1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
7 Center for Software Science
8 Department of Computer Science
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
14 This file is part of BFD, the Binary File Descriptor library.
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
37 #include "elf32-hppa.h"
39 #include "elf32-hppa.h"
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
53 /* We use two hash tables to hold information for linking PA ELF objects.
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
63 There are a number of different stubs generated by the linker.
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
115 : ldw -24(%sp),%rp ; restore the original rp
118 : be,n 0(%sr0,%rp) ; inter-space return. */
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
131 bfd_hash_table "btab"
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
137 elf32_hppa_dyn_reloc_entry "hdh"
139 Always remember to use GNU Coding Style. */
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
145 static const bfd_byte plt_stub
[] =
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
157 /* Section name for stubs is the associated section name plus this
159 #define STUB_SUFFIX ".stub"
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
173 #define ELIMINATE_COPY_RELOCS 1
175 enum elf32_hppa_stub_type
177 hppa_stub_long_branch
,
178 hppa_stub_long_branch_shared
,
180 hppa_stub_import_shared
,
185 struct elf32_hppa_stub_hash_entry
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root
;
190 /* The stub section. */
193 /* Offset within stub_sec of the beginning of this stub. */
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value
;
199 asection
*target_section
;
201 enum elf32_hppa_stub_type stub_type
;
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry
*hh
;
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
211 struct elf32_hppa_link_hash_entry
213 struct elf_link_hash_entry eh
;
215 /* A pointer to the most recently used stub hash entry against this
217 struct elf32_hppa_stub_hash_entry
*hsh_cache
;
219 /* Used to count relocations for delayed sizing of relocation
221 struct elf32_hppa_dyn_reloc_entry
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry
*hdh_next
;
226 /* The input section of the reloc. */
229 /* Number of relocs copied in this section. */
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count
;
240 GOT_UNKNOWN
= 0, GOT_NORMAL
= 1, GOT_TLS_GD
= 2, GOT_TLS_LDM
= 4, GOT_TLS_IE
= 8
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel
:1;
247 struct elf32_hppa_link_hash_table
249 /* The main hash table. */
250 struct elf_link_hash_table etab
;
252 /* The stub hash table. */
253 struct bfd_hash_table bstab
;
255 /* Linker stub bfd. */
258 /* Linker call-backs. */
259 asection
* (*add_stub_section
) (const char *, asection
*);
260 void (*layout_sections_again
) (void);
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
266 /* This is the section to which stubs in the group will be
269 /* The stub section. */
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count
;
276 asection
**input_list
;
277 Elf_Internal_Sym
**all_local_syms
;
279 /* Short-cuts to get to dynamic linker sections. */
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base
;
290 bfd_vma data_segment_base
;
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace
:1;
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch
:1;
298 unsigned int has_17bit_branch
:1;
299 unsigned int has_22bit_branch
:1;
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub
:1;
304 /* Small local sym to section mapping cache. */
305 struct sym_sec_cache sym_sec
;
307 /* Data for LDM relocations. */
310 bfd_signed_vma refcount
;
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
338 /* Override the generic function because we want to mark our BFDs. */
341 elf32_hppa_mkobject (bfd
*abfd
)
343 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
347 /* Assorted hash table functions. */
349 /* Initialize an entry in the stub hash table. */
351 static struct bfd_hash_entry
*
352 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
353 struct bfd_hash_table
*table
,
356 /* Allocate the structure if it has not already been allocated by a
360 entry
= bfd_hash_allocate (table
,
361 sizeof (struct elf32_hppa_stub_hash_entry
));
366 /* Call the allocation method of the superclass. */
367 entry
= bfd_hash_newfunc (entry
, table
, string
);
370 struct elf32_hppa_stub_hash_entry
*hsh
;
372 /* Initialize the local fields. */
373 hsh
= hppa_stub_hash_entry (entry
);
374 hsh
->stub_sec
= NULL
;
375 hsh
->stub_offset
= 0;
376 hsh
->target_value
= 0;
377 hsh
->target_section
= NULL
;
378 hsh
->stub_type
= hppa_stub_long_branch
;
386 /* Initialize an entry in the link hash table. */
388 static struct bfd_hash_entry
*
389 hppa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
390 struct bfd_hash_table
*table
,
393 /* Allocate the structure if it has not already been allocated by a
397 entry
= bfd_hash_allocate (table
,
398 sizeof (struct elf32_hppa_link_hash_entry
));
403 /* Call the allocation method of the superclass. */
404 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
407 struct elf32_hppa_link_hash_entry
*hh
;
409 /* Initialize the local fields. */
410 hh
= hppa_elf_hash_entry (entry
);
411 hh
->hsh_cache
= NULL
;
412 hh
->dyn_relocs
= NULL
;
414 hh
->tls_type
= GOT_UNKNOWN
;
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
424 static struct bfd_link_hash_table
*
425 elf32_hppa_link_hash_table_create (bfd
*abfd
)
427 struct elf32_hppa_link_hash_table
*htab
;
428 bfd_size_type amt
= sizeof (*htab
);
430 htab
= bfd_malloc (amt
);
434 if (!_bfd_elf_link_hash_table_init (&htab
->etab
, abfd
, hppa_link_hash_newfunc
,
435 sizeof (struct elf32_hppa_link_hash_entry
)))
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab
->bstab
, stub_hash_newfunc
,
443 sizeof (struct elf32_hppa_stub_hash_entry
)))
446 htab
->stub_bfd
= NULL
;
447 htab
->add_stub_section
= NULL
;
448 htab
->layout_sections_again
= NULL
;
449 htab
->stub_group
= NULL
;
451 htab
->srelgot
= NULL
;
453 htab
->srelplt
= NULL
;
454 htab
->sdynbss
= NULL
;
455 htab
->srelbss
= NULL
;
456 htab
->text_segment_base
= (bfd_vma
) -1;
457 htab
->data_segment_base
= (bfd_vma
) -1;
458 htab
->multi_subspace
= 0;
459 htab
->has_12bit_branch
= 0;
460 htab
->has_17bit_branch
= 0;
461 htab
->has_22bit_branch
= 0;
462 htab
->need_plt_stub
= 0;
463 htab
->sym_sec
.abfd
= NULL
;
464 htab
->tls_ldm_got
.refcount
= 0;
466 return &htab
->etab
.root
;
469 /* Free the derived linker hash table. */
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table
*btab
)
474 struct elf32_hppa_link_hash_table
*htab
475 = (struct elf32_hppa_link_hash_table
*) btab
;
477 bfd_hash_table_free (&htab
->bstab
);
478 _bfd_generic_link_hash_table_free (btab
);
481 /* Build a name for an entry in the stub hash table. */
484 hppa_stub_name (const asection
*input_section
,
485 const asection
*sym_sec
,
486 const struct elf32_hppa_link_hash_entry
*hh
,
487 const Elf_Internal_Rela
*rela
)
494 len
= 8 + 1 + strlen (hh_name (hh
)) + 1 + 8 + 1;
495 stub_name
= bfd_malloc (len
);
496 if (stub_name
!= NULL
)
497 sprintf (stub_name
, "%08x_%s+%x",
498 input_section
->id
& 0xffffffff,
500 (int) rela
->r_addend
& 0xffffffff);
504 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name
= bfd_malloc (len
);
506 if (stub_name
!= NULL
)
507 sprintf (stub_name
, "%08x_%x:%x+%x",
508 input_section
->id
& 0xffffffff,
509 sym_sec
->id
& 0xffffffff,
510 (int) ELF32_R_SYM (rela
->r_info
) & 0xffffffff,
511 (int) rela
->r_addend
& 0xffffffff);
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
519 static struct elf32_hppa_stub_hash_entry
*
520 hppa_get_stub_entry (const asection
*input_section
,
521 const asection
*sym_sec
,
522 struct elf32_hppa_link_hash_entry
*hh
,
523 const Elf_Internal_Rela
*rela
,
524 struct elf32_hppa_link_hash_table
*htab
)
526 struct elf32_hppa_stub_hash_entry
*hsh_entry
;
527 const asection
*id_sec
;
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
536 if (hh
!= NULL
&& hh
->hsh_cache
!= NULL
537 && hh
->hsh_cache
->hh
== hh
538 && hh
->hsh_cache
->id_sec
== id_sec
)
540 hsh_entry
= hh
->hsh_cache
;
546 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, rela
);
547 if (stub_name
== NULL
)
550 hsh_entry
= hppa_stub_hash_lookup (&htab
->bstab
,
551 stub_name
, FALSE
, FALSE
);
553 hh
->hsh_cache
= hsh_entry
;
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
564 static struct elf32_hppa_stub_hash_entry
*
565 hppa_add_stub (const char *stub_name
,
567 struct elf32_hppa_link_hash_table
*htab
)
571 struct elf32_hppa_stub_hash_entry
*hsh
;
573 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
574 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
575 if (stub_sec
== NULL
)
577 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
578 if (stub_sec
== NULL
)
584 namelen
= strlen (link_sec
->name
);
585 len
= namelen
+ sizeof (STUB_SUFFIX
);
586 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
590 memcpy (s_name
, link_sec
->name
, namelen
);
591 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
592 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
593 if (stub_sec
== NULL
)
595 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
597 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
600 /* Enter this entry into the linker stub hash table. */
601 hsh
= hppa_stub_hash_lookup (&htab
->bstab
, stub_name
,
605 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
611 hsh
->stub_sec
= stub_sec
;
612 hsh
->stub_offset
= 0;
613 hsh
->id_sec
= link_sec
;
617 /* Determine the type of stub needed, if any, for a call. */
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection
*input_sec
,
621 const Elf_Internal_Rela
*rela
,
622 struct elf32_hppa_link_hash_entry
*hh
,
624 struct bfd_link_info
*info
)
627 bfd_vma branch_offset
;
628 bfd_vma max_branch_offset
;
632 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
633 && hh
->eh
.dynindx
!= -1
636 || !hh
->eh
.def_regular
637 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import
;
644 /* Determine where the call point is. */
645 location
= (input_sec
->output_offset
646 + input_sec
->output_section
->vma
649 branch_offset
= destination
- location
- 8;
650 r_type
= ELF32_R_TYPE (rela
->r_info
);
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
657 max_branch_offset
= (1 << (17 - 1)) << 2;
659 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
660 max_branch_offset
= (1 << (12 - 1)) << 2;
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset
= (1 << (22 - 1)) << 2;
665 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
666 return hppa_stub_long_branch
;
668 return hppa_stub_none
;
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
706 #define LDW_R1_DLT LDW_R1_R19
708 #define LDW_R1_DLT LDW_R1_DP
712 hppa_build_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
714 struct elf32_hppa_stub_hash_entry
*hsh
;
715 struct bfd_link_info
*info
;
716 struct elf32_hppa_link_hash_table
*htab
;
726 /* Massage our args to the form they really have. */
727 hsh
= hppa_stub_hash_entry (bh
);
728 info
= (struct bfd_link_info
*)in_arg
;
730 htab
= hppa_link_hash_table (info
);
731 stub_sec
= hsh
->stub_sec
;
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh
->stub_offset
= stub_sec
->size
;
735 loc
= stub_sec
->contents
+ hsh
->stub_offset
;
737 stub_bfd
= stub_sec
->owner
;
739 switch (hsh
->stub_type
)
741 case hppa_stub_long_branch
:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value
= (hsh
->target_value
747 + hsh
->target_section
->output_offset
748 + hsh
->target_section
->output_section
->vma
);
750 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
);
751 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
752 bfd_put_32 (stub_bfd
, insn
, loc
);
754 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
) >> 2;
755 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
756 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
761 case hppa_stub_long_branch_shared
:
762 /* Branches are relative. This is where we are going to. */
763 sym_value
= (hsh
->target_value
764 + hsh
->target_section
->output_offset
765 + hsh
->target_section
->output_section
->vma
);
767 /* And this is where we are coming from, more or less. */
768 sym_value
-= (hsh
->stub_offset
769 + stub_sec
->output_offset
770 + stub_sec
->output_section
->vma
);
772 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
773 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
774 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
775 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
777 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
778 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
779 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
783 case hppa_stub_import
:
784 case hppa_stub_import_shared
:
785 off
= hsh
->hh
->eh
.plt
.offset
;
786 if (off
>= (bfd_vma
) -2)
789 off
&= ~ (bfd_vma
) 1;
791 + htab
->splt
->output_offset
792 + htab
->splt
->output_section
->vma
793 - elf_gp (htab
->splt
->output_section
->owner
));
797 if (hsh
->stub_type
== hppa_stub_import_shared
)
800 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
),
801 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
802 bfd_put_32 (stub_bfd
, insn
, loc
);
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
);
810 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
811 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
813 if (htab
->multi_subspace
)
815 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
816 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
817 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
819 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
820 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
821 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
822 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
828 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
829 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
830 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
831 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
838 case hppa_stub_export
:
839 /* Branches are relative. This is where we are going to. */
840 sym_value
= (hsh
->target_value
841 + hsh
->target_section
->output_offset
842 + hsh
->target_section
->output_section
->vma
);
844 /* And this is where we are coming from. */
845 sym_value
-= (hsh
->stub_offset
846 + stub_sec
->output_offset
847 + stub_sec
->output_section
->vma
);
849 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab
->has_22bit_branch
851 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
853 (*_bfd_error_handler
)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh
->target_section
->owner
,
857 (long) hsh
->stub_offset
,
858 hsh
->bh_root
.string
);
859 bfd_set_error (bfd_error_bad_value
);
863 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
864 if (!htab
->has_22bit_branch
)
865 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
867 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
868 bfd_put_32 (stub_bfd
, insn
, loc
);
870 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
871 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
