1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
30 #include "elf/x86-64.h"
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table
[] =
40 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
41 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
43 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
44 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
46 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
47 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
50 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
53 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
56 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
58 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
59 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
61 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
62 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
64 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
65 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
67 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
68 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
70 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
71 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
74 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
76 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
77 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
78 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
80 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
82 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
83 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
84 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
85 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
87 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
88 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
90 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
91 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
93 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
94 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
96 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
97 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
99 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
100 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
102 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
103 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
105 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
106 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
108 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
109 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
111 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
112 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
113 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
114 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
115 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
116 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
117 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
118 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
120 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
121 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
123 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
124 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
125 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
126 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
127 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
129 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
130 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
134 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
135 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
138 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
139 complain_overflow_dont
, bfd_elf_generic_reloc
,
140 "R_X86_64_TLSDESC_CALL",
142 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
143 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
145 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
156 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
160 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
164 /* Map BFD relocs to the x86_64 elf relocs. */
167 bfd_reloc_code_real_type bfd_reloc_val
;
168 unsigned char elf_reloc_val
;
171 static const struct elf_reloc_map x86_64_reloc_map
[] =
173 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
174 { BFD_RELOC_64
, R_X86_64_64
, },
175 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
176 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
177 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
178 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
179 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
180 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
181 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
182 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
183 { BFD_RELOC_32
, R_X86_64_32
, },
184 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
185 { BFD_RELOC_16
, R_X86_64_16
, },
186 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
187 { BFD_RELOC_8
, R_X86_64_8
, },
188 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
189 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
190 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
191 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
192 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
193 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
194 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
195 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
196 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
197 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
198 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
199 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
200 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
201 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
202 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
203 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
204 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
207 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
208 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
209 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
212 static reloc_howto_type
*
213 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
217 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type
>= (unsigned int) R_X86_64_max
)
220 if (r_type
>= (unsigned int) R_X86_64_standard
)
222 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
224 r_type
= R_X86_64_NONE
;
229 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
230 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
231 return &x86_64_elf_howto_table
[i
];
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type
*
236 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
237 bfd_reloc_code_real_type code
)
241 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
244 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
245 return elf64_x86_64_rtype_to_howto (abfd
,
246 x86_64_reloc_map
[i
].elf_reloc_val
);
251 static reloc_howto_type
*
252 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
258 i
< (sizeof (x86_64_elf_howto_table
)
259 / sizeof (x86_64_elf_howto_table
[0]));
261 if (x86_64_elf_howto_table
[i
].name
!= NULL
262 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
263 return &x86_64_elf_howto_table
[i
];
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
271 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
272 Elf_Internal_Rela
*dst
)
276 r_type
= ELF64_R_TYPE (dst
->r_info
);
277 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
278 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
281 /* Support for core dump NOTE sections. */
283 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
288 switch (note
->descsz
)
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
295 elf_tdata (abfd
)->core_signal
296 = bfd_get_16 (abfd
, note
->descdata
+ 12);
299 elf_tdata (abfd
)->core_pid
300 = bfd_get_32 (abfd
, note
->descdata
+ 32);
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
311 size
, note
->descpos
+ offset
);
315 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
317 switch (note
->descsz
)
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd
)->core_program
324 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
325 elf_tdata (abfd
)->core_command
326 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
334 char *command
= elf_tdata (abfd
)->core_command
;
335 int n
= strlen (command
);
337 if (0 < n
&& command
[n
- 1] == ' ')
338 command
[n
- 1] = '\0';
344 /* Functions for the x86-64 ELF linker. */
346 /* The name of the dynamic interpreter. This is put in the .interp
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
355 #define ELIMINATE_COPY_RELOCS 1
357 /* The size in bytes of an entry in the global offset table. */
359 #define GOT_ENTRY_SIZE 8
361 /* The size in bytes of an entry in the procedure linkage table. */
363 #define PLT_ENTRY_SIZE 16
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
368 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
375 /* Subsequent entries in a procedure linkage table look like this. */
