);
1862 if (0 < n
&& command
[n
- 1] == ' ')
1863 command
[n
- 1] = '\0';
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1877 typedef unsigned long int insn32
;
1878 typedef unsigned short int insn16
;
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1904 /* The name of the dynamic interpreter. This is put in the .interp
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1908 #ifdef FOUR_WORD_PLT
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1914 static const bfd_vma elf32_arm_plt0_entry
[] =
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1922 /* Subsequent entries in a procedure linkage table look like
1924 static const bfd_vma elf32_arm_plt_entry
[] =
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1938 static const bfd_vma elf32_arm_plt0_entry
[] =
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1947 /* Subsequent entries in a procedure linkage table look like
1949 static const bfd_vma elf32_arm_plt_entry
[] =
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
1998 /* The entries in a PLT when using a DLL-based target with multiple
2000 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2013 static const bfd_vma arm_long_branch_stub
[] =
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub
[] =
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub
[] =
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2032 0xbf00bd40, /* pop {r6, pc} */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub
[] =
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub
[] =
2050 0x46c04778, /* bx pc */
2052 0xea000000, /* b (X) */
2055 static const bfd_vma arm_pic_long_branch_stub
[] =
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2062 /* Section name for stubs is the associated section name plus this
2064 #define STUB_SUFFIX ".stub"
2066 enum elf32_arm_stub_type
2069 arm_stub_long_branch
,
2070 arm_thumb_v4t_stub_long_branch
,
2071 arm_thumb_thumb_stub_long_branch
,
2072 arm_thumb_arm_v4t_stub_long_branch
,
2073 arm_thumb_arm_v4t_stub_short_branch
,
2074 arm_stub_pic_long_branch
,
2077 struct elf32_arm_stub_hash_entry
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root
;
2082 /* The stub section. */
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset
;
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value
;
2091 asection
*target_section
;
2093 enum elf32_arm_stub_type stub_type
;
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry
*h
;
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type
;
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2111 /* Used to build a map of a section. This is required for mixed-endian
2114 typedef struct elf32_elf_section_map
2119 elf32_arm_section_map
;
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2127 VFP11_ERRATUM_ARM_VENEER
,
2128 VFP11_ERRATUM_THUMB_VENEER
2130 elf32_vfp11_erratum_type
;
2132 typedef struct elf32_vfp11_erratum_list
2134 struct elf32_vfp11_erratum_list
*next
;
2140 struct elf32_vfp11_erratum_list
*veneer
;
2141 unsigned int vfp_insn
;
2145 struct elf32_vfp11_erratum_list
*branch
;
2149 elf32_vfp11_erratum_type type
;
2151 elf32_vfp11_erratum_list
;
2153 typedef struct _arm_elf_section_data
2155 struct bfd_elf_section_data elf
;
2156 unsigned int mapcount
;
2157 unsigned int mapsize
;
2158 elf32_arm_section_map
*map
;
2159 unsigned int erratumcount
;
2160 elf32_vfp11_erratum_list
*erratumlist
;
2162 _arm_elf_section_data
;
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2167 /* The size of the thread control block. */
2170 struct elf_arm_obj_tdata
2172 struct elf_obj_tdata root
;
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type
;
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning
;
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning
;
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2196 elf32_arm_mkobject (bfd
*abfd
)
2198 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2213 struct elf32_arm_relocs_copied
* next
;
2214 /* A section in dynobj. */
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count
;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count
;
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2227 struct elf_link_hash_entry root
;
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied
* relocs_copied
;
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount
;
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount
;
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset
;
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type
;
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry
*export_glue
;
2255 /* A pointer to the most recently used stub hash entry against this
2257 struct elf32_arm_stub_hash_entry
*stub_cache
;
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2278 /* The main hash table. */
2279 struct elf_link_hash_table root
;
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size
;
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size
;
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size
;
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset
[15];
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2296 bfd_size_type vfp11_erratum_glue_size
;
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd
* bfd_of_glue_owner
;
2301 /* Nonzero to output a BE8 image. */
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix
;
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes
;
2326 /* Nonzero to force PIC branch veneers. */
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size
;
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size
;
2335 /* True if the target system is VxWorks. */
2338 /* True if the target system is Symbian OS. */
2341 /* True if the target uses REL relocations. */
2344 /* Short-cuts to get to dynamic linker sections. */
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2359 bfd_signed_vma refcount
;
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec
;
2366 /* For convenience in allocate_dynrelocs. */
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table
;
2372 /* Linker stub bfd. */
2375 /* Linker call-backs. */
2376 asection
* (*add_stub_section
) (const char *, asection
*);
2377 void (*layout_sections_again
) (void);
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2383 /* This is the section to which stubs in the group will be
2386 /* The stub section. */
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count
;
2393 asection
**input_list
;
2396 /* Create an entry in an ARM ELF linker hash table. */
2398 static struct bfd_hash_entry
*
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2400 struct bfd_hash_table
* table
,
2401 const char * string
)
2403 struct elf32_arm_link_hash_entry
* ret
=
2404 (struct elf32_arm_link_hash_entry
*) entry
;
2406 /* Allocate the structure if it has not already been allocated by a
2409 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2411 return (struct bfd_hash_entry
*) ret
;
2413 /* Call the allocation method of the superclass. */
2414 ret
= ((struct elf32_arm_link_hash_entry
*)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2419 ret
->relocs_copied
= NULL
;
2420 ret
->tls_type
= GOT_UNKNOWN
;
2421 ret
->plt_thumb_refcount
= 0;
2422 ret
->plt_maybe_thumb_refcount
= 0;
2423 ret
->plt_got_offset
= -1;
2424 ret
->export_glue
= NULL
;
2426 ret
->stub_cache
= NULL
;
2429 return (struct bfd_hash_entry
*) ret
;
2432 /* Initialize an entry in the stub hash table. */
2434 static struct bfd_hash_entry
*
2435 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2436 struct bfd_hash_table
*table
,
2439 /* Allocate the structure if it has not already been allocated by a
2443 entry
= bfd_hash_allocate (table
,
2444 sizeof (struct elf32_arm_stub_hash_entry
));
2449 /* Call the allocation method of the superclass. */
2450 entry
= bfd_hash_newfunc (entry
, table
, string
);
2453 struct elf32_arm_stub_hash_entry
*eh
;
2455 /* Initialize the local fields. */
2456 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2457 eh
->stub_sec
= NULL
;
2458 eh
->stub_offset
= 0;
2459 eh
->target_value
= 0;
2460 eh
->target_section
= NULL
;
2461 eh
->stub_type
= arm_stub_none
;
2469 /* Return true if NAME is the name of the relocation section associated
2473 reloc_section_p (struct elf32_arm_link_hash_table
*htab
,
2474 const char *name
, asection
*s
)
2477 return CONST_STRNEQ (name
, ".rel") && strcmp (s
->name
, name
+ 4) == 0;
2479 return CONST_STRNEQ (name
, ".rela") && strcmp (s
->name
, name
+ 5) == 0;
2482 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2483 shortcuts to them in our hash table. */
2486 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2488 struct elf32_arm_link_hash_table
*htab
;
2490 htab
= elf32_arm_hash_table (info
);
2491 /* BPABI objects never have a GOT, or associated sections. */
2492 if (htab
->symbian_p
)
2495 if (! _bfd_elf_create_got_section (dynobj
, info
))
2498 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2499 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2500 if (!htab
->sgot
|| !htab
->sgotplt
)
2503 htab
->srelgot
= bfd_make_section_with_flags (dynobj
,
2504 RELOC_SECTION (htab
, ".got"),
2505 (SEC_ALLOC
| SEC_LOAD
2508 | SEC_LINKER_CREATED
2510 if (htab
->srelgot
== NULL
2511 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
2516 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2517 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2521 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2523 struct elf32_arm_link_hash_table
*htab
;
2525 htab
= elf32_arm_hash_table (info
);
2526 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2529 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2532 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2533 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2534 RELOC_SECTION (htab
, ".plt"));
2535 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2537 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2538 RELOC_SECTION (htab
, ".bss"));
2540 if (htab
->vxworks_p
)
2542 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2547 htab
->plt_header_size
= 0;
2548 htab
->plt_entry_size
2549 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2553 htab
->plt_header_size
2554 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2555 htab
->plt_entry_size
2556 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2563 || (!info
->shared
&& !htab
->srelbss
))
2569 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2572 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2573 struct elf_link_hash_entry
*dir
,
2574 struct elf_link_hash_entry
*ind
)
2576 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2578 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2579 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2581 if (eind
->relocs_copied
!= NULL
)
2583 if (edir
->relocs_copied
!= NULL
)
2585 struct elf32_arm_relocs_copied
**pp
;
2586 struct elf32_arm_relocs_copied
*p
;
2588 /* Add reloc counts against the indirect sym to the direct sym
2589 list. Merge any entries against the same section. */
2590 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2592 struct elf32_arm_relocs_copied
*q
;
2594 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2595 if (q
->section
== p
->section
)
2597 q
->pc_count
+= p
->pc_count
;
2598 q
->count
+= p
->count
;
2605 *pp
= edir
->relocs_copied
;
2608 edir
->relocs_copied
= eind
->relocs_copied
;
2609 eind
->relocs_copied
= NULL
;
2612 if (ind
->root
.type
== bfd_link_hash_indirect
)
2614 /* Copy over PLT info. */
2615 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2616 eind
->plt_thumb_refcount
= 0;
2617 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2618 eind
->plt_maybe_thumb_refcount
= 0;
2620 if (dir
->got
.refcount
<= 0)
2622 edir
->tls_type
= eind
->tls_type
;
2623 eind
->tls_type
= GOT_UNKNOWN
;
2627 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2630 /* Create an ARM elf linker hash table. */
2632 static struct bfd_link_hash_table
*
2633 elf32_arm_link_hash_table_create (bfd
*abfd
)
2635 struct elf32_arm_link_hash_table
*ret
;
2636 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2638 ret
= bfd_malloc (amt
);
2642 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2643 elf32_arm_link_hash_newfunc
,
2644 sizeof (struct elf32_arm_link_hash_entry
)))
2651 ret
->sgotplt
= NULL
;
2652 ret
->srelgot
= NULL
;
2654 ret
->srelplt
= NULL
;
2655 ret
->sdynbss
= NULL
;
2656 ret
->srelbss
= NULL
;
2657 ret
->srelplt2
= NULL
;
2658 ret
->thumb_glue_size
= 0;
2659 ret
->arm_glue_size
= 0;
2660 ret
->bx_glue_size
= 0;
2661 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2662 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2663 ret
->vfp11_erratum_glue_size
= 0;
2664 ret
->num_vfp11_fixes
= 0;
2665 ret
->bfd_of_glue_owner
= NULL
;
2666 ret
->byteswap_code
= 0;
2667 ret
->target1_is_rel
= 0;
2668 ret
->target2_reloc
= R_ARM_NONE
;
2669 #ifdef FOUR_WORD_PLT
2670 ret
->plt_header_size
= 16;
2671 ret
->plt_entry_size
= 16;
2673 ret
->plt_header_size
= 20;
2674 ret
->plt_entry_size
= 12;
2681 ret
->sym_sec
.abfd
= NULL
;
2683 ret
->tls_ldm_got
.refcount
= 0;
2684 ret
->stub_bfd
= NULL
;
2685 ret
->add_stub_section
= NULL
;
2686 ret
->layout_sections_again
= NULL
;
2687 ret
->stub_group
= NULL
;
2690 ret
->input_list
= NULL
;
2692 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2693 sizeof (struct elf32_arm_stub_hash_entry
)))
2699 return &ret
->root
.root
;
2702 /* Free the derived linker hash table. */
2705 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2707 struct elf32_arm_link_hash_table
*ret
2708 = (struct elf32_arm_link_hash_table
*) hash
;
2710 bfd_hash_table_free (&ret
->stub_hash_table
);
2711 _bfd_generic_link_hash_table_free (hash
);
2714 /* Determine if we're dealing with a Thumb only architecture. */
2717 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2719 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2723 if (arch
!= TAG_CPU_ARCH_V7
)
2726 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2727 Tag_CPU_arch_profile
);
2729 return profile
== 'M';
2732 /* Determine if we're dealing with a Thumb-2 object. */
2735 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2737 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2739 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2743 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2747 case arm_thumb_thumb_stub_long_branch
:
2748 case arm_thumb_arm_v4t_stub_long_branch
:
2749 case arm_thumb_arm_v4t_stub_short_branch
:
2760 /* Determine the type of stub needed, if any, for a call. */
2762 static enum elf32_arm_stub_type
2763 arm_type_of_stub (struct bfd_link_info
*info
,
2764 asection
*input_sec
,
2765 const Elf_Internal_Rela
*rel
,
2766 unsigned char st_type
,
2767 struct elf32_arm_link_hash_entry
*hash
,
2768 bfd_vma destination
,
2774 bfd_signed_vma branch_offset
;
2775 unsigned int r_type
;
2776 struct elf32_arm_link_hash_table
* globals
;
2779 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
2781 /* We don't know the actual type of destination in case it is of
2782 type STT_SECTION: give up. */
2783 if (st_type
== STT_SECTION
)
2786 globals
= elf32_arm_hash_table (info
);
2788 thumb_only
= using_thumb_only (globals
);
2790 thumb2
= using_thumb2 (globals
);
2792 /* Determine where the call point is. */
2793 location
= (input_sec
->output_offset
2794 + input_sec
->output_section
->vma
2797 branch_offset
= (bfd_signed_vma
)(destination
- location
);
2799 r_type
= ELF32_R_TYPE (rel
->r_info
);
2801 /* If the call will go through a PLT entry then we do not need
2803 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
2806 if (r_type
== R_ARM_THM_CALL
)
2809 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
2810 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
2812 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
2813 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
2814 || ((st_type
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
2816 if (st_type
== STT_ARM_TFUNC
)
2818 /* Thumb to thumb. */
2821 stub_type
= (info
->shared
| globals
->pic_veneer
)
2822 ? ((globals
->use_blx
)
2823 ? arm_stub_pic_long_branch
2825 : (globals
->use_blx
)
2826 ? arm_stub_long_branch
2831 stub_type
= (info
->shared
| globals
->pic_veneer
)
2833 : (globals
->use_blx
)
2834 ? arm_thumb_thumb_stub_long_branch
2842 && sym_sec
->owner
!= NULL
2843 && !INTERWORK_FLAG (sym_sec
->owner
))
2845 (*_bfd_error_handler
)
2846 (_("%B(%s): warning: interworking not enabled.\n"
2847 " first occurrence: %B: Thumb call to ARM"),
2848 sym_sec
->owner
, input_bfd
, name
);
2851 stub_type
= (info
->shared
| globals
->pic_veneer
)
2852 ? ((globals
->use_blx
)
2853 ? arm_stub_pic_long_branch
2855 : (globals
->use_blx
)
2856 ? arm_stub_long_branch
2857 : arm_thumb_arm_v4t_stub_long_branch
;
2859 /* Handle v4t short branches. */
2860 if ((stub_type
== arm_thumb_arm_v4t_stub_long_branch
)
2861 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
2862 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
2863 stub_type
= arm_thumb_arm_v4t_stub_short_branch
;
2867 else if (r_type
== R_ARM_CALL
)
2869 if (st_type
== STT_ARM_TFUNC
)
2874 && sym_sec
->owner
!= NULL
2875 && !INTERWORK_FLAG (sym_sec
->owner
))
2877 (*_bfd_error_handler
)
2878 (_("%B(%s): warning: interworking not enabled.\n"
2879 " first occurrence: %B: Thumb call to ARM"),
2880 sym_sec
->owner
, input_bfd
, name
);
2883 /* We have an extra 2-bytes reach because of
2884 the mode change (bit 24 (H) of BLX encoding). */
2885 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
2886 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
2887 || !globals
->use_blx
)
2889 stub_type
= (info
->shared
| globals
->pic_veneer
)
2890 ? arm_stub_pic_long_branch
2891 : (globals
->use_blx
)
2892 ? arm_stub_long_branch
2893 : arm_thumb_v4t_stub_long_branch
;
2899 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
2900 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
2902 stub_type
= (info
->shared
| globals
->pic_veneer
)
2903 ? arm_stub_pic_long_branch
2904 : arm_stub_long_branch
;
2912 /* Build a name for an entry in the stub hash table. */
2915 elf32_arm_stub_name (const asection
*input_section
,
2916 const asection
*sym_sec
,
2917 const struct elf32_arm_link_hash_entry
*hash
,
2918 const Elf_Internal_Rela
*rel
)
2925 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
2926 stub_name
= bfd_malloc (len
);
2927 if (stub_name
!= NULL
)
2928 sprintf (stub_name
, "%08x_%s+%x",
2929 input_section
->id
& 0xffffffff,
2930 hash
->root
.root
.root
.string
,
2931 (int) rel
->r_addend
& 0xffffffff);
2935 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2936 stub_name
= bfd_malloc (len
);
2937 if (stub_name
!= NULL
)
2938 sprintf (stub_name
, "%08x_%x:%x+%x",
2939 input_section
->id
& 0xffffffff,
2940 sym_sec
->id
& 0xffffffff,
2941 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
2942 (int) rel
->r_addend
& 0xffffffff);
2948 /* Look up an entry in the stub hash. Stub entries are cached because
2949 creating the stub name takes a bit of time. */
2951 static struct elf32_arm_stub_hash_entry
*
2952 elf32_arm_get_stub_entry (const asection
*input_section
,
2953 const asection
*sym_sec
,
2954 struct elf_link_hash_entry
*hash
,
2955 const Elf_Internal_Rela
*rel
,
2956 struct elf32_arm_link_hash_table
*htab
)
2958 struct elf32_arm_stub_hash_entry
*stub_entry
;
2959 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
2960 const asection
*id_sec
;
2962 if ((input_section
->flags
& SEC_CODE
) == 0)
2965 /* If this input section is part of a group of sections sharing one
2966 stub section, then use the id of the first section in the group.
2967 Stub names need to include a section id, as there may well be
2968 more than one stub used to reach say, printf, and we need to
2969 distinguish between them. */
2970 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2972 if (h
!= NULL
&& h
->stub_cache
!= NULL
2973 && h
->stub_cache
->h
== h
2974 && h
->stub_cache
->id_sec
== id_sec
)
2976 stub_entry
= h
->stub_cache
;
2982 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
2983 if (stub_name
== NULL
)
2986 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
2987 stub_name
, FALSE
, FALSE
);
2989 h
->stub_cache
= stub_entry
;
2997 /* Add a new stub entry to the stub hash. Not all fields of the new
2998 stub entry are initialised. */
3000 static struct elf32_arm_stub_hash_entry
*
3001 elf32_arm_add_stub (const char *stub_name
,
3003 struct elf32_arm_link_hash_table
*htab
)
3007 struct elf32_arm_stub_hash_entry
*stub_entry
;
3009 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3010 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3011 if (stub_sec
== NULL
)
3013 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3014 if (stub_sec
== NULL
)
3020 namelen
= strlen (link_sec
->name
);
3021 len
= namelen
+ sizeof (STUB_SUFFIX
);
3022 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3026 memcpy (s_name
, link_sec
->name
, namelen
);
3027 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3028 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3029 if (stub_sec
== NULL
)
3031 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3033 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3036 /* Enter this entry into the linker stub hash table. */
3037 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3039 if (stub_entry
== NULL
)
3041 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3047 stub_entry
->stub_sec
= stub_sec
;
3048 stub_entry
->stub_offset
= 0;
3049 stub_entry
->id_sec
= link_sec
;
3054 /* Store an Arm insn into an output section not processed by
3055 elf32_arm_write_section. */
3058 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3059 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3061 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3062 bfd_putl32 (val
, ptr
);
3064 bfd_putb32 (val
, ptr
);
3067 /* Store a 16-bit Thumb insn into an output section not processed by
3068 elf32_arm_write_section. */
3071 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3072 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3074 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3075 bfd_putl16 (val
, ptr
);
3077 bfd_putb16 (val
, ptr
);
3081 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3084 struct elf32_arm_stub_hash_entry
*stub_entry
;
3085 struct bfd_link_info
*info
;
3086 struct elf32_arm_link_hash_table
*htab
;
3094 const bfd_vma
*template;
3096 struct elf32_arm_link_hash_table
* globals
;
3098 /* Massage our args to the form they really have. */
3099 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3100 info
= (struct bfd_link_info
*) in_arg
;
3102 globals
= elf32_arm_hash_table (info
);
3104 htab
= elf32_arm_hash_table (info
);
3105 stub_sec
= stub_entry
->stub_sec
;
3107 /* Make a note of the offset within the stubs for this entry. */
3108 stub_entry
->stub_offset
= stub_sec
->size
;
3109 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3111 stub_bfd
= stub_sec
->owner
;
3113 /* This is the address of the start of the stub. */
3114 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3115 + stub_entry
->stub_offset
;
3117 /* This is the address of the stub destination. */
3118 sym_value
= (stub_entry
->target_value
3119 + stub_entry
->target_section
->output_offset
3120 + stub_entry
->target_section
->output_section
->vma
);
3122 switch (stub_entry
->stub_type
)
3124 case arm_stub_long_branch
:
3125 template = arm_long_branch_stub
;
3126 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3128 case arm_thumb_v4t_stub_long_branch
:
3129 template = arm_thumb_v4t_long_branch_stub
;
3130 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3132 case arm_thumb_thumb_stub_long_branch
:
3133 template = arm_thumb_thumb_long_branch_stub
;
3134 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3136 case arm_thumb_arm_v4t_stub_long_branch
:
3137 template = arm_thumb_arm_v4t_long_branch_stub
;
3138 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3140 case arm_thumb_arm_v4t_stub_short_branch
:
3141 template = arm_thumb_arm_v4t_short_branch_stub
;
3142 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3144 case arm_stub_pic_long_branch
:
3145 template = arm_pic_long_branch_stub
;
3146 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3154 for (i
= 0; i
< (template_size
/ 4); i
++)
3156 /* A 0 pattern is a placeholder, every other pattern is an
3158 if (template[i
] != 0)
3159 put_arm_insn (globals
, stub_bfd
, template[i
], loc
+ size
);
3161 bfd_put_32 (stub_bfd
, template[i
], loc
+ size
);
3165 stub_sec
->size
+= size
;
3167 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3168 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3171 switch (stub_entry
->stub_type
)
3173 case arm_stub_long_branch
:
3174 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3175 stub_bfd
, stub_sec
, stub_sec
->contents
,
3176 stub_entry
->stub_offset
+ 4, sym_value
, 0);
3178 case arm_thumb_v4t_stub_long_branch
:
3179 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3180 stub_bfd
, stub_sec
, stub_sec
->contents
,
3181 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3183 case arm_thumb_thumb_stub_long_branch
:
3184 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3185 stub_bfd
, stub_sec
, stub_sec
->contents
,
3186 stub_entry
->stub_offset
+ 12, sym_value
, 0);
3188 case arm_thumb_arm_v4t_stub_long_branch
:
3189 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32
),
3190 stub_bfd
, stub_sec
, stub_sec
->contents
,
3191 stub_entry
->stub_offset
+ 16, sym_value
, 0);
3193 case arm_thumb_arm_v4t_stub_short_branch
:
3195 long int rel_offset
;
3196 static const insn32 t2a3_b_insn
= 0xea000000;
3198 rel_offset
= sym_value
- (stub_addr
+ 8 + 4);
3200 put_arm_insn (globals
, stub_bfd
,
3201 (bfd_vma
) t2a3_b_insn
| ((rel_offset
>> 2) & 0x00FFFFFF),
3206 case arm_stub_pic_long_branch
:
3207 /* We want the value relative to the address 8 bytes from the
3208 start of the stub. */
3209 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32
),
3210 stub_bfd
, stub_sec
, stub_sec
->contents
,
3211 stub_entry
->stub_offset
+ 8, sym_value
, 0);
3220 /* As above, but don't actually build the stub. Just bump offset so
3221 we know stub section sizes. */
3224 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3227 struct elf32_arm_stub_hash_entry
*stub_entry
;
3228 struct elf32_arm_link_hash_table
*htab
;
3229 const bfd_vma
*template;
3234 /* Massage our args to the form they really have. */
3235 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3236 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3238 switch (stub_entry
->stub_type
)
3240 case arm_stub_long_branch
:
3241 template = arm_long_branch_stub
;
3242 template_size
= (sizeof (arm_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3244 case arm_thumb_v4t_stub_long_branch
:
3245 template = arm_thumb_v4t_long_branch_stub
;
3246 template_size
= (sizeof (arm_thumb_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3248 case arm_thumb_thumb_stub_long_branch
:
3249 template = arm_thumb_thumb_long_branch_stub
;
3250 template_size
= (sizeof (arm_thumb_thumb_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3252 case arm_thumb_arm_v4t_stub_long_branch
:
3253 template = arm_thumb_arm_v4t_long_branch_stub
;
3254 template_size
= (sizeof (arm_thumb_arm_v4t_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3256 case arm_thumb_arm_v4t_stub_short_branch
:
3257 template = arm_thumb_arm_v4t_short_branch_stub
;
3258 template_size
= (sizeof(arm_thumb_arm_v4t_short_branch_stub
) / sizeof (bfd_vma
)) * 4;
3260 case arm_stub_pic_long_branch
:
3261 template = arm_pic_long_branch_stub
;
3262 template_size
= (sizeof (arm_pic_long_branch_stub
) / sizeof (bfd_vma
)) * 4;
3271 for (i
= 0; i
< (template_size
/ 4); i
++)
3273 size
= (size
+ 7) & ~7;
3274 stub_entry
->stub_sec
->size
+= size
;
3278 /* External entry points for sizing and building linker stubs. */
3280 /* Set up various things so that we can make a list of input sections
3281 for each output section included in the link. Returns -1 on error,
3282 0 when no stubs will be needed, and 1 on success. */
3285 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3286 struct bfd_link_info
*info
)
3289 unsigned int bfd_count
;
3290 int top_id
, top_index
;
3292 asection
**input_list
, **list
;
3294 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3296 if (! is_elf_hash_table (htab
))
3299 /* Count the number of input BFDs and find the top input section id. */
3300 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3302 input_bfd
= input_bfd
->link_next
)
3305 for (section
= input_bfd
->sections
;
3307 section
= section
->next
)
3309 if (top_id
< section
->id
)
3310 top_id
= section
->id
;
3313 htab
->bfd_count
= bfd_count
;
3315 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3316 htab
->stub_group
= bfd_zmalloc (amt
);
3317 if (htab
->stub_group
== NULL
)
3320 /* We can't use output_bfd->section_count here to find the top output
3321 section index as some sections may have been removed, and
3322 _bfd_strip_section_from_output doesn't renumber the indices. */
3323 for (section
= output_bfd
->sections
, top_index
= 0;
3325 section
= section
->next
)
3327 if (top_index
< section
->index
)
3328 top_index
= section
->index
;
3331 htab
->top_index
= top_index
;
3332 amt
= sizeof (asection
*) * (top_index
+ 1);
3333 input_list
= bfd_malloc (amt
);
3334 htab
->input_list
= input_list
;
3335 if (input_list
== NULL
)
3338 /* For sections we aren't interested in, mark their entries with a
3339 value we can check later. */
3340 list
= input_list
+ top_index
;
3342 *list
= bfd_abs_section_ptr
;
3343 while (list
-- != input_list
);
3345 for (section
= output_bfd
->sections
;
3347 section
= section
->next
)
3349 if ((section
->flags
& SEC_CODE
) != 0)
3350 input_list
[section
->index
] = NULL
;
3356 /* The linker repeatedly calls this function for each input section,
3357 in the order that input sections are linked into output sections.
3358 Build lists of input sections to determine groupings between which
3359 we may insert linker stubs. */
3362 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3365 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3367 if (isec
->output_section
->index
<= htab
->top_index
)
3369 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3371 if (*list
!= bfd_abs_section_ptr
)
3373 /* Steal the link_sec pointer for our list. */
3374 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3375 /* This happens to make the list in reverse order,
3376 which is what we want. */
3377 PREV_SEC (isec
) = *list
;
3383 /* See whether we can group stub sections together. Grouping stub
3384 sections may result in fewer stubs. More importantly, we need to
3385 put all .init* and .fini* stubs at the beginning of the .init or
3386 .fini output sections respectively, because glibc splits the
3387 _init and _fini functions into multiple parts. Putting a stub in
3388 the middle of a function is not a good idea. */
3391 group_sections (struct elf32_arm_link_hash_table
*htab
,
3392 bfd_size_type stub_group_size
,
3393 bfd_boolean stubs_always_before_branch
)
3395 asection
**list
= htab
->input_list
+ htab
->top_index
;
3399 asection
*tail
= *list
;
3401 if (tail
== bfd_abs_section_ptr
)
3404 while (tail
!= NULL
)
3408 bfd_size_type total
;
3412 while ((prev
= PREV_SEC (curr
)) != NULL
3413 && ((total
+= curr
->output_offset
- prev
->output_offset
)
3417 /* OK, the size from the start of CURR to the end is less
3418 than stub_group_size and thus can be handled by one stub
3419 section. (Or the tail section is itself larger than
3420 stub_group_size, in which case we may be toast.)