872 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
873 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
874 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
876 /* Point the function symbol at the stub. */
877 hsh
->hh
->eh
.root
.u
.def
.section
= stub_sec
;
878 hsh
->hh
->eh
.root
.u
.def
.value
= stub_sec
->size
;
888 stub_sec
->size
+= size
;
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
917 hppa_size_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
919 struct elf32_hppa_stub_hash_entry
*hsh
;
920 struct elf32_hppa_link_hash_table
*htab
;
923 /* Massage our args to the form they really have. */
924 hsh
= hppa_stub_hash_entry (bh
);
927 if (hsh
->stub_type
== hppa_stub_long_branch
)
929 else if (hsh
->stub_type
== hppa_stub_long_branch_shared
)
931 else if (hsh
->stub_type
== hppa_stub_export
)
933 else /* hppa_stub_import or hppa_stub_import_shared. */
935 if (htab
->multi_subspace
)
941 hsh
->stub_sec
->size
+= size
;
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
949 elf32_hppa_object_p (bfd
*abfd
)
951 Elf_Internal_Ehdr
* i_ehdrp
;
954 i_ehdrp
= elf_elfheader (abfd
);
955 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
&&
960 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
963 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NETBSD
&&
968 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
973 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
977 flags
= i_ehdrp
->e_flags
;
978 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
981 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
983 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
985 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
986 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
987 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
996 elf32_hppa_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
998 struct elf32_hppa_link_hash_table
*htab
;
999 struct elf_link_hash_entry
*eh
;
1001 /* Don't try to create the .plt and .got twice. */
1002 htab
= hppa_link_hash_table (info
);
1003 if (htab
->splt
!= NULL
)
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
1010 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1011 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1013 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1014 htab
->srelgot
= bfd_make_section_with_flags (abfd
, ".rela.got",
1019 | SEC_LINKER_CREATED
1021 if (htab
->srelgot
== NULL
1022 || ! bfd_set_section_alignment (abfd
, htab
->srelgot
, 2))
1025 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1026 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1028 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1029 application, because __canonicalize_funcptr_for_compare needs it. */
1030 eh
= elf_hash_table (info
)->hgot
;
1031 eh
->forced_local
= 0;
1032 eh
->other
= STV_DEFAULT
;
1033 return bfd_elf_link_record_dynamic_symbol (info
, eh
);
1036 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1039 elf32_hppa_copy_indirect_symbol (struct bfd_link_info
*info
,
1040 struct elf_link_hash_entry
*eh_dir
,
1041 struct elf_link_hash_entry
*eh_ind
)
1043 struct elf32_hppa_link_hash_entry
*hh_dir
, *hh_ind
;
1045 hh_dir
= hppa_elf_hash_entry (eh_dir
);
1046 hh_ind
= hppa_elf_hash_entry (eh_ind
);
1048 if (hh_ind
->dyn_relocs
!= NULL
)
1050 if (hh_dir
->dyn_relocs
!= NULL
)
1052 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1053 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1055 /* Add reloc counts against the indirect sym to the direct sym
1056 list. Merge any entries against the same section. */
1057 for (hdh_pp
= &hh_ind
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
1059 struct elf32_hppa_dyn_reloc_entry
*hdh_q
;
1061 for (hdh_q
= hh_dir
->dyn_relocs
;
1063 hdh_q
= hdh_q
->hdh_next
)
1064 if (hdh_q
->sec
== hdh_p
->sec
)
1066 #if RELATIVE_DYNRELOCS
1067 hdh_q
->relative_count
+= hdh_p
->relative_count
;
1069 hdh_q
->count
+= hdh_p
->count
;
1070 *hdh_pp
= hdh_p
->hdh_next
;
1074 hdh_pp
= &hdh_p
->hdh_next
;
1076 *hdh_pp
= hh_dir
->dyn_relocs
;
1079 hh_dir
->dyn_relocs
= hh_ind
->dyn_relocs
;
1080 hh_ind
->dyn_relocs
= NULL
;
1083 if (ELIMINATE_COPY_RELOCS
1084 && eh_ind
->root
.type
!= bfd_link_hash_indirect
1085 && eh_dir
->dynamic_adjusted
)
1087 /* If called to transfer flags for a weakdef during processing
1088 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1089 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1090 eh_dir
->ref_dynamic
|= eh_ind
->ref_dynamic
;
1091 eh_dir
->ref_regular
|= eh_ind
->ref_regular
;
1092 eh_dir
->ref_regular_nonweak
|= eh_ind
->ref_regular_nonweak
;
1093 eh_dir
->needs_plt
|= eh_ind
->needs_plt
;
1097 if (eh_ind
->root
.type
== bfd_link_hash_indirect
1098 && eh_dir
->got
.refcount
<= 0)
1100 hh_dir
->tls_type
= hh_ind
->tls_type
;
1101 hh_ind
->tls_type
= GOT_UNKNOWN
;
1104 _bfd_elf_link_hash_copy_indirect (info
, eh_dir
, eh_ind
);
1109 elf32_hppa_optimized_tls_reloc (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1110 int r_type
, int is_local ATTRIBUTE_UNUSED
)
1112 /* For now we don't support linker optimizations. */
1116 /* Look through the relocs for a section during the first phase, and
1117 calculate needed space in the global offset table, procedure linkage
1118 table, and dynamic reloc sections. At this point we haven't
1119 necessarily read all the input files. */
1122 elf32_hppa_check_relocs (bfd
*abfd
,
1123 struct bfd_link_info
*info
,
1125 const Elf_Internal_Rela
*relocs
)
1127 Elf_Internal_Shdr
*symtab_hdr
;
1128 struct elf_link_hash_entry
**eh_syms
;
1129 const Elf_Internal_Rela
*rela
;
1130 const Elf_Internal_Rela
*rela_end
;
1131 struct elf32_hppa_link_hash_table
*htab
;
1133 asection
*stubreloc
;
1134 int tls_type
= GOT_UNKNOWN
, old_tls_type
= GOT_UNKNOWN
;
1136 if (info
->relocatable
)
1139 htab
= hppa_link_hash_table (info
);
1140 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1141 eh_syms
= elf_sym_hashes (abfd
);
1145 rela_end
= relocs
+ sec
->reloc_count
;
1146 for (rela
= relocs
; rela
< rela_end
; rela
++)
1155 unsigned int r_symndx
, r_type
;
1156 struct elf32_hppa_link_hash_entry
*hh
;
1159 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1161 if (r_symndx
< symtab_hdr
->sh_info
)
1165 hh
= hppa_elf_hash_entry (eh_syms
[r_symndx
- symtab_hdr
->sh_info
]);
1166 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
1167 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
1168 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
1171 r_type
= ELF32_R_TYPE (rela
->r_info
);
1172 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, hh
== NULL
);
1176 case R_PARISC_DLTIND14F
:
1177 case R_PARISC_DLTIND14R
:
1178 case R_PARISC_DLTIND21L
:
1179 /* This symbol requires a global offset table entry. */
1180 need_entry
= NEED_GOT
;
1183 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1184 case R_PARISC_PLABEL21L
:
1185 case R_PARISC_PLABEL32
:
1186 /* If the addend is non-zero, we break badly. */
1187 if (rela
->r_addend
!= 0)
1190 /* If we are creating a shared library, then we need to
1191 create a PLT entry for all PLABELs, because PLABELs with
1192 local symbols may be passed via a pointer to another
1193 object. Additionally, output a dynamic relocation
1194 pointing to the PLT entry.
1196 For executables, the original 32-bit ABI allowed two
1197 different styles of PLABELs (function pointers): For
1198 global functions, the PLABEL word points into the .plt
1199 two bytes past a (function address, gp) pair, and for
1200 local functions the PLABEL points directly at the
1201 function. The magic +2 for the first type allows us to
1202 differentiate between the two. As you can imagine, this
1203 is a real pain when it comes to generating code to call
1204 functions indirectly or to compare function pointers.
1205 We avoid the mess by always pointing a PLABEL into the
1206 .plt, even for local functions. */
1207 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1210 case R_PARISC_PCREL12F
:
1211 htab
->has_12bit_branch
= 1;
1214 case R_PARISC_PCREL17C
:
1215 case R_PARISC_PCREL17F
:
1216 htab
->has_17bit_branch
= 1;
1219 case R_PARISC_PCREL22F
:
1220 htab
->has_22bit_branch
= 1;
1222 /* Function calls might need to go through the .plt, and
1223 might require long branch stubs. */
1226 /* We know local syms won't need a .plt entry, and if
1227 they need a long branch stub we can't guarantee that
1228 we can reach the stub. So just flag an error later
1229 if we're doing a shared link and find we need a long
1235 /* Global symbols will need a .plt entry if they remain
1236 global, and in most cases won't need a long branch
1237 stub. Unfortunately, we have to cater for the case
1238 where a symbol is forced local by versioning, or due
1239 to symbolic linking, and we lose the .plt entry. */
1240 need_entry
= NEED_PLT
;
1241 if (hh
->eh
.type
== STT_PARISC_MILLI
)
1246 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1247 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1248 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1249 case R_PARISC_PCREL14R
:
1250 case R_PARISC_PCREL17R
: /* External branches. */
1251 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1252 case R_PARISC_PCREL32
:
1253 /* We don't need to propagate the relocation if linking a
1254 shared object since these are section relative. */
1257 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1258 case R_PARISC_DPREL14R
:
1259 case R_PARISC_DPREL21L
:
1262 (*_bfd_error_handler
)
1263 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1265 elf_hppa_howto_table
[r_type
].name
);
1266 bfd_set_error (bfd_error_bad_value
);
1271 case R_PARISC_DIR17F
: /* Used for external branches. */
1272 case R_PARISC_DIR17R
:
1273 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1274 case R_PARISC_DIR14R
:
1275 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1276 case R_PARISC_DIR32
: /* .word relocs. */
1277 /* We may want to output a dynamic relocation later. */
1278 need_entry
= NEED_DYNREL
;
1281 /* This relocation describes the C++ object vtable hierarchy.
1282 Reconstruct it for later use during GC. */
1283 case R_PARISC_GNU_VTINHERIT
:
1284 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, &hh
->eh
, rela
->r_offset
))
1288 /* This relocation describes which C++ vtable entries are actually
1289 used. Record for later use during GC. */
1290 case R_PARISC_GNU_VTENTRY
:
1291 BFD_ASSERT (hh
!= NULL
);
1293 && !bfd_elf_gc_record_vtentry (abfd
, sec
, &hh
->eh
, rela
->r_addend
))
1297 case R_PARISC_TLS_GD21L
:
1298 case R_PARISC_TLS_GD14R
:
1299 case R_PARISC_TLS_LDM21L
:
1300 case R_PARISC_TLS_LDM14R
:
1301 need_entry
= NEED_GOT
;
1304 case R_PARISC_TLS_IE21L
:
1305 case R_PARISC_TLS_IE14R
:
1307 info
->flags
|= DF_STATIC_TLS
;
1308 need_entry
= NEED_GOT
;
1315 /* Now carry out our orders. */
1316 if (need_entry
& NEED_GOT
)
1321 tls_type
= GOT_NORMAL
;
1323 case R_PARISC_TLS_GD21L
:
1324 case R_PARISC_TLS_GD14R
:
1325 tls_type
|= GOT_TLS_GD
;
1327 case R_PARISC_TLS_LDM21L
:
1328 case R_PARISC_TLS_LDM14R
:
1329 tls_type
|= GOT_TLS_LDM
;
1331 case R_PARISC_TLS_IE21L
:
1332 case R_PARISC_TLS_IE14R
:
1333 tls_type
|= GOT_TLS_IE
;
1337 /* Allocate space for a GOT entry, as well as a dynamic
1338 relocation for this entry. */
1339 if (htab
->sgot
== NULL
)
1341 if (htab
->etab
.dynobj
== NULL
)
1342 htab
->etab
.dynobj
= abfd
;
1343 if (!elf32_hppa_create_dynamic_sections (htab
->etab
.dynobj
, info
))
1347 if (r_type
== R_PARISC_TLS_LDM21L
1348 || r_type
== R_PARISC_TLS_LDM14R
)
1349 hppa_link_hash_table (info
)->tls_ldm_got
.refcount
+= 1;
1354 hh
->eh
.got
.refcount
+= 1;
1355 old_tls_type
= hh
->tls_type
;
1359 bfd_signed_vma
*local_got_refcounts
;
1361 /* This is a global offset table entry for a local symbol. */
1362 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1363 if (local_got_refcounts
== NULL
)
1367 /* Allocate space for local got offsets and local
1368 plt offsets. Done this way to save polluting
1369 elf_obj_tdata with another target specific
1371 size
= symtab_hdr
->sh_info
;
1372 size
*= 2 * sizeof (bfd_signed_vma
);
1373 /* Add in space to store the local GOT TLS types. */
1374 size
+= symtab_hdr
->sh_info
;
1375 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1376 if (local_got_refcounts
== NULL
)
1378 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1379 memset (hppa_elf_local_got_tls_type (abfd
),
1380 GOT_UNKNOWN
, symtab_hdr
->sh_info
);
1382 local_got_refcounts
[r_symndx
] += 1;
1384 old_tls_type
= hppa_elf_local_got_tls_type (abfd
) [r_symndx
];
1387 tls_type
|= old_tls_type
;
1389 if (old_tls_type
!= tls_type
)
1392 hh
->tls_type
= tls_type
;
1394 hppa_elf_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1400 if (need_entry
& NEED_PLT
)
1402 /* If we are creating a shared library, and this is a reloc
1403 against a weak symbol or a global symbol in a dynamic
1404 object, then we will be creating an import stub and a
1405 .plt entry for the symbol. Similarly, on a normal link
1406 to symbols defined in a dynamic object we'll need the
1407 import stub and a .plt entry. We don't know yet whether
1408 the symbol is defined or not, so make an entry anyway and
1409 clean up later in adjust_dynamic_symbol. */
1410 if ((sec
->flags
& SEC_ALLOC
) != 0)
1414 hh
->eh
.needs_plt
= 1;
1415 hh
->eh
.plt
.refcount
+= 1;
1417 /* If this .plt entry is for a plabel, mark it so
1418 that adjust_dynamic_symbol will keep the entry
1419 even if it appears to be local. */
1420 if (need_entry
& PLT_PLABEL
)
1423 else if (need_entry
& PLT_PLABEL
)
1425 bfd_signed_vma
*local_got_refcounts
;
1426 bfd_signed_vma
*local_plt_refcounts
;
1428 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1429 if (local_got_refcounts
== NULL
)
1433 /* Allocate space for local got offsets and local
1435 size
= symtab_hdr
->sh_info
;
1436 size
*= 2 * sizeof (bfd_signed_vma
);
1437 /* Add in space to store the local GOT TLS types. */
1438 size
+= symtab_hdr
->sh_info
;
1439 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1440 if (local_got_refcounts
== NULL
)
1442 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1444 local_plt_refcounts
= (local_got_refcounts
1445 + symtab_hdr
->sh_info
);
1446 local_plt_refcounts
[r_symndx
] += 1;
1451 if (need_entry
& NEED_DYNREL
)
1453 /* Flag this symbol as having a non-got, non-plt reference
1454 so that we generate copy relocs if it turns out to be
1456 if (hh
!= NULL
&& !info
->shared
)
1457 hh
->eh
.non_got_ref
= 1;
1459 /* If we are creating a shared library then we need to copy
1460 the reloc into the shared library. However, if we are
1461 linking with -Bsymbolic, we need only copy absolute
1462 relocs or relocs against symbols that are not defined in
1463 an object we are including in the link. PC- or DP- or
1464 DLT-relative relocs against any local sym or global sym
1465 with DEF_REGULAR set, can be discarded. At this point we
1466 have not seen all the input files, so it is possible that
1467 DEF_REGULAR is not set now but will be set later (it is
1468 never cleared). We account for that possibility below by
1469 storing information in the dyn_relocs field of the
1472 A similar situation to the -Bsymbolic case occurs when
1473 creating shared libraries and symbol visibility changes
1474 render the symbol local.