377 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
393 struct elf64_x86_64_dyn_relocs
396 struct elf64_x86_64_dyn_relocs
*next
;
398 /* The input section of the reloc. */
401 /* Total number of relocs copied for the input section. */
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count
;
408 /* x86-64 ELF linker hash entry. */
410 struct elf64_x86_64_link_hash_entry
412 struct elf_link_hash_entry elf
;
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs
*dyn_relocs
;
417 #define GOT_UNKNOWN 0
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type
;
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
440 struct elf64_x86_64_obj_tdata
442 struct elf_obj_tdata root
;
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type
;
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma
*local_tlsdesc_gotent
;
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
460 #define is_x86_64_elf(bfd) \
461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
462 && elf_tdata (bfd) != NULL \
463 && elf_object_id (bfd) == X86_64_ELF_TDATA)
466 elf64_x86_64_mkobject (bfd
*abfd
)
468 return bfd_elf_allocate_object (abfd
, sizeof (struct elf64_x86_64_obj_tdata
),
472 /* x86-64 ELF linker hash table. */
474 struct elf64_x86_64_link_hash_table
476 struct elf_link_hash_table elf
;
478 /* Short-cuts to get to dynamic linker sections. */
487 /* The offset into splt of the PLT entry for the TLS descriptor
488 resolver. Special values are 0, if not necessary (or not found
489 to be necessary yet), and -1 if needed but not determined
492 /* The offset into sgot of the GOT entry used by the PLT entry
497 bfd_signed_vma refcount
;
501 /* The amount of space used by the jump slots in the GOT. */
502 bfd_vma sgotplt_jump_table_size
;
504 /* Small local sym to section mapping cache. */
505 struct sym_sec_cache sym_sec
;
507 /* _TLS_MODULE_BASE_ symbol. */
508 struct bfd_link_hash_entry
*tls_module_base
;
511 /* Get the x86-64 ELF linker hash table from a link_info structure. */
513 #define elf64_x86_64_hash_table(p) \
514 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
516 #define elf64_x86_64_compute_jump_table_size(htab) \
517 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
519 /* Create an entry in an x86-64 ELF linker hash table. */
521 static struct bfd_hash_entry
*
522 link_hash_newfunc (struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
525 /* Allocate the structure if it has not already been allocated by a
529 entry
= bfd_hash_allocate (table
,
530 sizeof (struct elf64_x86_64_link_hash_entry
));
535 /* Call the allocation method of the superclass. */
536 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
539 struct elf64_x86_64_link_hash_entry
*eh
;
541 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
542 eh
->dyn_relocs
= NULL
;
543 eh
->tls_type
= GOT_UNKNOWN
;
544 eh
->tlsdesc_got
= (bfd_vma
) -1;
550 /* Create an X86-64 ELF linker hash table. */
552 static struct bfd_link_hash_table
*
553 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
555 struct elf64_x86_64_link_hash_table
*ret
;
556 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
558 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
562 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
,
563 sizeof (struct elf64_x86_64_link_hash_entry
)))
576 ret
->sym_sec
.abfd
= NULL
;
577 ret
->tlsdesc_plt
= 0;
578 ret
->tlsdesc_got
= 0;
579 ret
->tls_ld_got
.refcount
= 0;
580 ret
->sgotplt_jump_table_size
= 0;
581 ret
->tls_module_base
= NULL
;
583 return &ret
->elf
.root
;
586 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
587 shortcuts to them in our hash table. */
590 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
592 struct elf64_x86_64_link_hash_table
*htab
;
594 if (! _bfd_elf_create_got_section (dynobj
, info
))
597 htab
= elf64_x86_64_hash_table (info
);
598 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
599 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
600 if (!htab
->sgot
|| !htab
->sgotplt
)
603 htab
->srelgot
= bfd_make_section_with_flags (dynobj
, ".rela.got",
604 (SEC_ALLOC
| SEC_LOAD
609 if (htab
->srelgot
== NULL
610 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 3))
615 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
616 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
620 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
622 struct elf64_x86_64_link_hash_table
*htab
;
624 htab
= elf64_x86_64_hash_table (info
);
625 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
628 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
631 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
632 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
633 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
635 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
637 if (!htab
->splt
|| !htab
->srelplt
|| !htab
->sdynbss
638 || (!info
->shared
&& !htab
->srelbss
))
644 /* Copy the extra info we tack onto an elf_link_hash_entry. */
647 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
648 struct elf_link_hash_entry
*dir
,
649 struct elf_link_hash_entry
*ind
)
651 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
653 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
654 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
656 if (eind
->dyn_relocs
!= NULL
)
658 if (edir
->dyn_relocs
!= NULL
)
660 struct elf64_x86_64_dyn_relocs
**pp
;
661 struct elf64_x86_64_dyn_relocs
*p
;
663 /* Add reloc counts against the indirect sym to the direct sym
664 list. Merge any entries against the same section. */
665 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
667 struct elf64_x86_64_dyn_relocs
*q
;
669 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
670 if (q
->sec
== p
->sec
)
672 q
->pc_count
+= p
->pc_count
;
673 q
->count
+= p
->count
;
680 *pp
= edir
->dyn_relocs
;
683 edir
->dyn_relocs
= eind
->dyn_relocs
;
684 eind
->dyn_relocs
= NULL
;
687 if (ind
->root
.type
== bfd_link_hash_indirect
688 && dir
->got
.refcount
<= 0)
690 edir
->tls_type
= eind
->tls_type
;
691 eind
->tls_type
= GOT_UNKNOWN
;
694 if (ELIMINATE_COPY_RELOCS
695 && ind
->root
.type
!= bfd_link_hash_indirect
696 && dir
->dynamic_adjusted
)
698 /* If called to transfer flags for a weakdef during processing
699 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
700 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
701 dir
->ref_dynamic
|= ind
->ref_dynamic
;
702 dir
->ref_regular
|= ind
->ref_regular
;
703 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
704 dir
->needs_plt
|= ind
->needs_plt
;
705 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
708 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
712 elf64_x86_64_elf_object_p (bfd
*abfd
)
714 /* Set the right machine number for an x86-64 elf64 file. */
715 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
733 /* Return TRUE if the TLS access code sequence support transition
737 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
739 Elf_Internal_Shdr
*symtab_hdr
,
740 struct elf_link_hash_entry
**sym_hashes
,
742 const Elf_Internal_Rela
*rel
,
743 const Elf_Internal_Rela
*relend
)
746 unsigned long r_symndx
;
747 struct elf_link_hash_entry
*h
;
750 /* Get the section contents. */
751 if (contents
== NULL
)
753 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
754 contents
= elf_section_data (sec
)->this_hdr
.contents
;
757 /* FIXME: How to better handle error condition? */
758 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
761 /* Cache the section contents for elf_link_input_bfd. */
762 elf_section_data (sec
)->this_hdr
.contents
= contents
;
766 offset
= rel
->r_offset
;
771 if ((rel
+ 1) >= relend
)
774 if (r_type
== R_X86_64_TLSGD
)
776 /* Check transition from GD access model. Only
777 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
778 .word 0x6666; rex64; call __tls_get_addr
779 can transit to different access model. */
781 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
782 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
784 || (offset
+ 12) > sec
->size
785 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
786 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
791 /* Check transition from LD access model. Only
792 leaq foo@tlsld(%rip), %rdi;
794 can transit to different access model. */
796 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
799 if (offset
< 3 || (offset
+ 9) > sec
->size
)
802 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
803 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
808 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
809 if (r_symndx
< symtab_hdr
->sh_info
)
812 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
814 && h
->root
.root
.string
!= NULL
815 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
816 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
817 && (strcmp (h
->root
.root
.string
, "__tls_get_addr") == 0));
819 case R_X86_64_GOTTPOFF
:
820 /* Check transition from IE access model:
821 movq foo@gottpoff(%rip), %reg
822 addq foo@gottpoff(%rip), %reg
825 if (offset
< 3 || (offset
+ 4) > sec
->size
)
828 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
829 if (val
!= 0x48 && val
!= 0x4c)
832 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