3421 We should really be keeping track of the total size of
3422 stubs added here, as stubs contribute to the final output
3426 prev
= PREV_SEC (tail
);
3427 /* Set up this stub group. */
3428 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3430 while (tail
!= curr
&& (tail
= prev
) != NULL
);
3432 /* But wait, there's more! Input sections up to stub_group_size
3433 bytes before the stub section can be handled by it too. */
3434 if (!stubs_always_before_branch
)
3438 && ((total
+= tail
->output_offset
- prev
->output_offset
)
3442 prev
= PREV_SEC (tail
);
3443 htab
->stub_group
[tail
->id
].link_sec
= curr
;
3449 while (list
-- != htab
->input_list
);
3451 free (htab
->input_list
);
3455 /* Determine and set the size of the stub section for a final link.
3457 The basic idea here is to examine all the relocations looking for
3458 PC-relative calls to a target that is unreachable with a "bl"
3462 elf32_arm_size_stubs (bfd
*output_bfd
,
3464 struct bfd_link_info
*info
,
3465 bfd_signed_vma group_size
,
3466 asection
* (*add_stub_section
) (const char *, asection
*),
3467 void (*layout_sections_again
) (void))
3469 bfd_size_type stub_group_size
;
3470 bfd_boolean stubs_always_before_branch
;
3471 bfd_boolean stub_changed
= 0;
3472 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3474 /* Propagate mach to stub bfd, because it may not have been
3475 finalized when we created stub_bfd. */
3476 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
3477 bfd_get_mach (output_bfd
));
3479 /* Stash our params away. */
3480 htab
->stub_bfd
= stub_bfd
;
3481 htab
->add_stub_section
= add_stub_section
;
3482 htab
->layout_sections_again
= layout_sections_again
;
3483 stubs_always_before_branch
= group_size
< 0;
3485 stub_group_size
= -group_size
;
3487 stub_group_size
= group_size
;
3489 if (stub_group_size
== 1)
3491 /* Default values. */
3492 /* Thumb branch range is +-4MB has to be used as the default
3493 maximum size (a given section can contain both ARM and Thumb
3494 code, so the worst case has to be taken into account).
3496 This value is 24K less than that, which allows for 2025
3497 12-byte stubs. If we exceed that, then we will fail to link.
3498 The user will have to relink with an explicit group size
3500 stub_group_size
= 4170000;
3503 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
3508 unsigned int bfd_indx
;
3511 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
3513 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
3515 Elf_Internal_Shdr
*symtab_hdr
;
3517 Elf_Internal_Sym
*local_syms
= NULL
;
3519 /* We'll need the symbol table in a second. */
3520 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3521 if (symtab_hdr
->sh_info
== 0)
3524 /* Walk over each section attached to the input bfd. */
3525 for (section
= input_bfd
->sections
;
3527 section
= section
->next
)
3529 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
3531 /* If there aren't any relocs, then there's nothing more
3533 if ((section
->flags
& SEC_RELOC
) == 0
3534 || section
->reloc_count
== 0
3535 || (section
->flags
& SEC_CODE
) == 0)
3538 /* If this section is a link-once section that will be
3539 discarded, then don't create any stubs. */
3540 if (section
->output_section
== NULL
3541 || section
->output_section
->owner
!= output_bfd
)
3544 /* Get the relocs. */
3546 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
3547 NULL
, info
->keep_memory
);
3548 if (internal_relocs
== NULL
)
3549 goto error_ret_free_local
;
3551 /* Now examine each relocation. */
3552 irela
= internal_relocs
;
3553 irelaend
= irela
+ section
->reloc_count
;
3554 for (; irela
< irelaend
; irela
++)
3556 unsigned int r_type
, r_indx
;
3557 enum elf32_arm_stub_type stub_type
;
3558 struct elf32_arm_stub_hash_entry
*stub_entry
;
3561 bfd_vma destination
;
3562 struct elf32_arm_link_hash_entry
*hash
;
3563 const char *sym_name
;
3565 const asection
*id_sec
;
3566 unsigned char st_type
;
3568 r_type
= ELF32_R_TYPE (irela
->r_info
);
3569 r_indx
= ELF32_R_SYM (irela
->r_info
);
3571 if (r_type
>= (unsigned int) R_ARM_max
)
3573 bfd_set_error (bfd_error_bad_value
);
3574 error_ret_free_internal
:
3575 if (elf_section_data (section
)->relocs
== NULL
)
3576 free (internal_relocs
);
3577 goto error_ret_free_local
;
3580 /* Only look for stubs on call instructions. */
3581 if ((r_type
!= (unsigned int) R_ARM_CALL
)
3582 && (r_type
!= (unsigned int) R_ARM_THM_CALL
))
3585 /* Now determine the call target, its name, value,
3592 if (r_indx
< symtab_hdr
->sh_info
)
3594 /* It's a local symbol. */
3595 Elf_Internal_Sym
*sym
;
3596 Elf_Internal_Shdr
*hdr
;
3598 if (local_syms
== NULL
)
3601 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
3602 if (local_syms
== NULL
)
3604 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
3605 symtab_hdr
->sh_info
, 0,
3607 if (local_syms
== NULL
)
3608 goto error_ret_free_internal
;
3611 sym
= local_syms
+ r_indx
;
3612 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
3613 sym_sec
= hdr
->bfd_section
;
3614 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
3615 sym_value
= sym
->st_value
;
3616 destination
= (sym_value
+ irela
->r_addend
3617 + sym_sec
->output_offset
3618 + sym_sec
->output_section
->vma
);
3619 st_type
= ELF_ST_TYPE (sym
->st_info
);
3621 = bfd_elf_string_from_elf_section (input_bfd
,
3622 symtab_hdr
->sh_link
,
3627 /* It's an external symbol. */
3630 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3631 hash
= ((struct elf32_arm_link_hash_entry
*)
3632 elf_sym_hashes (input_bfd
)[e_indx
]);
3634 while (hash
->root
.root
.type
== bfd_link_hash_indirect
3635 || hash
->root
.root
.type
== bfd_link_hash_warning
)
3636 hash
= ((struct elf32_arm_link_hash_entry
*)
3637 hash
->root
.root
.u
.i
.link
);
3639 if (hash
->root
.root
.type
== bfd_link_hash_defined
3640 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
3642 sym_sec
= hash
->root
.root
.u
.def
.section
;
3643 sym_value
= hash
->root
.root
.u
.def
.value
;
3644 if (sym_sec
->output_section
!= NULL
)
3645 destination
= (sym_value
+ irela
->r_addend
3646 + sym_sec
->output_offset
3647 + sym_sec
->output_section
->vma
);
3649 else if (hash
->root
.root
.type
== bfd_link_hash_undefweak
3650 || hash
->root
.root
.type
== bfd_link_hash_undefined
)
3651 /* For a shared library, these will need a PLT stub,
3652 which is treated separately.
3653 For absolute code, they cannot be handled. */
3657 bfd_set_error (bfd_error_bad_value
);
3658 goto error_ret_free_internal
;
3660 st_type
= ELF_ST_TYPE (hash
->root
.type
);
3661 sym_name
= hash
->root
.root
.root
.string
;
3664 /* Determine what (if any) linker stub is needed. */
3665 stub_type
= arm_type_of_stub (info
, section
, irela
, st_type
,
3666 hash
, destination
, sym_sec
,
3667 input_bfd
, sym_name
);
3668 if (stub_type
== arm_stub_none
)
3671 /* Support for grouping stub sections. */
3672 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3674 /* Get the name of this stub. */
3675 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
, irela
);
3677 goto error_ret_free_internal
;
3679 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3682 if (stub_entry
!= NULL
)
3684 /* The proper stub has already been created. */
3689 stub_entry
= elf32_arm_add_stub (stub_name
, section
, htab
);
3690 if (stub_entry
== NULL
)
3693 goto error_ret_free_internal
;
3696 stub_entry
->target_value
= sym_value
;
3697 stub_entry
->target_section
= sym_sec
;
3698 stub_entry
->stub_type
= stub_type
;
3699 stub_entry
->h
= hash
;
3700 stub_entry
->st_type
= st_type
;
3702 if (sym_name
== NULL
)
3703 sym_name
= "unnamed";
3704 stub_entry
->output_name
3705 = bfd_alloc (htab
->stub_bfd
,
3706 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
3707 + strlen (sym_name
));
3708 if (stub_entry
->output_name
== NULL
)
3711 goto error_ret_free_internal
;
3714 /* For historical reasons, use the existing names for
3715 ARM-to-Thumb and Thumb-to-ARM stubs. */
3716 if (r_type
== (unsigned int) R_ARM_THM_CALL
3717 && st_type
!= STT_ARM_TFUNC
)
3718 sprintf (stub_entry
->output_name
, THUMB2ARM_GLUE_ENTRY_NAME
,
3720 else if (r_type
== (unsigned int) R_ARM_CALL
3721 && st_type
== STT_ARM_TFUNC
)
3722 sprintf (stub_entry
->output_name
, ARM2THUMB_GLUE_ENTRY_NAME
,
3725 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
3728 stub_changed
= TRUE
;
3731 /* We're done with the internal relocs, free them. */
3732 if (elf_section_data (section
)->relocs
== NULL
)
3733 free (internal_relocs
);
3740 /* OK, we've added some stubs. Find out the new size of the
3742 for (stub_sec
= htab
->stub_bfd
->sections
;
3744 stub_sec
= stub_sec
->next
)
3747 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
3749 /* Ask the linker to do its stuff. */
3750 (*htab
->layout_sections_again
) ();
3751 stub_changed
= FALSE
;
3756 error_ret_free_local
:
3760 /* Build all the stubs associated with the current output file. The
3761 stubs are kept in a hash table attached to the main linker hash
3762 table. We also set up the .plt entries for statically linked PIC
3763 functions here. This function is called via arm_elf_finish in the
3767 elf32_arm_build_stubs (struct bfd_link_info
*info
)
3770 struct bfd_hash_table
*table
;
3771 struct elf32_arm_link_hash_table
*htab
;
3773 htab
= elf32_arm_hash_table (info
);
3775 for (stub_sec
= htab
->stub_bfd
->sections
;
3777 stub_sec
= stub_sec
->next
)
3781 /* Ignore non-stub sections. */
3782 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
3785 /* Allocate memory to hold the linker stubs. */
3786 size
= stub_sec
->size
;
3787 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3788 if (stub_sec
->contents
== NULL
&& size
!= 0)
3793 /* Build the stubs as directed by the stub hash table. */
3794 table
= &htab
->stub_hash_table
;
3795 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
3800 /* Locate the Thumb encoded calling stub for NAME. */
3802 static struct elf_link_hash_entry
*
3803 find_thumb_glue (struct bfd_link_info
*link_info
,
3805 char **error_message
)
3808 struct elf_link_hash_entry
*hash
;
3809 struct elf32_arm_link_hash_table
*hash_table
;
3811 /* We need a pointer to the armelf specific hash table. */
3812 hash_table
= elf32_arm_hash_table (link_info
);
3814 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3815 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
3817 BFD_ASSERT (tmp_name
);
3819 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
3821 hash
= elf_link_hash_lookup
3822 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3825 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
3826 tmp_name
, name
) == -1)
3827 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3834 /* Locate the ARM encoded calling stub for NAME. */
3836 static struct elf_link_hash_entry
*
3837 find_arm_glue (struct bfd_link_info
*link_info
,
3839 char **error_message
)
3842 struct elf_link_hash_entry
*myh
;
3843 struct elf32_arm_link_hash_table
*hash_table
;
3845 /* We need a pointer to the elfarm specific hash table. */
3846 hash_table
= elf32_arm_hash_table (link_info
);
3848 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
3849 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
3851 BFD_ASSERT (tmp_name
);
3853 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
3855 myh
= elf_link_hash_lookup
3856 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
3859 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
3860 tmp_name
, name
) == -1)
3861 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
3868 /* ARM->Thumb glue (static images):
3872 ldr r12, __func_addr
3875 .word func @ behave as if you saw a ARM_32 reloc.
3882 .word func @ behave as if you saw a ARM_32 reloc.
3884 (relocatable images)
3887 ldr r12, __func_offset
3893 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3894 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
3895 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
3896 static const insn32 a2t3_func_addr_insn
= 0x00000001;
3898 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3899 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
3900 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
3902 #define ARM2THUMB_PIC_GLUE_SIZE 16
3903 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
3904 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
3905 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
3907 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3911 __func_from_thumb: __func_from_thumb:
3913 nop ldr r6, __func_addr
3923 #define THUMB2ARM_GLUE_SIZE 8
3924 static const insn16 t2a1_bx_pc_insn
= 0x4778;
3925 static const insn16 t2a2_noop_insn
= 0x46c0;
3926 static const insn32 t2a3_b_insn
= 0xea000000;
3928 #define VFP11_ERRATUM_VENEER_SIZE 8
3930 #define ARM_BX_VENEER_SIZE 12
3931 static const insn32 armbx1_tst_insn
= 0xe3100001;
3932 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
3933 static const insn32 armbx3_bx_insn
= 0xe12fff10;
3935 #ifndef ELFARM_NABI_C_INCLUDED
3937 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
3940 bfd_byte
* contents
;
3945 BFD_ASSERT (abfd
!= NULL
);
3947 s
= bfd_get_section_by_name (abfd
, name
);
3948 BFD_ASSERT (s
!= NULL
);
3950 contents
= bfd_alloc (abfd
, size
);
3952 BFD_ASSERT (s
->size
== size
);
3953 s
->contents
= contents
;
3957 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
3959 struct elf32_arm_link_hash_table
* globals
;
3961 globals
= elf32_arm_hash_table (info
);
3962 BFD_ASSERT (globals
!= NULL
);
3964 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3965 globals
->arm_glue_size
,
3966 ARM2THUMB_GLUE_SECTION_NAME
);
3968 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3969 globals
->thumb_glue_size
,
3970 THUMB2ARM_GLUE_SECTION_NAME
);
3972 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3973 globals
->vfp11_erratum_glue_size
,
3974 VFP11_ERRATUM_VENEER_SECTION_NAME
);
3976 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
3977 globals
->bx_glue_size
,
3978 ARM_BX_GLUE_SECTION_NAME
);
3983 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3984 returns the symbol identifying the stub. */
3986 static struct elf_link_hash_entry
*
3987 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
3988 struct elf_link_hash_entry
* h
)
3990 const char * name
= h
->root
.root
.string
;
3993 struct elf_link_hash_entry
* myh
;
3994 struct bfd_link_hash_entry
* bh
;
3995 struct elf32_arm_link_hash_table
* globals
;
3999 globals
= elf32_arm_hash_table (link_info
);
4001 BFD_ASSERT (globals
!= NULL
);
4002 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4004 s
= bfd_get_section_by_name
4005 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
4007 BFD_ASSERT (s
!= NULL
);
4009 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4011 BFD_ASSERT (tmp_name
);
4013 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4015 myh
= elf_link_hash_lookup
4016 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4020 /* We've already seen this guy. */
4025 /* The only trick here is using hash_table->arm_glue_size as the value.
4026 Even though the section isn't allocated yet, this is where we will be
4027 putting it. The +1 on the value marks that the stub has not been
4028 output yet - not that it is a Thumb function. */
4030 val
= globals
->arm_glue_size
+ 1;
4031 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4032 tmp_name
, BSF_GLOBAL
, s
, val
,
4033 NULL
, TRUE
, FALSE
, &bh
);
4035 myh
= (struct elf_link_hash_entry
*) bh
;
4036 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4037 myh
->forced_local
= 1;
4041 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
4042 || globals
->pic_veneer
)
4043 size
= ARM2THUMB_PIC_GLUE_SIZE
;
4044 else if (globals
->use_blx
)
4045 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
4047 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
4050 globals
->arm_glue_size
+= size
;
4056 record_thumb_to_arm_glue (struct bfd_link_info
*link_info
,
4057 struct elf_link_hash_entry
*h
)
4059 const char *name
= h
->root
.root
.string
;
4062 struct elf_link_hash_entry
*myh
;
4063 struct bfd_link_hash_entry
*bh
;
4064 struct elf32_arm_link_hash_table
*hash_table
;
4067 hash_table
= elf32_arm_hash_table (link_info
);
4069 BFD_ASSERT (hash_table
!= NULL
);
4070 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4072 s
= bfd_get_section_by_name
4073 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
4075 BFD_ASSERT (s
!= NULL
);
4077 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4078 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4080 BFD_ASSERT (tmp_name
);
4082 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4084 myh
= elf_link_hash_lookup
4085 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4089 /* We've already seen this guy. */
4094 /* The only trick here is using hash_table->thumb_glue_size as the value.
4095 Even though the section isn't allocated yet, this is where we will be
4096 putting it. The +1 on the value marks that the stub has not been
4097 output yet - not that it is a Thumb function. */
4099 val
= hash_table
->thumb_glue_size
+ 1;
4100 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4101 tmp_name
, BSF_GLOBAL
, s
, val
,
4102 NULL
, TRUE
, FALSE
, &bh
);
4104 /* If we mark it 'Thumb', the disassembler will do a better job. */
4105 myh
= (struct elf_link_hash_entry
*) bh
;
4106 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
4107 myh
->forced_local
= 1;
4111 #define CHANGE_TO_ARM "__%s_change_to_arm"
4112 #define BACK_FROM_ARM "__%s_back_from_arm"
4114 /* Allocate another symbol to mark where we switch to Arm mode. */
4115 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4116 + strlen (CHANGE_TO_ARM
) + 1);
4118 BFD_ASSERT (tmp_name
);
4120 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
4123 val
= hash_table
->thumb_glue_size
+ 4,
4124 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4125 tmp_name
, BSF_LOCAL
, s
, val
,
4126 NULL
, TRUE
, FALSE
, &bh
);
4130 s
->size
+= THUMB2ARM_GLUE_SIZE
;
4131 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
4135 /* Allocate space for ARMv4 BX veneers. */
4138 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
4141 struct elf32_arm_link_hash_table
*globals
;
4143 struct elf_link_hash_entry
*myh
;
4144 struct bfd_link_hash_entry
*bh
;
4147 /* BX PC does not need a veneer. */
4151 globals
= elf32_arm_hash_table (link_info
);
4153 BFD_ASSERT (globals
!= NULL
);
4154 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4156 /* Check if this veneer has already been allocated. */
4157 if (globals
->bx_glue_offset
[reg
])
4160 s
= bfd_get_section_by_name
4161 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
4163 BFD_ASSERT (s
!= NULL
);
4165 /* Add symbol for veneer. */
4166 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
4168 BFD_ASSERT (tmp_name
);
4170 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
4172 myh
= elf_link_hash_lookup
4173 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4175 BFD_ASSERT (myh
== NULL
);
4178 val
= globals
->bx_glue_size
;
4179 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4180 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4181 NULL
, TRUE
, FALSE
, &bh
);
4183 myh
= (struct elf_link_hash_entry
*) bh
;
4184 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4185 myh
->forced_local
= 1;
4187 s
->size
+= ARM_BX_VENEER_SIZE
;
4188 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
4189 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
4193 /* Add an entry to the code/data map for section SEC. */
4196 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
4198 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
4199 unsigned int newidx
;
4201 if (sec_data
->map
== NULL
)
4203 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
4204 sec_data
->mapcount
= 0;
4205 sec_data
->mapsize
= 1;
4208 newidx
= sec_data
->mapcount
++;
4210 if (sec_data
->mapcount
> sec_data
->mapsize
)
4212 sec_data
->mapsize
*= 2;
4213 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
4214 * sizeof (elf32_arm_section_map
));
4219 sec_data
->map
[newidx
].vma
= vma
;
4220 sec_data
->map
[newidx
].type
= type
;
4225 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4226 veneers are handled for now. */
4229 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
4230 elf32_vfp11_erratum_list
*branch
,
4232 asection
*branch_sec
,
4233 unsigned int offset
)
4236 struct elf32_arm_link_hash_table
*hash_table
;
4238 struct elf_link_hash_entry
*myh
;
4239 struct bfd_link_hash_entry
*bh
;
4241 struct _arm_elf_section_data
*sec_data
;
4243 elf32_vfp11_erratum_list
*newerr
;
4245 hash_table
= elf32_arm_hash_table (link_info
);
4247 BFD_ASSERT (hash_table
!= NULL
);
4248 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
4250 s
= bfd_get_section_by_name
4251 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
4253 sec_data
= elf32_arm_section_data (s
);
4255 BFD_ASSERT (s
!= NULL
);
4257 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
4258 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
4260 BFD_ASSERT (tmp_name
);
4262 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
4263 hash_table
->num_vfp11_fixes
);
4265 myh
= elf_link_hash_lookup
4266 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4268 BFD_ASSERT (myh
== NULL
);
4271 val
= hash_table
->vfp11_erratum_glue_size
;
4272 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
4273 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4274 NULL
, TRUE
, FALSE
, &bh
);
4276 myh
= (struct elf_link_hash_entry
*) bh
;
4277 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4278 myh
->forced_local
= 1;
4280 /* Link veneer back to calling location. */
4281 errcount
= ++(sec_data
->erratumcount
);
4282 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
4284 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
4286 newerr
->u
.v
.branch
= branch
;
4287 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
4288 branch
->u
.b
.veneer
= newerr
;
4290 newerr
->next
= sec_data
->erratumlist
;
4291 sec_data
->erratumlist
= newerr
;
4293 /* A symbol for the return from the veneer. */
4294 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
4295 hash_table
->num_vfp11_fixes
);
4297 myh
= elf_link_hash_lookup
4298 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4305 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
4306 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
4308 myh
= (struct elf_link_hash_entry
*) bh
;
4309 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4310 myh
->forced_local
= 1;
4314 /* Generate a mapping symbol for the veneer section, and explicitly add an
4315 entry for that symbol to the code/data map for the section. */
4316 if (hash_table
->vfp11_erratum_glue_size
== 0)
4319 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4320 ever requires this erratum fix. */
4321 _bfd_generic_link_add_one_symbol (link_info
,
4322 hash_table
->bfd_of_glue_owner
, "$a",
4323 BSF_LOCAL
, s
, 0, NULL
,
4326 myh
= (struct elf_link_hash_entry
*) bh
;
4327 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
4328 myh
->forced_local
= 1;
4330 /* The elf32_arm_init_maps function only cares about symbols from input
4331 BFDs. We must make a note of this generated mapping symbol
4332 ourselves so that code byteswapping works properly in
4333 elf32_arm_write_section. */
4334 elf32_arm_section_map_add (s
, 'a', 0);
4337 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
4338 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
4339 hash_table
->num_vfp11_fixes
++;
4341 /* The offset of the veneer. */
4345 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4346 would prevent elf_link_input_bfd() from processing the contents
4348 #define ARM_GLUE_SECTION_FLAGS \
4349 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4351 /* Create a fake section for use by the ARM backend of the linker. */
4354 arm_make_glue_section (bfd
* abfd
, const char * name
)
4358 sec
= bfd_get_section_by_name (abfd
, name
);
4363 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
4366 || !bfd_set_section_alignment (abfd
, sec
, 2))
4369 /* Set the gc mark to prevent the section from being removed by garbage
4370 collection, despite the fact that no relocs refer to this section. */
4376 /* Add the glue sections to ABFD. This function is called from the
4377 linker scripts in ld/emultempl/{armelf}.em. */
4380 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
4381 struct bfd_link_info
*info
)
4383 /* If we are only performing a partial
4384 link do not bother adding the glue. */
4385 if (info
->relocatable
)
4388 /* Linker stubs don't need glue. */
4389 if (!strcmp (abfd
->filename
, "linker stubs"))
4392 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
4393 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
4394 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
4395 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
4398 /* Select a BFD to be used to hold the sections used by the glue code.
4399 This function is called from the linker scripts in ld/emultempl/
4403 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
4405 struct elf32_arm_link_hash_table
*globals
;
4407 /* If we are only performing a partial link
4408 do not bother getting a bfd to hold the glue. */
4409 if (info
->relocatable
)
4412 /* Make sure we don't attach the glue sections to a dynamic object. */
4413 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
4415 globals
= elf32_arm_hash_table (info
);
4417 BFD_ASSERT (globals
!= NULL
);
4419 if (globals
->bfd_of_glue_owner
!= NULL
)
4422 /* Save the bfd for later use. */
4423 globals
->bfd_of_glue_owner
= abfd
;
4429 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
4431 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
4433 globals
->use_blx
= 1;
4437 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
4438 struct bfd_link_info
*link_info
)
4440 Elf_Internal_Shdr
*symtab_hdr
;
4441 Elf_Internal_Rela
*internal_relocs
= NULL
;
4442 Elf_Internal_Rela
*irel
, *irelend
;
4443 bfd_byte
*contents
= NULL
;
4446 struct elf32_arm_link_hash_table
*globals
;
4448 /* If we are only performing a partial link do not bother
4449 to construct any glue. */
4450 if (link_info
->relocatable
)
4453 /* Here we have a bfd that is to be included on the link. We have a
4454 hook to do reloc rummaging, before section sizes are nailed down. */
4455 globals
= elf32_arm_hash_table (link_info
);
4457 BFD_ASSERT (globals
!= NULL
);
4459 check_use_blx (globals
);
4461 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
4463 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4468 /* PR 5398: If we have not decided to include any loadable sections in
4469 the output then we will not have a glue owner bfd. This is OK, it
4470 just means that there is nothing else for us to do here. */
4471 if (globals
->bfd_of_glue_owner
== NULL
)
4474 /* Rummage around all the relocs and map the glue vectors. */
4475 sec
= abfd
->sections
;
4480 for (; sec
!= NULL
; sec
= sec
->next
)
4482 if (sec
->reloc_count
== 0)
4485 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
4488 symtab_hdr
= & elf_symtab_hdr (abfd
);
4490 /* Load the relocs. */
4492 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
4494 if (internal_relocs
== NULL
)
4497 irelend
= internal_relocs
+ sec
->reloc_count
;
4498 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
4501 unsigned long r_index
;
4503 struct elf_link_hash_entry
*h
;
4505 r_type
= ELF32_R_TYPE (irel
->r_info
);
4506 r_index
= ELF32_R_SYM (irel
->r_info
);
4508 /* These are the only relocation types we care about. */
4509 if ( r_type
!= R_ARM_PC24
4510 && r_type
!= R_ARM_PLT32
4511 && r_type
!= R_ARM_JUMP24
4512 && r_type
!= R_ARM_THM_JUMP24
4513 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
4516 /* Get the section contents if we haven't done so already. */
4517 if (contents
== NULL
)
4519 /* Get cached copy if it exists. */
4520 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
4521 contents
= elf_section_data (sec
)->this_hdr
.contents
;
4524 /* Go get them off disk. */
4525 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
4530 if (r_type
== R_ARM_V4BX
)
4534 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
4535 record_arm_bx_glue (link_info
, reg
);
4539 /* If the relocation is not against a symbol it cannot concern us. */
4542 /* We don't care about local symbols. */
4543 if (r_index
< symtab_hdr
->sh_info
)
4546 /* This is an external symbol. */
4547 r_index
-= symtab_hdr
->sh_info
;
4548 h
= (struct elf_link_hash_entry
*)
4549 elf_sym_hashes (abfd
)[r_index
];
4551 /* If the relocation is against a static symbol it must be within
4552 the current section and so cannot be a cross ARM/Thumb relocation. */
4556 /* If the call will go through a PLT entry then we do not need
4558 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
4566 /* This one is a call from arm code. We need to look up
4567 the target of the call. If it is a thumb target, we
4569 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
4570 && !(r_type
== R_ARM_CALL
&& globals
->use_blx
))
4571 record_arm_to_thumb_glue (link_info
, h
);
4574 case R_ARM_THM_JUMP24
:
4575 /* This one is a call from thumb code. We look
4576 up the target of the call. If it is not a thumb
4577 target, we insert glue. */
4578 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
4579 && !(globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4580 && h
->root
.type
!= bfd_link_hash_undefweak
)
4581 record_thumb_to_arm_glue (link_info
, h
);
4589 if (contents
!= NULL
4590 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4594 if (internal_relocs
!= NULL
4595 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4596 free (internal_relocs
);
4597 internal_relocs
= NULL
;
4603 if (contents
!= NULL
4604 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
4606 if (internal_relocs
!= NULL
4607 && elf_section_data (sec
)->relocs
!= internal_relocs
)
4608 free (internal_relocs
);
4615 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4618 bfd_elf32_arm_init_maps (bfd
*abfd
)
4620 Elf_Internal_Sym
*isymbuf
;
4621 Elf_Internal_Shdr
*hdr
;
4622 unsigned int i
, localsyms
;
4624 if ((abfd
->flags
& DYNAMIC
) != 0)
4627 hdr
= & elf_symtab_hdr (abfd
);
4628 localsyms
= hdr
->sh_info
;
4630 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4631 should contain the number of local symbols, which should come before any
4632 global symbols. Mapping symbols are always local. */
4633 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
4636 /* No internal symbols read? Skip this BFD. */
4637 if (isymbuf
== NULL
)
4640 for (i
= 0; i
< localsyms
; i
++)
4642 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
4643 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4647 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
4649 name
= bfd_elf_string_from_elf_section (abfd
,
4650 hdr
->sh_link
, isym
->st_name
);
4652 if (bfd_is_arm_special_symbol_name (name
,
4653 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
4654 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
4661 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
4663 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4664 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
4666 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4667 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
4669 switch (globals
->vfp11_fix
)
4671 case BFD_ARM_VFP11_FIX_DEFAULT
:
4672 case BFD_ARM_VFP11_FIX_NONE
:
4673 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4677 /* Give a warning, but do as the user requests anyway. */
4678 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
4679 "workaround is not necessary for target architecture"), obfd
);
4682 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
4683 /* For earlier architectures, we might need the workaround, but do not
4684 enable it by default. If users is running with broken hardware, they
4685 must enable the erratum fix explicitly. */
4686 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4690 enum bfd_arm_vfp11_pipe
4698 /* Return a VFP register number. This is encoded as RX:X for single-precision
4699 registers, or X:RX for double-precision registers, where RX is the group of
4700 four bits in the instruction encoding and X is the single extension bit.