1476 As it turns out, all the relocs we will be creating here
1477 are absolute, so we cannot remove them on -Bsymbolic
1478 links or visibility changes anyway. A STUB_REL reloc
1479 is absolute too, as in that case it is the reloc in the
1480 stub we will be creating, rather than copying the PCREL
1481 reloc in the branch.
1483 If on the other hand, we are creating an executable, we
1484 may need to keep relocations for symbols satisfied by a
1485 dynamic library if we manage to avoid copy relocs for the
1488 && (sec
->flags
& SEC_ALLOC
) != 0
1489 && (IS_ABSOLUTE_RELOC (r_type
)
1492 || hh
->eh
.root
.type
== bfd_link_hash_defweak
1493 || !hh
->eh
.def_regular
))))
1494 || (ELIMINATE_COPY_RELOCS
1496 && (sec
->flags
& SEC_ALLOC
) != 0
1498 && (hh
->eh
.root
.type
== bfd_link_hash_defweak
1499 || !hh
->eh
.def_regular
)))
1501 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1502 struct elf32_hppa_dyn_reloc_entry
**hdh_head
;
1504 /* Create a reloc section in dynobj and make room for
1511 name
= (bfd_elf_string_from_elf_section
1513 elf_elfheader (abfd
)->e_shstrndx
,
1514 elf_section_data (sec
)->rel_hdr
.sh_name
));
1517 (*_bfd_error_handler
)
1518 (_("Could not find relocation section for %s"),
1520 bfd_set_error (bfd_error_bad_value
);
1524 if (htab
->etab
.dynobj
== NULL
)
1525 htab
->etab
.dynobj
= abfd
;
1527 dynobj
= htab
->etab
.dynobj
;
1528 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1533 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1534 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1535 if ((sec
->flags
& SEC_ALLOC
) != 0)
1536 flags
|= SEC_ALLOC
| SEC_LOAD
;
1537 sreloc
= bfd_make_section_with_flags (dynobj
,
1541 || !bfd_set_section_alignment (dynobj
, sreloc
, 2))
1545 elf_section_data (sec
)->sreloc
= sreloc
;
1548 /* If this is a global symbol, we count the number of
1549 relocations we need for this symbol. */
1552 hdh_head
= &hh
->dyn_relocs
;
1556 /* Track dynamic relocs needed for local syms too.
1557 We really need local syms available to do this
1563 sr
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1568 vpp
= &elf_section_data (sr
)->local_dynrel
;
1569 hdh_head
= (struct elf32_hppa_dyn_reloc_entry
**) vpp
;
1573 if (hdh_p
== NULL
|| hdh_p
->sec
!= sec
)
1575 hdh_p
= bfd_alloc (htab
->etab
.dynobj
, sizeof *hdh_p
);
1578 hdh_p
->hdh_next
= *hdh_head
;
1582 #if RELATIVE_DYNRELOCS
1583 hdh_p
->relative_count
= 0;
1588 #if RELATIVE_DYNRELOCS
1589 if (!IS_ABSOLUTE_RELOC (rtype
))
1590 hdh_p
->relative_count
+= 1;
1599 /* Return the section that should be marked against garbage collection
1600 for a given relocation. */
1603 elf32_hppa_gc_mark_hook (asection
*sec
,
1604 struct bfd_link_info
*info
,
1605 Elf_Internal_Rela
*rela
,
1606 struct elf_link_hash_entry
*hh
,
1607 Elf_Internal_Sym
*sym
)
1610 switch ((unsigned int) ELF32_R_TYPE (rela
->r_info
))
1612 case R_PARISC_GNU_VTINHERIT
:
1613 case R_PARISC_GNU_VTENTRY
:
1617 return _bfd_elf_gc_mark_hook (sec
, info
, rela
, hh
, sym
);
1620 /* Update the got and plt entry reference counts for the section being
1624 elf32_hppa_gc_sweep_hook (bfd
*abfd
,
1625 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1627 const Elf_Internal_Rela
*relocs
)
1629 Elf_Internal_Shdr
*symtab_hdr
;
1630 struct elf_link_hash_entry
**eh_syms
;
1631 bfd_signed_vma
*local_got_refcounts
;
1632 bfd_signed_vma
*local_plt_refcounts
;
1633 const Elf_Internal_Rela
*rela
, *relend
;
1635 if (info
->relocatable
)
1638 elf_section_data (sec
)->local_dynrel
= NULL
;
1640 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1641 eh_syms
= elf_sym_hashes (abfd
);
1642 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1643 local_plt_refcounts
= local_got_refcounts
;
1644 if (local_plt_refcounts
!= NULL
)
1645 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1647 relend
= relocs
+ sec
->reloc_count
;
1648 for (rela
= relocs
; rela
< relend
; rela
++)
1650 unsigned long r_symndx
;
1651 unsigned int r_type
;
1652 struct elf_link_hash_entry
*eh
= NULL
;
1654 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1655 if (r_symndx
>= symtab_hdr
->sh_info
)
1657 struct elf32_hppa_link_hash_entry
*hh
;
1658 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1659 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1661 eh
= eh_syms
[r_symndx
- symtab_hdr
->sh_info
];
1662 while (eh
->root
.type
== bfd_link_hash_indirect
1663 || eh
->root
.type
== bfd_link_hash_warning
)
1664 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1665 hh
= hppa_elf_hash_entry (eh
);
1667 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; hdh_pp
= &hdh_p
->hdh_next
)
1668 if (hdh_p
->sec
== sec
)
1670 /* Everything must go for SEC. */
1671 *hdh_pp
= hdh_p
->hdh_next
;
1676 r_type
= ELF32_R_TYPE (rela
->r_info
);
1677 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, eh
!= NULL
);
1681 case R_PARISC_DLTIND14F
:
1682 case R_PARISC_DLTIND14R
:
1683 case R_PARISC_DLTIND21L
:
1684 case R_PARISC_TLS_GD21L
:
1685 case R_PARISC_TLS_GD14R
:
1686 case R_PARISC_TLS_IE21L
:
1687 case R_PARISC_TLS_IE14R
:
1690 if (eh
->got
.refcount
> 0)
1691 eh
->got
.refcount
-= 1;
1693 else if (local_got_refcounts
!= NULL
)
1695 if (local_got_refcounts
[r_symndx
] > 0)
1696 local_got_refcounts
[r_symndx
] -= 1;
1700 case R_PARISC_TLS_LDM21L
:
1701 case R_PARISC_TLS_LDM14R
:
1702 hppa_link_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
1705 case R_PARISC_PCREL12F
:
1706 case R_PARISC_PCREL17C
:
1707 case R_PARISC_PCREL17F
:
1708 case R_PARISC_PCREL22F
:
1711 if (eh
->plt
.refcount
> 0)
1712 eh
->plt
.refcount
-= 1;
1716 case R_PARISC_PLABEL14R
:
1717 case R_PARISC_PLABEL21L
:
1718 case R_PARISC_PLABEL32
:
1721 if (eh
->plt
.refcount
> 0)
1722 eh
->plt
.refcount
-= 1;
1724 else if (local_plt_refcounts
!= NULL
)
1726 if (local_plt_refcounts
[r_symndx
] > 0)
1727 local_plt_refcounts
[r_symndx
] -= 1;
1739 /* Support for core dump NOTE sections. */
1742 elf32_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1747 switch (note
->descsz
)
1752 case 396: /* Linux/hppa */
1754 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1757 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1766 /* Make a ".reg/999" section. */
1767 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1768 size
, note
->descpos
+ offset
);
1772 elf32_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1774 switch (note
->descsz
)
1779 case 124: /* Linux/hppa elf_prpsinfo. */
1780 elf_tdata (abfd
)->core_program
1781 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1782 elf_tdata (abfd
)->core_command
1783 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1786 /* Note that for some reason, a spurious space is tacked
1787 onto the end of the args in some (at least one anyway)
1788 implementations, so strip it off if it exists. */
1790 char *command
= elf_tdata (abfd
)->core_command
;
1791 int n
= strlen (command
);
1793 if (0 < n
&& command
[n
- 1] == ' ')
1794 command
[n
- 1] = '\0';
1800 /* Our own version of hide_symbol, so that we can keep plt entries for
1804 elf32_hppa_hide_symbol (struct bfd_link_info
*info
,
1805 struct elf_link_hash_entry
*eh
,
1806 bfd_boolean force_local
)
1810 eh
->forced_local
= 1;
1811 if (eh
->dynindx
!= -1)
1814 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1819 if (! hppa_elf_hash_entry (eh
)->plabel
)
1822 eh
->plt
= elf_hash_table (info
)->init_plt_refcount
;
1826 /* Adjust a symbol defined by a dynamic object and referenced by a
1827 regular object. The current definition is in some section of the
1828 dynamic object, but we're not including those sections. We have to
1829 change the definition to something the rest of the link can
1833 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1834 struct elf_link_hash_entry
*eh
)
1836 struct elf32_hppa_link_hash_table
*htab
;
1839 /* If this is a function, put it in the procedure linkage table. We
1840 will fill in the contents of the procedure linkage table later. */
1841 if (eh
->type
== STT_FUNC
1844 if (eh
->plt
.refcount
<= 0
1846 && eh
->root
.type
!= bfd_link_hash_defweak
1847 && ! hppa_elf_hash_entry (eh
)->plabel
1848 && (!info
->shared
|| info
->symbolic
)))
1850 /* The .plt entry is not needed when:
1851 a) Garbage collection has removed all references to the
1853 b) We know for certain the symbol is defined in this
1854 object, and it's not a weak definition, nor is the symbol
1855 used by a plabel relocation. Either this object is the
1856 application or we are doing a shared symbolic link. */
1858 eh
->plt
.offset
= (bfd_vma
) -1;
1865 eh
->plt
.offset
= (bfd_vma
) -1;
1867 /* If this is a weak symbol, and there is a real definition, the
1868 processor independent code will have arranged for us to see the
1869 real definition first, and we can just use the same value. */
1870 if (eh
->u
.weakdef
!= NULL
)
1872 if (eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defined
1873 && eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defweak
)
1875 eh
->root
.u
.def
.section
= eh
->u
.weakdef
->root
.u
.def
.section
;
1876 eh
->root
.u
.def
.value
= eh
->u
.weakdef
->root
.u
.def
.value
;
1877 if (ELIMINATE_COPY_RELOCS
)
1878 eh
->non_got_ref
= eh
->u
.weakdef
->non_got_ref
;
1882 /* This is a reference to a symbol defined by a dynamic object which
1883 is not a function. */
1885 /* If we are creating a shared library, we must presume that the
1886 only references to the symbol are via the global offset table.
1887 For such cases we need not do anything here; the relocations will
1888 be handled correctly by relocate_section. */
1892 /* If there are no references to this symbol that do not use the
1893 GOT, we don't need to generate a copy reloc. */
1894 if (!eh
->non_got_ref
)
1897 if (ELIMINATE_COPY_RELOCS
)
1899 struct elf32_hppa_link_hash_entry
*hh
;
1900 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1902 hh
= hppa_elf_hash_entry (eh
);
1903 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
1905 sec
= hdh_p
->sec
->output_section
;
1906 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
1910 /* If we didn't find any dynamic relocs in read-only sections, then
1911 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1914 eh
->non_got_ref
= 0;
1921 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1922 eh
->root
.root
.string
);
1926 /* We must allocate the symbol in our .dynbss section, which will
1927 become part of the .bss section of the executable. There will be
1928 an entry for this symbol in the .dynsym section. The dynamic
1929 object will contain position independent code, so all references
1930 from the dynamic object to this symbol will go through the global
1931 offset table. The dynamic linker will use the .dynsym entry to
1932 determine the address it must put in the global offset table, so
1933 both the dynamic object and the regular object will refer to the
1934 same memory location for the variable. */
1936 htab
= hppa_link_hash_table (info
);
1938 /* We must generate a COPY reloc to tell the dynamic linker to
1939 copy the initial value out of the dynamic object and into the
1940 runtime process image. */
1941 if ((eh
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1943 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
1947 sec
= htab
->sdynbss
;
1949 return _bfd_elf_adjust_dynamic_copy (eh
, sec
);
1952 /* Allocate space in the .plt for entries that won't have relocations.