833 if (val
!= 0x8b && val
!= 0x03)
836 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
837 return (val
& 0xc7) == 5;
839 case R_X86_64_GOTPC32_TLSDESC
:
840 /* Check transition from GDesc access model:
841 leaq x@tlsdesc(%rip), %rax
843 Make sure it's a leaq adding rip to a 32-bit offset
844 into any register, although it's probably almost always
847 if (offset
< 3 || (offset
+ 4) > sec
->size
)
850 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
851 if ((val
& 0xfb) != 0x48)
854 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
857 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
858 return (val
& 0xc7) == 0x05;
860 case R_X86_64_TLSDESC_CALL
:
861 /* Check transition from GDesc access model:
862 call *x@tlsdesc(%rax)
864 if (offset
+ 2 <= sec
->size
)
866 /* Make sure that it's a call *x@tlsdesc(%rax). */
867 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
868 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
878 /* Return TRUE if the TLS access transition is OK or no transition
879 will be performed. Update R_TYPE if there is a transition. */
882 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
883 asection
*sec
, bfd_byte
*contents
,
884 Elf_Internal_Shdr
*symtab_hdr
,
885 struct elf_link_hash_entry
**sym_hashes
,
886 unsigned int *r_type
, int tls_type
,
887 const Elf_Internal_Rela
*rel
,
888 const Elf_Internal_Rela
*relend
,
889 struct elf_link_hash_entry
*h
)
891 unsigned int from_type
= *r_type
;
892 unsigned int to_type
= from_type
;
893 bfd_boolean check
= TRUE
;
898 case R_X86_64_GOTPC32_TLSDESC
:
899 case R_X86_64_TLSDESC_CALL
:
900 case R_X86_64_GOTTPOFF
:
904 to_type
= R_X86_64_TPOFF32
;
906 to_type
= R_X86_64_GOTTPOFF
;
909 /* When we are called from elf64_x86_64_relocate_section,
910 CONTENTS isn't NULL and there may be additional transitions
911 based on TLS_TYPE. */
912 if (contents
!= NULL
)
914 unsigned int new_to_type
= to_type
;
919 && tls_type
== GOT_TLS_IE
)
920 new_to_type
= R_X86_64_TPOFF32
;
922 if (to_type
== R_X86_64_TLSGD
923 || to_type
== R_X86_64_GOTPC32_TLSDESC
924 || to_type
== R_X86_64_TLSDESC_CALL
)
926 if (tls_type
== GOT_TLS_IE
)
927 new_to_type
= R_X86_64_GOTTPOFF
;
930 /* We checked the transition before when we were called from
931 elf64_x86_64_check_relocs. We only want to check the new
932 transition which hasn't been checked before. */
933 check
= new_to_type
!= to_type
&& from_type
== to_type
;
934 to_type
= new_to_type
;
941 to_type
= R_X86_64_TPOFF32
;
948 /* Return TRUE if there is no transition. */
949 if (from_type
== to_type
)
952 /* Check if the transition can be performed. */
954 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
955 symtab_hdr
, sym_hashes
,
956 from_type
, rel
, relend
))
958 reloc_howto_type
*from
, *to
;
960 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
961 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
963 (*_bfd_error_handler
)
964 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
965 "in section `%A' failed"),
966 abfd
, sec
, from
->name
, to
->name
,
967 h
? h
->root
.root
.string
: "a local symbol",
968 (unsigned long) rel
->r_offset
);
969 bfd_set_error (bfd_error_bad_value
);
977 /* Look through the relocs for a section during the first phase, and
978 calculate needed space in the global offset table, procedure
979 linkage table, and dynamic reloc sections. */
982 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
984 const Elf_Internal_Rela
*relocs
)
986 struct elf64_x86_64_link_hash_table
*htab
;
987 Elf_Internal_Shdr
*symtab_hdr
;
988 struct elf_link_hash_entry
**sym_hashes
;
989 const Elf_Internal_Rela
*rel
;
990 const Elf_Internal_Rela
*rel_end
;
993 if (info
->relocatable
)
996 BFD_ASSERT (is_x86_64_elf (abfd
));
998 htab
= elf64_x86_64_hash_table (info
);
999 symtab_hdr
= &elf_symtab_hdr (abfd
);
1000 sym_hashes
= elf_sym_hashes (abfd
);
1004 rel_end
= relocs
+ sec
->reloc_count
;
1005 for (rel
= relocs
; rel
< rel_end
; rel
++)
1007 unsigned int r_type
;
1008 unsigned long r_symndx
;
1009 struct elf_link_hash_entry
*h
;
1011 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1012 r_type
= ELF64_R_TYPE (rel
->r_info
);
1014 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1016 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1021 if (r_symndx
< symtab_hdr
->sh_info
)
1025 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1026 while (h
->root
.type
== bfd_link_hash_indirect
1027 || h
->root
.type
== bfd_link_hash_warning
)
1028 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1031 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1032 symtab_hdr
, sym_hashes
,
1033 &r_type
, GOT_UNKNOWN
,
1039 case R_X86_64_TLSLD
:
1040 htab
->tls_ld_got
.refcount
+= 1;
1043 case R_X86_64_TPOFF32
:
1046 (*_bfd_error_handler
)
1047 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1049 x86_64_elf_howto_table
[r_type
].name
,
1050 (h
) ? h
->root
.root
.string
: "a local symbol");
1051 bfd_set_error (bfd_error_bad_value
);
1056 case R_X86_64_GOTTPOFF
:
1058 info
->flags
|= DF_STATIC_TLS
;
1061 case R_X86_64_GOT32
:
1062 case R_X86_64_GOTPCREL
:
1063 case R_X86_64_TLSGD
:
1064 case R_X86_64_GOT64
:
1065 case R_X86_64_GOTPCREL64
:
1066 case R_X86_64_GOTPLT64
:
1067 case R_X86_64_GOTPC32_TLSDESC
:
1068 case R_X86_64_TLSDESC_CALL
:
1069 /* This symbol requires a global offset table entry. */
1071 int tls_type
, old_tls_type
;
1075 default: tls_type
= GOT_NORMAL
; break;
1076 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1077 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1078 case R_X86_64_GOTPC32_TLSDESC
:
1079 case R_X86_64_TLSDESC_CALL
:
1080 tls_type
= GOT_TLS_GDESC
; break;
1085 if (r_type
== R_X86_64_GOTPLT64
)
1087 /* This relocation indicates that we also need
1088 a PLT entry, as this is a function. We don't need
1089 a PLT entry for local symbols. */
1091 h
->plt
.refcount
+= 1;
1093 h
->got
.refcount
+= 1;
1094 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1098 bfd_signed_vma
*local_got_refcounts
;
1100 /* This is a global offset table entry for a local symbol. */
1101 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1102 if (local_got_refcounts
== NULL
)
1106 size
= symtab_hdr
->sh_info
;
1107 size
*= sizeof (bfd_signed_vma
)
1108 + sizeof (bfd_vma
) + sizeof (char);
1109 local_got_refcounts
= ((bfd_signed_vma
*)
1110 bfd_zalloc (abfd
, size
));
1111 if (local_got_refcounts
== NULL
)
1113 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1114 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1115 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1116 elf64_x86_64_local_got_tls_type (abfd
)
1117 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1119 local_got_refcounts
[r_symndx
] += 1;
1121 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1124 /* If a TLS symbol is accessed using IE at least once,
1125 there is no point to use dynamic model for it. */
1126 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1127 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1128 || tls_type
!= GOT_TLS_IE
))
1130 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1131 tls_type
= old_tls_type
;
1132 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1133 && GOT_TLS_GD_ANY_P (tls_type
))
1134 tls_type
|= old_tls_type
;
1137 (*_bfd_error_handler
)
1138 (_("%B: '%s' accessed both as normal and thread local symbol"),
1139 abfd
, h
? h
->root
.root
.string
: "<local>");
1144 if (old_tls_type
!= tls_type
)
1147 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1149 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1154 case R_X86_64_GOTOFF64
:
1155 case R_X86_64_GOTPC32
:
1156 case R_X86_64_GOTPC64
:
1158 if (htab
->sgot
== NULL
)
1160 if (htab
->elf
.dynobj
== NULL
)
1161 htab
->elf
.dynobj
= abfd
;
1162 if (!create_got_section (htab
->elf
.dynobj
, info
))
1167 case R_X86_64_PLT32
:
1168 /* This symbol requires a procedure linkage table entry. We
1169 actually build the entry in adjust_dynamic_symbol,
1170 because this might be a case of linking PIC code which is
1171 never referenced by a dynamic object, in which case we
1172 don't need to generate a procedure linkage table entry
1175 /* If this is a local symbol, we resolve it directly without
1176 creating a procedure linkage table entry. */
1181 h
->plt
.refcount
+= 1;
1184 case R_X86_64_PLTOFF64
:
1185 /* This tries to form the 'address' of a function relative
1186 to GOT. For global symbols we need a PLT entry. */
1190 h
->plt
.refcount
+= 1;
1198 /* Let's help debug shared library creation. These relocs
1199 cannot be used in shared libs. Don't error out for
1200 sections we don't care about, such as debug sections or
1201 non-constant sections. */
1203 && (sec
->flags
& SEC_ALLOC
) != 0
1204 && (sec
->flags
& SEC_READONLY
) != 0)
1206 (*_bfd_error_handler
)
1207 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1209 x86_64_elf_howto_table
[r_type
].name
,
1210 (h
) ? h
->root
.root
.string
: "a local symbol");
1211 bfd_set_error (bfd_error_bad_value
);
1221 if (h
!= NULL
&& !info
->shared
)
1223 /* If this reloc is in a read-only section, we might
1224 need a copy reloc. We can't check reliably at this
1225 stage whether the section is read-only, as input
1226 sections have not yet been mapped to output sections.