4701 RX and X fields are specified using their lowest (starting) bit. The return
4704 0...31: single-precision registers s0...s31
4705 32...63: double-precision registers d0...d31.
4707 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4708 encounter VFP3 instructions, so we allow the full range for DP registers. */
4711 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
4715 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
4717 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
4720 /* Set bits in *WMASK according to a register number REG as encoded by
4721 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4724 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
4729 *wmask
|= 3 << ((reg
- 32) * 2);
4732 /* Return TRUE if WMASK overwrites anything in REGS. */
4735 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
4739 for (i
= 0; i
< numregs
; i
++)
4741 unsigned int reg
= regs
[i
];
4743 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
4751 if ((wmask
& (3 << (reg
* 2))) != 0)
4758 /* In this function, we're interested in two things: finding input registers
4759 for VFP data-processing instructions, and finding the set of registers which
4760 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4761 hold the written set, so FLDM etc. are easy to deal with (we're only
4762 interested in 32 SP registers or 16 dp registers, due to the VFP version
4763 implemented by the chip in question). DP registers are marked by setting
4764 both SP registers in the write mask). */
4766 static enum bfd_arm_vfp11_pipe
4767 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
4770 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
4771 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
4773 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4776 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4777 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4779 pqrs
= ((insn
& 0x00800000) >> 20)
4780 | ((insn
& 0x00300000) >> 19)
4781 | ((insn
& 0x00000040) >> 6);
4785 case 0: /* fmac[sd]. */
4786 case 1: /* fnmac[sd]. */
4787 case 2: /* fmsc[sd]. */
4788 case 3: /* fnmsc[sd]. */
4790 bfd_arm_vfp11_write_mask (destmask
, fd
);
4792 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4797 case 4: /* fmul[sd]. */
4798 case 5: /* fnmul[sd]. */
4799 case 6: /* fadd[sd]. */
4800 case 7: /* fsub[sd]. */
4804 case 8: /* fdiv[sd]. */
4807 bfd_arm_vfp11_write_mask (destmask
, fd
);
4808 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
4813 case 15: /* extended opcode. */
4815 unsigned int extn
= ((insn
>> 15) & 0x1e)
4816 | ((insn
>> 7) & 1);
4820 case 0: /* fcpy[sd]. */
4821 case 1: /* fabs[sd]. */
4822 case 2: /* fneg[sd]. */
4823 case 8: /* fcmp[sd]. */
4824 case 9: /* fcmpe[sd]. */
4825 case 10: /* fcmpz[sd]. */
4826 case 11: /* fcmpez[sd]. */
4827 case 16: /* fuito[sd]. */
4828 case 17: /* fsito[sd]. */
4829 case 24: /* ftoui[sd]. */
4830 case 25: /* ftouiz[sd]. */
4831 case 26: /* ftosi[sd]. */
4832 case 27: /* ftosiz[sd]. */
4833 /* These instructions will not bounce due to underflow. */
4838 case 3: /* fsqrt[sd]. */
4839 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4840 registers to cause the erratum in previous instructions. */
4841 bfd_arm_vfp11_write_mask (destmask
, fd
);
4845 case 15: /* fcvt{ds,sd}. */
4849 bfd_arm_vfp11_write_mask (destmask
, fd
);
4851 /* Only FCVTSD can underflow. */
4852 if ((insn
& 0x100) != 0)
4871 /* Two-register transfer. */
4872 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
4874 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
4876 if ((insn
& 0x100000) == 0)
4879 bfd_arm_vfp11_write_mask (destmask
, fm
);
4882 bfd_arm_vfp11_write_mask (destmask
, fm
);
4883 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
4889 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
4891 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
4892 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
4896 case 0: /* Two-reg transfer. We should catch these above. */
4899 case 2: /* fldm[sdx]. */
4903 unsigned int i
, offset
= insn
& 0xff;
4908 for (i
= fd
; i
< fd
+ offset
; i
++)
4909 bfd_arm_vfp11_write_mask (destmask
, i
);
4913 case 4: /* fld[sd]. */
4915 bfd_arm_vfp11_write_mask (destmask
, fd
);
4924 /* Single-register transfer. Note L==0. */
4925 else if ((insn
& 0x0f100e10) == 0x0e000a10)
4927 unsigned int opcode
= (insn
>> 21) & 7;
4928 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
4932 case 0: /* fmsr/fmdlr. */
4933 case 1: /* fmdhr. */
4934 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4935 destination register. I don't know if this is exactly right,
4936 but it is the conservative choice. */
4937 bfd_arm_vfp11_write_mask (destmask
, fn
);
4951 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
4954 /* Look for potentially-troublesome code sequences which might trigger the
4955 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4956 (available from ARM) for details of the erratum. A short version is
4957 described in ld.texinfo. */
4960 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
4963 bfd_byte
*contents
= NULL
;
4965 int regs
[3], numregs
= 0;
4966 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
4967 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
4969 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4970 The states transition as follows:
4972 0 -> 1 (vector) or 0 -> 2 (scalar)
4973 A VFP FMAC-pipeline instruction has been seen. Fill
4974 regs[0]..regs[numregs-1] with its input operands. Remember this
4975 instruction in 'first_fmac'.
4978 Any instruction, except for a VFP instruction which overwrites
4983 A VFP instruction has been seen which overwrites any of regs[*].
4984 We must make a veneer! Reset state to 0 before examining next
4988 If we fail to match anything in state 2, reset to state 0 and reset
4989 the instruction pointer to the instruction after 'first_fmac'.
4991 If the VFP11 vector mode is in use, there must be at least two unrelated
4992 instructions between anti-dependent VFP11 instructions to properly avoid
4993 triggering the erratum, hence the use of the extra state 1. */
4995 /* If we are only performing a partial link do not bother
4996 to construct any glue. */
4997 if (link_info
->relocatable
)
5000 /* Skip if this bfd does not correspond to an ELF image. */
5001 if (! is_arm_elf (abfd
))
5004 /* We should have chosen a fix type by the time we get here. */
5005 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5007 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5010 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5012 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5013 struct _arm_elf_section_data
*sec_data
;
5015 /* If we don't have executable progbits, we're not interested in this
5016 section. Also skip if section is to be excluded. */
5017 if (elf_section_type (sec
) != SHT_PROGBITS
5018 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5019 || (sec
->flags
& SEC_EXCLUDE
) != 0
5020 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5023 sec_data
= elf32_arm_section_data (sec
);
5025 if (sec_data
->mapcount
== 0)
5028 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5029 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5030 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5033 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5034 elf32_arm_compare_mapping
);
5036 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5038 unsigned int span_start
= sec_data
->map
[span
].vma
;
5039 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5040 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5041 char span_type
= sec_data
->map
[span
].type
;
5043 /* FIXME: Only ARM mode is supported at present. We may need to
5044 support Thumb-2 mode also at some point. */
5045 if (span_type
!= 'a')
5048 for (i
= span_start
; i
< span_end
;)
5050 unsigned int next_i
= i
+ 4;
5051 unsigned int insn
= bfd_big_endian (abfd
)
5052 ? (contents
[i
] << 24)
5053 | (contents
[i
+ 1] << 16)
5054 | (contents
[i
+ 2] << 8)
5056 : (contents
[i
+ 3] << 24)
5057 | (contents
[i
+ 2] << 16)
5058 | (contents
[i
+ 1] << 8)
5060 unsigned int writemask
= 0;
5061 enum bfd_arm_vfp11_pipe pipe
;
5066 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5068 /* I'm assuming the VFP11 erratum can trigger with denorm
5069 operands on either the FMAC or the DS pipeline. This might
5070 lead to slightly overenthusiastic veneer insertion. */
5071 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5073 state
= use_vector
? 1 : 2;
5075 veneer_of_insn
= insn
;
5081 int other_regs
[3], other_numregs
;
5082 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5085 if (pipe
!= VFP11_BAD
5086 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5096 int other_regs
[3], other_numregs
;
5097 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5100 if (pipe
!= VFP11_BAD
5101 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5107 next_i
= first_fmac
+ 4;
5113 abort (); /* Should be unreachable. */
5118 elf32_vfp11_erratum_list
*newerr
5119 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5122 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
5124 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
5129 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
5136 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
5141 newerr
->next
= sec_data
->erratumlist
;
5142 sec_data
->erratumlist
= newerr
;
5151 if (contents
!= NULL
5152 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5160 if (contents
!= NULL
5161 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5167 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5168 after sections have been laid out, using specially-named symbols. */
5171 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
5172 struct bfd_link_info
*link_info
)
5175 struct elf32_arm_link_hash_table
*globals
;
5178 if (link_info
->relocatable
)
5181 /* Skip if this bfd does not correspond to an ELF image. */
5182 if (! is_arm_elf (abfd
))
5185 globals
= elf32_arm_hash_table (link_info
);
5187 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5188 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5190 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5192 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5193 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
5195 for (; errnode
!= NULL
; errnode
= errnode
->next
)
5197 struct elf_link_hash_entry
*myh
;
5200 switch (errnode
->type
)
5202 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
5203 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
5204 /* Find veneer symbol. */
5205 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5206 errnode
->u
.b
.veneer
->u
.v
.id
);
5208 myh
= elf_link_hash_lookup
5209 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5212 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5213 "`%s'"), abfd
, tmp_name
);
5215 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5216 + myh
->root
.u
.def
.section
->output_offset
5217 + myh
->root
.u
.def
.value
;
5219 errnode
->u
.b
.veneer
->vma
= vma
;
5222 case VFP11_ERRATUM_ARM_VENEER
:
5223 case VFP11_ERRATUM_THUMB_VENEER
:
5224 /* Find return location. */
5225 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5228 myh
= elf_link_hash_lookup
5229 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5232 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
5233 "`%s'"), abfd
, tmp_name
);
5235 vma
= myh
->root
.u
.def
.section
->output_section
->vma
5236 + myh
->root
.u
.def
.section
->output_offset
5237 + myh
->root
.u
.def
.value
;
5239 errnode
->u
.v
.branch
->vma
= vma
;
5252 /* Set target relocation values needed during linking. */
5255 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
5256 struct bfd_link_info
*link_info
,
5258 char * target2_type
,
5261 bfd_arm_vfp11_fix vfp11_fix
,
5262 int no_enum_warn
, int no_wchar_warn
,
5265 struct elf32_arm_link_hash_table
*globals
;
5267 globals
= elf32_arm_hash_table (link_info
);
5269 globals
->target1_is_rel
= target1_is_rel
;
5270 if (strcmp (target2_type
, "rel") == 0)
5271 globals
->target2_reloc
= R_ARM_REL32
;
5272 else if (strcmp (target2_type
, "abs") == 0)
5273 globals
->target2_reloc
= R_ARM_ABS32
;
5274 else if (strcmp (target2_type
, "got-rel") == 0)
5275 globals
->target2_reloc
= R_ARM_GOT_PREL
;
5278 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5281 globals
->fix_v4bx
= fix_v4bx
;
5282 globals
->use_blx
|= use_blx
;
5283 globals
->vfp11_fix
= vfp11_fix
;
5284 globals
->pic_veneer
= pic_veneer
;
5286 BFD_ASSERT (is_arm_elf (output_bfd
));
5287 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
5288 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
5291 /* Replace the target offset of a Thumb bl or b.w instruction. */
5294 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
5300 BFD_ASSERT ((offset
& 1) == 0);
5302 upper
= bfd_get_16 (abfd
, insn
);
5303 lower
= bfd_get_16 (abfd
, insn
+ 2);
5304 reloc_sign
= (offset
< 0) ? 1 : 0;
5305 upper
= (upper
& ~(bfd_vma
) 0x7ff)
5306 | ((offset
>> 12) & 0x3ff)
5307 | (reloc_sign
<< 10);
5308 lower
= (lower
& ~(bfd_vma
) 0x2fff)
5309 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
5310 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
5311 | ((offset
>> 1) & 0x7ff);
5312 bfd_put_16 (abfd
, upper
, insn
);
5313 bfd_put_16 (abfd
, lower
, insn
+ 2);
5316 /* Thumb code calling an ARM function. */
5319 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
5323 asection
* input_section
,
5324 bfd_byte
* hit_data
,
5327 bfd_signed_vma addend
,
5329 char **error_message
)
5333 long int ret_offset
;
5334 struct elf_link_hash_entry
* myh
;
5335 struct elf32_arm_link_hash_table
* globals
;
5337 myh
= find_thumb_glue (info
, name
, error_message
);
5341 globals
= elf32_arm_hash_table (info
);
5343 BFD_ASSERT (globals
!= NULL
);
5344 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5346 my_offset
= myh
->root
.u
.def
.value
;
5348 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5349 THUMB2ARM_GLUE_SECTION_NAME
);
5351 BFD_ASSERT (s
!= NULL
);
5352 BFD_ASSERT (s
->contents
!= NULL
);
5353 BFD_ASSERT (s
->output_section
!= NULL
);
5355 if ((my_offset
& 0x01) == 0x01)
5358 && sym_sec
->owner
!= NULL
5359 && !INTERWORK_FLAG (sym_sec
->owner
))
5361 (*_bfd_error_handler
)
5362 (_("%B(%s): warning: interworking not enabled.\n"
5363 " first occurrence: %B: thumb call to arm"),
5364 sym_sec
->owner
, input_bfd
, name
);
5370 myh
->root
.u
.def
.value
= my_offset
;
5372 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
5373 s
->contents
+ my_offset
);
5375 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
5376 s
->contents
+ my_offset
+ 2);
5379 /* Address of destination of the stub. */
5380 ((bfd_signed_vma
) val
)
5382 /* Offset from the start of the current section
5383 to the start of the stubs. */
5385 /* Offset of the start of this stub from the start of the stubs. */
5387 /* Address of the start of the current section. */
5388 + s
->output_section
->vma
)
5389 /* The branch instruction is 4 bytes into the stub. */
5391 /* ARM branches work from the pc of the instruction + 8. */
5394 put_arm_insn (globals
, output_bfd
,
5395 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
5396 s
->contents
+ my_offset
+ 4);
5399 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
5401 /* Now go back and fix up the original BL insn to point to here. */
5403 /* Address of where the stub is located. */
5404 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
5405 /* Address of where the BL is located. */
5406 - (input_section
->output_section
->vma
+ input_section
->output_offset
5408 /* Addend in the relocation. */
5410 /* Biassing for PC-relative addressing. */
5413 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
5418 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5420 static struct elf_link_hash_entry
*
5421 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
5428 char ** error_message
)
5431 long int ret_offset
;
5432 struct elf_link_hash_entry
* myh
;
5433 struct elf32_arm_link_hash_table
* globals
;
5435 myh
= find_arm_glue (info
, name
, error_message
);
5439 globals
= elf32_arm_hash_table (info
);
5441 BFD_ASSERT (globals
!= NULL
);
5442 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5444 my_offset
= myh
->root
.u
.def
.value
;
5446 if ((my_offset
& 0x01) == 0x01)
5449 && sym_sec
->owner
!= NULL
5450 && !INTERWORK_FLAG (sym_sec
->owner
))
5452 (*_bfd_error_handler
)
5453 (_("%B(%s): warning: interworking not enabled.\n"
5454 " first occurrence: %B: arm call to thumb"),
5455 sym_sec
->owner
, input_bfd
, name
);
5459 myh
->root
.u
.def
.value
= my_offset
;
5461 if (info
->shared
|| globals
->root
.is_relocatable_executable
5462 || globals
->pic_veneer
)
5464 /* For relocatable objects we can't use absolute addresses,
5465 so construct the address from a relative offset. */
5466 /* TODO: If the offset is small it's probably worth
5467 constructing the address with adds. */
5468 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
5469 s
->contents
+ my_offset
);
5470 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
5471 s
->contents
+ my_offset
+ 4);
5472 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
5473 s
->contents
+ my_offset
+ 8);
5474 /* Adjust the offset by 4 for the position of the add,
5475 and 8 for the pipeline offset. */
5476 ret_offset
= (val
- (s
->output_offset
5477 + s
->output_section
->vma
5480 bfd_put_32 (output_bfd
, ret_offset
,
5481 s
->contents
+ my_offset
+ 12);
5483 else if (globals
->use_blx
)
5485 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
5486 s
->contents
+ my_offset
);
5488 /* It's a thumb address. Add the low order bit. */
5489 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
5490 s
->contents
+ my_offset
+ 4);
5494 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
5495 s
->contents
+ my_offset
);
5497 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
5498 s
->contents
+ my_offset
+ 4);
5500 /* It's a thumb address. Add the low order bit. */
5501 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
5502 s
->contents
+ my_offset
+ 8);
5508 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
5513 /* Arm code calling a Thumb function. */
5516 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
5520 asection
* input_section
,
5521 bfd_byte
* hit_data
,
5524 bfd_signed_vma addend
,
5526 char **error_message
)
5528 unsigned long int tmp
;
5531 long int ret_offset
;
5532 struct elf_link_hash_entry
* myh
;
5533 struct elf32_arm_link_hash_table
* globals
;
5535 globals
= elf32_arm_hash_table (info
);
5537 BFD_ASSERT (globals
!= NULL
);
5538 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5540 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5541 ARM2THUMB_GLUE_SECTION_NAME
);
5542 BFD_ASSERT (s
!= NULL
);
5543 BFD_ASSERT (s
->contents
!= NULL
);
5544 BFD_ASSERT (s
->output_section
!= NULL
);
5546 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
5547 sym_sec
, val
, s
, error_message
);
5551 my_offset
= myh
->root
.u
.def
.value
;
5552 tmp
= bfd_get_32 (input_bfd
, hit_data
);
5553 tmp
= tmp
& 0xFF000000;
5555 /* Somehow these are both 4 too far, so subtract 8. */
5556 ret_offset
= (s
->output_offset
5558 + s
->output_section
->vma
5559 - (input_section
->output_offset
5560 + input_section
->output_section
->vma
5564 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
5566 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
5571 /* Populate Arm stub for an exported Thumb function. */
5574 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
5576 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
5578 struct elf_link_hash_entry
* myh
;
5579 struct elf32_arm_link_hash_entry
*eh
;
5580 struct elf32_arm_link_hash_table
* globals
;
5583 char *error_message
;
5585 eh
= elf32_arm_hash_entry (h
);
5586 /* Allocate stubs for exported Thumb functions on v4t. */
5587 if (eh
->export_glue
== NULL
)
5590 globals
= elf32_arm_hash_table (info
);
5592 BFD_ASSERT (globals
!= NULL
);
5593 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5595 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5596 ARM2THUMB_GLUE_SECTION_NAME
);
5597 BFD_ASSERT (s
!= NULL
);
5598 BFD_ASSERT (s
->contents
!= NULL
);
5599 BFD_ASSERT (s
->output_section
!= NULL
);
5601 sec
= eh
->export_glue
->root
.u
.def
.section
;
5603 BFD_ASSERT (sec
->output_section
!= NULL
);
5605 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
5606 + sec
->output_section
->vma
;
5608 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
5609 h
->root
.u
.def
.section
->owner
,
5610 globals
->obfd
, sec
, val
, s
,
5616 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5619 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
5624 struct elf32_arm_link_hash_table
*globals
;
5626 globals
= elf32_arm_hash_table (info
);
5628 BFD_ASSERT (globals
!= NULL
);
5629 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5631 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
5632 ARM_BX_GLUE_SECTION_NAME
);
5633 BFD_ASSERT (s
!= NULL
);
5634 BFD_ASSERT (s
->contents
!= NULL
);
5635 BFD_ASSERT (s
->output_section
!= NULL
);
5637 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
5639 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
5641 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
5643 p
= s
->contents
+ glue_addr
;
5644 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
5645 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
5646 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
5647 globals
->bx_glue_offset
[reg
] |= 1;
5650 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
5653 /* Generate Arm stubs for exported Thumb symbols. */
5655 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
5656 struct bfd_link_info
*link_info
)
5658 struct elf32_arm_link_hash_table
* globals
;
5660 if (link_info
== NULL
)
5661 /* Ignore this if we are not called by the ELF backend linker. */
5664 globals
= elf32_arm_hash_table (link_info
);
5665 /* If blx is available then exported Thumb symbols are OK and there is
5667 if (globals
->use_blx
)
5670 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
5674 /* Some relocations map to different relocations depending on the
5675 target. Return the real relocation. */
5678 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
5684 if (globals
->target1_is_rel
)
5690 return globals
->target2_reloc
;
5697 /* Return the base VMA address which should be subtracted from real addresses
5698 when resolving @dtpoff relocation.
5699 This is PT_TLS segment p_vaddr. */
5702 dtpoff_base (struct bfd_link_info
*info
)
5704 /* If tls_sec is NULL, we should have signalled an error already. */
5705 if (elf_hash_table (info
)->tls_sec
== NULL
)
5707 return elf_hash_table (info
)->tls_sec
->vma
;
5710 /* Return the relocation value for @tpoff relocation
5711 if STT_TLS virtual address is ADDRESS. */
5714 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
5716 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
5719 /* If tls_sec is NULL, we should have signalled an error already. */
5720 if (htab
->tls_sec
== NULL
)
5722 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
5723 return address
- htab
->tls_sec
->vma
+ base
;
5726 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5727 VALUE is the relocation value. */
5729 static bfd_reloc_status_type
5730 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
5733 return bfd_reloc_overflow
;
5735 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
5736 bfd_put_32 (abfd
, value
, data
);
5737 return bfd_reloc_ok
;
5740 /* For a given value of n, calculate the value of G_n as required to
5741 deal with group relocations. We return it in the form of an
5742 encoded constant-and-rotation, together with the final residual. If n is
5743 specified as less than zero, then final_residual is filled with the
5744 input value and no further action is performed. */
5747 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
5751 bfd_vma encoded_g_n
= 0;
5752 bfd_vma residual
= value
; /* Also known as Y_n. */
5754 for (current_n
= 0; current_n
<= n
; current_n
++)
5758 /* Calculate which part of the value to mask. */
5765 /* Determine the most significant bit in the residual and
5766 align the resulting value to a 2-bit boundary. */
5767 for (msb
= 30; msb
>= 0; msb
-= 2)
5768 if (residual
& (3 << msb
))
5771 /* The desired shift is now (msb - 6), or zero, whichever
5778 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5779 g_n
= residual
& (0xff << shift
);
5780 encoded_g_n
= (g_n
>> shift
)
5781 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
5783 /* Calculate the residual for the next time around. */
5787 *final_residual
= residual
;
5792 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5793 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5796 identify_add_or_sub (bfd_vma insn
)
5798 int opcode
= insn
& 0x1e00000;
5800 if (opcode
== 1 << 23) /* ADD */
5803 if (opcode
== 1 << 22) /* SUB */
5809 /* Perform a relocation as part of a final link. */
5811 static bfd_reloc_status_type
5812 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
5815 asection
* input_section
,
5816 bfd_byte
* contents
,
5817 Elf_Internal_Rela
* rel
,
5819 struct bfd_link_info
* info
,
5821 const char * sym_name
,
5823 struct elf_link_hash_entry
* h
,
5824 bfd_boolean
* unresolved_reloc_p
,
5825 char ** error_message
)
5827 unsigned long r_type
= howto
->type
;
5828 unsigned long r_symndx
;
5829 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
5830 bfd
* dynobj
= NULL
;
5831 Elf_Internal_Shdr
* symtab_hdr
;
5832 struct elf_link_hash_entry
** sym_hashes
;
5833 bfd_vma
* local_got_offsets
;
5834 asection
* sgot
= NULL
;
5835 asection
* splt
= NULL
;
5836 asection
* sreloc
= NULL
;
5838 bfd_signed_vma signed_addend
;
5839 struct elf32_arm_link_hash_table
* globals
;
5841 globals
= elf32_arm_hash_table (info
);
5843 BFD_ASSERT (is_arm_elf (input_bfd
));
5845 /* Some relocation types map to different relocations depending on the
5846 target. We pick the right one here. */
5847 r_type
= arm_real_reloc_type (globals
, r_type
);
5848 if (r_type
!= howto
->type
)
5849 howto
= elf32_arm_howto_from_type (r_type
);
5851 /* If the start address has been set, then set the EF_ARM_HASENTRY
5852 flag. Setting this more than once is redundant, but the cost is
5853 not too high, and it keeps the code simple.
5855 The test is done here, rather than somewhere else, because the
5856 start address is only set just before the final link commences.
5858 Note - if the user deliberately sets a start address of 0, the
5859 flag will not be set. */
5860 if (bfd_get_start_address (output_bfd
) != 0)
5861 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
5863 dynobj
= elf_hash_table (info
)->dynobj
;
5866 sgot
= bfd_get_section_by_name (dynobj
, ".got");
5867 splt
= bfd_get_section_by_name (dynobj
, ".plt");
5869 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
5870 sym_hashes
= elf_sym_hashes (input_bfd
);
5871 local_got_offsets
= elf_local_got_offsets (input_bfd
);
5872 r_symndx
= ELF32_R_SYM (rel
->r_info
);
5874 if (globals
->use_rel
)
5876 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
5878 if (addend
& ((howto
->src_mask
+ 1) >> 1))
5881 signed_addend
&= ~ howto
->src_mask
;
5882 signed_addend
|= addend
;
5885 signed_addend
= addend
;
5888 addend
= signed_addend
= rel
->r_addend
;
5893 /* We don't need to find a value for this symbol. It's just a
5895 *unresolved_reloc_p
= FALSE
;
5896 return bfd_reloc_ok
;
5899 if (!globals
->vxworks_p
)
5900 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
5904 case R_ARM_ABS32_NOI
:
5906 case R_ARM_REL32_NOI
:
5912 /* Handle relocations which should use the PLT entry. ABS32/REL32
5913 will use the symbol's value, which may point to a PLT entry, but we
5914 don't need to handle that here. If we created a PLT entry, all
5915 branches in this object should go to it. */
5916 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
5917 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
)
5920 && h
->plt
.offset
!= (bfd_vma
) -1)
5922 /* If we've created a .plt section, and assigned a PLT entry to
5923 this function, it should not be known to bind locally. If
5924 it were, we would have cleared the PLT entry. */
5925 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
5927 value
= (splt
->output_section
->vma
5928 + splt
->output_offset
5930 *unresolved_reloc_p
= FALSE
;
5931 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
5932 contents
, rel
->r_offset
, value
,
5936 /* When generating a shared object or relocatable executable, these
5937 relocations are copied into the output file to be resolved at
5939 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
5940 && (input_section
->flags
& SEC_ALLOC
)
5941 && !(elf32_arm_hash_table (info
)->vxworks_p
5942 && strcmp (input_section
->output_section
->name
,
5944 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
5945 || !SYMBOL_CALLS_LOCAL (info
, h
))
5947 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
5948 || h
->root
.type
!= bfd_link_hash_undefweak
)
5949 && r_type
!= R_ARM_PC24
5950 && r_type
!= R_ARM_CALL
5951 && r_type
!= R_ARM_JUMP24
5952 && r_type
!= R_ARM_PREL31
5953 && r_type
!= R_ARM_PLT32
)
5955 Elf_Internal_Rela outrel
;
5957 bfd_boolean skip
, relocate
;
5959 *unresolved_reloc_p
= FALSE
;
5965 name
= (bfd_elf_string_from_elf_section
5967 elf_elfheader (input_bfd
)->e_shstrndx
,
5968 elf_section_data (input_section
)->rel_hdr
.sh_name
));
5970 return bfd_reloc_notsupported
;
5972 BFD_ASSERT (reloc_section_p (globals
, name
, input_section
));
5974 sreloc
= bfd_get_section_by_name (dynobj
, name
);
5975 BFD_ASSERT (sreloc
!= NULL
);
5981 outrel
.r_addend
= addend
;
5983 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
5985 if (outrel
.r_offset
== (bfd_vma
) -1)
5987 else if (outrel
.r_offset
== (bfd_vma
) -2)
5988 skip
= TRUE
, relocate
= TRUE
;
5989 outrel
.r_offset
+= (input_section
->output_section
->vma
5990 + input_section
->output_offset
);
5993 memset (&outrel
, 0, sizeof outrel
);
5998 || !h
->def_regular
))
5999 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6004 /* This symbol is local, or marked to become local. */
6005 if (sym_flags
== STT_ARM_TFUNC
)
6007 if (globals
->symbian_p
)
6011 /* On Symbian OS, the data segment and text segement
6012 can be relocated independently. Therefore, we
6013 must indicate the segment to which this
6014 relocation is relative. The BPABI allows us to
6015 use any symbol in the right segment; we just use
6016 the section symbol as it is convenient. (We
6017 cannot use the symbol given by "h" directly as it
6018 will not appear in the dynamic symbol table.)