1953 ie. plabel entries. */
1956 allocate_plt_static (struct elf_link_hash_entry
*eh
, void *inf
)
1958 struct bfd_link_info
*info
;
1959 struct elf32_hppa_link_hash_table
*htab
;
1960 struct elf32_hppa_link_hash_entry
*hh
;
1963 if (eh
->root
.type
== bfd_link_hash_indirect
)
1966 if (eh
->root
.type
== bfd_link_hash_warning
)
1967 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1969 info
= (struct bfd_link_info
*) inf
;
1970 hh
= hppa_elf_hash_entry (eh
);
1971 htab
= hppa_link_hash_table (info
);
1972 if (htab
->etab
.dynamic_sections_created
1973 && eh
->plt
.refcount
> 0)
1975 /* Make sure this symbol is output as a dynamic symbol.
1976 Undefined weak syms won't yet be marked as dynamic. */
1977 if (eh
->dynindx
== -1
1978 && !eh
->forced_local
1979 && eh
->type
!= STT_PARISC_MILLI
)
1981 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
1985 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
, eh
))
1987 /* Allocate these later. From this point on, h->plabel
1988 means that the plt entry is only used by a plabel.
1989 We'll be using a normal plt entry for this symbol, so
1990 clear the plabel indicator. */
1994 else if (hh
->plabel
)
1996 /* Make an entry in the .plt section for plabel references
1997 that won't have a .plt entry for other reasons. */
1999 eh
->plt
.offset
= sec
->size
;
2000 sec
->size
+= PLT_ENTRY_SIZE
;
2004 /* No .plt entry needed. */
2005 eh
->plt
.offset
= (bfd_vma
) -1;
2011 eh
->plt
.offset
= (bfd_vma
) -1;
2018 /* Allocate space in .plt, .got and associated reloc sections for
2022 allocate_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2024 struct bfd_link_info
*info
;
2025 struct elf32_hppa_link_hash_table
*htab
;
2027 struct elf32_hppa_link_hash_entry
*hh
;
2028 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2030 if (eh
->root
.type
== bfd_link_hash_indirect
)
2033 if (eh
->root
.type
== bfd_link_hash_warning
)
2034 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2037 htab
= hppa_link_hash_table (info
);
2038 hh
= hppa_elf_hash_entry (eh
);
2040 if (htab
->etab
.dynamic_sections_created
2041 && eh
->plt
.offset
!= (bfd_vma
) -1
2043 && eh
->plt
.refcount
> 0)
2045 /* Make an entry in the .plt section. */
2047 eh
->plt
.offset
= sec
->size
;
2048 sec
->size
+= PLT_ENTRY_SIZE
;
2050 /* We also need to make an entry in the .rela.plt section. */
2051 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
2052 htab
->need_plt_stub
= 1;
2055 if (eh
->got
.refcount
> 0)
2057 /* Make sure this symbol is output as a dynamic symbol.
2058 Undefined weak syms won't yet be marked as dynamic. */
2059 if (eh
->dynindx
== -1
2060 && !eh
->forced_local
2061 && eh
->type
!= STT_PARISC_MILLI
)
2063 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2068 eh
->got
.offset
= sec
->size
;
2069 sec
->size
+= GOT_ENTRY_SIZE
;
2070 /* R_PARISC_TLS_GD* needs two GOT entries */
2071 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2072 sec
->size
+= GOT_ENTRY_SIZE
* 2;
2073 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2074 sec
->size
+= GOT_ENTRY_SIZE
;
2075 if (htab
->etab
.dynamic_sections_created
2077 || (eh
->dynindx
!= -1
2078 && !eh
->forced_local
)))
2080 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2081 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2082 htab
->srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
2083 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2084 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2088 eh
->got
.offset
= (bfd_vma
) -1;
2090 if (hh
->dyn_relocs
== NULL
)
2093 /* If this is a -Bsymbolic shared link, then we need to discard all
2094 space allocated for dynamic pc-relative relocs against symbols
2095 defined in a regular object. For the normal shared case, discard
2096 space for relocs that have become local due to symbol visibility
2100 #if RELATIVE_DYNRELOCS
2101 if (SYMBOL_CALLS_LOCAL (info
, eh
))
2103 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
2105 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
2107 hdh_p
->count
-= hdh_p
->relative_count
;
2108 hdh_p
->relative_count
= 0;
2109 if (hdh_p
->count
== 0)
2110 *hdh_pp
= hdh_p
->hdh_next
;
2112 hdh_pp
= &hdh_p
->hdh_next
;
2117 /* Also discard relocs on undefined weak syms with non-default
2119 if (hh
->dyn_relocs
!= NULL
2120 && eh
->root
.type
== bfd_link_hash_undefweak
)
2122 if (ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
)
2123 hh
->dyn_relocs
= NULL
;
2125 /* Make sure undefined weak symbols are output as a dynamic
2127 else if (eh
->dynindx
== -1
2128 && !eh
->forced_local
)
2130 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2137 /* For the non-shared case, discard space for relocs against
2138 symbols which turn out to need copy relocs or are not
2141 if (!eh
->non_got_ref
2142 && ((ELIMINATE_COPY_RELOCS
2144 && !eh
->def_regular
)
2145 || (htab
->etab
.dynamic_sections_created
2146 && (eh
->root
.type
== bfd_link_hash_undefweak
2147 || eh
->root
.type
== bfd_link_hash_undefined
))))
2149 /* Make sure this symbol is output as a dynamic symbol.
2150 Undefined weak syms won't yet be marked as dynamic. */
2151 if (eh
->dynindx
== -1
2152 && !eh
->forced_local
2153 && eh
->type
!= STT_PARISC_MILLI
)
2155 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2159 /* If that succeeded, we know we'll be keeping all the
2161 if (eh
->dynindx
!= -1)
2165 hh
->dyn_relocs
= NULL
;
2171 /* Finally, allocate space. */
2172 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2174 asection
*sreloc
= elf_section_data (hdh_p
->sec
)->sreloc
;
2175 sreloc
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2181 /* This function is called via elf_link_hash_traverse to force
2182 millicode symbols local so they do not end up as globals in the
2183 dynamic symbol table. We ought to be able to do this in
2184 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2185 for all dynamic symbols. Arguably, this is a bug in
2186 elf_adjust_dynamic_symbol. */
2189 clobber_millicode_symbols (struct elf_link_hash_entry
*eh
,
2190 struct bfd_link_info
*info
)
2192 if (eh
->root
.type
== bfd_link_hash_warning
)
2193 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2195 if (eh
->type
== STT_PARISC_MILLI
2196 && !eh
->forced_local
)
2198 elf32_hppa_hide_symbol (info
, eh
, TRUE
);
2203 /* Find any dynamic relocs that apply to read-only sections. */
2206 readonly_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2208 struct elf32_hppa_link_hash_entry
*hh
;
2209 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2211 if (eh
->root
.type
== bfd_link_hash_warning
)
2212 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2214 hh
= hppa_elf_hash_entry (eh
);
2215 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2217 asection
*sec
= hdh_p
->sec
->output_section
;
2219 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
2221 struct bfd_link_info
*info
= inf
;
2223 if (info
->warn_shared_textrel
)
2224 (*_bfd_error_handler
)
2225 (_("warning: dynamic relocation in readonly section `%s'"),
2226 eh
->root
.root
.string
);
2227 info
->flags
|= DF_TEXTREL
;
2229 /* Not an error, just cut short the traversal. */
2236 /* Set the sizes of the dynamic sections. */
2239 elf32_hppa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2240 struct bfd_link_info
*info
)
2242 struct elf32_hppa_link_hash_table
*htab
;
2248 htab
= hppa_link_hash_table (info
);
2249 dynobj
= htab
->etab
.dynobj
;
2253 if (htab
->etab
.dynamic_sections_created
)
2255 /* Set the contents of the .interp section to the interpreter. */
2256 if (info
->executable
)
2258 sec
= bfd_get_section_by_name (dynobj
, ".interp");
2261 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2262 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2265 /* Force millicode symbols local. */
2266 elf_link_hash_traverse (&htab
->etab
,
2267 clobber_millicode_symbols
,
2271 /* Set up .got and .plt offsets for local syms, and space for local
2273 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2275 bfd_signed_vma
*local_got
;
2276 bfd_signed_vma
*end_local_got
;
2277 bfd_signed_vma
*local_plt
;
2278 bfd_signed_vma
*end_local_plt
;
2279 bfd_size_type locsymcount
;
2280 Elf_Internal_Shdr
*symtab_hdr
;
2282 char *local_tls_type
;
2284 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2287 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2289 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2291 for (hdh_p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2292 elf_section_data (sec
)->local_dynrel
);
2294 hdh_p
= hdh_p
->hdh_next
)
2296 if (!bfd_is_abs_section (hdh_p
->sec
)
2297 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
2299 /* Input section has been discarded, either because
2300 it is a copy of a linkonce section or due to
2301 linker script /DISCARD/, so we'll be discarding
2304 else if (hdh_p
->count
!= 0)
2306 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
2307 srel
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2308 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2309 info
->flags
|= DF_TEXTREL
;
2314 local_got
= elf_local_got_refcounts (ibfd
);
2318 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2319 locsymcount
= symtab_hdr
->sh_info
;
2320 end_local_got
= local_got
+ locsymcount
;
2321 local_tls_type
= hppa_elf_local_got_tls_type (ibfd
);
2323 srel
= htab
->srelgot
;
2324 for (; local_got
< end_local_got
; ++local_got
)
2328 *local_got
= sec
->size
;
2329 sec
->size
+= GOT_ENTRY_SIZE
;
2330 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2331 sec
->size
+= 2 * GOT_ENTRY_SIZE
;
2332 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2333 sec
->size
+= GOT_ENTRY_SIZE
;
2336 srel
->size
+= sizeof (Elf32_External_Rela
);
2337 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2338 srel
->size
+= 2 * sizeof (Elf32_External_Rela
);
2339 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2340 srel
->size
+= sizeof (Elf32_External_Rela
);
2344 *local_got
= (bfd_vma
) -1;
2349 local_plt
= end_local_got
;
2350 end_local_plt
= local_plt
+ locsymcount
;
2351 if (! htab
->etab
.dynamic_sections_created
)
2353 /* Won't be used, but be safe. */
2354 for (; local_plt
< end_local_plt
; ++local_plt
)
2355 *local_plt
= (bfd_vma
) -1;
2360 srel
= htab
->srelplt
;
2361 for (; local_plt
< end_local_plt
; ++local_plt
)
2365 *local_plt
= sec
->size
;
2366 sec
->size
+= PLT_ENTRY_SIZE
;
2368 srel
->size
+= sizeof (Elf32_External_Rela
);
2371 *local_plt
= (bfd_vma
) -1;
2376 if (htab
->tls_ldm_got
.refcount
> 0)
2378 /* Allocate 2 got entries and 1 dynamic reloc for
2379 R_PARISC_TLS_DTPMOD32 relocs. */
2380 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
2381 htab
->sgot
->size
+= (GOT_ENTRY_SIZE
* 2);
2382 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2385 htab
->tls_ldm_got
.offset
= -1;
2387 /* Do all the .plt entries without relocs first. The dynamic linker
2388 uses the last .plt reloc to find the end of the .plt (and hence
2389 the start of the .got) for lazy linking. */
2390 elf_link_hash_traverse (&htab
->etab
, allocate_plt_static
, info
);
2392 /* Allocate global sym .plt and .got entries, and space for global
2393 sym dynamic relocs. */
2394 elf_link_hash_traverse (&htab
->etab
, allocate_dynrelocs
, info
);
2396 /* The check_relocs and adjust_dynamic_symbol entry points have
2397 determined the sizes of the various dynamic sections. Allocate
2400 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
2402 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
2405 if (sec
== htab
->splt
)
2407 if (htab
->need_plt_stub
)
2409 /* Make space for the plt stub at the end of the .plt
2410 section. We want this stub right at the end, up
2411 against the .got section. */
2412 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2413 int pltalign
= bfd_section_alignment (dynobj
, sec
);
2416 if (gotalign
> pltalign
)
2417 bfd_set_section_alignment (dynobj
, sec
, gotalign
);
2418 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2419 sec
->size
= (sec
->size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2422 else if (sec
== htab
->sgot
2423 || sec
== htab
->sdynbss
)
2425 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, sec
), ".rela"))
2429 /* Remember whether there are any reloc sections other
2431 if (sec
!= htab
->srelplt
)
2434 /* We use the reloc_count field as a counter if we need
2435 to copy relocs into the output file. */
2436 sec
->reloc_count
= 0;
2441 /* It's not one of our sections, so don't allocate space. */
2447 /* If we don't need this section, strip it from the
2448 output file. This is mostly to handle .rela.bss and
2449 .rela.plt. We must create both sections in
2450 create_dynamic_sections, because they must be created
2451 before the linker maps input sections to output
2452 sections. The linker does that before
2453 adjust_dynamic_symbol is called, and it is that
2454 function which decides whether anything needs to go
2455 into these sections. */
2456 sec
->flags
|= SEC_EXCLUDE
;
2460 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
2463 /* Allocate memory for the section contents. Zero it, because
2464 we may not fill in all the reloc sections. */
2465 sec
->contents
= bfd_zalloc (dynobj
, sec
->size
);
2466 if (sec
->contents
== NULL
)
2470 if (htab
->etab
.dynamic_sections_created
)
2472 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2473 actually has nothing to do with the PLT, it is how we
2474 communicate the LTP value of a load module to the dynamic
2476 #define add_dynamic_entry(TAG, VAL) \
2477 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2479 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2482 /* Add some entries to the .dynamic section. We fill in the
2483 values later, in elf32_hppa_finish_dynamic_sections, but we
2484 must add the entries now so that we get the correct size for
2485 the .dynamic section. The DT_DEBUG entry is filled in by the
2486 dynamic linker and used by the debugger. */
2487 if (info
->executable
)
2489 if (!add_dynamic_entry (DT_DEBUG
, 0))
2493 if (htab
->srelplt
->size
!= 0)
2495 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2496 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2497 || !add_dynamic_entry (DT_JMPREL
, 0))
2503 if (!add_dynamic_entry (DT_RELA
, 0)
2504 || !add_dynamic_entry (DT_RELASZ
, 0)
2505 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2508 /* If any dynamic relocs apply to a read-only section,
2509 then we need a DT_TEXTREL entry. */
2510 if ((info
->flags
& DF_TEXTREL
) == 0)
2511 elf_link_hash_traverse (&htab
->etab
, readonly_dynrelocs
, info
);
2513 if ((info
->flags
& DF_TEXTREL
) != 0)
2515 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2520 #undef add_dynamic_entry
2525 /* External entry points for sizing and building linker stubs. */
2527 /* Set up various things so that we can make a list of input sections
2528 for each output section included in the link. Returns -1 on error,
2529 0 when no stubs will be needed, and 1 on success. */
2532 elf32_hppa_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
2535 unsigned int bfd_count
;
2536 int top_id
, top_index
;
2538 asection
**input_list
, **list
;
2540 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2542 /* Count the number of input BFDs and find the top input section id. */
2543 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2545 input_bfd
= input_bfd
->link_next
)
2548 for (section
= input_bfd
->sections
;
2550 section
= section
->next
)
2552 if (top_id
< section
->id
)
2553 top_id
= section
->id
;
2556 htab
->bfd_count
= bfd_count
;
2558 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2559 htab
->stub_group
= bfd_zmalloc (amt
);
2560 if (htab
->stub_group
== NULL
)
2563 /* We can't use output_bfd->section_count here to find the top output
2564 section index as some sections may have been removed, and
2565 strip_excluded_output_sections doesn't renumber the indices. */
2566 for (section
= output_bfd
->sections
, top_index
= 0;
2568 section
= section
->next
)
2570 if (top_index
< section
->index
)
2571 top_index
= section
->index
;
2574 htab
->top_index
= top_index
;
2575 amt
= sizeof (asection
*) * (top_index
+ 1);
2576 input_list
= bfd_malloc (amt
);
2577 htab
->input_list
= input_list
;
2578 if (input_list
== NULL
)
2581 /* For sections we aren't interested in, mark their entries with a
2582 value we can check later. */
2583 list
= input_list
+ top_index
;
2585 *list
= bfd_abs_section_ptr
;
2586 while (list
-- != input_list
);
2588 for (section
= output_bfd
->sections
;
2590 section
= section
->next
)
2592 if ((section
->flags
& SEC_CODE
) != 0)
2593 input_list
[section
->index
] = NULL
;
2599 /* The linker repeatedly calls this function for each input section,
2600 in the order that input sections are linked into output sections.