1227 Tentatively set the flag for now, and correct in
1228 adjust_dynamic_symbol. */
1231 /* We may need a .plt entry if the function this reloc
1232 refers to is in a shared lib. */
1233 h
->plt
.refcount
+= 1;
1234 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1235 h
->pointer_equality_needed
= 1;
1238 /* If we are creating a shared library, and this is a reloc
1239 against a global symbol, or a non PC relative reloc
1240 against a local symbol, then we need to copy the reloc
1241 into the shared library. However, if we are linking with
1242 -Bsymbolic, we do not need to copy a reloc against a
1243 global symbol which is defined in an object we are
1244 including in the link (i.e., DEF_REGULAR is set). At
1245 this point we have not seen all the input files, so it is
1246 possible that DEF_REGULAR is not set now but will be set
1247 later (it is never cleared). In case of a weak definition,
1248 DEF_REGULAR may be cleared later by a strong definition in
1249 a shared library. We account for that possibility below by
1250 storing information in the relocs_copied field of the hash
1251 table entry. A similar situation occurs when creating
1252 shared libraries and symbol visibility changes render the
1255 If on the other hand, we are creating an executable, we
1256 may need to keep relocations for symbols satisfied by a
1257 dynamic library if we manage to avoid copy relocs for the
1260 && (sec
->flags
& SEC_ALLOC
) != 0
1261 && (((r_type
!= R_X86_64_PC8
)
1262 && (r_type
!= R_X86_64_PC16
)
1263 && (r_type
!= R_X86_64_PC32
)
1264 && (r_type
!= R_X86_64_PC64
))
1266 && (! SYMBOLIC_BIND (info
, h
)
1267 || h
->root
.type
== bfd_link_hash_defweak
1268 || !h
->def_regular
))))
1269 || (ELIMINATE_COPY_RELOCS
1271 && (sec
->flags
& SEC_ALLOC
) != 0
1273 && (h
->root
.type
== bfd_link_hash_defweak
1274 || !h
->def_regular
)))
1276 struct elf64_x86_64_dyn_relocs
*p
;
1277 struct elf64_x86_64_dyn_relocs
**head
;
1279 /* We must copy these reloc types into the output file.
1280 Create a reloc section in dynobj and make room for
1287 name
= (bfd_elf_string_from_elf_section
1289 elf_elfheader (abfd
)->e_shstrndx
,
1290 elf_section_data (sec
)->rel_hdr
.sh_name
));
1294 if (! CONST_STRNEQ (name
, ".rela")
1295 || strcmp (bfd_get_section_name (abfd
, sec
),
1298 (*_bfd_error_handler
)
1299 (_("%B: bad relocation section name `%s\'"),
1303 if (htab
->elf
.dynobj
== NULL
)
1304 htab
->elf
.dynobj
= abfd
;
1306 dynobj
= htab
->elf
.dynobj
;
1308 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1313 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1314 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1315 if ((sec
->flags
& SEC_ALLOC
) != 0)
1316 flags
|= SEC_ALLOC
| SEC_LOAD
;
1317 sreloc
= bfd_make_section_with_flags (dynobj
,
1321 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1324 elf_section_data (sec
)->sreloc
= sreloc
;
1327 /* If this is a global symbol, we count the number of
1328 relocations we need for this symbol. */
1331 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1336 /* Track dynamic relocs needed for local syms too.
1337 We really need local syms available to do this
1341 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1346 /* Beware of type punned pointers vs strict aliasing
1348 vpp
= &(elf_section_data (s
)->local_dynrel
);
1349 head
= (struct elf64_x86_64_dyn_relocs
**)vpp
;
1353 if (p
== NULL
|| p
->sec
!= sec
)
1355 bfd_size_type amt
= sizeof *p
;
1356 p
= ((struct elf64_x86_64_dyn_relocs
*)
1357 bfd_alloc (htab
->elf
.dynobj
, amt
));
1368 if (r_type
== R_X86_64_PC8
1369 || r_type
== R_X86_64_PC16
1370 || r_type
== R_X86_64_PC32
1371 || r_type
== R_X86_64_PC64
)
1376 /* This relocation describes the C++ object vtable hierarchy.