6020 Note that the dynamic linker ignores the section
6021 symbol value, so we don't subtract osec->vma
6022 from the emitted reloc addend. */
6024 osec
= sym_sec
->output_section
;
6026 osec
= input_section
->output_section
;
6027 symbol
= elf_section_data (osec
)->dynindx
;
6030 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6032 if ((osec
->flags
& SEC_READONLY
) == 0
6033 && htab
->data_index_section
!= NULL
)
6034 osec
= htab
->data_index_section
;
6036 osec
= htab
->text_index_section
;
6037 symbol
= elf_section_data (osec
)->dynindx
;
6039 BFD_ASSERT (symbol
!= 0);
6042 /* On SVR4-ish systems, the dynamic loader cannot
6043 relocate the text and data segments independently,
6044 so the symbol does not matter. */
6046 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6047 if (globals
->use_rel
)
6050 outrel
.r_addend
+= value
;
6053 loc
= sreloc
->contents
;
6054 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6055 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6057 /* If this reloc is against an external symbol, we do not want to
6058 fiddle with the addend. Otherwise, we need to include the symbol
6059 value so that it becomes an addend for the dynamic reloc. */
6061 return bfd_reloc_ok
;
6063 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6064 contents
, rel
->r_offset
, value
,
6067 else switch (r_type
)
6070 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6072 case R_ARM_XPC25
: /* Arm BLX instruction. */
6075 case R_ARM_PC24
: /* Arm B/BL instruction. */
6079 bfd_signed_vma branch_offset
;
6080 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6082 from
= (input_section
->output_section
->vma
6083 + input_section
->output_offset
6085 branch_offset
= (bfd_signed_vma
)(value
- from
);
6087 if (r_type
== R_ARM_XPC25
)
6089 /* Check for Arm calling Arm function. */
6090 /* FIXME: Should we translate the instruction into a BL
6091 instruction instead ? */
6092 if (sym_flags
!= STT_ARM_TFUNC
)
6093 (*_bfd_error_handler
)
6094 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6096 h
? h
->root
.root
.string
: "(local)");
6098 else if (r_type
!= R_ARM_CALL
)
6100 /* Check for Arm calling Thumb function. */
6101 if (sym_flags
== STT_ARM_TFUNC
)
6103 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6104 output_bfd
, input_section
,
6105 hit_data
, sym_sec
, rel
->r_offset
,
6106 signed_addend
, value
,
6108 return bfd_reloc_ok
;
6110 return bfd_reloc_dangerous
;
6114 /* Check if a stub has to be inserted because the
6115 destination is too far or we are changing mode. */
6116 if (r_type
== R_ARM_CALL
)
6118 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
6119 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
6120 || sym_flags
== STT_ARM_TFUNC
)
6122 /* The target is out of reach, so redirect the
6123 branch to the local stub for this function. */
6125 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6128 if (stub_entry
!= NULL
)
6129 value
= (stub_entry
->stub_offset
6130 + stub_entry
->stub_sec
->output_offset
6131 + stub_entry
->stub_sec
->output_section
->vma
);
6135 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6137 S is the address of the symbol in the relocation.
6138 P is address of the instruction being relocated.
6139 A is the addend (extracted from the instruction) in bytes.
6141 S is held in 'value'.
6142 P is the base address of the section containing the
6143 instruction plus the offset of the reloc into that
6145 (input_section->output_section->vma +
6146 input_section->output_offset +
6148 A is the addend, converted into bytes, ie:
6151 Note: None of these operations have knowledge of the pipeline
6152 size of the processor, thus it is up to the assembler to
6153 encode this information into the addend. */
6154 value
-= (input_section
->output_section
->vma
6155 + input_section
->output_offset
);
6156 value
-= rel
->r_offset
;
6157 if (globals
->use_rel
)
6158 value
+= (signed_addend
<< howto
->size
);
6160 /* RELA addends do not have to be adjusted by howto->size. */
6161 value
+= signed_addend
;
6163 signed_addend
= value
;
6164 signed_addend
>>= howto
->rightshift
;
6166 /* A branch to an undefined weak symbol is turned into a jump to
6167 the next instruction. */
6168 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
6170 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
6175 /* Perform a signed range check. */
6176 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
6177 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
6178 return bfd_reloc_overflow
;
6180 addend
= (value
& 2);
6182 value
= (signed_addend
& howto
->dst_mask
)
6183 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6185 /* Set the H bit in the BLX instruction. */
6186 if (sym_flags
== STT_ARM_TFUNC
)
6191 value
&= ~(bfd_vma
)(1 << 24);
6193 if (r_type
== R_ARM_CALL
)
6195 /* Select the correct instruction (BL or BLX). */
6196 /* Only if we are not handling a BL to a stub. In this
6197 case, mode switching is performed by the stub. */
6198 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
6202 value
&= ~(bfd_vma
)(1 << 28);
6212 if (sym_flags
== STT_ARM_TFUNC
)
6216 case R_ARM_ABS32_NOI
:
6222 if (sym_flags
== STT_ARM_TFUNC
)
6224 value
-= (input_section
->output_section
->vma
6225 + input_section
->output_offset
+ rel
->r_offset
);
6228 case R_ARM_REL32_NOI
:
6230 value
-= (input_section
->output_section
->vma
6231 + input_section
->output_offset
+ rel
->r_offset
);
6235 value
-= (input_section
->output_section
->vma
6236 + input_section
->output_offset
+ rel
->r_offset
);
6237 value
+= signed_addend
;
6238 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
6240 /* Check for overflow. */
6241 if ((value
^ (value
>> 1)) & (1 << 30))
6242 return bfd_reloc_overflow
;
6244 value
&= 0x7fffffff;
6245 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
6246 if (sym_flags
== STT_ARM_TFUNC
)
6251 bfd_put_32 (input_bfd
, value
, hit_data
);
6252 return bfd_reloc_ok
;
6256 if ((long) value
> 0x7f || (long) value
< -0x80)
6257 return bfd_reloc_overflow
;
6259 bfd_put_8 (input_bfd
, value
, hit_data
);
6260 return bfd_reloc_ok
;
6265 if ((long) value
> 0x7fff || (long) value
< -0x8000)
6266 return bfd_reloc_overflow
;
6268 bfd_put_16 (input_bfd
, value
, hit_data
);
6269 return bfd_reloc_ok
;
6271 case R_ARM_THM_ABS5
:
6272 /* Support ldr and str instructions for the thumb. */
6273 if (globals
->use_rel
)
6275 /* Need to refetch addend. */
6276 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6277 /* ??? Need to determine shift amount from operand size. */
6278 addend
>>= howto
->rightshift
;
6282 /* ??? Isn't value unsigned? */
6283 if ((long) value
> 0x1f || (long) value
< -0x10)
6284 return bfd_reloc_overflow
;
6286 /* ??? Value needs to be properly shifted into place first. */
6287 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
6288 bfd_put_16 (input_bfd
, value
, hit_data
);
6289 return bfd_reloc_ok
;
6291 case R_ARM_THM_ALU_PREL_11_0
:
6292 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6295 bfd_signed_vma relocation
;
6297 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6298 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6300 if (globals
->use_rel
)
6302 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
6303 | ((insn
& (1 << 26)) >> 15);
6304 if (insn
& 0xf00000)
6305 signed_addend
= -signed_addend
;
6308 relocation
= value
+ signed_addend
;
6309 relocation
-= (input_section
->output_section
->vma
6310 + input_section
->output_offset
6313 value
= abs (relocation
);
6315 if (value
>= 0x1000)
6316 return bfd_reloc_overflow
;
6318 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
6319 | ((value
& 0x700) << 4)
6320 | ((value
& 0x800) << 15);
6324 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6325 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6327 return bfd_reloc_ok
;
6330 case R_ARM_THM_PC12
:
6331 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6334 bfd_signed_vma relocation
;
6336 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
6337 | bfd_get_16 (input_bfd
, hit_data
+ 2);
6339 if (globals
->use_rel
)
6341 signed_addend
= insn
& 0xfff;
6342 if (!(insn
& (1 << 23)))
6343 signed_addend
= -signed_addend
;
6346 relocation
= value
+ signed_addend
;
6347 relocation
-= (input_section
->output_section
->vma
6348 + input_section
->output_offset
6351 value
= abs (relocation
);
6353 if (value
>= 0x1000)
6354 return bfd_reloc_overflow
;
6356 insn
= (insn
& 0xff7ff000) | value
;
6357 if (relocation
>= 0)
6360 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
6361 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
6363 return bfd_reloc_ok
;
6366 case R_ARM_THM_XPC22
:
6367 case R_ARM_THM_CALL
:
6368 case R_ARM_THM_JUMP24
:
6369 /* Thumb BL (branch long instruction). */
6373 bfd_boolean overflow
= FALSE
;
6374 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6375 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6376 bfd_signed_vma reloc_signed_max
;
6377 bfd_signed_vma reloc_signed_min
;
6379 bfd_signed_vma signed_check
;
6381 int thumb2
= using_thumb2 (globals
);
6383 /* A branch to an undefined weak symbol is turned into a jump to
6384 the next instruction unless a PLT entry will be created. */
6385 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
6386 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
6388 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
6389 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
6390 return bfd_reloc_ok
;
6393 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6394 with Thumb-1) involving the J1 and J2 bits. */
6395 if (globals
->use_rel
)
6397 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
6398 bfd_vma upper
= upper_insn
& 0x3ff;
6399 bfd_vma lower
= lower_insn
& 0x7ff;
6400 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
6401 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
6402 bfd_vma i1
= j1
^ s
? 0 : 1;
6403 bfd_vma i2
= j2
^ s
? 0 : 1;
6405 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
6407 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
6409 signed_addend
= addend
;
6412 if (r_type
== R_ARM_THM_XPC22
)
6414 /* Check for Thumb to Thumb call. */
6415 /* FIXME: Should we translate the instruction into a BL
6416 instruction instead ? */
6417 if (sym_flags
== STT_ARM_TFUNC
)
6418 (*_bfd_error_handler
)
6419 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6421 h
? h
->root
.root
.string
: "(local)");
6425 /* If it is not a call to Thumb, assume call to Arm.
6426 If it is a call relative to a section name, then it is not a
6427 function call at all, but rather a long jump. Calls through
6428 the PLT do not require stubs. */
6429 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
6430 && (h
== NULL
|| splt
== NULL
6431 || h
->plt
.offset
== (bfd_vma
) -1))
6433 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6435 /* Convert BL to BLX. */
6436 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6438 else if (r_type
!= R_ARM_THM_CALL
)
6440 if (elf32_thumb_to_arm_stub
6441 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
6442 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
6444 return bfd_reloc_ok
;
6446 return bfd_reloc_dangerous
;
6449 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
6450 && r_type
== R_ARM_THM_CALL
)
6452 /* Make sure this is a BL. */
6453 lower_insn
|= 0x1800;
6457 /* Handle calls via the PLT. */
6458 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6460 value
= (splt
->output_section
->vma
6461 + splt
->output_offset
6463 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
6465 /* If the Thumb BLX instruction is available, convert the
6466 BL to a BLX instruction to call the ARM-mode PLT entry. */
6467 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6470 /* Target the Thumb stub before the ARM PLT entry. */
6471 value
-= PLT_THUMB_STUB_SIZE
;
6472 *unresolved_reloc_p
= FALSE
;
6475 if (r_type
== R_ARM_THM_CALL
)
6477 /* Check if a stub has to be inserted because the destination
6480 bfd_signed_vma branch_offset
;
6481 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6483 from
= (input_section
->output_section
->vma
6484 + input_section
->output_offset
6486 branch_offset
= (bfd_signed_vma
)(value
- from
);
6489 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
6490 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
6493 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
6494 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
6495 || ((sym_flags
!= STT_ARM_TFUNC
) && !globals
->use_blx
))
6497 /* The target is out of reach or we are changing modes, so
6498 redirect the branch to the local stub for this
6500 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6503 if (stub_entry
!= NULL
)
6504 value
= (stub_entry
->stub_offset
6505 + stub_entry
->stub_sec
->output_offset
6506 + stub_entry
->stub_sec
->output_section
->vma
);
6508 /* If this call becomes a call to Arm, force BLX. */
6509 if (globals
->use_blx
)
6512 && !arm_stub_is_thumb (stub_entry
->stub_type
))
6513 || (sym_flags
!= STT_ARM_TFUNC
))
6514 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
6519 relocation
= value
+ signed_addend
;
6521 relocation
-= (input_section
->output_section
->vma
6522 + input_section
->output_offset
6525 check
= relocation
>> howto
->rightshift
;
6527 /* If this is a signed value, the rightshift just dropped
6528 leading 1 bits (assuming twos complement). */
6529 if ((bfd_signed_vma
) relocation
>= 0)
6530 signed_check
= check
;
6532 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
6534 /* Calculate the permissable maximum and minimum values for
6535 this relocation according to whether we're relocating for
6537 bitsize
= howto
->bitsize
;
6540 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
6541 reloc_signed_min
= ~reloc_signed_max
;
6543 /* Assumes two's complement. */
6544 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6547 if ((lower_insn
& 0x5000) == 0x4000)
6548 /* For a BLX instruction, make sure that the relocation is rounded up
6549 to a word boundary. This follows the semantics of the instruction
6550 which specifies that bit 1 of the target address will come from bit
6551 1 of the base address. */
6552 relocation
= (relocation
+ 2) & ~ 3;
6554 /* Put RELOCATION back into the insn. Assumes two's complement.
6555 We use the Thumb-2 encoding, which is safe even if dealing with
6556 a Thumb-1 instruction by virtue of our overflow check above. */
6557 reloc_sign
= (signed_check
< 0) ? 1 : 0;
6558 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
6559 | ((relocation
>> 12) & 0x3ff)
6560 | (reloc_sign
<< 10);
6561 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
6562 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
6563 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
6564 | ((relocation
>> 1) & 0x7ff);
6566 /* Put the relocated value back in the object file: */
6567 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6568 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6570 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6574 case R_ARM_THM_JUMP19
:
6575 /* Thumb32 conditional branch instruction. */
6578 bfd_boolean overflow
= FALSE
;
6579 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
6580 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
6581 bfd_signed_vma reloc_signed_max
= 0xffffe;
6582 bfd_signed_vma reloc_signed_min
= -0x100000;
6583 bfd_signed_vma signed_check
;
6585 /* Need to refetch the addend, reconstruct the top three bits,
6586 and squish the two 11 bit pieces together. */
6587 if (globals
->use_rel
)
6589 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
6590 bfd_vma upper
= (upper_insn
& 0x003f);
6591 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
6592 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
6593 bfd_vma lower
= (lower_insn
& 0x07ff);
6598 upper
-= 0x0100; /* Sign extend. */
6600 addend
= (upper
<< 12) | (lower
<< 1);
6601 signed_addend
= addend
;
6604 /* Handle calls via the PLT. */
6605 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6607 value
= (splt
->output_section
->vma
6608 + splt
->output_offset
6610 /* Target the Thumb stub before the ARM PLT entry. */
6611 value
-= PLT_THUMB_STUB_SIZE
;
6612 *unresolved_reloc_p
= FALSE
;
6615 /* ??? Should handle interworking? GCC might someday try to
6616 use this for tail calls. */
6618 relocation
= value
+ signed_addend
;
6619 relocation
-= (input_section
->output_section
->vma
6620 + input_section
->output_offset
6622 signed_check
= (bfd_signed_vma
) relocation
;
6624 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6627 /* Put RELOCATION back into the insn. */
6629 bfd_vma S
= (relocation
& 0x00100000) >> 20;
6630 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
6631 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
6632 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
6633 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
6635 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
6636 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
6639 /* Put the relocated value back in the object file: */
6640 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
6641 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
6643 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
6646 case R_ARM_THM_JUMP11
:
6647 case R_ARM_THM_JUMP8
:
6648 case R_ARM_THM_JUMP6
:
6649 /* Thumb B (branch) instruction). */
6651 bfd_signed_vma relocation
;
6652 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
6653 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
6654 bfd_signed_vma signed_check
;
6656 /* CZB cannot jump backward. */
6657 if (r_type
== R_ARM_THM_JUMP6
)
6658 reloc_signed_min
= 0;
6660 if (globals
->use_rel
)
6662 /* Need to refetch addend. */
6663 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
6664 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6667 signed_addend
&= ~ howto
->src_mask
;
6668 signed_addend
|= addend
;
6671 signed_addend
= addend
;
6672 /* The value in the insn has been right shifted. We need to
6673 undo this, so that we can perform the address calculation
6674 in terms of bytes. */
6675 signed_addend
<<= howto
->rightshift
;
6677 relocation
= value
+ signed_addend
;
6679 relocation
-= (input_section
->output_section
->vma
6680 + input_section
->output_offset
6683 relocation
>>= howto
->rightshift
;
6684 signed_check
= relocation
;
6686 if (r_type
== R_ARM_THM_JUMP6
)
6687 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
6689 relocation
&= howto
->dst_mask
;
6690 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
6692 bfd_put_16 (input_bfd
, relocation
, hit_data
);
6694 /* Assumes two's complement. */
6695 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
6696 return bfd_reloc_overflow
;
6698 return bfd_reloc_ok
;
6701 case R_ARM_ALU_PCREL7_0
:
6702 case R_ARM_ALU_PCREL15_8
:
6703 case R_ARM_ALU_PCREL23_15
:
6708 insn
= bfd_get_32 (input_bfd
, hit_data
);
6709 if (globals
->use_rel
)
6711 /* Extract the addend. */
6712 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
6713 signed_addend
= addend
;
6715 relocation
= value
+ signed_addend
;
6717 relocation
-= (input_section
->output_section
->vma
6718 + input_section
->output_offset
6720 insn
= (insn
& ~0xfff)
6721 | ((howto
->bitpos
<< 7) & 0xf00)
6722 | ((relocation
>> howto
->bitpos
) & 0xff);
6723 bfd_put_32 (input_bfd
, value
, hit_data
);
6725 return bfd_reloc_ok
;
6727 case R_ARM_GNU_VTINHERIT
:
6728 case R_ARM_GNU_VTENTRY
:
6729 return bfd_reloc_ok
;
6731 case R_ARM_GOTOFF32
:
6732 /* Relocation is relative to the start of the
6733 global offset table. */
6735 BFD_ASSERT (sgot
!= NULL
);
6737 return bfd_reloc_notsupported
;
6739 /* If we are addressing a Thumb function, we need to adjust the
6740 address by one, so that attempts to call the function pointer will
6741 correctly interpret it as Thumb code. */
6742 if (sym_flags
== STT_ARM_TFUNC
)
6745 /* Note that sgot->output_offset is not involved in this
6746 calculation. We always want the start of .got. If we
6747 define _GLOBAL_OFFSET_TABLE in a different way, as is
6748 permitted by the ABI, we might have to change this
6750 value
-= sgot
->output_section
->vma
;
6751 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6752 contents
, rel
->r_offset
, value
,
6756 /* Use global offset table as symbol value. */
6757 BFD_ASSERT (sgot
!= NULL
);
6760 return bfd_reloc_notsupported
;
6762 *unresolved_reloc_p
= FALSE
;
6763 value
= sgot
->output_section
->vma
;
6764 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6765 contents
, rel
->r_offset
, value
,
6769 case R_ARM_GOT_PREL
:
6770 /* Relocation is to the entry for this symbol in the
6771 global offset table. */
6773 return bfd_reloc_notsupported
;
6780 off
= h
->got
.offset
;
6781 BFD_ASSERT (off
!= (bfd_vma
) -1);
6782 dyn
= globals
->root
.dynamic_sections_created
;
6784 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6786 && SYMBOL_REFERENCES_LOCAL (info
, h
))
6787 || (ELF_ST_VISIBILITY (h
->other
)
6788 && h
->root
.type
== bfd_link_hash_undefweak
))
6790 /* This is actually a static link, or it is a -Bsymbolic link
6791 and the symbol is defined locally. We must initialize this
6792 entry in the global offset table. Since the offset must
6793 always be a multiple of 4, we use the least significant bit
6794 to record whether we have initialized it already.
6796 When doing a dynamic link, we create a .rel(a).got relocation
6797 entry to initialize the value. This is done in the
6798 finish_dynamic_symbol routine. */
6803 /* If we are addressing a Thumb function, we need to
6804 adjust the address by one, so that attempts to
6805 call the function pointer will correctly
6806 interpret it as Thumb code. */
6807 if (sym_flags
== STT_ARM_TFUNC
)
6810 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6815 *unresolved_reloc_p
= FALSE
;
6817 value
= sgot
->output_offset
+ off
;
6823 BFD_ASSERT (local_got_offsets
!= NULL
&&
6824 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
6826 off
= local_got_offsets
[r_symndx
];
6828 /* The offset must always be a multiple of 4. We use the
6829 least significant bit to record whether we have already
6830 generated the necessary reloc. */
6835 /* If we are addressing a Thumb function, we need to
6836 adjust the address by one, so that attempts to
6837 call the function pointer will correctly
6838 interpret it as Thumb code. */
6839 if (sym_flags
== STT_ARM_TFUNC
)
6842 if (globals
->use_rel
)
6843 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
6848 Elf_Internal_Rela outrel
;
6851 srelgot
= (bfd_get_section_by_name
6852 (dynobj
, RELOC_SECTION (globals
, ".got")));
6853 BFD_ASSERT (srelgot
!= NULL
);
6855 outrel
.r_addend
= addend
+ value
;
6856 outrel
.r_offset
= (sgot
->output_section
->vma
6857 + sgot
->output_offset
6859 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
6860 loc
= srelgot
->contents
;
6861 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6862 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6865 local_got_offsets
[r_symndx
] |= 1;
6868 value
= sgot
->output_offset
+ off
;
6870 if (r_type
!= R_ARM_GOT32
)
6871 value
+= sgot
->output_section
->vma
;
6873 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6874 contents
, rel
->r_offset
, value
,
6877 case R_ARM_TLS_LDO32
:
6878 value
= value
- dtpoff_base (info
);
6880 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6881 contents
, rel
->r_offset
, value
,
6884 case R_ARM_TLS_LDM32
:
6888 if (globals
->sgot
== NULL
)
6891 off
= globals
->tls_ldm_got
.offset
;
6897 /* If we don't know the module number, create a relocation
6901 Elf_Internal_Rela outrel
;
6904 if (globals
->srelgot
== NULL
)
6907 outrel
.r_addend
= 0;
6908 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
6909 + globals
->sgot
->output_offset
+ off
);
6910 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
6912 if (globals
->use_rel
)
6913 bfd_put_32 (output_bfd
, outrel
.r_addend
,
6914 globals
->sgot
->contents
+ off
);
6916 loc
= globals
->srelgot
->contents
;
6917 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
6918 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6921 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
6923 globals
->tls_ldm_got
.offset
|= 1;
6926 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
6927 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
6929 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6930 contents
, rel
->r_offset
, value
,
6934 case R_ARM_TLS_GD32
:
6935 case R_ARM_TLS_IE32
:
6941 if (globals
->sgot
== NULL
)
6948 dyn
= globals
->root
.dynamic_sections_created
;
6949 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
6951 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
6953 *unresolved_reloc_p
= FALSE
;
6956 off
= h
->got
.offset
;
6957 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
6961 if (local_got_offsets
== NULL
)
6963 off
= local_got_offsets
[r_symndx
];
6964 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
6967 if (tls_type
== GOT_UNKNOWN
)
6974 bfd_boolean need_relocs
= FALSE
;
6975 Elf_Internal_Rela outrel
;
6976 bfd_byte
*loc
= NULL
;
6979 /* The GOT entries have not been initialized yet. Do it
6980 now, and emit any relocations. If both an IE GOT and a
6981 GD GOT are necessary, we emit the GD first. */
6983 if ((info
->shared
|| indx
!= 0)
6985 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6986 || h
->root
.type
!= bfd_link_hash_undefweak
))
6989 if (globals
->srelgot
== NULL
)
6991 loc
= globals
->srelgot
->contents
;
6992 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
6995 if (tls_type
& GOT_TLS_GD
)
6999 outrel
.r_addend
= 0;
7000 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7001 + globals
->sgot
->output_offset
7003 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
7005 if (globals
->use_rel
)
7006 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7007 globals
->sgot
->contents
+ cur_off
);
7009 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7010 globals
->srelgot
->reloc_count
++;
7011 loc
+= RELOC_SIZE (globals
);
7014 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7015 globals
->sgot
->contents
+ cur_off
+ 4);
7018 outrel
.r_addend
= 0;
7019 outrel
.r_info
= ELF32_R_INFO (indx
,
7020 R_ARM_TLS_DTPOFF32
);
7021 outrel
.r_offset
+= 4;
7023 if (globals
->use_rel
)
7024 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7025 globals
->sgot
->contents
+ cur_off
+ 4);
7028 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7029 globals
->srelgot
->reloc_count
++;
7030 loc
+= RELOC_SIZE (globals
);
7035 /* If we are not emitting relocations for a
7036 general dynamic reference, then we must be in a
7037 static link or an executable link with the
7038 symbol binding locally. Mark it as belonging
7039 to module 1, the executable. */
7040 bfd_put_32 (output_bfd
, 1,
7041 globals
->sgot
->contents
+ cur_off
);
7042 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7043 globals
->sgot
->contents
+ cur_off
+ 4);
7049 if (tls_type
& GOT_TLS_IE
)
7054 outrel
.r_addend
= value
- dtpoff_base (info
);
7056 outrel
.r_addend
= 0;
7057 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7058 + globals
->sgot
->output_offset
7060 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
7062 if (globals
->use_rel
)
7063 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7064 globals
->sgot
->contents
+ cur_off
);
7066 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7067 globals
->srelgot
->reloc_count
++;
7068 loc
+= RELOC_SIZE (globals
);
7071 bfd_put_32 (output_bfd
, tpoff (info
, value
),
7072 globals
->sgot
->contents
+ cur_off
);
7079 local_got_offsets
[r_symndx
] |= 1;
7082 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
7084 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7085 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7087 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7088 contents
, rel
->r_offset
, value
,
7092 case R_ARM_TLS_LE32
:
7095 (*_bfd_error_handler
)
7096 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7097 input_bfd
, input_section
,
7098 (long) rel
->r_offset
, howto
->name
);
7102 value
= tpoff (info
, value
);
7104 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7105 contents
, rel
->r_offset
, value
,
7109 if (globals
->fix_v4bx
)
7111 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7113 /* Ensure that we have a BX instruction. */
7114 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
7116 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
7118 /* Branch to veneer. */
7120 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
7121 glue_addr
-= input_section
->output_section
->vma
7122 + input_section
->output_offset
7123 + rel
->r_offset
+ 8;
7124 insn
= (insn
& 0xf0000000) | 0x0a000000
7125 | ((glue_addr
>> 2) & 0x00ffffff);
7129 /* Preserve Rm (lowest four bits) and the condition code
7130 (highest four bits). Other bits encode MOV PC,Rm. */
7131 insn
= (insn
& 0xf000000f) | 0x01a0f000;
7134 bfd_put_32 (input_bfd
, insn
, hit_data
);
7136 return bfd_reloc_ok
;
7138 case R_ARM_MOVW_ABS_NC
:
7139 case R_ARM_MOVT_ABS
:
7140 case R_ARM_MOVW_PREL_NC
:
7141 case R_ARM_MOVT_PREL
:
7142 /* Until we properly support segment-base-relative addressing then
7143 we assume the segment base to be zero, as for the group relocations.
7144 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7145 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7146 case R_ARM_MOVW_BREL_NC
:
7147 case R_ARM_MOVW_BREL
:
7148 case R_ARM_MOVT_BREL
:
7150 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7152 if (globals
->use_rel
)
7154 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
7155 signed_addend
= (addend
^ 0x8000) - 0x8000;
7158 value
+= signed_addend
;
7160 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
7161 value
-= (input_section
->output_section
->vma
7162 + input_section
->output_offset
+ rel
->r_offset
);
7164 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
7165 return bfd_reloc_overflow
;
7167 if (sym_flags
== STT_ARM_TFUNC
)
7170 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
7171 || r_type
== R_ARM_MOVT_BREL
)
7175 insn
|= value
& 0xfff;
7176 insn
|= (value
& 0xf000) << 4;
7177 bfd_put_32 (input_bfd
, insn
, hit_data
);
7179 return bfd_reloc_ok
;
7181 case R_ARM_THM_MOVW_ABS_NC
:
7182 case R_ARM_THM_MOVT_ABS
:
7183 case R_ARM_THM_MOVW_PREL_NC
:
7184 case R_ARM_THM_MOVT_PREL
:
7185 /* Until we properly support segment-base-relative addressing then
7186 we assume the segment base to be zero, as for the above relocations.