2601 Build lists of input sections to determine groupings between which
2602 we may insert linker stubs. */
2605 elf32_hppa_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2607 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2609 if (isec
->output_section
->index
<= htab
->top_index
)
2611 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2612 if (*list
!= bfd_abs_section_ptr
)
2614 /* Steal the link_sec pointer for our list. */
2615 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2616 /* This happens to make the list in reverse order,
2617 which is what we want. */
2618 PREV_SEC (isec
) = *list
;
2624 /* See whether we can group stub sections together. Grouping stub
2625 sections may result in fewer stubs. More importantly, we need to
2626 put all .init* and .fini* stubs at the beginning of the .init or
2627 .fini output sections respectively, because glibc splits the
2628 _init and _fini functions into multiple parts. Putting a stub in
2629 the middle of a function is not a good idea. */
2632 group_sections (struct elf32_hppa_link_hash_table
*htab
,
2633 bfd_size_type stub_group_size
,
2634 bfd_boolean stubs_always_before_branch
)
2636 asection
**list
= htab
->input_list
+ htab
->top_index
;
2639 asection
*tail
= *list
;
2640 if (tail
== bfd_abs_section_ptr
)
2642 while (tail
!= NULL
)
2646 bfd_size_type total
;
2647 bfd_boolean big_sec
;
2651 big_sec
= total
>= stub_group_size
;
2653 while ((prev
= PREV_SEC (curr
)) != NULL
2654 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2658 /* OK, the size from the start of CURR to the end is less
2659 than 240000 bytes and thus can be handled by one stub
2660 section. (or the tail section is itself larger than
2661 240000 bytes, in which case we may be toast.)
2662 We should really be keeping track of the total size of
2663 stubs added here, as stubs contribute to the final output
2664 section size. That's a little tricky, and this way will
2665 only break if stubs added total more than 22144 bytes, or
2666 2768 long branch stubs. It seems unlikely for more than
2667 2768 different functions to be called, especially from
2668 code only 240000 bytes long. This limit used to be
2669 250000, but c++ code tends to generate lots of little
2670 functions, and sometimes violated the assumption. */
2673 prev
= PREV_SEC (tail
);
2674 /* Set up this stub group. */
2675 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2677 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2679 /* But wait, there's more! Input sections up to 240000
2680 bytes before the stub section can be handled by it too.
2681 Don't do this if we have a really large section after the
2682 stubs, as adding more stubs increases the chance that
2683 branches may not reach into the stub section. */
2684 if (!stubs_always_before_branch
&& !big_sec
)
2688 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2692 prev
= PREV_SEC (tail
);
2693 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2699 while (list
-- != htab
->input_list
);
2700 free (htab
->input_list
);
2704 /* Read in all local syms for all input bfds, and create hash entries
2705 for export stubs if we are building a multi-subspace shared lib.
2706 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2709 get_local_syms (bfd
*output_bfd
, bfd
*input_bfd
, struct bfd_link_info
*info
)
2711 unsigned int bfd_indx
;
2712 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2713 int stub_changed
= 0;
2714 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2716 /* We want to read in symbol extension records only once. To do this
2717 we need to read in the local symbols in parallel and save them for
2718 later use; so hold pointers to the local symbols in an array. */
2719 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2720 all_local_syms
= bfd_zmalloc (amt
);
2721 htab
->all_local_syms
= all_local_syms
;
2722 if (all_local_syms
== NULL
)
2725 /* Walk over all the input BFDs, swapping in local symbols.
2726 If we are creating a shared library, create hash entries for the
2730 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2732 Elf_Internal_Shdr
*symtab_hdr
;
2734 /* We'll need the symbol table in a second. */
2735 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2736 if (symtab_hdr
->sh_info
== 0)
2739 /* We need an array of the local symbols attached to the input bfd. */
2740 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2741 if (local_syms
== NULL
)
2743 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2744 symtab_hdr
->sh_info
, 0,
2746 /* Cache them for elf_link_input_bfd. */
2747 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2749 if (local_syms
== NULL
)
2752 all_local_syms
[bfd_indx
] = local_syms
;
2754 if (info
->shared
&& htab
->multi_subspace
)
2756 struct elf_link_hash_entry
**eh_syms
;
2757 struct elf_link_hash_entry
**eh_symend
;
2758 unsigned int symcount
;
2760 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2761 - symtab_hdr
->sh_info
);
2762 eh_syms
= (struct elf_link_hash_entry
**) elf_sym_hashes (input_bfd
);
2763 eh_symend
= (struct elf_link_hash_entry
**) (eh_syms
+ symcount
);
2765 /* Look through the global syms for functions; We need to
2766 build export stubs for all globally visible functions. */
2767 for (; eh_syms
< eh_symend
; eh_syms
++)
2769 struct elf32_hppa_link_hash_entry
*hh
;
2771 hh
= hppa_elf_hash_entry (*eh_syms
);
2773 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2774 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2775 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
2777 /* At this point in the link, undefined syms have been
2778 resolved, so we need to check that the symbol was
2779 defined in this BFD. */
2780 if ((hh
->eh
.root
.type
== bfd_link_hash_defined
2781 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
2782 && hh
->eh
.type
== STT_FUNC
2783 && hh
->eh
.root
.u
.def
.section
->output_section
!= NULL
2784 && (hh
->eh
.root
.u
.def
.section
->output_section
->owner
2786 && hh
->eh
.root
.u
.def
.section
->owner
== input_bfd
2787 && hh
->eh
.def_regular
2788 && !hh
->eh
.forced_local
2789 && ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
)
2792 const char *stub_name
;
2793 struct elf32_hppa_stub_hash_entry
*hsh
;
2795 sec
= hh
->eh
.root
.u
.def
.section
;
2796 stub_name
= hh_name (hh
);
2797 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
2802 hsh
= hppa_add_stub (stub_name
, sec
, htab
);
2806 hsh
->target_value
= hh
->eh
.root
.u
.def
.value
;
2807 hsh
->target_section
= hh
->eh
.root
.u
.def
.section
;
2808 hsh
->stub_type
= hppa_stub_export
;
2814 (*_bfd_error_handler
) (_("%B: duplicate export stub %s"),
2823 return stub_changed
;
2826 /* Determine and set the size of the stub section for a final link.
2828 The basic idea here is to examine all the relocations looking for
2829 PC-relative calls to a target that is unreachable with a "bl"
2833 elf32_hppa_size_stubs
2834 (bfd
*output_bfd
, bfd
*stub_bfd
, struct bfd_link_info
*info
,
2835 bfd_boolean multi_subspace
, bfd_signed_vma group_size
,
2836 asection
* (*add_stub_section
) (const char *, asection
*),
2837 void (*layout_sections_again
) (void))
2839 bfd_size_type stub_group_size
;
2840 bfd_boolean stubs_always_before_branch
;
2841 bfd_boolean stub_changed
;
2842 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2844 /* Stash our params away. */
2845 htab
->stub_bfd
= stub_bfd
;
2846 htab
->multi_subspace
= multi_subspace
;
2847 htab
->add_stub_section
= add_stub_section
;
2848 htab
->layout_sections_again
= layout_sections_again
;
2849 stubs_always_before_branch
= group_size
< 0;
2851 stub_group_size
= -group_size
;
2853 stub_group_size
= group_size
;
2854 if (stub_group_size
== 1)
2856 /* Default values. */
2857 if (stubs_always_before_branch
)
2859 stub_group_size
= 7680000;
2860 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2861 stub_group_size
= 240000;
2862 if (htab
->has_12bit_branch
)
2863 stub_group_size
= 7500;
2867 stub_group_size
= 6971392;
2868 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2869 stub_group_size
= 217856;
2870 if (htab
->has_12bit_branch
)
2871 stub_group_size
= 6808;
2875 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2877 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2880 if (htab
->all_local_syms
)
2881 goto error_ret_free_local
;
2885 stub_changed
= FALSE
;
2889 stub_changed
= TRUE
;
2896 unsigned int bfd_indx
;
2899 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2901 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2903 Elf_Internal_Shdr
*symtab_hdr
;
2905 Elf_Internal_Sym
*local_syms
;
2907 /* We'll need the symbol table in a second. */
2908 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2909 if (symtab_hdr
->sh_info
== 0)
2912 local_syms
= htab
->all_local_syms
[bfd_indx
];
2914 /* Walk over each section attached to the input bfd. */
2915 for (section
= input_bfd
->sections
;
2917 section
= section
->next
)
2919 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2921 /* If there aren't any relocs, then there's nothing more
2923 if ((section
->flags
& SEC_RELOC
) == 0
2924 || section
->reloc_count
== 0)
2927 /* If this section is a link-once section that will be
2928 discarded, then don't create any stubs. */
2929 if (section
->output_section
== NULL
2930 || section
->output_section
->owner
!= output_bfd
)
2933 /* Get the relocs. */
2935 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
2937 if (internal_relocs
== NULL
)
2938 goto error_ret_free_local
;
2940 /* Now examine each relocation. */
2941 irela
= internal_relocs
;
2942 irelaend
= irela
+ section
->reloc_count
;
2943 for (; irela
< irelaend
; irela
++)
2945 unsigned int r_type
, r_indx
;
2946 enum elf32_hppa_stub_type stub_type
;
2947 struct elf32_hppa_stub_hash_entry
*hsh
;
2950 bfd_vma destination
;
2951 struct elf32_hppa_link_hash_entry
*hh
;
2953 const asection
*id_sec
;
2955 r_type
= ELF32_R_TYPE (irela
->r_info
);
2956 r_indx
= ELF32_R_SYM (irela
->r_info
);
2958 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2960 bfd_set_error (bfd_error_bad_value
);
2961 error_ret_free_internal
:
2962 if (elf_section_data (section
)->relocs
== NULL
)
2963 free (internal_relocs
);
2964 goto error_ret_free_local
;
2967 /* Only look for stubs on call instructions. */
2968 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2969 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2970 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2973 /* Now determine the call target, its name, value,
2979 if (r_indx
< symtab_hdr
->sh_info
)
2981 /* It's a local symbol. */
2982 Elf_Internal_Sym
*sym
;
2983 Elf_Internal_Shdr
*hdr
;
2986 sym
= local_syms
+ r_indx
;
2987 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2988 sym_value
= sym
->st_value
;
2989 shndx
= sym
->st_shndx
;
2990 if (shndx
< elf_numsections (input_bfd
))
2992 hdr
= elf_elfsections (input_bfd
)[shndx
];
2993 sym_sec
= hdr
->bfd_section
;
2994 destination
= (sym_value
+ irela
->r_addend
2995 + sym_sec
->output_offset
2996 + sym_sec
->output_section
->vma
);
3001 /* It's an external symbol. */
3004 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3005 hh
= hppa_elf_hash_entry (elf_sym_hashes (input_bfd
)[e_indx
]);
3007 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
3008 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
3009 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
3011 if (hh
->eh
.root
.type
== bfd_link_hash_defined
3012 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
3014 sym_sec
= hh
->eh
.root
.u
.def
.section
;
3015 sym_value
= hh
->eh
.root
.u
.def
.value
;
3016 if (sym_sec
->output_section
!= NULL
)
3017 destination
= (sym_value
+ irela
->r_addend
3018 + sym_sec
->output_offset
3019 + sym_sec
->output_section
->vma
);
3021 else if (hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3026 else if (hh
->eh
.root
.type
== bfd_link_hash_undefined
)
3028 if (! (info
->unresolved_syms_in_objects
== RM_IGNORE
3029 && (ELF_ST_VISIBILITY (hh
->eh
.other
)
3031 && hh
->eh
.type
!= STT_PARISC_MILLI
))
3036 bfd_set_error (bfd_error_bad_value
);
3037 goto error_ret_free_internal
;
3041 /* Determine what (if any) linker stub is needed. */
3042 stub_type
= hppa_type_of_stub (section
, irela
, hh
,
3044 if (stub_type
== hppa_stub_none
)
3047 /* Support for grouping stub sections. */
3048 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3050 /* Get the name of this stub. */
3051 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, irela
);
3053 goto error_ret_free_internal
;
3055 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
3060 /* The proper stub has already been created. */
3065 hsh
= hppa_add_stub (stub_name
, section
, htab
);
3069 goto error_ret_free_internal
;
3072 hsh
->target_value
= sym_value
;
3073 hsh
->target_section
= sym_sec
;
3074 hsh
->stub_type
= stub_type
;
3077 if (stub_type
== hppa_stub_import
)
3078 hsh
->stub_type
= hppa_stub_import_shared
;
3079 else if (stub_type
== hppa_stub_long_branch
)
3080 hsh
->stub_type
= hppa_stub_long_branch_shared
;
3083 stub_changed
= TRUE