1377 Reconstruct it for later use during GC. */
1378 case R_X86_64_GNU_VTINHERIT
:
1379 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1383 /* This relocation describes which C++ vtable entries are actually
1384 used. Record for later use during GC. */
1385 case R_X86_64_GNU_VTENTRY
:
1386 BFD_ASSERT (h
!= NULL
);
1388 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1400 /* Return the section that should be marked against GC for a given
1404 elf64_x86_64_gc_mark_hook (asection
*sec
,
1405 struct bfd_link_info
*info
,
1406 Elf_Internal_Rela
*rel
,
1407 struct elf_link_hash_entry
*h
,
1408 Elf_Internal_Sym
*sym
)
1411 switch (ELF64_R_TYPE (rel
->r_info
))
1413 case R_X86_64_GNU_VTINHERIT
:
1414 case R_X86_64_GNU_VTENTRY
:
1418 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1421 /* Update the got entry reference counts for the section being removed. */
1424 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1426 const Elf_Internal_Rela
*relocs
)
1428 Elf_Internal_Shdr
*symtab_hdr
;
1429 struct elf_link_hash_entry
**sym_hashes
;
1430 bfd_signed_vma
*local_got_refcounts
;
1431 const Elf_Internal_Rela
*rel
, *relend
;
1433 if (info
->relocatable
)
1436 elf_section_data (sec
)->local_dynrel
= NULL
;
1438 symtab_hdr
= &elf_symtab_hdr (abfd
);
1439 sym_hashes
= elf_sym_hashes (abfd
);
1440 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1442 relend
= relocs
+ sec
->reloc_count
;
1443 for (rel
= relocs
; rel
< relend
; rel
++)
1445 unsigned long r_symndx
;
1446 unsigned int r_type
;
1447 struct elf_link_hash_entry
*h
= NULL
;
1449 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1450 if (r_symndx
>= symtab_hdr
->sh_info
)
1452 struct elf64_x86_64_link_hash_entry
*eh
;
1453 struct elf64_x86_64_dyn_relocs
**pp
;
1454 struct elf64_x86_64_dyn_relocs
*p
;
1456 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1457 while (h
->root
.type
== bfd_link_hash_indirect
1458 || h
->root
.type
== bfd_link_hash_warning
)
1459 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1460 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1462 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1465 /* Everything must go for SEC. */
1471 r_type
= ELF64_R_TYPE (rel
->r_info
);
1472 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1473 symtab_hdr
, sym_hashes
,
1474 &r_type
, GOT_UNKNOWN
,
1480 case R_X86_64_TLSLD
:
1481 if (elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
> 0)
1482 elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
-= 1;
1485 case R_X86_64_TLSGD
:
1486 case R_X86_64_GOTPC32_TLSDESC
:
1487 case R_X86_64_TLSDESC_CALL
:
1488 case R_X86_64_GOTTPOFF
:
1489 case R_X86_64_GOT32
:
1490 case R_X86_64_GOTPCREL
:
1491 case R_X86_64_GOT64
:
1492 case R_X86_64_GOTPCREL64
:
1493 case R_X86_64_GOTPLT64
:
1496 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1497 h
->plt
.refcount
-= 1;
1498 if (h
->got
.refcount
> 0)
1499 h
->got
.refcount
-= 1;
1501 else if (local_got_refcounts
!= NULL
)
1503 if (local_got_refcounts
[r_symndx
] > 0)
1504 local_got_refcounts
[r_symndx
] -= 1;
1521 case R_X86_64_PLT32
:
1522 case R_X86_64_PLTOFF64
:
1525 if (h
->plt
.refcount
> 0)
1526 h
->plt
.refcount
-= 1;
1538 /* Adjust a symbol defined by a dynamic object and referenced by a
1539 regular object. The current definition is in some section of the
1540 dynamic object, but we're not including those sections. We have to
1541 change the definition to something the rest of the link can
1545 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1546 struct elf_link_hash_entry
*h
)
1548 struct elf64_x86_64_link_hash_table
*htab
;
1551 /* If this is a function, put it in the procedure linkage table. We
1552 will fill in the contents of the procedure linkage table later,
1553 when we know the address of the .got section. */
1554 if (h
->type
== STT_FUNC
1557 if (h
->plt
.refcount
<= 0
1558 || SYMBOL_CALLS_LOCAL (info
, h
)
1559 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1560 && h
->root
.type
== bfd_link_hash_undefweak
))
1562 /* This case can occur if we saw a PLT32 reloc in an input
1563 file, but the symbol was never referred to by a dynamic
1564 object, or if all references were garbage collected. In
1565 such a case, we don't actually need to build a procedure
1566 linkage table, and we can just do a PC32 reloc instead. */
1567 h
->plt
.offset
= (bfd_vma
) -1;
1574 /* It's possible that we incorrectly decided a .plt reloc was
1575 needed for an R_X86_64_PC32 reloc to a non-function sym in
1576 check_relocs. We can't decide accurately between function and
1577 non-function syms in check-relocs; Objects loaded later in
1578 the link may change h->type. So fix it now. */
1579 h
->plt
.offset
= (bfd_vma
) -1;
1581 /* If this is a weak symbol, and there is a real definition, the
1582 processor independent code will have arranged for us to see the
1583 real definition first, and we can just use the same value. */
1584 if (h
->u
.weakdef
!= NULL
)
1586 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1587 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1588 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1589 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1590 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1591 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1595 /* This is a reference to a symbol defined by a dynamic object which
1596 is not a function. */
1598 /* If we are creating a shared library, we must presume that the
1599 only references to the symbol are via the global offset table.
1600 For such cases we need not do anything here; the relocations will
1601 be handled correctly by relocate_section. */
1605 /* If there are no references to this symbol that do not use the
1606 GOT, we don't need to generate a copy reloc. */
1607 if (!h
->non_got_ref
)
1610 /* If -z nocopyreloc was given, we won't generate them either. */
1611 if (info
->nocopyreloc
)
1617 if (ELIMINATE_COPY_RELOCS
)
1619 struct elf64_x86_64_link_hash_entry
* eh
;
1620 struct elf64_x86_64_dyn_relocs
*p
;
1622 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1623 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1625 s
= p
->sec
->output_section
;
1626 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1630 /* If we didn't find any dynamic relocs in read-only sections, then
1631 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1641 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1642 h
->root
.root
.string
);
1646 /* We must allocate the symbol in our .dynbss section, which will
1647 become part of the .bss section of the executable. There will be
1648 an entry for this symbol in the .dynsym section. The dynamic
1649 object will contain position independent code, so all references
1650 from the dynamic object to this symbol will go through the global
1651 offset table. The dynamic linker will use the .dynsym entry to
1652 determine the address it must put in the global offset table, so
1653 both the dynamic object and the regular object will refer to the
1654 same memory location for the variable. */
1656 htab
= elf64_x86_64_hash_table (info
);
1658 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1659 to copy the initial value out of the dynamic object and into the
1660 runtime process image. */
1661 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1663 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1669 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1672 /* Allocate space in .plt, .got and associated reloc sections for
1676 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1678 struct bfd_link_info
*info
;
1679 struct elf64_x86_64_link_hash_table
*htab
;
1680 struct elf64_x86_64_link_hash_entry
*eh
;
1681 struct elf64_x86_64_dyn_relocs
*p
;
1683 if (h
->root
.type
== bfd_link_hash_indirect
)
1686 if (h
->root
.type
== bfd_link_hash_warning
)
1687 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1689 info
= (struct bfd_link_info
*) inf
;
1690 htab
= elf64_x86_64_hash_table (info
);
1692 if (htab
->elf
.dynamic_sections_created
1693 && h
->plt
.refcount
> 0)
1695 /* Make sure this symbol is output as a dynamic symbol.