7187 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7188 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7189 as R_ARM_THM_MOVT_ABS. */
7190 case R_ARM_THM_MOVW_BREL_NC
:
7191 case R_ARM_THM_MOVW_BREL
:
7192 case R_ARM_THM_MOVT_BREL
:
7196 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
7197 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
7199 if (globals
->use_rel
)
7201 addend
= ((insn
>> 4) & 0xf000)
7202 | ((insn
>> 15) & 0x0800)
7203 | ((insn
>> 4) & 0x0700)
7205 signed_addend
= (addend
^ 0x8000) - 0x8000;
7208 value
+= signed_addend
;
7210 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
7211 value
-= (input_section
->output_section
->vma
7212 + input_section
->output_offset
+ rel
->r_offset
);
7214 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
7215 return bfd_reloc_overflow
;
7217 if (sym_flags
== STT_ARM_TFUNC
)
7220 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
7221 || r_type
== R_ARM_THM_MOVT_BREL
)
7225 insn
|= (value
& 0xf000) << 4;
7226 insn
|= (value
& 0x0800) << 15;
7227 insn
|= (value
& 0x0700) << 4;
7228 insn
|= (value
& 0x00ff);
7230 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7231 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7233 return bfd_reloc_ok
;
7235 case R_ARM_ALU_PC_G0_NC
:
7236 case R_ARM_ALU_PC_G1_NC
:
7237 case R_ARM_ALU_PC_G0
:
7238 case R_ARM_ALU_PC_G1
:
7239 case R_ARM_ALU_PC_G2
:
7240 case R_ARM_ALU_SB_G0_NC
:
7241 case R_ARM_ALU_SB_G1_NC
:
7242 case R_ARM_ALU_SB_G0
:
7243 case R_ARM_ALU_SB_G1
:
7244 case R_ARM_ALU_SB_G2
:
7246 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7247 bfd_vma pc
= input_section
->output_section
->vma
7248 + input_section
->output_offset
+ rel
->r_offset
;
7249 /* sb should be the origin of the *segment* containing the symbol.
7250 It is not clear how to obtain this OS-dependent value, so we
7251 make an arbitrary choice of zero. */
7255 bfd_signed_vma signed_value
;
7258 /* Determine which group of bits to select. */
7261 case R_ARM_ALU_PC_G0_NC
:
7262 case R_ARM_ALU_PC_G0
:
7263 case R_ARM_ALU_SB_G0_NC
:
7264 case R_ARM_ALU_SB_G0
:
7268 case R_ARM_ALU_PC_G1_NC
:
7269 case R_ARM_ALU_PC_G1
:
7270 case R_ARM_ALU_SB_G1_NC
:
7271 case R_ARM_ALU_SB_G1
:
7275 case R_ARM_ALU_PC_G2
:
7276 case R_ARM_ALU_SB_G2
:
7284 /* If REL, extract the addend from the insn. If RELA, it will
7285 have already been fetched for us. */
7286 if (globals
->use_rel
)
7289 bfd_vma constant
= insn
& 0xff;
7290 bfd_vma rotation
= (insn
& 0xf00) >> 8;
7293 signed_addend
= constant
;
7296 /* Compensate for the fact that in the instruction, the
7297 rotation is stored in multiples of 2 bits. */
7300 /* Rotate "constant" right by "rotation" bits. */
7301 signed_addend
= (constant
>> rotation
) |
7302 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
7305 /* Determine if the instruction is an ADD or a SUB.
7306 (For REL, this determines the sign of the addend.) */
7307 negative
= identify_add_or_sub (insn
);
7310 (*_bfd_error_handler
)
7311 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7312 input_bfd
, input_section
,
7313 (long) rel
->r_offset
, howto
->name
);
7314 return bfd_reloc_overflow
;
7317 signed_addend
*= negative
;
7320 /* Compute the value (X) to go in the place. */
7321 if (r_type
== R_ARM_ALU_PC_G0_NC
7322 || r_type
== R_ARM_ALU_PC_G1_NC
7323 || r_type
== R_ARM_ALU_PC_G0
7324 || r_type
== R_ARM_ALU_PC_G1
7325 || r_type
== R_ARM_ALU_PC_G2
)
7327 signed_value
= value
- pc
+ signed_addend
;
7329 /* Section base relative. */
7330 signed_value
= value
- sb
+ signed_addend
;
7332 /* If the target symbol is a Thumb function, then set the
7333 Thumb bit in the address. */
7334 if (sym_flags
== STT_ARM_TFUNC
)
7337 /* Calculate the value of the relevant G_n, in encoded
7338 constant-with-rotation format. */
7339 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
7342 /* Check for overflow if required. */
7343 if ((r_type
== R_ARM_ALU_PC_G0
7344 || r_type
== R_ARM_ALU_PC_G1
7345 || r_type
== R_ARM_ALU_PC_G2
7346 || r_type
== R_ARM_ALU_SB_G0
7347 || r_type
== R_ARM_ALU_SB_G1
7348 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
7350 (*_bfd_error_handler
)
7351 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7352 input_bfd
, input_section
,
7353 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7354 return bfd_reloc_overflow
;
7357 /* Mask out the value and the ADD/SUB part of the opcode; take care
7358 not to destroy the S bit. */
7361 /* Set the opcode according to whether the value to go in the
7362 place is negative. */
7363 if (signed_value
< 0)
7368 /* Encode the offset. */
7371 bfd_put_32 (input_bfd
, insn
, hit_data
);
7373 return bfd_reloc_ok
;
7375 case R_ARM_LDR_PC_G0
:
7376 case R_ARM_LDR_PC_G1
:
7377 case R_ARM_LDR_PC_G2
:
7378 case R_ARM_LDR_SB_G0
:
7379 case R_ARM_LDR_SB_G1
:
7380 case R_ARM_LDR_SB_G2
:
7382 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7383 bfd_vma pc
= input_section
->output_section
->vma
7384 + input_section
->output_offset
+ rel
->r_offset
;
7385 bfd_vma sb
= 0; /* See note above. */
7387 bfd_signed_vma signed_value
;
7390 /* Determine which groups of bits to calculate. */
7393 case R_ARM_LDR_PC_G0
:
7394 case R_ARM_LDR_SB_G0
:
7398 case R_ARM_LDR_PC_G1
:
7399 case R_ARM_LDR_SB_G1
:
7403 case R_ARM_LDR_PC_G2
:
7404 case R_ARM_LDR_SB_G2
:
7412 /* If REL, extract the addend from the insn. If RELA, it will
7413 have already been fetched for us. */
7414 if (globals
->use_rel
)
7416 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7417 signed_addend
= negative
* (insn
& 0xfff);
7420 /* Compute the value (X) to go in the place. */
7421 if (r_type
== R_ARM_LDR_PC_G0
7422 || r_type
== R_ARM_LDR_PC_G1
7423 || r_type
== R_ARM_LDR_PC_G2
)
7425 signed_value
= value
- pc
+ signed_addend
;
7427 /* Section base relative. */
7428 signed_value
= value
- sb
+ signed_addend
;
7430 /* Calculate the value of the relevant G_{n-1} to obtain
7431 the residual at that stage. */
7432 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7434 /* Check for overflow. */
7435 if (residual
>= 0x1000)
7437 (*_bfd_error_handler
)
7438 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7439 input_bfd
, input_section
,
7440 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7441 return bfd_reloc_overflow
;
7444 /* Mask out the value and U bit. */
7447 /* Set the U bit if the value to go in the place is non-negative. */
7448 if (signed_value
>= 0)
7451 /* Encode the offset. */
7454 bfd_put_32 (input_bfd
, insn
, hit_data
);
7456 return bfd_reloc_ok
;
7458 case R_ARM_LDRS_PC_G0
:
7459 case R_ARM_LDRS_PC_G1
:
7460 case R_ARM_LDRS_PC_G2
:
7461 case R_ARM_LDRS_SB_G0
:
7462 case R_ARM_LDRS_SB_G1
:
7463 case R_ARM_LDRS_SB_G2
:
7465 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7466 bfd_vma pc
= input_section
->output_section
->vma
7467 + input_section
->output_offset
+ rel
->r_offset
;
7468 bfd_vma sb
= 0; /* See note above. */
7470 bfd_signed_vma signed_value
;
7473 /* Determine which groups of bits to calculate. */
7476 case R_ARM_LDRS_PC_G0
:
7477 case R_ARM_LDRS_SB_G0
:
7481 case R_ARM_LDRS_PC_G1
:
7482 case R_ARM_LDRS_SB_G1
:
7486 case R_ARM_LDRS_PC_G2
:
7487 case R_ARM_LDRS_SB_G2
:
7495 /* If REL, extract the addend from the insn. If RELA, it will
7496 have already been fetched for us. */
7497 if (globals
->use_rel
)
7499 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7500 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
7503 /* Compute the value (X) to go in the place. */
7504 if (r_type
== R_ARM_LDRS_PC_G0
7505 || r_type
== R_ARM_LDRS_PC_G1
7506 || r_type
== R_ARM_LDRS_PC_G2
)
7508 signed_value
= value
- pc
+ signed_addend
;
7510 /* Section base relative. */
7511 signed_value
= value
- sb
+ signed_addend
;
7513 /* Calculate the value of the relevant G_{n-1} to obtain
7514 the residual at that stage. */
7515 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7517 /* Check for overflow. */
7518 if (residual
>= 0x100)
7520 (*_bfd_error_handler
)
7521 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7522 input_bfd
, input_section
,
7523 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7524 return bfd_reloc_overflow
;
7527 /* Mask out the value and U bit. */
7530 /* Set the U bit if the value to go in the place is non-negative. */
7531 if (signed_value
>= 0)
7534 /* Encode the offset. */
7535 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
7537 bfd_put_32 (input_bfd
, insn
, hit_data
);
7539 return bfd_reloc_ok
;
7541 case R_ARM_LDC_PC_G0
:
7542 case R_ARM_LDC_PC_G1
:
7543 case R_ARM_LDC_PC_G2
:
7544 case R_ARM_LDC_SB_G0
:
7545 case R_ARM_LDC_SB_G1
:
7546 case R_ARM_LDC_SB_G2
:
7548 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7549 bfd_vma pc
= input_section
->output_section
->vma
7550 + input_section
->output_offset
+ rel
->r_offset
;
7551 bfd_vma sb
= 0; /* See note above. */
7553 bfd_signed_vma signed_value
;
7556 /* Determine which groups of bits to calculate. */
7559 case R_ARM_LDC_PC_G0
:
7560 case R_ARM_LDC_SB_G0
:
7564 case R_ARM_LDC_PC_G1
:
7565 case R_ARM_LDC_SB_G1
:
7569 case R_ARM_LDC_PC_G2
:
7570 case R_ARM_LDC_SB_G2
:
7578 /* If REL, extract the addend from the insn. If RELA, it will
7579 have already been fetched for us. */
7580 if (globals
->use_rel
)
7582 int negative
= (insn
& (1 << 23)) ? 1 : -1;
7583 signed_addend
= negative
* ((insn
& 0xff) << 2);
7586 /* Compute the value (X) to go in the place. */
7587 if (r_type
== R_ARM_LDC_PC_G0
7588 || r_type
== R_ARM_LDC_PC_G1
7589 || r_type
== R_ARM_LDC_PC_G2
)
7591 signed_value
= value
- pc
+ signed_addend
;
7593 /* Section base relative. */
7594 signed_value
= value
- sb
+ signed_addend
;
7596 /* Calculate the value of the relevant G_{n-1} to obtain
7597 the residual at that stage. */
7598 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
7600 /* Check for overflow. (The absolute value to go in the place must be
7601 divisible by four and, after having been divided by four, must
7602 fit in eight bits.) */
7603 if ((residual
& 0x3) != 0 || residual
>= 0x400)
7605 (*_bfd_error_handler
)
7606 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7607 input_bfd
, input_section
,
7608 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
7609 return bfd_reloc_overflow
;
7612 /* Mask out the value and U bit. */
7615 /* Set the U bit if the value to go in the place is non-negative. */
7616 if (signed_value
>= 0)
7619 /* Encode the offset. */
7620 insn
|= residual
>> 2;
7622 bfd_put_32 (input_bfd
, insn
, hit_data
);
7624 return bfd_reloc_ok
;
7627 return bfd_reloc_notsupported
;
7631 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7633 arm_add_to_rel (bfd
* abfd
,
7635 reloc_howto_type
* howto
,
7636 bfd_signed_vma increment
)
7638 bfd_signed_vma addend
;
7640 if (howto
->type
== R_ARM_THM_CALL
7641 || howto
->type
== R_ARM_THM_JUMP24
)
7643 int upper_insn
, lower_insn
;
7646 upper_insn
= bfd_get_16 (abfd
, address
);
7647 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
7648 upper
= upper_insn
& 0x7ff;
7649 lower
= lower_insn
& 0x7ff;
7651 addend
= (upper
<< 12) | (lower
<< 1);
7652 addend
+= increment
;
7655 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
7656 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
7658 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
7659 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
7665 contents
= bfd_get_32 (abfd
, address
);
7667 /* Get the (signed) value from the instruction. */
7668 addend
= contents
& howto
->src_mask
;
7669 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7671 bfd_signed_vma mask
;
7674 mask
&= ~ howto
->src_mask
;
7678 /* Add in the increment, (which is a byte value). */
7679 switch (howto
->type
)
7682 addend
+= increment
;
7689 addend
<<= howto
->size
;
7690 addend
+= increment
;
7692 /* Should we check for overflow here ? */
7694 /* Drop any undesired bits. */
7695 addend
>>= howto
->rightshift
;
7699 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
7701 bfd_put_32 (abfd
, contents
, address
);
7705 #define IS_ARM_TLS_RELOC(R_TYPE) \
7706 ((R_TYPE) == R_ARM_TLS_GD32 \
7707 || (R_TYPE) == R_ARM_TLS_LDO32 \
7708 || (R_TYPE) == R_ARM_TLS_LDM32 \
7709 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7710 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7711 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7712 || (R_TYPE) == R_ARM_TLS_LE32 \
7713 || (R_TYPE) == R_ARM_TLS_IE32)
7715 /* Relocate an ARM ELF section. */
7718 elf32_arm_relocate_section (bfd
* output_bfd
,
7719 struct bfd_link_info
* info
,
7721 asection
* input_section
,
7722 bfd_byte
* contents
,
7723 Elf_Internal_Rela
* relocs
,
7724 Elf_Internal_Sym
* local_syms
,
7725 asection
** local_sections
)
7727 Elf_Internal_Shdr
*symtab_hdr
;
7728 struct elf_link_hash_entry
**sym_hashes
;
7729 Elf_Internal_Rela
*rel
;
7730 Elf_Internal_Rela
*relend
;
7732 struct elf32_arm_link_hash_table
* globals
;
7734 globals
= elf32_arm_hash_table (info
);
7736 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
7737 sym_hashes
= elf_sym_hashes (input_bfd
);
7740 relend
= relocs
+ input_section
->reloc_count
;
7741 for (; rel
< relend
; rel
++)
7744 reloc_howto_type
* howto
;
7745 unsigned long r_symndx
;
7746 Elf_Internal_Sym
* sym
;
7748 struct elf_link_hash_entry
* h
;
7750 bfd_reloc_status_type r
;
7753 bfd_boolean unresolved_reloc
= FALSE
;
7754 char *error_message
= NULL
;
7756 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7757 r_type
= ELF32_R_TYPE (rel
->r_info
);
7758 r_type
= arm_real_reloc_type (globals
, r_type
);
7760 if ( r_type
== R_ARM_GNU_VTENTRY
7761 || r_type
== R_ARM_GNU_VTINHERIT
)
7764 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
7765 howto
= bfd_reloc
.howto
;
7771 if (r_symndx
< symtab_hdr
->sh_info
)
7773 sym
= local_syms
+ r_symndx
;
7774 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
7775 sec
= local_sections
[r_symndx
];
7776 if (globals
->use_rel
)
7778 relocation
= (sec
->output_section
->vma
7779 + sec
->output_offset
7781 if (!info
->relocatable
7782 && (sec
->flags
& SEC_MERGE
)
7783 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7786 bfd_vma addend
, value
;
7790 case R_ARM_MOVW_ABS_NC
:
7791 case R_ARM_MOVT_ABS
:
7792 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7793 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
7794 addend
= (addend
^ 0x8000) - 0x8000;
7797 case R_ARM_THM_MOVW_ABS_NC
:
7798 case R_ARM_THM_MOVT_ABS
:
7799 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
7801 value
|= bfd_get_16 (input_bfd
,
7802 contents
+ rel
->r_offset
+ 2);
7803 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
7804 | ((value
& 0x04000000) >> 15);
7805 addend
= (addend
^ 0x8000) - 0x8000;
7809 if (howto
->rightshift
7810 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
7812 (*_bfd_error_handler
)
7813 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7814 input_bfd
, input_section
,
7815 (long) rel
->r_offset
, howto
->name
);
7819 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7821 /* Get the (signed) value from the instruction. */
7822 addend
= value
& howto
->src_mask
;
7823 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7825 bfd_signed_vma mask
;
7828 mask
&= ~ howto
->src_mask
;
7836 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
7838 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
7840 /* Cases here must match those in the preceeding
7841 switch statement. */
7844 case R_ARM_MOVW_ABS_NC
:
7845 case R_ARM_MOVT_ABS
:
7846 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
7848 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7851 case R_ARM_THM_MOVW_ABS_NC
:
7852 case R_ARM_THM_MOVT_ABS
:
7853 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
7854 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
7855 bfd_put_16 (input_bfd
, value
>> 16,
7856 contents
+ rel
->r_offset
);
7857 bfd_put_16 (input_bfd
, value
,
7858 contents
+ rel
->r_offset
+ 2);
7862 value
= (value
& ~ howto
->dst_mask
)
7863 | (addend
& howto
->dst_mask
);
7864 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
7870 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7876 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
7877 r_symndx
, symtab_hdr
, sym_hashes
,
7879 unresolved_reloc
, warned
);
7884 if (sec
!= NULL
&& elf_discarded_section (sec
))
7886 /* For relocs against symbols from removed linkonce sections,
7887 or sections discarded by a linker script, we just want the
7888 section contents zeroed. Avoid any special processing. */
7889 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
7895 if (info
->relocatable
)
7897 /* This is a relocatable link. We don't have to change
7898 anything, unless the reloc is against a section symbol,
7899 in which case we have to adjust according to where the
7900 section symbol winds up in the output section. */
7901 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7903 if (globals
->use_rel
)
7904 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
7905 howto
, (bfd_signed_vma
) sec
->output_offset
);
7907 rel
->r_addend
+= sec
->output_offset
;
7913 name
= h
->root
.root
.string
;
7916 name
= (bfd_elf_string_from_elf_section
7917 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
7918 if (name
== NULL
|| *name
== '\0')
7919 name
= bfd_section_name (input_bfd
, sec
);
7923 && r_type
!= R_ARM_NONE
7925 || h
->root
.type
== bfd_link_hash_defined
7926 || h
->root
.type
== bfd_link_hash_defweak
)
7927 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
7929 (*_bfd_error_handler
)
7930 ((sym_type
== STT_TLS
7931 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7932 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7935 (long) rel
->r_offset
,
7940 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
7941 input_section
, contents
, rel
,
7942 relocation
, info
, sec
, name
,
7943 (h
? ELF_ST_TYPE (h
->type
) :
7944 ELF_ST_TYPE (sym
->st_info
)), h
,
7945 &unresolved_reloc
, &error_message
);
7947 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7948 because such sections are not SEC_ALLOC and thus ld.so will
7949 not process them. */
7950 if (unresolved_reloc
7951 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
7954 (*_bfd_error_handler
)
7955 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7958 (long) rel
->r_offset
,
7960 h
->root
.root
.string
);
7964 if (r
!= bfd_reloc_ok
)
7968 case bfd_reloc_overflow
:
7969 /* If the overflowing reloc was to an undefined symbol,
7970 we have already printed one error message and there
7971 is no point complaining again. */
7973 h
->root
.type
!= bfd_link_hash_undefined
)
7974 && (!((*info
->callbacks
->reloc_overflow
)
7975 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
7976 (bfd_vma
) 0, input_bfd
, input_section
,
7981 case bfd_reloc_undefined
:
7982 if (!((*info
->callbacks
->undefined_symbol
)
7983 (info
, name
, input_bfd
, input_section
,
7984 rel
->r_offset
, TRUE
)))
7988 case bfd_reloc_outofrange
:
7989 error_message
= _("out of range");
7992 case bfd_reloc_notsupported
:
7993 error_message
= _("unsupported relocation");
7996 case bfd_reloc_dangerous
:
7997 /* error_message should already be set. */
8001 error_message
= _("unknown error");
8005 BFD_ASSERT (error_message
!= NULL
);
8006 if (!((*info
->callbacks
->reloc_dangerous
)
8007 (info
, error_message
, input_bfd
, input_section
,
8018 /* Set the right machine number. */
8021 elf32_arm_object_p (bfd
*abfd
)
8025 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
8027 if (mach
!= bfd_mach_arm_unknown
)
8028 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8030 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
8031 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
8034 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
8039 /* Function to keep ARM specific flags in the ELF header. */
8042 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
8044 if (elf_flags_init (abfd
)
8045 && elf_elfheader (abfd
)->e_flags
!= flags
)
8047 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
8049 if (flags
& EF_ARM_INTERWORK
)
8050 (*_bfd_error_handler
)
8051 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8055 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8061 elf_elfheader (abfd
)->e_flags
= flags
;
8062 elf_flags_init (abfd
) = TRUE
;
8068 /* Copy backend specific data from one object module to another. */
8071 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
8076 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8079 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8080 out_flags
= elf_elfheader (obfd
)->e_flags
;
8082 if (elf_flags_init (obfd
)
8083 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
8084 && in_flags
!= out_flags
)
8086 /* Cannot mix APCS26 and APCS32 code. */
8087 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8090 /* Cannot mix float APCS and non-float APCS code. */
8091 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8094 /* If the src and dest have different interworking flags
8095 then turn off the interworking bit. */
8096 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
8098 if (out_flags
& EF_ARM_INTERWORK
)
8100 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8103 in_flags
&= ~EF_ARM_INTERWORK
;
8106 /* Likewise for PIC, though don't warn for this case. */
8107 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
8108 in_flags
&= ~EF_ARM_PIC
;
8111 elf_elfheader (obfd
)->e_flags
= in_flags
;
8112 elf_flags_init (obfd
) = TRUE
;
8114 /* Also copy the EI_OSABI field. */
8115 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
8116 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
8118 /* Copy object attributes. */
8119 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8124 /* Values for Tag_ABI_PCS_R9_use. */
8133 /* Values for Tag_ABI_PCS_RW_data. */
8136 AEABI_PCS_RW_data_absolute
,
8137 AEABI_PCS_RW_data_PCrel
,
8138 AEABI_PCS_RW_data_SBrel
,
8139 AEABI_PCS_RW_data_unused
8142 /* Values for Tag_ABI_enum_size. */
8148 AEABI_enum_forced_wide
8151 /* Determine whether an object attribute tag takes an integer, a
8155 elf32_arm_obj_attrs_arg_type (int tag
)
8157 if (tag
== Tag_compatibility
)
8159 else if (tag
== 4 || tag
== 5)
8164 return (tag
& 1) != 0 ? 2 : 1;
8167 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8168 are conflicting attributes. */
8171 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
8173 obj_attribute
*in_attr
;
8174 obj_attribute
*out_attr
;
8175 obj_attribute_list
*in_list
;
8176 /* Some tags have 0 = don't care, 1 = strong requirement,
8177 2 = weak requirement. */
8178 static const int order_312
[3] = {3, 1, 2};
8179 /* For use with Tag_VFP_arch. */
8180 static const int order_01243
[5] = {0, 1, 2, 4, 3};
8183 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
8185 /* This is the first object. Copy the attributes. */
8186 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
8188 /* Use the Tag_null value to indicate the attributes have been
8190 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
8195 in_attr
= elf_known_obj_attributes_proc (ibfd
);
8196 out_attr
= elf_known_obj_attributes_proc (obfd
);
8197 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8198 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
8200 /* Ignore mismatches if teh object doesn't use floating point. */
8201 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
8202 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
8203 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
8206 (_("ERROR: %B uses VFP register arguments, %B does not"),
8212 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
8214 /* Merge this attribute with existing attributes. */
8217 case Tag_CPU_raw_name
:
8219 /* Use whichever has the greatest architecture requirements. We
8220 won't necessarily have both the above tags, so make sure input
8221 name is non-NULL. */
8222 if (in_attr
[Tag_CPU_arch
].i
> out_attr
[Tag_CPU_arch
].i
8224 out_attr
[i
].s
= _bfd_elf_attr_strdup (obfd
, in_attr
[i
].s
);
8227 case Tag_ABI_optimization_goals
:
8228 case Tag_ABI_FP_optimization_goals
:
8229 /* Use the first value seen. */
8233 case Tag_ARM_ISA_use
:
8234 case Tag_THUMB_ISA_use
:
8237 /* ??? Do NEON and WMMX conflict? */
8238 case Tag_ABI_FP_rounding
:
8239 case Tag_ABI_FP_denormal
:
8240 case Tag_ABI_FP_exceptions
:
8241 case Tag_ABI_FP_user_exceptions
:
8242 case Tag_ABI_FP_number_model
:
8243 case Tag_ABI_align8_preserved
:
8244 case Tag_ABI_HardFP_use
:
8245 /* Use the largest value specified. */
8246 if (in_attr
[i
].i
> out_attr
[i
].i
)
8247 out_attr
[i
].i
= in_attr
[i
].i
;
8250 case Tag_CPU_arch_profile
:
8251 /* Warn if conflicting architecture profiles used. */
8252 if (out_attr
[i
].i
&& in_attr
[i
].i
&& in_attr
[i
].i
!= out_attr
[i
].i
)
8255 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8256 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
8260 out_attr
[i
].i
= in_attr
[i
].i
;
8263 if (in_attr
[i
].i
> 4 || out_attr
[i
].i
> 4
8264 || order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
])
8265 out_attr
[i
].i
= in_attr
[i
].i
;
8267 case Tag_PCS_config
:
8268 if (out_attr
[i
].i
== 0)
8269 out_attr
[i
].i
= in_attr
[i
].i
;
8270 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
8272 /* It's sometimes ok to mix different configs, so this is only
8275 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
8278 case Tag_ABI_PCS_R9_use
:
8279 if (in_attr
[i
].i
!= out_attr
[i
].i
8280 && out_attr
[i
].i
!= AEABI_R9_unused
8281 && in_attr
[i
].i
!= AEABI_R9_unused
)
8284 (_("ERROR: %B: Conflicting use of R9"), ibfd
);
8287 if (out_attr
[i
].i
== AEABI_R9_unused
)
8288 out_attr
[i
].i
= in_attr
[i
].i
;
8290 case Tag_ABI_PCS_RW_data
:
8291 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
8292 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
8293 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
8296 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8300 /* Use the smallest value specified. */
8301 if (in_attr
[i
].i
< out_attr
[i
].i
)
8302 out_attr
[i
].i
= in_attr
[i
].i
;
8304 case Tag_ABI_PCS_RO_data
:
8305 /* Use the smallest value specified. */
8306 if (in_attr
[i
].i
< out_attr
[i
].i
)
8307 out_attr
[i
].i
= in_attr
[i
].i
;
8309 case Tag_ABI_PCS_GOT_use
:
8310 if (in_attr
[i
].i
> 2 || out_attr
[i
].i
> 2
8311 || order_312
[in_attr
[i
].i
] < order_312
[out_attr
[i
].i
])
8312 out_attr
[i
].i
= in_attr
[i
].i
;
8314 case Tag_ABI_PCS_wchar_t
:
8315 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
8316 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
8319 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8320 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
8322 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
8323 out_attr
[i
].i
= in_attr
[i
].i
;
8325 case Tag_ABI_align8_needed
:
8326 /* ??? Check against Tag_ABI_align8_preserved. */
8327 if (in_attr
[i
].i
> 2 || out_attr
[i
].i
> 2
8328 || order_312
[in_attr
[i
].i
] < order_312
[out_attr
[i
].i
])
8329 out_attr
[i
].i
= in_attr
[i
].i
;
8331 case Tag_ABI_enum_size
:
8332 if (in_attr
[i
].i
!= AEABI_enum_unused
)
8334 if (out_attr
[i
].i
== AEABI_enum_unused
8335 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
8337 /* The existing object is compatible with anything.