;
3086 /* We're done with the internal relocs, free them. */
3087 if (elf_section_data (section
)->relocs
== NULL
)
3088 free (internal_relocs
);
3095 /* OK, we've added some stubs. Find out the new size of the
3097 for (stub_sec
= htab
->stub_bfd
->sections
;
3099 stub_sec
= stub_sec
->next
)
3102 bfd_hash_traverse (&htab
->bstab
, hppa_size_one_stub
, htab
);
3104 /* Ask the linker to do its stuff. */
3105 (*htab
->layout_sections_again
) ();
3106 stub_changed
= FALSE
;
3109 free (htab
->all_local_syms
);
3112 error_ret_free_local
:
3113 free (htab
->all_local_syms
);
3117 /* For a final link, this function is called after we have sized the
3118 stubs to provide a value for __gp. */
3121 elf32_hppa_set_gp (bfd
*abfd
, struct bfd_link_info
*info
)
3123 struct bfd_link_hash_entry
*h
;
3124 asection
*sec
= NULL
;
3126 struct elf32_hppa_link_hash_table
*htab
;
3128 htab
= hppa_link_hash_table (info
);
3129 h
= bfd_link_hash_lookup (&htab
->etab
.root
, "$global$", FALSE
, FALSE
, FALSE
);
3132 && (h
->type
== bfd_link_hash_defined
3133 || h
->type
== bfd_link_hash_defweak
))
3135 gp_val
= h
->u
.def
.value
;
3136 sec
= h
->u
.def
.section
;
3140 asection
*splt
= bfd_get_section_by_name (abfd
, ".plt");
3141 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
3143 /* Choose to point our LTP at, in this order, one of .plt, .got,
3144 or .data, if these sections exist. In the case of choosing
3145 .plt try to make the LTP ideal for addressing anywhere in the
3146 .plt or .got with a 14 bit signed offset. Typically, the end
3147 of the .plt is the start of the .got, so choose .plt + 0x2000
3148 if either the .plt or .got is larger than 0x2000. If both
3149 the .plt and .got are smaller than 0x2000, choose the end of
3150 the .plt section. */
3151 sec
= strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0
3156 if (gp_val
> 0x2000 || (sgot
&& sgot
->size
> 0x2000))
3166 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") != 0)
3168 /* We know we don't have a .plt. If .got is large,
3170 if (sec
->size
> 0x2000)
3176 /* No .plt or .got. Who cares what the LTP is? */
3177 sec
= bfd_get_section_by_name (abfd
, ".data");
3183 h
->type
= bfd_link_hash_defined
;
3184 h
->u
.def
.value
= gp_val
;
3186 h
->u
.def
.section
= sec
;
3188 h
->u
.def
.section
= bfd_abs_section_ptr
;
3192 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3193 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3195 elf_gp (abfd
) = gp_val
;
3199 /* Build all the stubs associated with the current output file. The
3200 stubs are kept in a hash table attached to the main linker hash
3201 table. We also set up the .plt entries for statically linked PIC
3202 functions here. This function is called via hppaelf_finish in the
3206 elf32_hppa_build_stubs (struct bfd_link_info
*info
)
3209 struct bfd_hash_table
*table
;
3210 struct elf32_hppa_link_hash_table
*htab
;
3212 htab
= hppa_link_hash_table (info
);
3214 for (stub_sec
= htab
->stub_bfd
->sections
;
3216 stub_sec
= stub_sec
->next
)
3220 /* Allocate memory to hold the linker stubs. */
3221 size
= stub_sec
->size
;
3222 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3223 if (stub_sec
->contents
== NULL
&& size
!= 0)
3228 /* Build the stubs as directed by the stub hash table. */
3229 table
= &htab
->bstab
;
3230 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3235 /* Return the base vma address which should be subtracted from the real
3236 address when resolving a dtpoff relocation.
3237 This is PT_TLS segment p_vaddr. */
3240 dtpoff_base (struct bfd_link_info
*info
)
3242 /* If tls_sec is NULL, we should have signalled an error already. */
3243 if (elf_hash_table (info
)->tls_sec
== NULL
)
3245 return elf_hash_table (info
)->tls_sec
->vma
;
3248 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3251 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
3253 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3255 /* If tls_sec is NULL, we should have signalled an error already. */
3256 if (htab
->tls_sec
== NULL
)
3258 /* hppa TLS ABI is variant I and static TLS block start just after
3259 tcbhead structure which has 2 pointer fields. */
3260 return (address
- htab
->tls_sec
->vma
3261 + align_power ((bfd_vma
) 8, htab
->tls_sec
->alignment_power
));
3264 /* Perform a final link. */
3267 elf32_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
3269 /* Invoke the regular ELF linker to do all the work. */
3270 if (!bfd_elf_final_link (abfd
, info
))
3273 /* If we're producing a final executable, sort the contents of the
3275 return elf_hppa_sort_unwind (abfd
);
3278 /* Record the lowest address for the data and text segments. */
3281 hppa_record_segment_addr (bfd
*abfd
, asection
*section
, void *data
)
3283 struct elf32_hppa_link_hash_table
*htab
;
3285 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3287 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3290 Elf_Internal_Phdr
*p
;
3292 p
= _bfd_elf_find_segment_containing_section (abfd
, section
->output_section
);
3293 BFD_ASSERT (p
!= NULL
);
3296 if ((section
->flags
& SEC_READONLY
) != 0)
3298 if (value
< htab
->text_segment_base
)
3299 htab
->text_segment_base
= value
;
3303 if (value
< htab
->data_segment_base
)
3304 htab
->data_segment_base
= value
;
3309 /* Perform a relocation as part of a final link. */
3311 static bfd_reloc_status_type
3312 final_link_relocate (asection
*input_section
,
3314 const Elf_Internal_Rela
*rela
,
3316 struct elf32_hppa_link_hash_table
*htab
,
3318 struct elf32_hppa_link_hash_entry
*hh
,
3319 struct bfd_link_info
*info
)
3322 unsigned int r_type
= ELF32_R_TYPE (rela
->r_info
);
3323 unsigned int orig_r_type
= r_type
;
3324 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3325 int r_format
= howto
->bitsize
;
3326 enum hppa_reloc_field_selector_type_alt r_field
;
3327 bfd
*input_bfd
= input_section
->owner
;
3328 bfd_vma offset
= rela
->r_offset
;
3329 bfd_vma max_branch_offset
= 0;
3330 bfd_byte
*hit_data
= contents
+ offset
;
3331 bfd_signed_vma addend
= rela
->r_addend
;
3333 struct elf32_hppa_stub_hash_entry
*hsh
= NULL
;
3336 if (r_type
== R_PARISC_NONE
)
3337 return bfd_reloc_ok
;
3339 insn
= bfd_get_32 (input_bfd
, hit_data
);
3341 /* Find out where we are and where we're going. */
3342 location
= (offset
+
3343 input_section
->output_offset
+
3344 input_section
->output_section
->vma
);
3346 /* If we are not building a shared library, convert DLTIND relocs to
3352 case R_PARISC_DLTIND21L
:
3353 r_type
= R_PARISC_DPREL21L
;
3356 case R_PARISC_DLTIND14R
:
3357 r_type
= R_PARISC_DPREL14R
;
3360 case R_PARISC_DLTIND14F
:
3361 r_type
= R_PARISC_DPREL14F
;
3368 case R_PARISC_PCREL12F
:
3369 case R_PARISC_PCREL17F
:
3370 case R_PARISC_PCREL22F
:
3371 /* If this call should go via the plt, find the import stub in
3374 || sym_sec
->output_section
== NULL
3376 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
3377 && hh
->eh
.dynindx
!= -1
3380 || !hh
->eh
.def_regular
3381 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)))
3383 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3387 value
= (hsh
->stub_offset
3388 + hsh
->stub_sec
->output_offset
3389 + hsh
->stub_sec
->output_section
->vma
);
3392 else if (sym_sec
== NULL
&& hh
!= NULL
3393 && hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3395 /* It's OK if undefined weak. Calls to undefined weak
3396 symbols behave as if the "called" function
3397 immediately returns. We can thus call to a weak
3398 function without first checking whether the function
3404 return bfd_reloc_undefined
;
3408 case R_PARISC_PCREL21L
:
3409 case R_PARISC_PCREL17C
:
3410 case R_PARISC_PCREL17R
:
3411 case R_PARISC_PCREL14R
:
3412 case R_PARISC_PCREL14F
:
3413 case R_PARISC_PCREL32
:
3414 /* Make it a pc relative offset. */
3419 case R_PARISC_DPREL21L
:
3420 case R_PARISC_DPREL14R
:
3421 case R_PARISC_DPREL14F
:
3422 /* Convert instructions that use the linkage table pointer (r19) to
3423 instructions that use the global data pointer (dp). This is the
3424 most efficient way of using PIC code in an incomplete executable,
3425 but the user must follow the standard runtime conventions for
3426 accessing data for this to work. */
3427 if (orig_r_type
== R_PARISC_DLTIND21L
)
3429 /* Convert addil instructions if the original reloc was a
3430 DLTIND21L. GCC sometimes uses a register other than r19 for
3431 the operation, so we must convert any addil instruction
3432 that uses this relocation. */
3433 if ((insn
& 0xfc000000) == ((int) OP_ADDIL
<< 26))
3436 /* We must have a ldil instruction. It's too hard to find
3437 and convert the associated add instruction, so issue an
3439 (*_bfd_error_handler
)
3440 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3447 else if (orig_r_type
== R_PARISC_DLTIND14F
)
3449 /* This must be a format 1 load/store. Change the base
3451 insn
= (insn
& 0xfc1ffff) | (27 << 21);
3454 /* For all the DP relative relocations, we need to examine the symbol's
3455 section. If it has no section or if it's a code section, then
3456 "data pointer relative" makes no sense. In that case we don't
3457 adjust the "value", and for 21 bit addil instructions, we change the
3458 source addend register from %dp to %r0. This situation commonly
3459 arises for undefined weak symbols and when a variable's "constness"
3460 is declared differently from the way the variable is defined. For
3461 instance: "extern int foo" with foo defined as "const int foo". */
3462 if (sym_sec
== NULL
|| (sym_sec
->flags
& SEC_CODE
) != 0)
3464 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3465 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3467 insn
&= ~ (0x1f << 21);
3469 /* Now try to make things easy for the dynamic linker. */
3475 case R_PARISC_DLTIND21L
:
3476 case R_PARISC_DLTIND14R
:
3477 case R_PARISC_DLTIND14F
:
3478 case R_PARISC_TLS_GD21L
:
3479 case R_PARISC_TLS_GD14R
:
3480 case R_PARISC_TLS_LDM21L
:
3481 case R_PARISC_TLS_LDM14R
:
3482 case R_PARISC_TLS_IE21L
:
3483 case R_PARISC_TLS_IE14R
:
3484 value
-= elf_gp (input_section
->output_section
->owner
);
3487 case R_PARISC_SEGREL32
:
3488 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3489 value
-= htab
->text_segment_base
;
3491 value
-= htab
->data_segment_base
;
3500 case R_PARISC_DIR32
:
3501 case R_PARISC_DIR14F
:
3502 case R_PARISC_DIR17F
:
3503 case R_PARISC_PCREL17C
:
3504 case R_PARISC_PCREL14F
:
3505 case R_PARISC_PCREL32
:
3506 case R_PARISC_DPREL14F
:
3507 case R_PARISC_PLABEL32
:
3508 case R_PARISC_DLTIND14F
:
3509 case R_PARISC_SEGBASE
:
3510 case R_PARISC_SEGREL32
:
3511 case R_PARISC_TLS_DTPMOD32
:
3512 case R_PARISC_TLS_DTPOFF32
:
3513 case R_PARISC_TLS_TPREL32
:
3517 case R_PARISC_DLTIND21L
:
3518 case R_PARISC_PCREL21L
:
3519 case R_PARISC_PLABEL21L
:
3523 case R_PARISC_DIR21L
:
3524 case R_PARISC_DPREL21L
:
3525 case R_PARISC_TLS_GD21L
:
3526 case R_PARISC_TLS_LDM21L
:
3527 case R_PARISC_TLS_LDO21L
:
3528 case R_PARISC_TLS_IE21L
:
3529 case R_PARISC_TLS_LE21L
:
3533 case R_PARISC_PCREL17R
:
3534 case R_PARISC_PCREL14R
:
3535 case R_PARISC_PLABEL14R
:
3536 case R_PARISC_DLTIND14R
:
3540 case R_PARISC_DIR17R
:
3541 case R_PARISC_DIR14R
:
3542 case R_PARISC_DPREL14R
:
3543 case R_PARISC_TLS_GD14R
:
3544 case R_PARISC_TLS_LDM14R
:
3545 case R_PARISC_TLS_LDO14R
:
3546 case R_PARISC_TLS_IE14R
:
3547 case R_PARISC_TLS_LE14R
:
3551 case R_PARISC_PCREL12F
:
3552 case R_PARISC_PCREL17F
:
3553 case R_PARISC_PCREL22F
:
3556 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3558 max_branch_offset
= (1 << (17-1)) << 2;
3560 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3562 max_branch_offset
= (1 << (12-1)) << 2;
3566 max_branch_offset
= (1 << (22-1)) << 2;
3569 /* sym_sec is NULL on undefined weak syms or when shared on
3570 undefined syms. We've already checked for a stub for the
3571 shared undefined case. */
3572 if (sym_sec
== NULL
)
3575 /* If the branch is out of reach, then redirect the
3576 call to the local stub for this function. */
3577 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3579 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3582 return bfd_reloc_undefined
;
3584 /* Munge up the value and addend so that we call the stub
3585 rather than the procedure directly. */
3586 value
= (hsh
->stub_offset
3587 + hsh
->stub_sec
->output_offset
3588 + hsh
->stub_sec
->output_section
->vma
3594 /* Something we don't know how to handle. */
3596 return bfd_reloc_notsupported
;
3599 /* Make sure we can reach the stub. */
3600 if (max_branch_offset
!= 0
3601 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3603 (*_bfd_error_handler
)
3604 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3608 hsh
->bh_root
.string
);
3609 bfd_set_error (bfd_error_bad_value
);
3610 return bfd_reloc_notsupported
;
3613 val
= hppa_field_adjust (value
, addend
, r_field
);
3617 case R_PARISC_PCREL12F
:
3618 case R_PARISC_PCREL17C
:
3619 case R_PARISC_PCREL17F
:
3620 case R_PARISC_PCREL17R
:
3621 case R_PARISC_PCREL22F
:
3622 case R_PARISC_DIR17F
:
3623 case R_PARISC_DIR17R
:
3624 /* This is a branch. Divide the offset by four.