1696 Undefined weak syms won't yet be marked as dynamic. */
1697 if (h
->dynindx
== -1
1698 && !h
->forced_local
)
1700 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1705 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1707 asection
*s
= htab
->splt
;
1709 /* If this is the first .plt entry, make room for the special
1712 s
->size
+= PLT_ENTRY_SIZE
;
1714 h
->plt
.offset
= s
->size
;
1716 /* If this symbol is not defined in a regular file, and we are
1717 not generating a shared library, then set the symbol to this
1718 location in the .plt. This is required to make function
1719 pointers compare as equal between the normal executable and
1720 the shared library. */
1724 h
->root
.u
.def
.section
= s
;
1725 h
->root
.u
.def
.value
= h
->plt
.offset
;
1728 /* Make room for this entry. */
1729 s
->size
+= PLT_ENTRY_SIZE
;
1731 /* We also need to make an entry in the .got.plt section, which
1732 will be placed in the .got section by the linker script. */
1733 htab
->sgotplt
->size
+= GOT_ENTRY_SIZE
;
1735 /* We also need to make an entry in the .rela.plt section. */
1736 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1737 htab
->srelplt
->reloc_count
++;
1741 h
->plt
.offset
= (bfd_vma
) -1;
1747 h
->plt
.offset
= (bfd_vma
) -1;
1751 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1752 eh
->tlsdesc_got
= (bfd_vma
) -1;
1754 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1755 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1756 if (h
->got
.refcount
> 0
1759 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
1760 h
->got
.offset
= (bfd_vma
) -1;
1761 else if (h
->got
.refcount
> 0)
1765 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1767 /* Make sure this symbol is output as a dynamic symbol.
1768 Undefined weak syms won't yet be marked as dynamic. */
1769 if (h
->dynindx
== -1
1770 && !h
->forced_local
)
1772 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1776 if (GOT_TLS_GDESC_P (tls_type
))
1778 eh
->tlsdesc_got
= htab
->sgotplt
->size
1779 - elf64_x86_64_compute_jump_table_size (htab
);
1780 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
1781 h
->got
.offset
= (bfd_vma
) -2;
1783 if (! GOT_TLS_GDESC_P (tls_type
)
1784 || GOT_TLS_GD_P (tls_type
))
1787 h
->got
.offset
= s
->size
;
1788 s
->size
+= GOT_ENTRY_SIZE
;
1789 if (GOT_TLS_GD_P (tls_type
))
1790 s
->size
+= GOT_ENTRY_SIZE
;
1792 dyn
= htab
->elf
.dynamic_sections_created
;
1793 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1795 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1796 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
1797 || tls_type
== GOT_TLS_IE
)
1798 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1799 else if (GOT_TLS_GD_P (tls_type
))
1800 htab
->srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
1801 else if (! GOT_TLS_GDESC_P (tls_type
)
1802 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1803 || h
->root
.type
!= bfd_link_hash_undefweak
)
1805 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
1806 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1807 if (GOT_TLS_GDESC_P (tls_type
))
1809 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1810 htab
->tlsdesc_plt
= (bfd_vma
) -1;
1814 h
->got
.offset
= (bfd_vma
) -1;
1816 if (eh
->dyn_relocs
== NULL
)
1819 /* In the shared -Bsymbolic case, discard space allocated for
1820 dynamic pc-relative relocs against symbols which turn out to be
1821 defined in regular objects. For the normal shared case, discard
1822 space for pc-relative relocs that have become local due to symbol
1823 visibility changes. */
1827 /* Relocs that use pc_count are those that appear on a call
1828 insn, or certain REL relocs that can generated via assembly.
1829 We want calls to protected symbols to resolve directly to the
1830 function rather than going via the plt. If people want
1831 function pointer comparisons to work as expected then they
1832 should avoid writing weird assembly. */
1833 if (SYMBOL_CALLS_LOCAL (info
, h
))
1835 struct elf64_x86_64_dyn_relocs
**pp
;
1837 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1839 p
->count
-= p
->pc_count
;
1848 /* Also discard relocs on undefined weak syms with non-default
1850 if (eh
->dyn_relocs
!= NULL
1851 && h
->root
.type
== bfd_link_hash_undefweak
)
1853 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
1854 eh
->dyn_relocs
= NULL
;
1856 /* Make sure undefined weak symbols are output as a dynamic
1858 else if (h
->dynindx
== -1
1859 && !h
->forced_local
)
1861 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1866 else if (ELIMINATE_COPY_RELOCS
)
1868 /* For the non-shared case, discard space for relocs against
1869 symbols which turn out to need copy relocs or are not
1875 || (htab
->elf
.dynamic_sections_created
1876 && (h
->root
.type
== bfd_link_hash_undefweak
1877 || h
->root
.type
== bfd_link_hash_undefined
))))
1879 /* Make sure this symbol is output as a dynamic symbol.