8338 Use whatever requirements the new object has. */
8339 out_attr
[i
].i
= in_attr
[i
].i
;
8341 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
8342 && out_attr
[i
].i
!= in_attr
[i
].i
8343 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
8345 const char *aeabi_enum_names
[] =
8346 { "", "variable-size", "32-bit", "" };
8348 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8349 ibfd
, aeabi_enum_names
[in_attr
[i
].i
],
8350 aeabi_enum_names
[out_attr
[i
].i
]);
8354 case Tag_ABI_VFP_args
:
8357 case Tag_ABI_WMMX_args
:
8358 if (in_attr
[i
].i
!= out_attr
[i
].i
)
8361 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8366 default: /* All known attributes should be explicitly covered. */
8370 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
8371 switch (in_attr
[i
].type
)
8375 out_attr
[i
].type
= 1;
8380 out_attr
[i
].type
= 2;
8388 /* Merge Tag_compatibility attributes and any common GNU ones. */
8389 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
8391 /* Check for any attributes not known on ARM. */
8392 in_list
= elf_other_obj_attributes_proc (ibfd
);
8393 while (in_list
&& in_list
->tag
== Tag_compatibility
)
8394 in_list
= in_list
->next
;
8396 for (; in_list
; in_list
= in_list
->next
)
8398 if ((in_list
->tag
& 128) < 64)
8401 (_("Warning: %B: Unknown EABI object attribute %d"),
8402 ibfd
, in_list
->tag
);
8410 /* Return TRUE if the two EABI versions are incompatible. */
8413 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
8415 /* v4 and v5 are the same spec before and after it was released,
8416 so allow mixing them. */
8417 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
8418 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
8421 return (iver
== over
);
8424 /* Merge backend specific data from an object file to the output
8425 object file when linking. */
8428 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
8432 bfd_boolean flags_compatible
= TRUE
;
8435 /* Check if we have the same endianess. */
8436 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
8439 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
8442 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
8445 /* The input BFD must have had its flags initialised. */
8446 /* The following seems bogus to me -- The flags are initialized in
8447 the assembler but I don't think an elf_flags_init field is
8448 written into the object. */
8449 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8451 in_flags
= elf_elfheader (ibfd
)->e_flags
;
8452 out_flags
= elf_elfheader (obfd
)->e_flags
;
8454 /* In theory there is no reason why we couldn't handle this. However
8455 in practice it isn't even close to working and there is no real
8456 reason to want it. */
8457 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
8458 && !(ibfd
->flags
& DYNAMIC
)
8459 && (in_flags
& EF_ARM_BE8
))
8461 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8466 if (!elf_flags_init (obfd
))
8468 /* If the input is the default architecture and had the default
8469 flags then do not bother setting the flags for the output
8470 architecture, instead allow future merges to do this. If no
8471 future merges ever set these flags then they will retain their
8472 uninitialised values, which surprise surprise, correspond
8473 to the default values. */
8474 if (bfd_get_arch_info (ibfd
)->the_default
8475 && elf_elfheader (ibfd
)->e_flags
== 0)
8478 elf_flags_init (obfd
) = TRUE
;
8479 elf_elfheader (obfd
)->e_flags
= in_flags
;
8481 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
8482 && bfd_get_arch_info (obfd
)->the_default
)
8483 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
8488 /* Determine what should happen if the input ARM architecture
8489 does not match the output ARM architecture. */
8490 if (! bfd_arm_merge_machines (ibfd
, obfd
))
8493 /* Identical flags must be compatible. */
8494 if (in_flags
== out_flags
)
8497 /* Check to see if the input BFD actually contains any sections. If
8498 not, its flags may not have been initialised either, but it
8499 cannot actually cause any incompatiblity. Do not short-circuit
8500 dynamic objects; their section list may be emptied by
8501 elf_link_add_object_symbols.
8503 Also check to see if there are no code sections in the input.
8504 In this case there is no need to check for code specific flags.
8505 XXX - do we need to worry about floating-point format compatability
8506 in data sections ? */
8507 if (!(ibfd
->flags
& DYNAMIC
))
8509 bfd_boolean null_input_bfd
= TRUE
;
8510 bfd_boolean only_data_sections
= TRUE
;
8512 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8514 /* Ignore synthetic glue sections. */
8515 if (strcmp (sec
->name
, ".glue_7")
8516 && strcmp (sec
->name
, ".glue_7t"))
8518 if ((bfd_get_section_flags (ibfd
, sec
)
8519 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8520 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
8521 only_data_sections
= FALSE
;
8523 null_input_bfd
= FALSE
;
8528 if (null_input_bfd
|| only_data_sections
)
8532 /* Complain about various flag mismatches. */
8533 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
8534 EF_ARM_EABI_VERSION (out_flags
)))
8537 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8539 (in_flags
& EF_ARM_EABIMASK
) >> 24,
8540 (out_flags
& EF_ARM_EABIMASK
) >> 24);
8544 /* Not sure what needs to be checked for EABI versions >= 1. */
8545 /* VxWorks libraries do not use these flags. */
8546 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
8547 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
8548 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
8550 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
8553 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8555 in_flags
& EF_ARM_APCS_26
? 26 : 32,
8556 out_flags
& EF_ARM_APCS_26
? 26 : 32);
8557 flags_compatible
= FALSE
;
8560 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
8562 if (in_flags
& EF_ARM_APCS_FLOAT
)
8564 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8568 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8571 flags_compatible
= FALSE
;
8574 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
8576 if (in_flags
& EF_ARM_VFP_FLOAT
)
8578 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8582 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8585 flags_compatible
= FALSE
;
8588 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
8590 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
8592 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8596 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8599 flags_compatible
= FALSE
;
8602 #ifdef EF_ARM_SOFT_FLOAT
8603 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
8605 /* We can allow interworking between code that is VFP format
8606 layout, and uses either soft float or integer regs for
8607 passing floating point arguments and results. We already
8608 know that the APCS_FLOAT flags match; similarly for VFP
8610 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
8611 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
8613 if (in_flags
& EF_ARM_SOFT_FLOAT
)
8615 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8619 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8622 flags_compatible
= FALSE
;
8627 /* Interworking mismatch is only a warning. */
8628 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
8630 if (in_flags
& EF_ARM_INTERWORK
)
8633 (_("Warning: %B supports interworking, whereas %B does not"),
8639 (_("Warning: %B does not support interworking, whereas %B does"),
8645 return flags_compatible
;
8648 /* Display the flags field. */
8651 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
8653 FILE * file
= (FILE *) ptr
;
8654 unsigned long flags
;
8656 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
8658 /* Print normal ELF private data. */
8659 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
8661 flags
= elf_elfheader (abfd
)->e_flags
;
8662 /* Ignore init flag - it may not be set, despite the flags field
8663 containing valid data. */
8665 /* xgettext:c-format */
8666 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
8668 switch (EF_ARM_EABI_VERSION (flags
))
8670 case EF_ARM_EABI_UNKNOWN
:
8671 /* The following flag bits are GNU extensions and not part of the
8672 official ARM ELF extended ABI. Hence they are only decoded if
8673 the EABI version is not set. */
8674 if (flags
& EF_ARM_INTERWORK
)
8675 fprintf (file
, _(" [interworking enabled]"));
8677 if (flags
& EF_ARM_APCS_26
)
8678 fprintf (file
, " [APCS-26]");
8680 fprintf (file
, " [APCS-32]");
8682 if (flags
& EF_ARM_VFP_FLOAT
)
8683 fprintf (file
, _(" [VFP float format]"));
8684 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
8685 fprintf (file
, _(" [Maverick float format]"));
8687 fprintf (file
, _(" [FPA float format]"));
8689 if (flags
& EF_ARM_APCS_FLOAT
)
8690 fprintf (file
, _(" [floats passed in float registers]"));
8692 if (flags
& EF_ARM_PIC
)
8693 fprintf (file
, _(" [position independent]"));
8695 if (flags
& EF_ARM_NEW_ABI
)
8696 fprintf (file
, _(" [new ABI]"));
8698 if (flags
& EF_ARM_OLD_ABI
)
8699 fprintf (file
, _(" [old ABI]"));
8701 if (flags
& EF_ARM_SOFT_FLOAT
)
8702 fprintf (file
, _(" [software FP]"));
8704 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
8705 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
8706 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
8707 | EF_ARM_MAVERICK_FLOAT
);
8710 case EF_ARM_EABI_VER1
:
8711 fprintf (file
, _(" [Version1 EABI]"));
8713 if (flags
& EF_ARM_SYMSARESORTED
)
8714 fprintf (file
, _(" [sorted symbol table]"));
8716 fprintf (file
, _(" [unsorted symbol table]"));
8718 flags
&= ~ EF_ARM_SYMSARESORTED
;
8721 case EF_ARM_EABI_VER2
:
8722 fprintf (file
, _(" [Version2 EABI]"));
8724 if (flags
& EF_ARM_SYMSARESORTED
)
8725 fprintf (file
, _(" [sorted symbol table]"));
8727 fprintf (file
, _(" [unsorted symbol table]"));
8729 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
8730 fprintf (file
, _(" [dynamic symbols use segment index]"));
8732 if (flags
& EF_ARM_MAPSYMSFIRST
)
8733 fprintf (file
, _(" [mapping symbols precede others]"));
8735 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
8736 | EF_ARM_MAPSYMSFIRST
);
8739 case EF_ARM_EABI_VER3
:
8740 fprintf (file
, _(" [Version3 EABI]"));
8743 case EF_ARM_EABI_VER4
:
8744 fprintf (file
, _(" [Version4 EABI]"));
8747 case EF_ARM_EABI_VER5
:
8748 fprintf (file
, _(" [Version5 EABI]"));
8750 if (flags
& EF_ARM_BE8
)
8751 fprintf (file
, _(" [BE8]"));
8753 if (flags
& EF_ARM_LE8
)
8754 fprintf (file
, _(" [LE8]"));
8756 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
8760 fprintf (file
, _(" <EABI version unrecognised>"));
8764 flags
&= ~ EF_ARM_EABIMASK
;
8766 if (flags
& EF_ARM_RELEXEC
)
8767 fprintf (file
, _(" [relocatable executable]"));
8769 if (flags
& EF_ARM_HASENTRY
)
8770 fprintf (file
, _(" [has entry point]"));
8772 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
8775 fprintf (file
, _("<Unrecognised flag bits set>"));
8783 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
8785 switch (ELF_ST_TYPE (elf_sym
->st_info
))
8788 return ELF_ST_TYPE (elf_sym
->st_info
);
8791 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8792 This allows us to distinguish between data used by Thumb instructions
8793 and non-data (which is probably code) inside Thumb regions of an
8795 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
8796 return ELF_ST_TYPE (elf_sym
->st_info
);
8807 elf32_arm_gc_mark_hook (asection
*sec
,
8808 struct bfd_link_info
*info
,
8809 Elf_Internal_Rela
*rel
,
8810 struct elf_link_hash_entry
*h
,
8811 Elf_Internal_Sym
*sym
)
8814 switch (ELF32_R_TYPE (rel
->r_info
))
8816 case R_ARM_GNU_VTINHERIT
:
8817 case R_ARM_GNU_VTENTRY
:
8821 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
8824 /* Update the got entry reference counts for the section being removed. */
8827 elf32_arm_gc_sweep_hook (bfd
* abfd
,
8828 struct bfd_link_info
* info
,
8830 const Elf_Internal_Rela
* relocs
)
8832 Elf_Internal_Shdr
*symtab_hdr
;
8833 struct elf_link_hash_entry
**sym_hashes
;
8834 bfd_signed_vma
*local_got_refcounts
;
8835 const Elf_Internal_Rela
*rel
, *relend
;
8836 struct elf32_arm_link_hash_table
* globals
;
8838 if (info
->relocatable
)
8841 globals
= elf32_arm_hash_table (info
);
8843 elf_section_data (sec
)->local_dynrel
= NULL
;
8845 symtab_hdr
= & elf_symtab_hdr (abfd
);
8846 sym_hashes
= elf_sym_hashes (abfd
);
8847 local_got_refcounts
= elf_local_got_refcounts (abfd
);
8849 check_use_blx (globals
);
8851 relend
= relocs
+ sec
->reloc_count
;
8852 for (rel
= relocs
; rel
< relend
; rel
++)
8854 unsigned long r_symndx
;
8855 struct elf_link_hash_entry
*h
= NULL
;
8858 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8859 if (r_symndx
>= symtab_hdr
->sh_info
)
8861 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8862 while (h
->root
.type
== bfd_link_hash_indirect
8863 || h
->root
.type
== bfd_link_hash_warning
)
8864 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8867 r_type
= ELF32_R_TYPE (rel
->r_info
);
8868 r_type
= arm_real_reloc_type (globals
, r_type
);
8872 case R_ARM_GOT_PREL
:
8873 case R_ARM_TLS_GD32
:
8874 case R_ARM_TLS_IE32
:
8877 if (h
->got
.refcount
> 0)
8878 h
->got
.refcount
-= 1;
8880 else if (local_got_refcounts
!= NULL
)
8882 if (local_got_refcounts
[r_symndx
] > 0)
8883 local_got_refcounts
[r_symndx
] -= 1;
8887 case R_ARM_TLS_LDM32
:
8888 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
8892 case R_ARM_ABS32_NOI
:
8894 case R_ARM_REL32_NOI
:
8900 case R_ARM_THM_CALL
:
8901 case R_ARM_THM_JUMP24
:
8902 case R_ARM_THM_JUMP19
:
8903 case R_ARM_MOVW_ABS_NC
:
8904 case R_ARM_MOVT_ABS
:
8905 case R_ARM_MOVW_PREL_NC
:
8906 case R_ARM_MOVT_PREL
:
8907 case R_ARM_THM_MOVW_ABS_NC
:
8908 case R_ARM_THM_MOVT_ABS
:
8909 case R_ARM_THM_MOVW_PREL_NC
:
8910 case R_ARM_THM_MOVT_PREL
:
8911 /* Should the interworking branches be here also? */
8915 struct elf32_arm_link_hash_entry
*eh
;
8916 struct elf32_arm_relocs_copied
**pp
;
8917 struct elf32_arm_relocs_copied
*p
;
8919 eh
= (struct elf32_arm_link_hash_entry
*) h
;
8921 if (h
->plt
.refcount
> 0)
8923 h
->plt
.refcount
-= 1;
8924 if (r_type
== R_ARM_THM_CALL
)
8925 eh
->plt_maybe_thumb_refcount
--;
8927 if (r_type
== R_ARM_THM_JUMP24
8928 || r_type
== R_ARM_THM_JUMP19
)
8929 eh
->plt_thumb_refcount
--;
8932 if (r_type
== R_ARM_ABS32
8933 || r_type
== R_ARM_REL32
8934 || r_type
== R_ARM_ABS32_NOI
8935 || r_type
== R_ARM_REL32_NOI
)
8937 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
8939 if (p
->section
== sec
)
8942 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
8943 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
8961 /* Look through the relocs for a section during the first phase. */
8964 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8965 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8967 Elf_Internal_Shdr
*symtab_hdr
;
8968 struct elf_link_hash_entry
**sym_hashes
;
8969 const Elf_Internal_Rela
*rel
;
8970 const Elf_Internal_Rela
*rel_end
;
8973 bfd_vma
*local_got_offsets
;
8974 struct elf32_arm_link_hash_table
*htab
;
8975 bfd_boolean needs_plt
;
8977 if (info
->relocatable
)
8980 BFD_ASSERT (is_arm_elf (abfd
));
8982 htab
= elf32_arm_hash_table (info
);
8985 /* Create dynamic sections for relocatable executables so that we can
8986 copy relocations. */
8987 if (htab
->root
.is_relocatable_executable
8988 && ! htab
->root
.dynamic_sections_created
)
8990 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
8994 dynobj
= elf_hash_table (info
)->dynobj
;
8995 local_got_offsets
= elf_local_got_offsets (abfd
);
8997 symtab_hdr
= & elf_symtab_hdr (abfd
);
8998 sym_hashes
= elf_sym_hashes (abfd
);
9000 rel_end
= relocs
+ sec
->reloc_count
;
9001 for (rel
= relocs
; rel
< rel_end
; rel
++)
9003 struct elf_link_hash_entry
*h
;
9004 struct elf32_arm_link_hash_entry
*eh
;
9005 unsigned long r_symndx
;
9008 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9009 r_type
= ELF32_R_TYPE (rel
->r_info
);
9010 r_type
= arm_real_reloc_type (htab
, r_type
);
9012 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
9014 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
9019 if (r_symndx
< symtab_hdr
->sh_info
)
9023 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9024 while (h
->root
.type
== bfd_link_hash_indirect
9025 || h
->root
.type
== bfd_link_hash_warning
)
9026 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9029 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9034 case R_ARM_GOT_PREL
:
9035 case R_ARM_TLS_GD32
:
9036 case R_ARM_TLS_IE32
:
9037 /* This symbol requires a global offset table entry. */
9039 int tls_type
, old_tls_type
;
9043 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
9044 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
9045 default: tls_type
= GOT_NORMAL
; break;
9051 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
9055 bfd_signed_vma
*local_got_refcounts
;
9057 /* This is a global offset table entry for a local symbol. */
9058 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9059 if (local_got_refcounts
== NULL
)
9063 size
= symtab_hdr
->sh_info
;
9064 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
9065 local_got_refcounts
= bfd_zalloc (abfd
, size
);
9066 if (local_got_refcounts
== NULL
)
9068 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
9069 elf32_arm_local_got_tls_type (abfd
)
9070 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
9072 local_got_refcounts
[r_symndx
] += 1;
9073 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
9076 /* We will already have issued an error message if there is a
9077 TLS / non-TLS mismatch, based on the symbol type. We don't
9078 support any linker relaxations. So just combine any TLS
9080 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
9081 && tls_type
!= GOT_NORMAL
)
9082 tls_type
|= old_tls_type
;
9084 if (old_tls_type
!= tls_type
)
9087 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
9089 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
9094 case R_ARM_TLS_LDM32
:
9095 if (r_type
== R_ARM_TLS_LDM32
)
9096 htab
->tls_ldm_got
.refcount
++;
9099 case R_ARM_GOTOFF32
:
9101 if (htab
->sgot
== NULL
)
9103 if (htab
->root
.dynobj
== NULL
)
9104 htab
->root
.dynobj
= abfd
;
9105 if (!create_got_section (htab
->root
.dynobj
, info
))
9111 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9112 ldr __GOTT_INDEX__ offsets. */
9113 if (!htab
->vxworks_p
)
9122 case R_ARM_THM_CALL
:
9123 case R_ARM_THM_JUMP24
:
9124 case R_ARM_THM_JUMP19
:
9129 case R_ARM_ABS32_NOI
:
9131 case R_ARM_REL32_NOI
:
9132 case R_ARM_MOVW_ABS_NC
:
9133 case R_ARM_MOVT_ABS
:
9134 case R_ARM_MOVW_PREL_NC
:
9135 case R_ARM_MOVT_PREL
:
9136 case R_ARM_THM_MOVW_ABS_NC
:
9137 case R_ARM_THM_MOVT_ABS
:
9138 case R_ARM_THM_MOVW_PREL_NC
:
9139 case R_ARM_THM_MOVT_PREL
:
9143 /* Should the interworking branches be listed here? */
9146 /* If this reloc is in a read-only section, we might
9147 need a copy reloc. We can't check reliably at this
9148 stage whether the section is read-only, as input
9149 sections have not yet been mapped to output sections.
9150 Tentatively set the flag for now, and correct in
9151 adjust_dynamic_symbol. */
9155 /* We may need a .plt entry if the function this reloc
9156 refers to is in a different object. We can't tell for
9157 sure yet, because something later might force the
9162 /* If we create a PLT entry, this relocation will reference
9163 it, even if it's an ABS32 relocation. */
9164 h
->plt
.refcount
+= 1;
9166 /* It's too early to use htab->use_blx here, so we have to
9167 record possible blx references separately from
9168 relocs that definitely need a thumb stub. */
9170 if (r_type
== R_ARM_THM_CALL
)
9171 eh
->plt_maybe_thumb_refcount
+= 1;
9173 if (r_type
== R_ARM_THM_JUMP24
9174 || r_type
== R_ARM_THM_JUMP19
)
9175 eh
->plt_thumb_refcount
+= 1;
9178 /* If we are creating a shared library or relocatable executable,
9179 and this is a reloc against a global symbol, or a non PC
9180 relative reloc against a local symbol, then we need to copy
9181 the reloc into the shared library. However, if we are linking
9182 with -Bsymbolic, we do not need to copy a reloc against a
9183 global symbol which is defined in an object we are
9184 including in the link (i.e., DEF_REGULAR is set). At
9185 this point we have not seen all the input files, so it is
9186 possible that DEF_REGULAR is not set now but will be set
9187 later (it is never cleared). We account for that
9188 possibility below by storing information in the
9189 relocs_copied field of the hash table entry. */
9190 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
9191 && (sec
->flags
& SEC_ALLOC
) != 0
9192 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
9193 || (h
!= NULL
&& ! h
->needs_plt
9194 && (! info
->symbolic
|| ! h
->def_regular
))))
9196 struct elf32_arm_relocs_copied
*p
, **head
;
9198 /* When creating a shared object, we must copy these
9199 reloc types into the output file. We create a reloc
9200 section in dynobj and make room for this reloc. */
9205 name
= (bfd_elf_string_from_elf_section
9207 elf_elfheader (abfd
)->e_shstrndx
,
9208 elf_section_data (sec
)->rel_hdr
.sh_name
));
9212 BFD_ASSERT (reloc_section_p (htab
, name
, sec
));
9214 sreloc
= bfd_get_section_by_name (dynobj
, name
);
9219 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
9220 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
9221 if ((sec
->flags
& SEC_ALLOC
) != 0
9222 /* BPABI objects never have dynamic
9223 relocations mapped. */
9224 && !htab
->symbian_p
)
9225 flags
|= SEC_ALLOC
| SEC_LOAD
;
9226 sreloc
= bfd_make_section_with_flags (dynobj
,
9230 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
9234 elf_section_data (sec
)->sreloc
= sreloc
;
9237 /* If this is a global symbol, we count the number of
9238 relocations we need for this symbol. */
9241 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
9245 /* Track dynamic relocs needed for local syms too.
9246 We really need local syms available to do this
9252 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
9257 vpp
= &elf_section_data (s
)->local_dynrel
;
9258 head
= (struct elf32_arm_relocs_copied
**) vpp
;
9262 if (p
== NULL
|| p
->section
!= sec
)
9264 bfd_size_type amt
= sizeof *p
;
9266 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
9276 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
9282 /* This relocation describes the C++ object vtable hierarchy.
9283 Reconstruct it for later use during GC. */
9284 case R_ARM_GNU_VTINHERIT
:
9285 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9289 /* This relocation describes which C++ vtable entries are actually
9290 used. Record for later use during GC. */
9291 case R_ARM_GNU_VTENTRY
:
9292 BFD_ASSERT (h
!= NULL
);
9294 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9303 /* Unwinding tables are not referenced directly. This pass marks them as
9304 required if the corresponding code section is marked. */
9307 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
9308 elf_gc_mark_hook_fn gc_mark_hook
)
9311 Elf_Internal_Shdr
**elf_shdrp
;
9314 /* Marking EH data may cause additional code sections to be marked,
9315 requiring multiple passes. */
9320 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
9324 if (! is_arm_elf (sub
))
9327 elf_shdrp
= elf_elfsections (sub
);
9328 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
9330 Elf_Internal_Shdr
*hdr
;
9332 hdr
= &elf_section_data (o
)->this_hdr
;
9333 if (hdr
->sh_type
== SHT_ARM_EXIDX
9335 && hdr
->sh_link
< elf_numsections (sub
)
9337 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
9340 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
9350 /* Treat mapping symbols as special target symbols. */
9353 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
9355 return bfd_is_arm_special_symbol_name (sym
->name
,
9356 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
9359 /* This is a copy of elf_find_function() from elf.c except that
9360 ARM mapping symbols are ignored when looking for function names
9361 and STT_ARM_TFUNC is considered to a function type. */
9364 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
9368 const char ** filename_ptr
,
9369 const char ** functionname_ptr
)
9371 const char * filename
= NULL
;
9372 asymbol
* func
= NULL
;
9373 bfd_vma low_func
= 0;
9376 for (p
= symbols
; *p
!= NULL
; p
++)
9380 q
= (elf_symbol_type
*) *p
;
9382 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
9387 filename
= bfd_asymbol_name (&q
->symbol
);
9392 /* Skip mapping symbols. */
9393 if ((q
->symbol
.flags
& BSF_LOCAL
)
9394 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
9395 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
9398 if (bfd_get_section (&q
->symbol
) == section
9399 && q
->symbol
.value
>= low_func
9400 && q
->symbol
.value
<= offset
)
9402 func
= (asymbol
*) q
;
9403 low_func
= q
->symbol
.value
;
9413 *filename_ptr
= filename
;
9414 if (functionname_ptr
)
9415 *functionname_ptr
= bfd_asymbol_name (func
);
9421 /* Find the nearest line to a particular section and offset, for error
9422 reporting. This code is a duplicate of the code in elf.c, except
9423 that it uses arm_elf_find_function. */
9426 elf32_arm_find_nearest_line (bfd
* abfd
,
9430 const char ** filename_ptr
,
9431 const char ** functionname_ptr
,
9432 unsigned int * line_ptr
)
9434 bfd_boolean found
= FALSE
;
9436 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9438 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9439 filename_ptr
, functionname_ptr
,
9441 & elf_tdata (abfd
)->dwarf2_find_line_info
))
9443 if (!*functionname_ptr
)
9444 arm_elf_find_function (abfd
, section
, symbols
, offset
,
9445 *filename_ptr
? NULL
: filename_ptr
,
9451 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
9452 & found
, filename_ptr
,
9453 functionname_ptr
, line_ptr
,
9454 & elf_tdata (abfd
)->line_info
))
9457 if (found
&& (*functionname_ptr
|| *line_ptr
))
9460 if (symbols
== NULL
)
9463 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
9464 filename_ptr
, functionname_ptr
))
9472 elf32_arm_find_inliner_info (bfd
* abfd
,
9473 const char ** filename_ptr
,
9474 const char ** functionname_ptr
,
9475 unsigned int * line_ptr
)
9478 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9479 functionname_ptr
, line_ptr
,
9480 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9484 /* Adjust a symbol defined by a dynamic object and referenced by a
9485 regular object. The current definition is in some section of the
9486 dynamic object, but we're not including those sections. We have to
9487 change the definition to something the rest of the link can
9491 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
9492 struct elf_link_hash_entry
* h
)
9496 struct elf32_arm_link_hash_entry
* eh
;
9497 struct elf32_arm_link_hash_table
*globals
;
9499 globals
= elf32_arm_hash_table (info
);
9500 dynobj
= elf_hash_table (info
)->dynobj
;
9502 /* Make sure we know what is going on here. */
9503 BFD_ASSERT (dynobj
!= NULL
9505 || h
->u
.weakdef
!= NULL
9508 && !h
->def_regular
)));
9510 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9512 /* If this is a function, put it in the procedure linkage table. We
9513 will fill in the contents of the procedure linkage table later,
9514 when we know the address of the .got section. */
9515 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
9518 if (h
->plt
.refcount
<= 0
9519 || SYMBOL_CALLS_LOCAL (info
, h
)
9520 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9521 && h
->root
.type
== bfd_link_hash_undefweak
))
9523 /* This case can occur if we saw a PLT32 reloc in an input
9524 file, but the symbol was never referred to by a dynamic
9525 object, or if all references were garbage collected. In
9526 such a case, we don't actually need to build a procedure
9527 linkage table, and we can just do a PC24 reloc instead. */
9528 h
->plt
.offset
= (bfd_vma
) -1;
9529 eh
->plt_thumb_refcount
= 0;
9530 eh
->plt_maybe_thumb_refcount
= 0;
9538 /* It's possible that we incorrectly decided a .plt reloc was
9539 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9540 in check_relocs. We can't decide accurately between function
9541 and non-function syms in check-relocs; Objects loaded later in
9542 the link may change h->type. So fix it now. */
9543 h
->plt
.offset
= (bfd_vma
) -1;
9544 eh
->plt_thumb_refcount
= 0;
9545 eh
->plt_maybe_thumb_refcount
= 0;
9548 /* If this is a weak symbol, and there is a real definition, the
9549 processor independent code will have arranged for us to see the
9550 real definition first, and we can just use the same value. */
9551 if (h
->u
.weakdef
!= NULL
)
9553 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
9554 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
9555 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
9556 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
9560 /* If there are no non-GOT references, we do not need a copy
9562 if (!h
->non_got_ref
)
9565 /* This is a reference to a symbol defined by a dynamic object which
9566 is not a function. */
9568 /* If we are creating a shared library, we must presume that the
9569 only references to the symbol are via the global offset table.
9570 For such cases we need not do anything here; the relocations will
9571 be handled correctly by relocate_section. Relocatable executables
9572 can reference data in shared objects directly, so we don't need to
9573 do anything here. */
9574 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
9579 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
9580 h
->root
.root
.string
);
9584 /* We must allocate the symbol in our .dynbss section, which will
9585 become part of the .bss section of the executable. There will be
9586 an entry for this symbol in the .dynsym section. The dynamic
9587 object will contain position independent code, so all references
9588 from the dynamic object to this symbol will go through the global
9589 offset table. The dynamic linker will use the .dynsym entry to
9590 determine the address it must put in the global offset table, so
9591 both the dynamic object and the regular object will refer to the
9592 same memory location for the variable. */
9593 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
9594 BFD_ASSERT (s
!= NULL
);
9596 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9597 copy the initial value out of the dynamic object and into the
9598 runtime process image. We need to remember the offset into the
9599 .rel(a).bss section we are going to use. */
9600 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9604 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
9605 BFD_ASSERT (srel
!= NULL
);
9606 srel
->size
+= RELOC_SIZE (globals
);
9610 return _bfd_elf_adjust_dynamic_copy (h
, s
);
9613 /* Allocate space in .plt, .got and associated reloc sections for
9617 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
9619 struct bfd_link_info
*info
;
9620 struct elf32_arm_link_hash_table
*htab
;
9621 struct elf32_arm_link_hash_entry
*eh
;
9622 struct elf32_arm_relocs_copied
*p
;
9623 bfd_signed_vma thumb_refs
;
9625 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9627 if (h
->root
.type
== bfd_link_hash_indirect
)
9630 if (h
->root
.type
== bfd_link_hash_warning
)
9631 /* When warning symbols are created, they **replace** the "real"
9632 entry in the hash table, thus we never get to see the real
9633 symbol in a hash traversal. So look at it now. */
9634 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9636 info
= (struct bfd_link_info
*) inf
;
9637 htab
= elf32_arm_hash_table (info
);
9639 if (htab
->root
.dynamic_sections_created
9640 && h
->plt
.refcount
> 0)
9642 /* Make sure this symbol is output as a dynamic symbol.