3625 Note that we need to decide whether it's a branch or
3626 otherwise by inspecting the reloc. Inspecting insn won't
3627 work as insn might be from a .word directive. */
3635 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3637 /* Update the instruction word. */
3638 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3639 return bfd_reloc_ok
;
3642 /* Relocate an HPPA ELF section. */
3645 elf32_hppa_relocate_section (bfd
*output_bfd
,
3646 struct bfd_link_info
*info
,
3648 asection
*input_section
,
3650 Elf_Internal_Rela
*relocs
,
3651 Elf_Internal_Sym
*local_syms
,
3652 asection
**local_sections
)
3654 bfd_vma
*local_got_offsets
;
3655 struct elf32_hppa_link_hash_table
*htab
;
3656 Elf_Internal_Shdr
*symtab_hdr
;
3657 Elf_Internal_Rela
*rela
;
3658 Elf_Internal_Rela
*relend
;
3660 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3662 htab
= hppa_link_hash_table (info
);
3663 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3666 relend
= relocs
+ input_section
->reloc_count
;
3667 for (; rela
< relend
; rela
++)
3669 unsigned int r_type
;
3670 reloc_howto_type
*howto
;
3671 unsigned int r_symndx
;
3672 struct elf32_hppa_link_hash_entry
*hh
;
3673 Elf_Internal_Sym
*sym
;
3676 bfd_reloc_status_type rstatus
;
3677 const char *sym_name
;
3679 bfd_boolean warned_undef
;
3681 r_type
= ELF32_R_TYPE (rela
->r_info
);
3682 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3684 bfd_set_error (bfd_error_bad_value
);
3687 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3688 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3691 r_symndx
= ELF32_R_SYM (rela
->r_info
);
3695 warned_undef
= FALSE
;
3696 if (r_symndx
< symtab_hdr
->sh_info
)
3698 /* This is a local symbol, h defaults to NULL. */
3699 sym
= local_syms
+ r_symndx
;
3700 sym_sec
= local_sections
[r_symndx
];
3701 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rela
);
3705 struct elf_link_hash_entry
*eh
;
3706 bfd_boolean unresolved_reloc
;
3707 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3709 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rela
,
3710 r_symndx
, symtab_hdr
, sym_hashes
,
3711 eh
, sym_sec
, relocation
,
3712 unresolved_reloc
, warned_undef
);
3714 if (!info
->relocatable
3716 && eh
->root
.type
!= bfd_link_hash_defined
3717 && eh
->root
.type
!= bfd_link_hash_defweak
3718 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3720 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3721 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3722 && eh
->type
== STT_PARISC_MILLI
)
3724 if (! info
->callbacks
->undefined_symbol
3725 (info
, eh_name (eh
), input_bfd
,
3726 input_section
, rela
->r_offset
, FALSE
))
3728 warned_undef
= TRUE
;
3731 hh
= hppa_elf_hash_entry (eh
);
3734 if (sym_sec
!= NULL
&& elf_discarded_section (sym_sec
))
3736 /* For relocs against symbols from removed linkonce
3737 sections, or sections discarded by a linker script,
3738 we just want the section contents zeroed. Avoid any
3739 special processing. */
3740 _bfd_clear_contents (elf_hppa_howto_table
+ r_type
, input_bfd
,
3741 contents
+ rela
->r_offset
);
3747 if (info
->relocatable
)
3750 /* Do any required modifications to the relocation value, and
3751 determine what types of dynamic info we need to output, if
3756 case R_PARISC_DLTIND14F
:
3757 case R_PARISC_DLTIND14R
:
3758 case R_PARISC_DLTIND21L
:
3761 bfd_boolean do_got
= 0;
3763 /* Relocation is to the entry for this symbol in the
3764 global offset table. */
3769 off
= hh
->eh
.got
.offset
;
3770 dyn
= htab
->etab
.dynamic_sections_created
;
3771 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
,
3774 /* If we aren't going to call finish_dynamic_symbol,
3775 then we need to handle initialisation of the .got
3776 entry and create needed relocs here. Since the
3777 offset must always be a multiple of 4, we use the
3778 least significant bit to record whether we have
3779 initialised it already. */
3784 hh
->eh
.got
.offset
|= 1;
3791 /* Local symbol case. */
3792 if (local_got_offsets
== NULL
)
3795 off
= local_got_offsets
[r_symndx
];
3797 /* The offset must always be a multiple of 4. We use
3798 the least significant bit to record whether we have
3799 already generated the necessary reloc. */
3804 local_got_offsets
[r_symndx
] |= 1;
3813 /* Output a dynamic relocation for this GOT entry.
3814 In this case it is relative to the base of the
3815 object because the symbol index is zero. */
3816 Elf_Internal_Rela outrel
;
3818 asection
*sec
= htab
->srelgot
;
3820 outrel
.r_offset
= (off
3821 + htab
->sgot
->output_offset
3822 + htab
->sgot
->output_section
->vma
);
3823 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3824 outrel
.r_addend
= relocation
;
3825 loc
= sec
->contents
;
3826 loc
+= sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3827 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3830 bfd_put_32 (output_bfd
, relocation
,
3831 htab
->sgot
->contents
+ off
);
3834 if (off
>= (bfd_vma
) -2)
3837 /* Add the base of the GOT to the relocation value. */
3839 + htab
->sgot
->output_offset
3840 + htab
->sgot
->output_section
->vma
);
3844 case R_PARISC_SEGREL32
:
3845 /* If this is the first SEGREL relocation, then initialize
3846 the segment base values. */
3847 if (htab
->text_segment_base
== (bfd_vma
) -1)
3848 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3851 case R_PARISC_PLABEL14R
:
3852 case R_PARISC_PLABEL21L
:
3853 case R_PARISC_PLABEL32
:
3854 if (htab
->etab
.dynamic_sections_created
)
3857 bfd_boolean do_plt
= 0;
3858 /* If we have a global symbol with a PLT slot, then
3859 redirect this relocation to it. */
3862 off
= hh
->eh
.plt
.offset
;
3863 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
,
3866 /* In a non-shared link, adjust_dynamic_symbols
3867 isn't called for symbols forced local. We
3868 need to write out the plt entry here. */
3873 hh
->eh
.plt
.offset
|= 1;
3880 bfd_vma
*local_plt_offsets
;
3882 if (local_got_offsets
== NULL
)
3885 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3886 off
= local_plt_offsets
[r_symndx
];
3888 /* As for the local .got entry case, we use the last
3889 bit to record whether we've already initialised
3890 this local .plt entry. */
3895 local_plt_offsets
[r_symndx
] |= 1;
3904 /* Output a dynamic IPLT relocation for this
3906 Elf_Internal_Rela outrel
;
3908 asection
*s
= htab
->srelplt
;
3910 outrel
.r_offset
= (off
3911 + htab
->splt
->output_offset
3912 + htab
->splt
->output_section
->vma
);
3913 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3914 outrel
.r_addend
= relocation
;
3916 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3917 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3921 bfd_put_32 (output_bfd
,
3923 htab
->splt
->contents
+ off
);
3924 bfd_put_32 (output_bfd
,
3925 elf_gp (htab
->splt
->output_section
->owner
),
3926 htab
->splt
->contents
+ off
+ 4);
3930 if (off
>= (bfd_vma
) -2)
3933 /* PLABELs contain function pointers. Relocation is to
3934 the entry for the function in the .plt. The magic +2
3935 offset signals to $$dyncall that the function pointer
3936 is in the .plt and thus has a gp pointer too.
3937 Exception: Undefined PLABELs should have a value of
3940 || (hh
->eh
.root
.type
!= bfd_link_hash_undefweak
3941 && hh
->eh
.root
.type
!= bfd_link_hash_undefined
))
3944 + htab
->splt
->output_offset
3945 + htab
->splt
->output_section
->vma
3950 /* Fall through and possibly emit a dynamic relocation. */
3952 case R_PARISC_DIR17F
:
3953 case R_PARISC_DIR17R
:
3954 case R_PARISC_DIR14F
:
3955 case R_PARISC_DIR14R
:
3956 case R_PARISC_DIR21L
:
3957 case R_PARISC_DPREL14F
:
3958 case R_PARISC_DPREL14R
:
3959 case R_PARISC_DPREL21L
:
3960 case R_PARISC_DIR32
:
3961 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3964 /* The reloc types handled here and this conditional
3965 expression must match the code in ..check_relocs and
3966 allocate_dynrelocs. ie. We need exactly the same condition
3967 as in ..check_relocs, with some extra conditions (dynindx
3968 test in this case) to cater for relocs removed by
3969 allocate_dynrelocs. If you squint, the non-shared test
3970 here does indeed match the one in ..check_relocs, the
3971 difference being that here we test DEF_DYNAMIC as well as
3972 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3973 which is why we can't use just that test here.