1880 Undefined weak syms won't yet be marked as dynamic. */
1881 if (h
->dynindx
== -1
1882 && !h
->forced_local
)
1884 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1888 /* If that succeeded, we know we'll be keeping all the
1890 if (h
->dynindx
!= -1)
1894 eh
->dyn_relocs
= NULL
;
1899 /* Finally, allocate space. */
1900 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1902 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1903 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
1909 /* Find any dynamic relocs that apply to read-only sections. */
1912 readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1914 struct elf64_x86_64_link_hash_entry
*eh
;
1915 struct elf64_x86_64_dyn_relocs
*p
;
1917 if (h
->root
.type
== bfd_link_hash_warning
)
1918 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1920 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1921 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1923 asection
*s
= p
->sec
->output_section
;
1925 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1927 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1929 if (info
->warn_shared_textrel
)
1930 (*_bfd_error_handler
)
1931 (_("warning: dynamic relocation in readonly section `%s'"),
1932 h
->root
.root
.string
);
1933 info
->flags
|= DF_TEXTREL
;
1935 /* Not an error, just cut short the traversal. */
1942 /* Set the sizes of the dynamic sections. */
1945 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1946 struct bfd_link_info
*info
)
1948 struct elf64_x86_64_link_hash_table
*htab
;
1954 htab
= elf64_x86_64_hash_table (info
);
1955 dynobj
= htab
->elf
.dynobj
;
1959 if (htab
->elf
.dynamic_sections_created
)
1961 /* Set the contents of the .interp section to the interpreter. */
1962 if (info
->executable
)
1964 s
= bfd_get_section_by_name (dynobj
, ".interp");
1967 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1968 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1972 /* Set up .got offsets for local syms, and space for local dynamic
1974 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1976 bfd_signed_vma
*local_got
;
1977 bfd_signed_vma
*end_local_got
;
1978 char *local_tls_type
;
1979 bfd_vma
*local_tlsdesc_gotent
;
1980 bfd_size_type locsymcount
;
1981 Elf_Internal_Shdr
*symtab_hdr
;
1984 if (! is_x86_64_elf (ibfd
))
1987 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1989 struct elf64_x86_64_dyn_relocs
*p
;
1991 for (p
= (struct elf64_x86_64_dyn_relocs
*)
1992 (elf_section_data (s
)->local_dynrel
);
1996 if (!bfd_is_abs_section (p
->sec
)
1997 && bfd_is_abs_section (p
->sec
->output_section
))
1999 /* Input section has been discarded, either because
2000 it is a copy of a linkonce section or due to
2001 linker script /DISCARD/, so we'll be discarding
2004 else if (p
->count
!= 0)
2006 srel
= elf_section_data (p
->sec
)->sreloc
;
2007 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2008 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2009 info
->flags
|= DF_TEXTREL
;
2015 local_got
= elf_local_got_refcounts (ibfd
);
2019 symtab_hdr
= &elf_symtab_hdr (ibfd
);
2020 locsymcount
= symtab_hdr
->sh_info
;
2021 end_local_got
= local_got
+ locsymcount
;
2022 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2023 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2025 srel
= htab
->srelgot
;
2026 for (; local_got
< end_local_got
;
2027 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2029 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2032 if (GOT_TLS_GDESC_P (*local_tls_type
))
2034 *local_tlsdesc_gotent
= htab
->sgotplt
->size
2035 - elf64_x86_64_compute_jump_table_size (htab
);
2036 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2037 *local_got
= (bfd_vma
) -2;
2039 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2040 || GOT_TLS_GD_P (*local_tls_type
))
2042 *local_got
= s
->size
;
2043 s
->size
+= GOT_ENTRY_SIZE
;
2044 if (GOT_TLS_GD_P (*local_tls_type
))
2045 s
->size
+= GOT_ENTRY_SIZE
;
2048 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2049 || *local_tls_type
== GOT_TLS_IE
)
2051 if (GOT_TLS_GDESC_P (*local_tls_type
))
2053 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
2054 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2056 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2057 || GOT_TLS_GD_P (*local_tls_type
))
2058 srel
->size
+= sizeof (Elf64_External_Rela
);
2062 *local_got
= (bfd_vma
) -1;
2066 if (htab
->tls_ld_got
.refcount
> 0)
2068 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2070 htab
->tls_ld_got
.offset
= htab
->sgot
->size
;
2071 htab
->sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2072 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
2075 htab
->tls_ld_got
.offset
= -1;
2077 /* Allocate global sym .plt and .got entries, and space for global
2078 sym dynamic relocs. */
2079 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
2081 /* For every jump slot reserved in the sgotplt, reloc_count is
2082 incremented. However, when we reserve space for TLS descriptors,
2083 it's not incremented, so in order to compute the space reserved
2084 for them, it suffices to multiply the reloc count by the jump
2087 htab
->sgotplt_jump_table_size
2088 = elf64_x86_64_compute_jump_table_size (htab
);
2090 if (htab
->tlsdesc_plt
)
2092 /* If we're not using lazy TLS relocations, don't generate the
2093 PLT and GOT entries they require. */
2094 if ((info
->flags
& DF_BIND_NOW
))
2095 htab
->tlsdesc_plt
= 0;
2098 htab
->tlsdesc_got
= htab
->sgot
->size
;
2099 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
2100 /* Reserve room for the initial entry.
2101 FIXME: we could probably do away with it in this case. */
2102 if (htab
->splt
->size
== 0)
2103 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2104 htab
->tlsdesc_plt
= htab
->splt
->size
;
2105 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2109 /* We now have determined the sizes of the various dynamic sections.
2110 Allocate memory for them. */
2112 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2114 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2119 || s
== htab
->sgotplt
2120 || s
== htab
->sdynbss
)
2122 /* Strip this section if we don't need it; see the
2125 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2127 if (s
->size
!= 0 && s
!= htab
->srelplt
)
2130 /* We use the reloc_count field as a counter if we need
2131 to copy relocs into the output file. */
2132 if (s
!= htab
->srelplt
)
2137 /* It's not one of our sections, so don't allocate space. */
2143 /* If we don't need this section, strip it from the
2144 output file. This is mostly to handle .rela.bss and
2145 .rela.plt. We must create both sections in
2146 create_dynamic_sections, because they must be created
2147 before the linker maps input sections to output
2148 sections. The linker does that before
2149 adjust_dynamic_symbol is called, and it is that
2150 function which decides whether anything needs to go
2151 into these sections. */
2153 s
->flags
|= SEC_EXCLUDE
;
2157 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2160 /* Allocate memory for the section contents. We use bfd_zalloc
2161 here in case unused entries are not reclaimed before the
2162 section's contents are written out. This should not happen,
2163 but this way if it does, we get a R_X86_64_NONE reloc instead
2165 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2166 if (s
->contents
== NULL
)
2170 if (htab
->elf
.dynamic_sections_created
)
2172 /* Add some entries to the .dynamic section. We fill in the
2173 values later, in elf64_x86_64_finish_dynamic_sections, but we
2174 must add the entries now so that we get the correct size for
2175 the .dynamic section. The DT_DEBUG entry is filled in by the
2176 dynamic linker and used by the debugger. */
2177 #define add_dynamic_entry(TAG, VAL) \
2178 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2180 if (info
->executable
)
2182 if (!add_dynamic_entry (DT_DEBUG
, 0))
2186 if (htab
->splt
->size
!= 0)
2188 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2189 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2190 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2191 || !add_dynamic_entry (DT_JMPREL
, 0))
2194 if (htab
->tlsdesc_plt
2195 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2196 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2202 if (!add_dynamic_entry (DT_RELA
, 0)
2203 || !add_dynamic_entry (DT_RELASZ
, 0)
2204 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2207 /* If any dynamic relocs apply to a read-only section,
2208 then we need a DT_TEXTREL entry. */
2209 if ((info
->flags
& DF_TEXTREL
) == 0)
2210 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
,
2213 if ((info
->flags
& DF_TEXTREL
) != 0)
2215 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2220 #undef add_dynamic_entry
2226 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2227 struct bfd_link_info
*info
)
2229 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2233 struct elf_link_hash_entry
*tlsbase
;
2235 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2236 "_TLS_MODULE_BASE_",
2237 FALSE
, FALSE
, FALSE
);
2239 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2241 struct bfd_link_hash_entry
*bh
= NULL
;
2242 const struct elf_backend_data
*bed
2243 = get_elf_backend_data (output_bfd
);
2245 if (!(_bfd_generic_link_add_one_symbol
2246 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2247 tls_sec
, 0, NULL
, FALSE
,
2248 bed
->collect
, &bh
)))
2251 elf64_x86_64_hash_table (info
)->tls_module_base
= bh
;
2253 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2254 tlsbase
->def_regular
= 1;
2255 tlsbase
->other
= STV_HIDDEN
;
2256 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2263 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2264 executables. Rather than setting it to the beginning of the TLS
2265 section, we have to set it to the end. This function may be called
2266 multiple times, it is idempotent. */
2269 set_tls_module_base (struct bfd_link_info
*info
)
2271 struct bfd_link_hash_entry
*base
;
2273 if (!info
->executable
)
2276 base
= elf64_x86_64_hash_table (info
)->tls_module_base
;
2281 base
->u
.def
.value
= elf_hash_table (info
)->tls_size
;
2284 /* Return the base VMA address which should be subtracted from real addresses
2285 when resolving @dtpoff relocation.