9643 Undefined weak syms won't yet be marked as dynamic. */
9644 if (h
->dynindx
== -1
9645 && !h
->forced_local
)
9647 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9652 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
9654 asection
*s
= htab
->splt
;
9656 /* If this is the first .plt entry, make room for the special
9659 s
->size
+= htab
->plt_header_size
;
9661 h
->plt
.offset
= s
->size
;
9663 /* If we will insert a Thumb trampoline before this PLT, leave room
9665 thumb_refs
= eh
->plt_thumb_refcount
;
9667 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
9671 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
9672 s
->size
+= PLT_THUMB_STUB_SIZE
;
9675 /* If this symbol is not defined in a regular file, and we are
9676 not generating a shared library, then set the symbol to this
9677 location in the .plt. This is required to make function
9678 pointers compare as equal between the normal executable and
9679 the shared library. */
9683 h
->root
.u
.def
.section
= s
;
9684 h
->root
.u
.def
.value
= h
->plt
.offset
;
9686 /* Make sure the function is not marked as Thumb, in case
9687 it is the target of an ABS32 relocation, which will
9688 point to the PLT entry. */
9689 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
9690 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
9693 /* Make room for this entry. */
9694 s
->size
+= htab
->plt_entry_size
;
9696 if (!htab
->symbian_p
)
9698 /* We also need to make an entry in the .got.plt section, which
9699 will be placed in the .got section by the linker script. */
9700 eh
->plt_got_offset
= htab
->sgotplt
->size
;
9701 htab
->sgotplt
->size
+= 4;
9704 /* We also need to make an entry in the .rel(a).plt section. */
9705 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
9707 /* VxWorks executables have a second set of relocations for
9708 each PLT entry. They go in a separate relocation section,
9709 which is processed by the kernel loader. */
9710 if (htab
->vxworks_p
&& !info
->shared
)
9712 /* There is a relocation for the initial PLT entry:
9713 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9714 if (h
->plt
.offset
== htab
->plt_header_size
)
9715 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
9717 /* There are two extra relocations for each subsequent
9718 PLT entry: an R_ARM_32 relocation for the GOT entry,
9719 and an R_ARM_32 relocation for the PLT entry. */
9720 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
9725 h
->plt
.offset
= (bfd_vma
) -1;
9731 h
->plt
.offset
= (bfd_vma
) -1;
9735 if (h
->got
.refcount
> 0)
9739 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
9742 /* Make sure this symbol is output as a dynamic symbol.
9743 Undefined weak syms won't yet be marked as dynamic. */
9744 if (h
->dynindx
== -1
9745 && !h
->forced_local
)
9747 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9751 if (!htab
->symbian_p
)
9754 h
->got
.offset
= s
->size
;
9756 if (tls_type
== GOT_UNKNOWN
)
9759 if (tls_type
== GOT_NORMAL
)
9760 /* Non-TLS symbols need one GOT slot. */
9764 if (tls_type
& GOT_TLS_GD
)
9765 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9767 if (tls_type
& GOT_TLS_IE
)
9768 /* R_ARM_TLS_IE32 needs one GOT slot. */
9772 dyn
= htab
->root
.dynamic_sections_created
;
9775 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9777 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9780 if (tls_type
!= GOT_NORMAL
9781 && (info
->shared
|| indx
!= 0)
9782 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9783 || h
->root
.type
!= bfd_link_hash_undefweak
))
9785 if (tls_type
& GOT_TLS_IE
)
9786 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9788 if (tls_type
& GOT_TLS_GD
)
9789 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9791 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
9792 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9794 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9795 || h
->root
.type
!= bfd_link_hash_undefweak
)
9797 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
9798 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
9802 h
->got
.offset
= (bfd_vma
) -1;
9804 /* Allocate stubs for exported Thumb functions on v4t. */
9805 if (!htab
->use_blx
&& h
->dynindx
!= -1
9807 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
9808 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
9810 struct elf_link_hash_entry
* th
;
9811 struct bfd_link_hash_entry
* bh
;
9812 struct elf_link_hash_entry
* myh
;
9816 /* Create a new symbol to regist the real location of the function. */
9817 s
= h
->root
.u
.def
.section
;
9818 sprintf (name
, "__real_%s", h
->root
.root
.string
);
9819 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
9820 name
, BSF_GLOBAL
, s
,
9821 h
->root
.u
.def
.value
,
9822 NULL
, TRUE
, FALSE
, &bh
);
9824 myh
= (struct elf_link_hash_entry
*) bh
;
9825 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
9826 myh
->forced_local
= 1;
9827 eh
->export_glue
= myh
;
9828 th
= record_arm_to_thumb_glue (info
, h
);
9829 /* Point the symbol at the stub. */
9830 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
9831 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
9832 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
9835 if (eh
->relocs_copied
== NULL
)
9838 /* In the shared -Bsymbolic case, discard space allocated for
9839 dynamic pc-relative relocs against symbols which turn out to be
9840 defined in regular objects. For the normal shared case, discard
9841 space for pc-relative relocs that have become local due to symbol
9842 visibility changes. */
9844 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
9846 /* The only relocs that use pc_count are R_ARM_REL32 and
9847 R_ARM_REL32_NOI, which will appear on something like
9848 ".long foo - .". We want calls to protected symbols to resolve
9849 directly to the function rather than going via the plt. If people
9850 want function pointer comparisons to work as expected then they
9851 should avoid writing assembly like ".long foo - .". */
9852 if (SYMBOL_CALLS_LOCAL (info
, h
))
9854 struct elf32_arm_relocs_copied
**pp
;
9856 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
9858 p
->count
-= p
->pc_count
;
9867 if (elf32_arm_hash_table (info
)->vxworks_p
)
9869 struct elf32_arm_relocs_copied
**pp
;
9871 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
9873 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
9880 /* Also discard relocs on undefined weak syms with non-default
9882 if (eh
->relocs_copied
!= NULL
9883 && h
->root
.type
== bfd_link_hash_undefweak
)
9885 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
9886 eh
->relocs_copied
= NULL
;
9888 /* Make sure undefined weak symbols are output as a dynamic
9890 else if (h
->dynindx
== -1
9891 && !h
->forced_local
)
9893 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9898 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
9899 && h
->root
.type
== bfd_link_hash_new
)
9901 /* Output absolute symbols so that we can create relocations
9902 against them. For normal symbols we output a relocation
9903 against the section that contains them. */
9904 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9911 /* For the non-shared case, discard space for relocs against
9912 symbols which turn out to need copy relocs or are not
9918 || (htab
->root
.dynamic_sections_created
9919 && (h
->root
.type
== bfd_link_hash_undefweak
9920 || h
->root
.type
== bfd_link_hash_undefined
))))
9922 /* Make sure this symbol is output as a dynamic symbol.
9923 Undefined weak syms won't yet be marked as dynamic. */
9924 if (h
->dynindx
== -1
9925 && !h
->forced_local
)
9927 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9931 /* If that succeeded, we know we'll be keeping all the
9933 if (h
->dynindx
!= -1)
9937 eh
->relocs_copied
= NULL
;
9942 /* Finally, allocate space. */
9943 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
9945 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
9946 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
9952 /* Find any dynamic relocs that apply to read-only sections. */
9955 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
9957 struct elf32_arm_link_hash_entry
* eh
;
9958 struct elf32_arm_relocs_copied
* p
;
9960 if (h
->root
.type
== bfd_link_hash_warning
)
9961 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9963 eh
= (struct elf32_arm_link_hash_entry
*) h
;
9964 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
9966 asection
*s
= p
->section
;
9968 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
9970 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
9972 if (info
->warn_shared_textrel
)
9973 (*_bfd_error_handler
)
9974 (_("warning: dynamic relocation in readonly section `%s'"),
9975 h
->root
.root
.string
);
9976 info
->flags
|= DF_TEXTREL
;
9978 /* Not an error, just cut short the traversal. */
9986 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
9989 struct elf32_arm_link_hash_table
*globals
;
9991 globals
= elf32_arm_hash_table (info
);
9992 globals
->byteswap_code
= byteswap_code
;
9995 /* Set the sizes of the dynamic sections. */
9998 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
9999 struct bfd_link_info
* info
)
10004 bfd_boolean relocs
;
10006 struct elf32_arm_link_hash_table
*htab
;
10008 htab
= elf32_arm_hash_table (info
);
10009 dynobj
= elf_hash_table (info
)->dynobj
;
10010 BFD_ASSERT (dynobj
!= NULL
);
10011 check_use_blx (htab
);
10013 if (elf_hash_table (info
)->dynamic_sections_created
)
10015 /* Set the contents of the .interp section to the interpreter. */
10016 if (info
->executable
)
10018 s
= bfd_get_section_by_name (dynobj
, ".interp");
10019 BFD_ASSERT (s
!= NULL
);
10020 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
10021 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
10025 /* Set up .got offsets for local syms, and space for local dynamic
10027 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10029 bfd_signed_vma
*local_got
;
10030 bfd_signed_vma
*end_local_got
;
10031 char *local_tls_type
;
10032 bfd_size_type locsymcount
;
10033 Elf_Internal_Shdr
*symtab_hdr
;
10035 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
10037 if (! is_arm_elf (ibfd
))
10040 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
10042 struct elf32_arm_relocs_copied
*p
;
10044 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
10046 if (!bfd_is_abs_section (p
->section
)
10047 && bfd_is_abs_section (p
->section
->output_section
))
10049 /* Input section has been discarded, either because
10050 it is a copy of a linkonce section or due to
10051 linker script /DISCARD/, so we'll be discarding
10054 else if (is_vxworks
10055 && strcmp (p
->section
->output_section
->name
,
10058 /* Relocations in vxworks .tls_vars sections are
10059 handled specially by the loader. */
10061 else if (p
->count
!= 0)
10063 srel
= elf_section_data (p
->section
)->sreloc
;
10064 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
10065 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
10066 info
->flags
|= DF_TEXTREL
;
10071 local_got
= elf_local_got_refcounts (ibfd
);
10075 symtab_hdr
= & elf_symtab_hdr (ibfd
);
10076 locsymcount
= symtab_hdr
->sh_info
;
10077 end_local_got
= local_got
+ locsymcount
;
10078 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
10080 srel
= htab
->srelgot
;
10081 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
10083 if (*local_got
> 0)
10085 *local_got
= s
->size
;
10086 if (*local_tls_type
& GOT_TLS_GD
)
10087 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10089 if (*local_tls_type
& GOT_TLS_IE
)
10091 if (*local_tls_type
== GOT_NORMAL
)
10094 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
10095 srel
->size
+= RELOC_SIZE (htab
);
10098 *local_got
= (bfd_vma
) -1;
10102 if (htab
->tls_ldm_got
.refcount
> 0)
10104 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10105 for R_ARM_TLS_LDM32 relocations. */
10106 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
10107 htab
->sgot
->size
+= 8;
10109 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
10112 htab
->tls_ldm_got
.offset
= -1;
10114 /* Allocate global sym .plt and .got entries, and space for global
10115 sym dynamic relocs. */
10116 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
10118 /* Here we rummage through the found bfds to collect glue information. */
10119 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
10121 if (! is_arm_elf (ibfd
))
10124 /* Initialise mapping tables for code/data. */
10125 bfd_elf32_arm_init_maps (ibfd
);
10127 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
10128 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
10129 /* xgettext:c-format */
10130 _bfd_error_handler (_("Errors encountered processing file %s"),
10134 /* The check_relocs and adjust_dynamic_symbol entry points have
10135 determined the sizes of the various dynamic sections. Allocate
10136 memory for them. */
10139 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10143 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10146 /* It's OK to base decisions on the section name, because none
10147 of the dynobj section names depend upon the input files. */
10148 name
= bfd_get_section_name (dynobj
, s
);
10150 if (strcmp (name
, ".plt") == 0)
10152 /* Remember whether there is a PLT. */
10153 plt
= s
->size
!= 0;
10155 else if (CONST_STRNEQ (name
, ".rel"))
10159 /* Remember whether there are any reloc sections other
10160 than .rel(a).plt and .rela.plt.unloaded. */
10161 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
10164 /* We use the reloc_count field as a counter if we need
10165 to copy relocs into the output file. */
10166 s
->reloc_count
= 0;
10169 else if (! CONST_STRNEQ (name
, ".got")
10170 && strcmp (name
, ".dynbss") != 0)
10172 /* It's not one of our sections, so don't allocate space. */
10178 /* If we don't need this section, strip it from the
10179 output file. This is mostly to handle .rel(a).bss and
10180 .rel(a).plt. We must create both sections in
10181 create_dynamic_sections, because they must be created
10182 before the linker maps input sections to output
10183 sections. The linker does that before
10184 adjust_dynamic_symbol is called, and it is that
10185 function which decides whether anything needs to go
10186 into these sections. */
10187 s
->flags
|= SEC_EXCLUDE
;
10191 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10194 /* Allocate memory for the section contents. */
10195 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10196 if (s
->contents
== NULL
)
10200 if (elf_hash_table (info
)->dynamic_sections_created
)
10202 /* Add some entries to the .dynamic section. We fill in the
10203 values later, in elf32_arm_finish_dynamic_sections, but we
10204 must add the entries now so that we get the correct size for
10205 the .dynamic section. The DT_DEBUG entry is filled in by the
10206 dynamic linker and used by the debugger. */
10207 #define add_dynamic_entry(TAG, VAL) \
10208 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10210 if (info
->executable
)
10212 if (!add_dynamic_entry (DT_DEBUG
, 0))
10218 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
10219 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
10220 || !add_dynamic_entry (DT_PLTREL
,
10221 htab
->use_rel
? DT_REL
: DT_RELA
)
10222 || !add_dynamic_entry (DT_JMPREL
, 0))
10230 if (!add_dynamic_entry (DT_REL
, 0)
10231 || !add_dynamic_entry (DT_RELSZ
, 0)
10232 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
10237 if (!add_dynamic_entry (DT_RELA
, 0)
10238 || !add_dynamic_entry (DT_RELASZ
, 0)
10239 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
10244 /* If any dynamic relocs apply to a read-only section,
10245 then we need a DT_TEXTREL entry. */
10246 if ((info
->flags
& DF_TEXTREL
) == 0)
10247 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
10250 if ((info
->flags
& DF_TEXTREL
) != 0)
10252 if (!add_dynamic_entry (DT_TEXTREL
, 0))
10255 if (htab
->vxworks_p
10256 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10259 #undef add_dynamic_entry
10264 /* Finish up dynamic symbol handling. We set the contents of various
10265 dynamic sections here. */
10268 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
10269 struct bfd_link_info
* info
,
10270 struct elf_link_hash_entry
* h
,
10271 Elf_Internal_Sym
* sym
)
10274 struct elf32_arm_link_hash_table
*htab
;
10275 struct elf32_arm_link_hash_entry
*eh
;
10277 dynobj
= elf_hash_table (info
)->dynobj
;
10278 htab
= elf32_arm_hash_table (info
);
10279 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10281 if (h
->plt
.offset
!= (bfd_vma
) -1)
10287 Elf_Internal_Rela rel
;
10289 /* This symbol has an entry in the procedure linkage table. Set
10292 BFD_ASSERT (h
->dynindx
!= -1);
10294 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10295 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
10296 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
10298 /* Fill in the entry in the procedure linkage table. */
10299 if (htab
->symbian_p
)
10301 put_arm_insn (htab
, output_bfd
,
10302 elf32_arm_symbian_plt_entry
[0],
10303 splt
->contents
+ h
->plt
.offset
);
10304 bfd_put_32 (output_bfd
,
10305 elf32_arm_symbian_plt_entry
[1],
10306 splt
->contents
+ h
->plt
.offset
+ 4);
10308 /* Fill in the entry in the .rel.plt section. */
10309 rel
.r_offset
= (splt
->output_section
->vma
10310 + splt
->output_offset
10311 + h
->plt
.offset
+ 4);
10312 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10314 /* Get the index in the procedure linkage table which
10315 corresponds to this symbol. This is the index of this symbol
10316 in all the symbols for which we are making plt entries. The
10317 first entry in the procedure linkage table is reserved. */
10318 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
10319 / htab
->plt_entry_size
);
10323 bfd_vma got_offset
, got_address
, plt_address
;
10324 bfd_vma got_displacement
;
10328 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10329 BFD_ASSERT (sgot
!= NULL
);
10331 /* Get the offset into the .got.plt table of the entry that
10332 corresponds to this function. */
10333 got_offset
= eh
->plt_got_offset
;
10335 /* Get the index in the procedure linkage table which
10336 corresponds to this symbol. This is the index of this symbol
10337 in all the symbols for which we are making plt entries. The
10338 first three entries in .got.plt are reserved; after that
10339 symbols appear in the same order as in .plt. */
10340 plt_index
= (got_offset
- 12) / 4;
10342 /* Calculate the address of the GOT entry. */
10343 got_address
= (sgot
->output_section
->vma
10344 + sgot
->output_offset
10347 /* ...and the address of the PLT entry. */
10348 plt_address
= (splt
->output_section
->vma
10349 + splt
->output_offset
10352 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
10353 if (htab
->vxworks_p
&& info
->shared
)
10358 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10360 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
10362 val
|= got_address
- sgot
->output_section
->vma
;
10364 val
|= plt_index
* RELOC_SIZE (htab
);
10365 if (i
== 2 || i
== 5)
10366 bfd_put_32 (output_bfd
, val
, ptr
);
10368 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10371 else if (htab
->vxworks_p
)
10376 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
10378 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
10380 val
|= got_address
;
10382 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
10384 val
|= plt_index
* RELOC_SIZE (htab
);
10385 if (i
== 2 || i
== 5)
10386 bfd_put_32 (output_bfd
, val
, ptr
);
10388 put_arm_insn (htab
, output_bfd
, val
, ptr
);
10391 loc
= (htab
->srelplt2
->contents
10392 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
10394 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10395 referencing the GOT for this PLT entry. */
10396 rel
.r_offset
= plt_address
+ 8;
10397 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10398 rel
.r_addend
= got_offset
;
10399 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10400 loc
+= RELOC_SIZE (htab
);
10402 /* Create the R_ARM_ABS32 relocation referencing the
10403 beginning of the PLT for this GOT entry. */
10404 rel
.r_offset
= got_address
;
10405 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
10407 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10411 bfd_signed_vma thumb_refs
;
10412 /* Calculate the displacement between the PLT slot and the
10413 entry in the GOT. The eight-byte offset accounts for the
10414 value produced by adding to pc in the first instruction
10415 of the PLT stub. */
10416 got_displacement
= got_address
- (plt_address
+ 8);
10418 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
10420 thumb_refs
= eh
->plt_thumb_refcount
;
10421 if (!htab
->use_blx
)
10422 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
10424 if (thumb_refs
> 0)
10426 put_thumb_insn (htab
, output_bfd
,
10427 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
10428 put_thumb_insn (htab
, output_bfd
,
10429 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
10432 put_arm_insn (htab
, output_bfd
,
10433 elf32_arm_plt_entry
[0]
10434 | ((got_displacement
& 0x0ff00000) >> 20),
10436 put_arm_insn (htab
, output_bfd
,
10437 elf32_arm_plt_entry
[1]
10438 | ((got_displacement
& 0x000ff000) >> 12),
10440 put_arm_insn (htab
, output_bfd
,
10441 elf32_arm_plt_entry
[2]
10442 | (got_displacement
& 0x00000fff),
10444 #ifdef FOUR_WORD_PLT
10445 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
10449 /* Fill in the entry in the global offset table. */
10450 bfd_put_32 (output_bfd
,
10451 (splt
->output_section
->vma
10452 + splt
->output_offset
),
10453 sgot
->contents
+ got_offset
);
10455 /* Fill in the entry in the .rel(a).plt section. */
10457 rel
.r_offset
= got_address
;
10458 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
10461 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
10462 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10464 if (!h
->def_regular
)
10466 /* Mark the symbol as undefined, rather than as defined in
10467 the .plt section. Leave the value alone. */
10468 sym
->st_shndx
= SHN_UNDEF
;
10469 /* If the symbol is weak, we do need to clear the value.
10470 Otherwise, the PLT entry would provide a definition for
10471 the symbol even if the symbol wasn't defined anywhere,
10472 and so the symbol would never be NULL. */
10473 if (!h
->ref_regular_nonweak
)
10478 if (h
->got
.offset
!= (bfd_vma
) -1
10479 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
10480 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
10484 Elf_Internal_Rela rel
;
10488 /* This symbol has an entry in the global offset table. Set it
10490 sgot
= bfd_get_section_by_name (dynobj
, ".got");
10491 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
10492 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
10494 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
10496 rel
.r_offset
= (sgot
->output_section
->vma
10497 + sgot
->output_offset
10500 /* If this is a static link, or it is a -Bsymbolic link and the
10501 symbol is defined locally or was forced to be local because
10502 of a version file, we just want to emit a RELATIVE reloc.
10503 The entry in the global offset table will already have been
10504 initialized in the relocate_section function. */
10506 && SYMBOL_REFERENCES_LOCAL (info
, h
))
10508 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
10509 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
10510 if (!htab
->use_rel
)
10512 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
10513 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10518 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
10519 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
10520 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
10523 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
10524 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10530 Elf_Internal_Rela rel
;
10533 /* This symbol needs a copy reloc. Set it up. */
10534 BFD_ASSERT (h
->dynindx
!= -1
10535 && (h
->root
.type
== bfd_link_hash_defined
10536 || h
->root
.type
== bfd_link_hash_defweak
));
10538 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
10539 RELOC_SECTION (htab
, ".bss"));
10540 BFD_ASSERT (s
!= NULL
);
10543 rel
.r_offset
= (h
->root
.u
.def
.value
10544 + h
->root
.u
.def
.section
->output_section
->vma
10545 + h
->root
.u
.def
.section
->output_offset
);
10546 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
10547 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
10548 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10551 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10552 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10553 to the ".got" section. */
10554 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
10555 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
10556 sym
->st_shndx
= SHN_ABS
;
10561 /* Finish up the dynamic sections. */
10564 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
10570 dynobj
= elf_hash_table (info
)->dynobj
;
10572 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
10573 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
10574 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
10576 if (elf_hash_table (info
)->dynamic_sections_created
)
10579 Elf32_External_Dyn
*dyncon
, *dynconend
;
10580 struct elf32_arm_link_hash_table
*htab
;
10582 htab
= elf32_arm_hash_table (info
);
10583 splt
= bfd_get_section_by_name (dynobj
, ".plt");
10584 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
10586 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
10587 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
10589 for (; dyncon
< dynconend
; dyncon
++)
10591 Elf_Internal_Dyn dyn
;
10595 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
10602 if (htab
->vxworks_p
10603 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10604 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10609 goto get_vma_if_bpabi
;
10612 goto get_vma_if_bpabi
;
10615 goto get_vma_if_bpabi
;
10617 name
= ".gnu.version";
10618 goto get_vma_if_bpabi
;
10620 name
= ".gnu.version_d";
10621 goto get_vma_if_bpabi
;
10623 name
= ".gnu.version_r";
10624 goto get_vma_if_bpabi
;
10630 name
= RELOC_SECTION (htab
, ".plt");
10632 s
= bfd_get_section_by_name (output_bfd
, name
);
10633 BFD_ASSERT (s
!= NULL
);
10634 if (!htab
->symbian_p
)
10635 dyn
.d_un
.d_ptr
= s
->vma
;
10637 /* In the BPABI, tags in the PT_DYNAMIC section point
10638 at the file offset, not the memory address, for the
10639 convenience of the post linker. */
10640 dyn
.d_un
.d_ptr
= s
->filepos
;
10641 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10645 if (htab
->symbian_p
)
10650 s
= bfd_get_section_by_name (output_bfd
,
10651 RELOC_SECTION (htab
, ".plt"));
10652 BFD_ASSERT (s
!= NULL
);
10653 dyn
.d_un
.d_val
= s
->size
;
10654 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10659 if (!htab
->symbian_p
)
10661 /* My reading of the SVR4 ABI indicates that the
10662 procedure linkage table relocs (DT_JMPREL) should be
10663 included in the overall relocs (DT_REL). This is
10664 what Solaris does. However, UnixWare can not handle
10665 that case. Therefore, we override the DT_RELSZ entry
10666 here to make it not include the JMPREL relocs. Since
10667 the linker script arranges for .rel(a).plt to follow all
10668 other relocation sections, we don't have to worry
10669 about changing the DT_REL entry. */
10670 s
= bfd_get_section_by_name (output_bfd
,
10671 RELOC_SECTION (htab
, ".plt"));
10673 dyn
.d_un
.d_val
-= s
->size
;
10674 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10677 /* Fall through. */
10681 /* In the BPABI, the DT_REL tag must point at the file
10682 offset, not the VMA, of the first relocation
10683 section. So, we use code similar to that in
10684 elflink.c, but do not check for SHF_ALLOC on the
10685 relcoation section, since relocations sections are
10686 never allocated under the BPABI. The comments above
10687 about Unixware notwithstanding, we include all of the
10688 relocations here. */
10689 if (htab
->symbian_p
)
10692 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10693 ? SHT_REL
: SHT_RELA
);
10694 dyn
.d_un
.d_val
= 0;
10695 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
10697 Elf_Internal_Shdr
*hdr
10698 = elf_elfsections (output_bfd
)[i
];
10699 if (hdr
->sh_type
== type
)
10701 if (dyn
.d_tag
== DT_RELSZ
10702 || dyn
.d_tag
== DT_RELASZ
)
10703 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10704 else if ((ufile_ptr
) hdr
->sh_offset
10705 <= dyn
.d_un
.d_val
- 1)
10706 dyn
.d_un
.d_val
= hdr
->sh_offset
;
10709 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10713 /* Set the bottom bit of DT_INIT/FINI if the
10714 corresponding function is Thumb. */
10716 name
= info
->init_function
;
10719 name
= info
->fini_function
;
10721 /* If it wasn't set by elf_bfd_final_link
10722 then there is nothing to adjust. */
10723 if (dyn
.d_un
.d_val
!= 0)
10725 struct elf_link_hash_entry
* eh
;
10727 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10728 FALSE
, FALSE
, TRUE
);
10730 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
10732 dyn
.d_un
.d_val
|= 1;
10733 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
10740 /* Fill in the first entry in the procedure linkage table. */
10741 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
10743 const bfd_vma
*plt0_entry
;
10744 bfd_vma got_address
, plt_address
, got_displacement
;
10746 /* Calculate the addresses of the GOT and PLT. */
10747 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
10748 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
10750 if (htab
->vxworks_p
)
10752 /* The VxWorks GOT is relocated by the dynamic linker.