3974 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3975 there all files have not been loaded. */
3978 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
3979 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
)
3980 && (IS_ABSOLUTE_RELOC (r_type
)
3981 || !SYMBOL_CALLS_LOCAL (info
, &hh
->eh
)))
3984 && hh
->eh
.dynindx
!= -1
3985 && !hh
->eh
.non_got_ref
3986 && ((ELIMINATE_COPY_RELOCS
3987 && hh
->eh
.def_dynamic
3988 && !hh
->eh
.def_regular
)
3989 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
3990 || hh
->eh
.root
.type
== bfd_link_hash_undefined
)))
3992 Elf_Internal_Rela outrel
;
3997 /* When generating a shared object, these relocations
3998 are copied into the output file to be resolved at run
4001 outrel
.r_addend
= rela
->r_addend
;
4003 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4005 skip
= (outrel
.r_offset
== (bfd_vma
) -1
4006 || outrel
.r_offset
== (bfd_vma
) -2);
4007 outrel
.r_offset
+= (input_section
->output_offset
4008 + input_section
->output_section
->vma
);
4012 memset (&outrel
, 0, sizeof (outrel
));
4015 && hh
->eh
.dynindx
!= -1
4017 || !IS_ABSOLUTE_RELOC (r_type
)
4020 || !hh
->eh
.def_regular
))
4022 outrel
.r_info
= ELF32_R_INFO (hh
->eh
.dynindx
, r_type
);
4024 else /* It's a local symbol, or one marked to become local. */
4028 /* Add the absolute offset of the symbol. */
4029 outrel
.r_addend
+= relocation
;
4031 /* Global plabels need to be processed by the
4032 dynamic linker so that functions have at most one
4033 fptr. For this reason, we need to differentiate
4034 between global and local plabels, which we do by
4035 providing the function symbol for a global plabel
4036 reloc, and no symbol for local plabels. */
4039 && sym_sec
->output_section
!= NULL
4040 && ! bfd_is_abs_section (sym_sec
))
4044 osec
= sym_sec
->output_section
;
4045 indx
= elf_section_data (osec
)->dynindx
;
4048 osec
= htab
->etab
.text_index_section
;
4049 indx
= elf_section_data (osec
)->dynindx
;
4051 BFD_ASSERT (indx
!= 0);
4053 /* We are turning this relocation into one
4054 against a section symbol, so subtract out the
4055 output section's address but not the offset
4056 of the input section in the output section. */
4057 outrel
.r_addend
-= osec
->vma
;
4060 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4062 sreloc
= elf_section_data (input_section
)->sreloc
;
4066 loc
= sreloc
->contents
;
4067 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4068 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4072 case R_PARISC_TLS_LDM21L
:
4073 case R_PARISC_TLS_LDM14R
:
4077 off
= htab
->tls_ldm_got
.offset
;
4082 Elf_Internal_Rela outrel
;
4085 outrel
.r_offset
= (off
4086 + htab
->sgot
->output_section
->vma
4087 + htab
->sgot
->output_offset
);
4088 outrel
.r_addend
= 0;
4089 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32
);
4090 loc
= htab
->srelgot
->contents
;
4091 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4093 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4094 htab
->tls_ldm_got
.offset
|= 1;
4097 /* Add the base of the GOT to the relocation value. */
4099 + htab
->sgot
->output_offset
4100 + htab
->sgot
->output_section
->vma
);
4105 case R_PARISC_TLS_LDO21L
:
4106 case R_PARISC_TLS_LDO14R
:
4107 relocation
-= dtpoff_base (info
);
4110 case R_PARISC_TLS_GD21L
:
4111 case R_PARISC_TLS_GD14R
:
4112 case R_PARISC_TLS_IE21L
:
4113 case R_PARISC_TLS_IE14R
:
4123 dyn
= htab
->etab
.dynamic_sections_created
;
4125 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &hh
->eh
)
4127 || !SYMBOL_REFERENCES_LOCAL (info
, &hh
->eh
)))
4129 indx
= hh
->eh
.dynindx
;
4131 off
= hh
->eh
.got
.offset
;
4132 tls_type
= hh
->tls_type
;
4136 off
= local_got_offsets
[r_symndx
];
4137 tls_type
= hppa_elf_local_got_tls_type (input_bfd
)[r_symndx
];
4140 if (tls_type
== GOT_UNKNOWN
)
4147 bfd_boolean need_relocs
= FALSE
;
4148 Elf_Internal_Rela outrel
;
4149 bfd_byte
*loc
= NULL
;
4152 /* The GOT entries have not been initialized yet. Do it
4153 now, and emit any relocations. If both an IE GOT and a
4154 GD GOT are necessary, we emit the GD first. */
4156 if ((info
->shared
|| indx
!= 0)
4158 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
4159 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
))
4162 loc
= htab
->srelgot
->contents
;
4163 /* FIXME (CAO): Should this be reloc_count++ ? */
4164 loc
+= htab
->srelgot
->reloc_count
* sizeof (Elf32_External_Rela
);
4167 if (tls_type
& GOT_TLS_GD
)
4171 outrel
.r_offset
= (cur_off
4172 + htab
->sgot
->output_section
->vma
4173 + htab
->sgot
->output_offset
);
4174 outrel
.r_info
= ELF32_R_INFO (indx
,R_PARISC_TLS_DTPMOD32
);
4175 outrel
.r_addend
= 0;
4176 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ cur_off
);
4177 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4178 htab
->srelgot
->reloc_count
++;
4179 loc
+= sizeof (Elf32_External_Rela
);
4182 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4183 htab
->sgot
->contents
+ cur_off
+ 4);
4186 bfd_put_32 (output_bfd
, 0,
4187 htab
->sgot
->contents
+ cur_off
+ 4);
4188 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_DTPOFF32
);
4189 outrel
.r_offset
+= 4;
4190 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,loc
);
4191 htab
->srelgot
->reloc_count
++;
4192 loc
+= sizeof (Elf32_External_Rela
);
4197 /* If we are not emitting relocations for a
4198 general dynamic reference, then we must be in a
4199 static link or an executable link with the
4200 symbol binding locally. Mark it as belonging
4201 to module 1, the executable. */
4202 bfd_put_32 (output_bfd
, 1,
4203 htab
->sgot
->contents
+ cur_off
);
4204 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4205 htab
->sgot
->contents
+ cur_off
+ 4);
4212 if (tls_type
& GOT_TLS_IE
)
4216 outrel
.r_offset
= (cur_off
4217 + htab
->sgot
->output_section
->vma
4218 + htab
->sgot
->output_offset
);
4219 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_TPREL32
);
4222 outrel
.r_addend
= relocation
- dtpoff_base (info
);
4224 outrel
.r_addend
= 0;
4226 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4227 htab
->srelgot
->reloc_count
++;
4228 loc
+= sizeof (Elf32_External_Rela
);
4231 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
4232 htab
->sgot
->contents
+ cur_off
);
4238 hh
->eh
.got
.offset
|= 1;
4240 local_got_offsets
[r_symndx
] |= 1;
4243 if ((tls_type
& GOT_TLS_GD
)
4244 && r_type
!= R_PARISC_TLS_GD21L
4245 && r_type
!= R_PARISC_TLS_GD14R
)
4246 off
+= 2 * GOT_ENTRY_SIZE
;
4248 /* Add the base of the GOT to the relocation value. */
4250 + htab
->sgot
->output_offset
4251 + htab
->sgot
->output_section
->vma
);
4256 case R_PARISC_TLS_LE21L
:
4257 case R_PARISC_TLS_LE14R
:
4259 relocation
= tpoff (info
, relocation
);
4268 rstatus
= final_link_relocate (input_section
, contents
, rela
, relocation
,
4269 htab
, sym_sec
, hh
, info
);
4271 if (rstatus
== bfd_reloc_ok
)
4275 sym_name
= hh_name (hh
);
4278 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4279 symtab_hdr
->sh_link
,
4281 if (sym_name
== NULL
)
4283 if (*sym_name
== '\0')
4284 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4287 howto
= elf_hppa_howto_table
+ r_type
;
4289 if (rstatus
== bfd_reloc_undefined
|| rstatus
== bfd_reloc_notsupported
)
4291 if (rstatus
== bfd_reloc_notsupported
|| !warned_undef
)
4293 (*_bfd_error_handler
)
4294 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4297 (long) rela
->r_offset
,
4300 bfd_set_error (bfd_error_bad_value
);
4306 if (!((*info
->callbacks
->reloc_overflow
)
4307 (info
, (hh
? &hh
->eh
.root
: NULL
), sym_name
, howto
->name
,
4308 (bfd_vma
) 0, input_bfd
, input_section
, rela
->r_offset
)))
4316 /* Finish up dynamic symbol handling. We set the contents of various
4317 dynamic sections here. */
4320 elf32_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
4321 struct bfd_link_info
*info
,
4322 struct elf_link_hash_entry
*eh
,
4323 Elf_Internal_Sym
*sym
)
4325 struct elf32_hppa_link_hash_table
*htab
;
4326 Elf_Internal_Rela rela
;
4329 htab
= hppa_link_hash_table (info
);
4331 if (eh
->plt
.offset
!= (bfd_vma
) -1)
4335 if (eh
->plt
.offset
& 1)
4338 /* This symbol has an entry in the procedure linkage table. Set
4341 The format of a plt entry is
4346 if (eh
->root
.type
== bfd_link_hash_defined
4347 || eh
->root
.type
== bfd_link_hash_defweak
)
4349 value
= eh
->root
.u
.def
.value
;
4350 if (eh
->root
.u
.def
.section
->output_section
!= NULL
)
4351 value
+= (eh
->root
.u
.def
.section
->output_offset
4352 + eh
->root
.u
.def
.section
->output_section
->vma
);
4355 /* Create a dynamic IPLT relocation for this entry. */
4356 rela
.r_offset
= (eh
->plt
.offset
4357 + htab
->splt
->output_offset
4358 + htab
->splt
->output_section
->vma
);
4359 if (eh
->dynindx
!= -1)
4361 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_IPLT
);
4366 /* This symbol has been marked to become local, and is
4367 used by a plabel so must be kept in the .plt. */
4368 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4369 rela
.r_addend
= value
;
4372 loc
= htab
->srelplt
->contents
;
4373 loc
+= htab
->srelplt
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4374 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
, &rela
, loc
);
4376 if (!eh
->def_regular
)
4378 /* Mark the symbol as undefined, rather than as defined in
4379 the .plt section. Leave the value alone. */
4380 sym
->st_shndx
= SHN_UNDEF
;
4384 if (eh
->got
.offset
!= (bfd_vma
) -1
4385 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_GD
) == 0
4386 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_IE
) == 0)
4388 /* This symbol has an entry in the global offset table. Set it
4391 rela
.r_offset
= ((eh
->got
.offset
&~ (bfd_vma
) 1)
4392 + htab
->sgot
->output_offset
4393 + htab
->sgot
->output_section
->vma
);
4395 /* If this is a -Bsymbolic link and the symbol is defined
4396 locally or was forced to be local because of a version file,
4397 we just want to emit a RELATIVE reloc. The entry in the
4398 global offset table will already have been initialized in the
4399 relocate_section function. */
4401 && (info
->symbolic
|| eh
->dynindx
== -1)
4404 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4405 rela
.r_addend
= (eh
->root
.u
.def
.value
4406 + eh
->root
.u
.def
.section
->output_offset
4407 + eh
->root
.u
.def
.section
->output_section
->vma
);
4411 if ((eh
->got
.offset
& 1) != 0)
4414 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ (eh
->got
.offset
& ~1));
4415 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_DIR32
);
4419 loc
= htab
->srelgot
->contents
;
4420 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4421 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4428 /* This symbol needs a copy reloc. Set it up. */
4430 if (! (eh
->dynindx
!= -1
4431 && (eh
->root
.type
== bfd_link_hash_defined
4432 || eh
->root
.type
== bfd_link_hash_defweak
)))
4435 sec
= htab
->srelbss
;
4437 rela
.r_offset
= (eh
->root
.u
.def
.value
4438 + eh
->root
.u
.def
.section
->output_offset
4439 + eh
->root
.u
.def
.section
->output_section
->vma
);
4441 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_COPY
);
4442 loc
= sec
->contents
+ sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4443 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4446 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4447 if (eh_name (eh
)[0] == '_'
4448 && (strcmp (eh_name (eh
), "_DYNAMIC") == 0
4449 || eh
== htab
->etab
.hgot
))
4451 sym
->st_shndx
= SHN_ABS
;
4457 /* Used to decide how to sort relocs in an optimal manner for the
4458 dynamic linker, before writing them out. */
4460 static enum elf_reloc_type_class
4461 elf32_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
4463 /* Handle TLS relocs first; we don't want them to be marked
4464 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4466 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4468 case R_PARISC_TLS_DTPMOD32
:
4469 case R_PARISC_TLS_DTPOFF32
:
4470 case R_PARISC_TLS_TPREL32
:
4471 return reloc_class_normal
;
4474 if (ELF32_R_SYM (rela
->r_info
) == 0)
4475 return reloc_class_relative
;
4477 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4480 return reloc_class_plt
;
4482 return reloc_class_copy
;
4484 return reloc_class_normal
;
4488 /* Finish up the dynamic sections. */
4491 elf32_hppa_finish_dynamic_sections (bfd
*output_bfd
,
4492 struct bfd_link_info
*info
)
4495 struct elf32_hppa_link_hash_table
*htab
;
4498 htab
= hppa_link_hash_table (info
);
4499 dynobj
= htab
->etab
.dynobj
;
4501 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4503 if (htab
->etab
.dynamic_sections_created
)
4505 Elf32_External_Dyn
*dyncon
, *dynconend
;
4510 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4511 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4512 for (; dyncon
< dynconend
; dyncon
++)
4514 Elf_Internal_Dyn dyn
;
4517 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4525 /* Use PLTGOT to set the GOT register. */
4526 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4531 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4536 dyn
.d_un
.d_val
= s
->size
;
4540 /* Don't count procedure linkage table relocs in the
4541 overall reloc count. */
4545 dyn
.d_un
.d_val
-= s
->size
;
4549 /* We may not be using the standard ELF linker script.
4550 If .rela.plt is the first .rela section, we adjust
4551 DT_RELA to not include it. */
4555 if (dyn
.d_un
.d_ptr
!= s
->output_section
->vma
+ s
->output_offset
)
4557 dyn
.d_un
.d_ptr
+= s
->size
;
4561 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4565 if (htab
->sgot
!= NULL
&& htab
->sgot
->size
!= 0)
4567 /* Fill in the first entry in the global offset table.
4568 We use it to point to our dynamic section, if we have one. */
4569 bfd_put_32 (output_bfd
,
4570 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0,
4571 htab
->sgot
->contents
);
4573 /* The second entry is reserved for use by the dynamic linker. */
4574 memset (htab
->sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4576 /* Set .got entry size. */
4577 elf_section_data (htab
->sgot
->output_section
)
4578 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4581 if (htab
->splt
!= NULL
&& htab
->splt
->size
!= 0)
4583 /* Set plt entry size. */
4584 elf_section_data (htab
->splt
->output_section
)
4585 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4587 if (htab
->need_plt_stub
)
4589 /* Set up the .plt stub. */
4590 memcpy (htab
->splt
->contents
4591 + htab
->splt
->size
- sizeof (plt_stub
),
4592 plt_stub
, sizeof (plt_stub
));
4594 if ((htab
->splt
->output_offset
4595 + htab
->splt
->output_section
->vma
4597 != (htab
->sgot
->output_offset
4598 + htab
->sgot
->output_section
->vma
))
4600 (*_bfd_error_handler
)
4601 (_(".got section not immediately after .plt section"));
4610 /* Called when writing out an object file to decide the type of a
4613 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
, int type
)
4615 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4616 return STT_PARISC_MILLI
;
4621 /* Misc BFD support code. */
4622 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4623 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4624 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4625 #define elf_info_to_howto elf_hppa_info_to_howto
4626 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4628 /* Stuff for the BFD linker. */
4629 #define bfd_elf32_mkobject elf32_hppa_mkobject
4630 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4631 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4632 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4633 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4634 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4635 #define elf_backend_check_relocs elf32_hppa_check_relocs
4636 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4637 #define elf_backend_fake_sections elf_hppa_fake_sections
4638 #define elf_backend_relocate_section elf32_hppa_relocate_section
4639 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4640 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4641 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4642 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4643 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4644 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4645 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4646 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4647 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4648 #define elf_backend_object_p elf32_hppa_object_p
4649 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4650 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4651 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4652 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4653 #define elf_backend_action_discarded elf_hppa_action_discarded
4655 #define elf_backend_can_gc_sections 1
4656 #define elf_backend_can_refcount 1
4657 #define elf_backend_plt_alignment 2
4658 #define elf_backend_want_got_plt 0
4659 #define elf_backend_plt_readonly 0
4660 #define elf_backend_want_plt_sym 0
4661 #define elf_backend_got_header_size 8
4662 #define elf_backend_rela_normal 1
4664 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4665 #define TARGET_BIG_NAME "elf32-hppa"
4666 #define ELF_ARCH bfd_arch_hppa
4667 #define ELF_MACHINE_CODE EM_PARISC
4668 #define ELF_MAXPAGESIZE 0x1000
4669 #define ELF_OSABI ELFOSABI_HPUX
4670 #define elf32_bed elf32_hppa_hpux_bed
4672 #include "elf32-target.h"
4674 #undef TARGET_BIG_SYM
4675 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4676 #undef TARGET_BIG_NAME
4677 #define TARGET_BIG_NAME "elf32-hppa-linux"
4679 #define ELF_OSABI ELFOSABI_LINUX
4681 #define elf32_bed elf32_hppa_linux_bed
4683 #include "elf32-target.h"
4685 #undef TARGET_BIG_SYM
4686 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4687 #undef TARGET_BIG_NAME
4688 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4690 #define ELF_OSABI ELFOSABI_NETBSD
4692 #define elf32_bed elf32_hppa_netbsd_bed
4694 #include "elf32-target.h"