10753 Therefore, we must emit relocations rather than simply
10754 computing the values now. */
10755 Elf_Internal_Rela rel
;
10757 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
10758 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
10759 splt
->contents
+ 0);
10760 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
10761 splt
->contents
+ 4);
10762 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
10763 splt
->contents
+ 8);
10764 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
10766 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10767 rel
.r_offset
= plt_address
+ 12;
10768 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10770 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
10771 htab
->srelplt2
->contents
);
10775 got_displacement
= got_address
- (plt_address
+ 16);
10777 plt0_entry
= elf32_arm_plt0_entry
;
10778 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
10779 splt
->contents
+ 0);
10780 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
10781 splt
->contents
+ 4);
10782 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
10783 splt
->contents
+ 8);
10784 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
10785 splt
->contents
+ 12);
10787 #ifdef FOUR_WORD_PLT
10788 /* The displacement value goes in the otherwise-unused
10789 last word of the second entry. */
10790 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
10792 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
10797 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10798 really seem like the right value. */
10799 if (splt
->output_section
->owner
== output_bfd
)
10800 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
10802 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
10804 /* Correct the .rel(a).plt.unloaded relocations. They will have
10805 incorrect symbol indexes. */
10809 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
10810 / htab
->plt_entry_size
);
10811 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
10813 for (; num_plts
; num_plts
--)
10815 Elf_Internal_Rela rel
;
10817 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
10818 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
10819 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
10820 p
+= RELOC_SIZE (htab
);
10822 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
10823 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
10824 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
10825 p
+= RELOC_SIZE (htab
);
10830 /* Fill in the first three entries in the global offset table. */
10833 if (sgot
->size
> 0)
10836 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10838 bfd_put_32 (output_bfd
,
10839 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
10841 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
10842 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
10845 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
10852 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
10854 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
10855 struct elf32_arm_link_hash_table
*globals
;
10857 i_ehdrp
= elf_elfheader (abfd
);
10859 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
10860 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
10862 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
10863 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
10867 globals
= elf32_arm_hash_table (link_info
);
10868 if (globals
->byteswap_code
)
10869 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
10873 static enum elf_reloc_type_class
10874 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
10876 switch ((int) ELF32_R_TYPE (rela
->r_info
))
10878 case R_ARM_RELATIVE
:
10879 return reloc_class_relative
;
10880 case R_ARM_JUMP_SLOT
:
10881 return reloc_class_plt
;
10883 return reloc_class_copy
;
10885 return reloc_class_normal
;
10889 /* Set the right machine number for an Arm ELF file. */
10892 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
10894 if (hdr
->sh_type
== SHT_NOTE
)
10895 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
10901 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
10903 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
10906 /* Return TRUE if this is an unwinding table entry. */
10909 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
10911 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
10912 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
10916 /* Set the type and flags for an ARM section. We do this by
10917 the section name, which is a hack, but ought to work. */
10920 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
10924 name
= bfd_get_section_name (abfd
, sec
);
10926 if (is_arm_elf_unwind_section_name (abfd
, name
))
10928 hdr
->sh_type
= SHT_ARM_EXIDX
;
10929 hdr
->sh_flags
|= SHF_LINK_ORDER
;
10934 /* Handle an ARM specific section when reading an object file. This is
10935 called when bfd_section_from_shdr finds a section with an unknown
10939 elf32_arm_section_from_shdr (bfd
*abfd
,
10940 Elf_Internal_Shdr
* hdr
,
10944 /* There ought to be a place to keep ELF backend specific flags, but
10945 at the moment there isn't one. We just keep track of the
10946 sections by their name, instead. Fortunately, the ABI gives
10947 names for all the ARM specific sections, so we will probably get
10949 switch (hdr
->sh_type
)
10951 case SHT_ARM_EXIDX
:
10952 case SHT_ARM_PREEMPTMAP
:
10953 case SHT_ARM_ATTRIBUTES
:
10960 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
10966 /* A structure used to record a list of sections, independently
10967 of the next and prev fields in the asection structure. */
10968 typedef struct section_list
10971 struct section_list
* next
;
10972 struct section_list
* prev
;
10976 /* Unfortunately we need to keep a list of sections for which
10977 an _arm_elf_section_data structure has been allocated. This
10978 is because it is possible for functions like elf32_arm_write_section
10979 to be called on a section which has had an elf_data_structure
10980 allocated for it (and so the used_by_bfd field is valid) but
10981 for which the ARM extended version of this structure - the
10982 _arm_elf_section_data structure - has not been allocated. */
10983 static section_list
* sections_with_arm_elf_section_data
= NULL
;
10986 record_section_with_arm_elf_section_data (asection
* sec
)
10988 struct section_list
* entry
;
10990 entry
= bfd_malloc (sizeof (* entry
));
10994 entry
->next
= sections_with_arm_elf_section_data
;
10995 entry
->prev
= NULL
;
10996 if (entry
->next
!= NULL
)
10997 entry
->next
->prev
= entry
;
10998 sections_with_arm_elf_section_data
= entry
;
11001 static struct section_list
*
11002 find_arm_elf_section_entry (asection
* sec
)
11004 struct section_list
* entry
;
11005 static struct section_list
* last_entry
= NULL
;
11007 /* This is a short cut for the typical case where the sections are added
11008 to the sections_with_arm_elf_section_data list in forward order and
11009 then looked up here in backwards order. This makes a real difference
11010 to the ld-srec/sec64k.exp linker test. */
11011 entry
= sections_with_arm_elf_section_data
;
11012 if (last_entry
!= NULL
)
11014 if (last_entry
->sec
== sec
)
11015 entry
= last_entry
;
11016 else if (last_entry
->next
!= NULL
11017 && last_entry
->next
->sec
== sec
)
11018 entry
= last_entry
->next
;
11021 for (; entry
; entry
= entry
->next
)
11022 if (entry
->sec
== sec
)
11026 /* Record the entry prior to this one - it is the entry we are most
11027 likely to want to locate next time. Also this way if we have been
11028 called from unrecord_section_with_arm_elf_section_data() we will not
11029 be caching a pointer that is about to be freed. */
11030 last_entry
= entry
->prev
;
11035 static _arm_elf_section_data
*
11036 get_arm_elf_section_data (asection
* sec
)
11038 struct section_list
* entry
;
11040 entry
= find_arm_elf_section_entry (sec
);
11043 return elf32_arm_section_data (entry
->sec
);
11049 unrecord_section_with_arm_elf_section_data (asection
* sec
)
11051 struct section_list
* entry
;
11053 entry
= find_arm_elf_section_entry (sec
);
11057 if (entry
->prev
!= NULL
)
11058 entry
->prev
->next
= entry
->next
;
11059 if (entry
->next
!= NULL
)
11060 entry
->next
->prev
= entry
->prev
;
11061 if (entry
== sections_with_arm_elf_section_data
)
11062 sections_with_arm_elf_section_data
= entry
->next
;
11071 struct bfd_link_info
*info
;
11074 bfd_boolean (*func
) (void *, const char *, Elf_Internal_Sym
*,
11075 asection
*, struct elf_link_hash_entry
*);
11076 } output_arch_syminfo
;
11078 enum map_symbol_type
11086 /* Output a single mapping symbol. */
11089 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
11090 enum map_symbol_type type
,
11093 static const char *names
[3] = {"$a", "$t", "$d"};
11094 struct elf32_arm_link_hash_table
*htab
;
11095 Elf_Internal_Sym sym
;
11097 htab
= elf32_arm_hash_table (osi
->info
);
11098 sym
.st_value
= osi
->sec
->output_section
->vma
11099 + osi
->sec
->output_offset
11103 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
11104 sym
.st_shndx
= osi
->sec_shndx
;
11105 if (!osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
))
11111 /* Output mapping symbols for PLT entries associated with H. */
11114 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
11116 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
11117 struct elf32_arm_link_hash_table
*htab
;
11118 struct elf32_arm_link_hash_entry
*eh
;
11121 htab
= elf32_arm_hash_table (osi
->info
);
11123 if (h
->root
.type
== bfd_link_hash_indirect
)
11126 if (h
->root
.type
== bfd_link_hash_warning
)
11127 /* When warning symbols are created, they **replace** the "real"
11128 entry in the hash table, thus we never get to see the real
11129 symbol in a hash traversal. So look at it now. */
11130 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11132 if (h
->plt
.offset
== (bfd_vma
) -1)
11135 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11136 addr
= h
->plt
.offset
;
11137 if (htab
->symbian_p
)
11139 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11141 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11144 else if (htab
->vxworks_p
)
11146 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11148 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11150 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
11152 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
11157 bfd_signed_vma thumb_refs
;
11159 thumb_refs
= eh
->plt_thumb_refcount
;
11160 if (!htab
->use_blx
)
11161 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11163 if (thumb_refs
> 0)
11165 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
11168 #ifdef FOUR_WORD_PLT
11169 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11171 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11174 /* A three-word PLT with no Thumb thunk contains only Arm code,
11175 so only need to output a mapping symbol for the first PLT entry and
11176 entries with thumb thunks. */
11177 if (thumb_refs
> 0 || addr
== 20)
11179 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11188 /* Output a single local symbol for a generated stub. */
11191 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
11192 bfd_vma offset
, bfd_vma size
)
11194 struct elf32_arm_link_hash_table
*htab
;
11195 Elf_Internal_Sym sym
;
11197 htab
= elf32_arm_hash_table (osi
->info
);
11198 sym
.st_value
= osi
->sec
->output_section
->vma
11199 + osi
->sec
->output_offset
11201 sym
.st_size
= size
;
11203 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
11204 sym
.st_shndx
= osi
->sec_shndx
;
11205 if (!osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
))
11211 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
11214 struct elf32_arm_stub_hash_entry
*stub_entry
;
11215 struct bfd_link_info
*info
;
11216 struct elf32_arm_link_hash_table
*htab
;
11217 asection
*stub_sec
;
11220 output_arch_syminfo
*osi
;
11222 /* Massage our args to the form they really have. */
11223 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
11224 osi
= (output_arch_syminfo
*) in_arg
;
11228 htab
= elf32_arm_hash_table (info
);
11229 stub_sec
= stub_entry
->stub_sec
;
11231 /* Ensure this stub is attached to the current section being
11233 if (stub_sec
!= osi
->sec
)
11236 addr
= (bfd_vma
) stub_entry
->stub_offset
;
11237 stub_name
= stub_entry
->output_name
;
11239 switch (stub_entry
->stub_type
)
11241 case arm_stub_long_branch
:
11242 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 8))
11244 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11246 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
11249 case arm_thumb_v4t_stub_long_branch
:
11250 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11252 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11254 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11257 case arm_thumb_thumb_stub_long_branch
:
11258 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 16))
11260 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11262 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
11265 case arm_thumb_arm_v4t_stub_long_branch
:
11266 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 20))
11268 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
11270 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 8))
11272 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 16))
11275 case arm_thumb_arm_v4t_stub_short_branch
:
11276 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1, 8))
11278 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 4))
11281 case arm_stub_pic_long_branch
:
11282 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, 12))
11284 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
11286 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
11296 /* Output mapping symbols for linker generated sections. */
11299 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
11300 struct bfd_link_info
*info
,
11302 bfd_boolean (*func
) (void *, const char *,
11303 Elf_Internal_Sym
*,
11305 struct elf_link_hash_entry
*))
11307 output_arch_syminfo osi
;
11308 struct elf32_arm_link_hash_table
*htab
;
11310 bfd_size_type size
;
11312 htab
= elf32_arm_hash_table (info
);
11313 check_use_blx (htab
);
11319 /* ARM->Thumb glue. */
11320 if (htab
->arm_glue_size
> 0)
11322 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11323 ARM2THUMB_GLUE_SECTION_NAME
);
11325 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11326 (output_bfd
, osi
.sec
->output_section
);
11327 if (info
->shared
|| htab
->root
.is_relocatable_executable
11328 || htab
->pic_veneer
)
11329 size
= ARM2THUMB_PIC_GLUE_SIZE
;
11330 else if (htab
->use_blx
)
11331 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
11333 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
11335 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
11337 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
11338 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
11342 /* Thumb->ARM glue. */
11343 if (htab
->thumb_glue_size
> 0)
11345 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11346 THUMB2ARM_GLUE_SECTION_NAME
);
11348 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11349 (output_bfd
, osi
.sec
->output_section
);
11350 size
= THUMB2ARM_GLUE_SIZE
;
11352 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
11354 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
11355 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
11359 /* ARMv4 BX veneers. */
11360 if (htab
->bx_glue_size
> 0)
11362 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
11363 ARM_BX_GLUE_SECTION_NAME
);
11365 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11366 (output_bfd
, osi
.sec
->output_section
);
11368 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
11371 /* Long calls stubs. */
11372 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
11374 asection
* stub_sec
;
11376 for (stub_sec
= htab
->stub_bfd
->sections
;
11378 stub_sec
= stub_sec
->next
)
11380 /* Ignore non-stub sections. */
11381 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
11384 osi
.sec
= stub_sec
;
11386 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
11387 (output_bfd
, osi
.sec
->output_section
);
11389 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
11393 /* Finally, output mapping symbols for the PLT. */
11394 if (!htab
->splt
|| htab
->splt
->size
== 0)
11397 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
11398 htab
->splt
->output_section
);
11399 osi
.sec
= htab
->splt
;
11400 /* Output mapping symbols for the plt header. SymbianOS does not have a
11402 if (htab
->vxworks_p
)
11404 /* VxWorks shared libraries have no PLT header. */
11407 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11409 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
11413 else if (!htab
->symbian_p
)
11415 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
11417 #ifndef FOUR_WORD_PLT
11418 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
11423 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
11427 /* Allocate target specific section data. */
11430 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
11432 if (!sec
->used_by_bfd
)
11434 _arm_elf_section_data
*sdata
;
11435 bfd_size_type amt
= sizeof (*sdata
);
11437 sdata
= bfd_zalloc (abfd
, amt
);
11440 sec
->used_by_bfd
= sdata
;
11443 record_section_with_arm_elf_section_data (sec
);
11445 return _bfd_elf_new_section_hook (abfd
, sec
);
11449 /* Used to order a list of mapping symbols by address. */
11452 elf32_arm_compare_mapping (const void * a
, const void * b
)
11454 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
11455 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
11457 if (amap
->vma
> bmap
->vma
)
11459 else if (amap
->vma
< bmap
->vma
)
11461 else if (amap
->type
> bmap
->type
)
11462 /* Ensure results do not depend on the host qsort for objects with
11463 multiple mapping symbols at the same address by sorting on type
11466 else if (amap
->type
< bmap
->type
)
11473 /* Do code byteswapping. Return FALSE afterwards so that the section is
11474 written out as normal. */
11477 elf32_arm_write_section (bfd
*output_bfd
,
11478 struct bfd_link_info
*link_info
,
11480 bfd_byte
*contents
)
11482 int mapcount
, errcount
;
11483 _arm_elf_section_data
*arm_data
;
11484 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
11485 elf32_arm_section_map
*map
;
11486 elf32_vfp11_erratum_list
*errnode
;
11489 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
11493 /* If this section has not been allocated an _arm_elf_section_data
11494 structure then we cannot record anything. */
11495 arm_data
= get_arm_elf_section_data (sec
);
11496 if (arm_data
== NULL
)
11499 mapcount
= arm_data
->mapcount
;
11500 map
= arm_data
->map
;
11501 errcount
= arm_data
->erratumcount
;
11505 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
11507 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
11508 errnode
= errnode
->next
)
11510 bfd_vma index
= errnode
->vma
- offset
;
11512 switch (errnode
->type
)
11514 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
11516 bfd_vma branch_to_veneer
;
11517 /* Original condition code of instruction, plus bit mask for
11518 ARM B instruction. */
11519 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
11522 /* The instruction is before the label. */
11525 /* Above offset included in -4 below. */
11526 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
11527 - errnode
->vma
- 4;
11529 if ((signed) branch_to_veneer
< -(1 << 25)
11530 || (signed) branch_to_veneer
>= (1 << 25))
11531 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11532 "range"), output_bfd
);
11534 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
11535 contents
[endianflip
^ index
] = insn
& 0xff;
11536 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11537 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11538 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11542 case VFP11_ERRATUM_ARM_VENEER
:
11544 bfd_vma branch_from_veneer
;
11547 /* Take size of veneer into account. */
11548 branch_from_veneer
= errnode
->u
.v
.branch
->vma
11549 - errnode
->vma
- 12;
11551 if ((signed) branch_from_veneer
< -(1 << 25)
11552 || (signed) branch_from_veneer
>= (1 << 25))
11553 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
11554 "range"), output_bfd
);
11556 /* Original instruction. */
11557 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
11558 contents
[endianflip
^ index
] = insn
& 0xff;
11559 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
11560 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
11561 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
11563 /* Branch back to insn after original insn. */
11564 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
11565 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
11566 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
11567 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
11568 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
11581 if (globals
->byteswap_code
)
11583 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
11586 for (i
= 0; i
< mapcount
; i
++)
11588 if (i
== mapcount
- 1)
11591 end
= map
[i
+ 1].vma
;
11593 switch (map
[i
].type
)
11596 /* Byte swap code words. */
11597 while (ptr
+ 3 < end
)
11599 tmp
= contents
[ptr
];
11600 contents
[ptr
] = contents
[ptr
+ 3];
11601 contents
[ptr
+ 3] = tmp
;
11602 tmp
= contents
[ptr
+ 1];
11603 contents
[ptr
+ 1] = contents
[ptr
+ 2];
11604 contents
[ptr
+ 2] = tmp
;
11610 /* Byte swap code halfwords. */
11611 while (ptr
+ 1 < end
)
11613 tmp
= contents
[ptr
];
11614 contents
[ptr
] = contents
[ptr
+ 1];
11615 contents
[ptr
+ 1] = tmp
;
11621 /* Leave data alone. */
11629 arm_data
->mapcount
= 0;
11630 arm_data
->mapsize
= 0;
11631 arm_data
->map
= NULL
;
11632 unrecord_section_with_arm_elf_section_data (sec
);
11638 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
11640 void * ignore ATTRIBUTE_UNUSED
)
11642 unrecord_section_with_arm_elf_section_data (sec
);
11646 elf32_arm_close_and_cleanup (bfd
* abfd
)
11648 if (abfd
->sections
)
11649 bfd_map_over_sections (abfd
,
11650 unrecord_section_via_map_over_sections
,
11653 return _bfd_elf_close_and_cleanup (abfd
);
11657 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
11659 if (abfd
->sections
)
11660 bfd_map_over_sections (abfd
,
11661 unrecord_section_via_map_over_sections
,
11664 return _bfd_free_cached_info (abfd
);
11667 /* Display STT_ARM_TFUNC symbols as functions. */
11670 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
11673 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
11675 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
11676 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
11680 /* Mangle thumb function symbols as we read them in. */
11683 elf32_arm_swap_symbol_in (bfd
* abfd
,
11686 Elf_Internal_Sym
*dst
)
11688 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
11691 /* New EABI objects mark thumb function symbols by setting the low bit of
11692 the address. Turn these into STT_ARM_TFUNC. */
11693 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
11694 && (dst
->st_value
& 1))
11696 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
11697 dst
->st_value
&= ~(bfd_vma
) 1;
11703 /* Mangle thumb function symbols as we write them out. */
11706 elf32_arm_swap_symbol_out (bfd
*abfd
,
11707 const Elf_Internal_Sym
*src
,
11711 Elf_Internal_Sym newsym
;
11713 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11714 of the address set, as per the new EABI. We do this unconditionally
11715 because objcopy does not set the elf header flags until after
11716 it writes out the symbol table. */
11717 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
11720 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
11721 if (newsym
.st_shndx
!= SHN_UNDEF
)
11723 /* Do this only for defined symbols. At link type, the static
11724 linker will simulate the work of dynamic linker of resolving
11725 symbols and will carry over the thumbness of found symbols to
11726 the output symbol table. It's not clear how it happens, but
11727 the thumbness of undefined symbols can well be different at
11728 runtime, and writing '1' for them will be confusing for users
11729 and possibly for dynamic linker itself.
11731 newsym
.st_value
|= 1;
11736 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
11739 /* Add the PT_ARM_EXIDX program header. */
11742 elf32_arm_modify_segment_map (bfd
*abfd
,
11743 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
11745 struct elf_segment_map
*m
;
11748 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
11749 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
11751 /* If there is already a PT_ARM_EXIDX header, then we do not
11752 want to add another one. This situation arises when running
11753 "strip"; the input binary already has the header. */
11754 m
= elf_tdata (abfd
)->segment_map
;
11755 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
11759 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
11762 m
->p_type
= PT_ARM_EXIDX
;
11764 m
->sections
[0] = sec
;
11766 m
->next
= elf_tdata (abfd
)->segment_map
;
11767 elf_tdata (abfd
)->segment_map
= m
;
11774 /* We may add a PT_ARM_EXIDX program header. */
11777 elf32_arm_additional_program_headers (bfd
*abfd
,
11778 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
11782 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
11783 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
11789 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11792 elf32_arm_is_function_type (unsigned int type
)
11794 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
11797 /* We use this to override swap_symbol_in and swap_symbol_out. */
11798 const struct elf_size_info elf32_arm_size_info
=
11800 sizeof (Elf32_External_Ehdr
),
11801 sizeof (Elf32_External_Phdr
),
11802 sizeof (Elf32_External_Shdr
),
11803 sizeof (Elf32_External_Rel
),
11804 sizeof (Elf32_External_Rela
),
11805 sizeof (Elf32_External_Sym
),
11806 sizeof (Elf32_External_Dyn
),
11807 sizeof (Elf_External_Note
),
11811 ELFCLASS32
, EV_CURRENT
,
11812 bfd_elf32_write_out_phdrs
,
11813 bfd_elf32_write_shdrs_and_ehdr
,
11814 bfd_elf32_checksum_contents
,
11815 bfd_elf32_write_relocs
,
11816 elf32_arm_swap_symbol_in
,
11817 elf32_arm_swap_symbol_out
,
11818 bfd_elf32_slurp_reloc_table
,
11819 bfd_elf32_slurp_symbol_table
,
11820 bfd_elf32_swap_dyn_in
,
11821 bfd_elf32_swap_dyn_out
,
11822 bfd_elf32_swap_reloc_in
,
11823 bfd_elf32_swap_reloc_out
,
11824 bfd_elf32_swap_reloca_in
,
11825 bfd_elf32_swap_reloca_out
11828 #define ELF_ARCH bfd_arch_arm
11829 #define ELF_MACHINE_CODE EM_ARM
11830 #ifdef __QNXTARGET__
11831 #define ELF_MAXPAGESIZE 0x1000
11833 #define ELF_MAXPAGESIZE 0x8000
11835 #define ELF_MINPAGESIZE 0x1000
11836 #define ELF_COMMONPAGESIZE 0x1000
11838 #define bfd_elf32_mkobject elf32_arm_mkobject
11840 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11841 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11842 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11843 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11844 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11845 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11846 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11847 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11848 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11849 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11850 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11851 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11852 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11853 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11855 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11856 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11857 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11858 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11859 #define elf_backend_check_relocs elf32_arm_check_relocs
11860 #define elf_backend_relocate_section elf32_arm_relocate_section
11861 #define elf_backend_write_section elf32_arm_write_section
11862 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11863 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11864 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11865 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11866 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11867 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11868 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11869 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11870 #define elf_backend_object_p elf32_arm_object_p
11871 #define elf_backend_section_flags elf32_arm_section_flags
11872 #define elf_backend_fake_sections elf32_arm_fake_sections
11873 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11874 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11875 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11876 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11877 #define elf_backend_size_info elf32_arm_size_info
11878 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11879 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11880 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11881 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11882 #define elf_backend_is_function_type elf32_arm_is_function_type
11884 #define elf_backend_can_refcount 1
11885 #define elf_backend_can_gc_sections 1
11886 #define elf_backend_plt_readonly 1
11887 #define elf_backend_want_got_plt 1
11888 #define elf_backend_want_plt_sym 0
11889 #define elf_backend_may_use_rel_p 1
11890 #define elf_backend_may_use_rela_p 0
11891 #define elf_backend_default_use_rela_p 0
11893 #define elf_backend_got_header_size 12
11895 #undef elf_backend_obj_attrs_vendor
11896 #define elf_backend_obj_attrs_vendor "aeabi"
11897 #undef elf_backend_obj_attrs_section
11898 #define elf_backend_obj_attrs_section ".ARM.attributes"
11899 #undef elf_backend_obj_attrs_arg_type
11900 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11901 #undef elf_backend_obj_attrs_section_type
11902 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11904 #include "elf32-target.h"
11906 /* VxWorks Targets. */
11908 #undef TARGET_LITTLE_SYM
11909 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11910 #undef TARGET_LITTLE_NAME
11911 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11912 #undef TARGET_BIG_SYM
11913 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11914 #undef TARGET_BIG_NAME
11915 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11917 /* Like elf32_arm_link_hash_table_create -- but overrides
11918 appropriately for VxWorks. */
11920 static struct bfd_link_hash_table
*
11921 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
11923 struct bfd_link_hash_table
*ret
;
11925 ret
= elf32_arm_link_hash_table_create (abfd
);
11928 struct elf32_arm_link_hash_table
*htab
11929 = (struct elf32_arm_link_hash_table
*) ret
;
11931 htab
->vxworks_p
= 1;
11937 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
11939 elf32_arm_final_write_processing (abfd
, linker
);
11940 elf_vxworks_final_write_processing (abfd
, linker
);
11944 #define elf32_bed elf32_arm_vxworks_bed
11946 #undef bfd_elf32_bfd_link_hash_table_create
11947 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11948 #undef elf_backend_add_symbol_hook
11949 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11950 #undef elf_backend_final_write_processing
11951 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11952 #undef elf_backend_emit_relocs
11953 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11955 #undef elf_backend_may_use_rel_p
11956 #define elf_backend_may_use_rel_p 0
11957 #undef elf_backend_may_use_rela_p
11958 #define elf_backend_may_use_rela_p 1
11959 #undef elf_backend_default_use_rela_p
11960 #define elf_backend_default_use_rela_p 1
11961 #undef elf_backend_want_plt_sym
11962 #define elf_backend_want_plt_sym 1
11963 #undef ELF_MAXPAGESIZE
11964 #define ELF_MAXPAGESIZE 0x1000
11966 #include "elf32-target.h"
11969 /* Symbian OS Targets. */
11971 #undef TARGET_LITTLE_SYM
11972 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11973 #undef TARGET_LITTLE_NAME
11974 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11975 #undef TARGET_BIG_SYM
11976 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11977 #undef TARGET_BIG_NAME
11978 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11980 /* Like elf32_arm_link_hash_table_create -- but overrides
11981 appropriately for Symbian OS. */
11983 static struct bfd_link_hash_table
*
11984 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
11986 struct bfd_link_hash_table
*ret
;
11988 ret
= elf32_arm_link_hash_table_create (abfd
);
11991 struct elf32_arm_link_hash_table
*htab
11992 = (struct elf32_arm_link_hash_table
*)ret
;
11993 /* There is no PLT header for Symbian OS. */
11994 htab
->plt_header_size
= 0;
11995 /* The PLT entries are each one instruction and one word. */
11996 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
11997 htab
->symbian_p
= 1;
11998 /* Symbian uses armv5t or above, so use_blx is always true. */
12000 htab
->root
.is_relocatable_executable
= 1;
12005 static const struct bfd_elf_special_section
12006 elf32_arm_symbian_special_sections
[] =
12008 /* In a BPABI executable, the dynamic linking sections do not go in
12009 the loadable read-only segment. The post-linker may wish to
12010 refer to these sections, but they are not part of the final
12012 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
12013 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
12014 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
12015 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
12016 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
12017 /* These sections do not need to be writable as the SymbianOS
12018 postlinker will arrange things so that no dynamic relocation is
12020 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
12021 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
12022 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
12023 { NULL
, 0, 0, 0, 0 }
12027 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
12028 struct bfd_link_info
*link_info
)
12030 /* BPABI objects are never loaded directly by an OS kernel; they are
12031 processed by a postlinker first, into an OS-specific format. If
12032 the D_PAGED bit is set on the file, BFD will align segments on
12033 page boundaries, so that an OS can directly map the file. With
12034 BPABI objects, that just results in wasted space. In addition,
12035 because we clear the D_PAGED bit, map_sections_to_segments will
12036 recognize that the program headers should not be mapped into any
12037 loadable segment. */
12038 abfd
->flags
&= ~D_PAGED
;
12039 elf32_arm_begin_write_processing (abfd
, link_info
);
12043 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
12044 struct bfd_link_info
*info
)
12046 struct elf_segment_map
*m
;
12049 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12050 segment. However, because the .dynamic section is not marked
12051 with SEC_LOAD, the generic ELF code will not create such a
12053 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
12056 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
12057 if (m
->p_type
== PT_DYNAMIC
)
12062 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
12063 m
->next
= elf_tdata (abfd
)->segment_map
;
12064 elf_tdata (abfd
)->segment_map
= m
;
12068 /* Also call the generic arm routine. */
12069 return elf32_arm_modify_segment_map (abfd
, info
);
12072 /* Return address for Ith PLT stub in section PLT, for relocation REL
12073 or (bfd_vma) -1 if it should not be included. */
12076 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
12077 const arelent
*rel ATTRIBUTE_UNUSED
)
12079 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
12084 #define elf32_bed elf32_arm_symbian_bed
12086 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12087 will process them and then discard them. */
12088 #undef ELF_DYNAMIC_SEC_FLAGS
12089 #define ELF_DYNAMIC_SEC_FLAGS \
12090 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12092 #undef elf_backend_add_symbol_hook
12093 #undef elf_backend_emit_relocs
12095 #undef bfd_elf32_bfd_link_hash_table_create
12096 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12097 #undef elf_backend_special_sections
12098 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12099 #undef elf_backend_begin_write_processing
12100 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12101 #undef elf_backend_final_write_processing
12102 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12104 #undef elf_backend_modify_segment_map
12105 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12107 /* There is no .got section for BPABI objects, and hence no header. */
12108 #undef elf_backend_got_header_size
12109 #define elf_backend_got_header_size 0
12111 /* Similarly, there is no .got.plt section. */
12112 #undef elf_backend_want_got_plt
12113 #define elf_backend_want_got_plt 0
12115 #undef elf_backend_plt_sym_val
12116 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12118 #undef elf_backend_may_use_rel_p
12119 #define elf_backend_may_use_rel_p 1
12120 #undef elf_backend_may_use_rela_p
12121 #define elf_backend_may_use_rela_p 0
12122 #undef elf_backend_default_use_rela_p
12123 #define elf_backend_default_use_rela_p 0
12124 #undef elf_backend_want_plt_sym
12125 #define elf_backend_want_plt_sym 0
12126 #undef ELF_MAXPAGESIZE
12127 #define ELF_MAXPAGESIZE 0x8000
12129 #include "elf32-target.h"