2286 This is PT_TLS segment p_vaddr. */
2289 dtpoff_base (struct bfd_link_info
*info
)
2291 /* If tls_sec is NULL, we should have signalled an error already. */
2292 if (elf_hash_table (info
)->tls_sec
== NULL
)
2294 return elf_hash_table (info
)->tls_sec
->vma
;
2297 /* Return the relocation value for @tpoff relocation
2298 if STT_TLS virtual address is ADDRESS. */
2301 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2303 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2305 /* If tls_segment is NULL, we should have signalled an error already. */
2306 if (htab
->tls_sec
== NULL
)
2308 return address
- htab
->tls_size
- htab
->tls_sec
->vma
;
2311 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2315 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2317 /* Opcode Instruction
2320 0x0f 0x8x conditional jump */
2322 && (contents
[offset
- 1] == 0xe8
2323 || contents
[offset
- 1] == 0xe9))
2325 && contents
[offset
- 2] == 0x0f
2326 && (contents
[offset
- 1] & 0xf0) == 0x80));
2329 /* Relocate an x86_64 ELF section. */
2332 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2333 bfd
*input_bfd
, asection
*input_section
,
2334 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2335 Elf_Internal_Sym
*local_syms
,
2336 asection
**local_sections
)
2338 struct elf64_x86_64_link_hash_table
*htab
;
2339 Elf_Internal_Shdr
*symtab_hdr
;
2340 struct elf_link_hash_entry
**sym_hashes
;
2341 bfd_vma
*local_got_offsets
;
2342 bfd_vma
*local_tlsdesc_gotents
;
2343 Elf_Internal_Rela
*rel
;
2344 Elf_Internal_Rela
*relend
;
2346 BFD_ASSERT (is_x86_64_elf (input_bfd
));
2348 htab
= elf64_x86_64_hash_table (info
);
2349 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
2350 sym_hashes
= elf_sym_hashes (input_bfd
);
2351 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2352 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2354 set_tls_module_base (info
);
2357 relend
= relocs
+ input_section
->reloc_count
;
2358 for (; rel
< relend
; rel
++)
2360 unsigned int r_type
;
2361 reloc_howto_type
*howto
;
2362 unsigned long r_symndx
;
2363 struct elf_link_hash_entry
*h
;
2364 Elf_Internal_Sym
*sym
;
2366 bfd_vma off
, offplt
;
2368 bfd_boolean unresolved_reloc
;
2369 bfd_reloc_status_type r
;
2372 r_type
= ELF64_R_TYPE (rel
->r_info
);
2373 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2374 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2377 if (r_type
>= R_X86_64_max
)
2379 bfd_set_error (bfd_error_bad_value
);
2383 howto
= x86_64_elf_howto_table
+ r_type
;
2384 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2388 unresolved_reloc
= FALSE
;
2389 if (r_symndx
< symtab_hdr
->sh_info
)
2391 sym
= local_syms
+ r_symndx
;
2392 sec
= local_sections
[r_symndx
];
2394 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2400 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2401 r_symndx
, symtab_hdr
, sym_hashes
,
2403 unresolved_reloc
, warned
);
2406 if (sec
!= NULL
&& elf_discarded_section (sec
))
2408 /* For relocs against symbols from removed linkonce sections,
2409 or sections discarded by a linker script, we just want the
2410 section contents zeroed. Avoid any special processing. */
2411 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2417 if (info
->relocatable
)
2420 /* When generating a shared object, the relocations handled here are
2421 copied into the output file to be resolved at run time. */
2425 case R_X86_64_GOT32
:
2426 case R_X86_64_GOT64
:
2427 /* Relocation is to the entry for this symbol in the global
2429 case R_X86_64_GOTPCREL
:
2430 case R_X86_64_GOTPCREL64
:
2431 /* Use global offset table entry as symbol value. */
2432 case R_X86_64_GOTPLT64
:
2433 /* This is the same as GOT64 for relocation purposes, but
2434 indicates the existence of a PLT entry. The difficulty is,
2435 that we must calculate the GOT slot offset from the PLT
2436 offset, if this symbol got a PLT entry (it was global).
2437 Additionally if it's computed from the PLT entry, then that
2438 GOT offset is relative to .got.plt, not to .got. */
2439 base_got
= htab
->sgot
;
2441 if (htab
->sgot
== NULL
)
2448 off
= h
->got
.offset
;
2450 && h
->plt
.offset
!= (bfd_vma
)-1
2451 && off
== (bfd_vma
)-1)
2453 /* We can't use h->got.offset here to save
2454 state, or even just remember the offset, as
2455 finish_dynamic_symbol would use that as offset into
2457 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2458 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2459 base_got
= htab
->sgotplt
;
2462 dyn
= htab
->elf
.dynamic_sections_created
;
2464 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2466 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2467 || (ELF_ST_VISIBILITY (h
->other
)
2468 && h
->root
.type
== bfd_link_hash_undefweak
))
2470 /* This is actually a static link, or it is a -Bsymbolic
2471 link and the symbol is defined locally, or the symbol
2472 was forced to be local because of a version file. We
2473 must initialize this entry in the global offset table.
2474 Since the offset must always be a multiple of 8, we
2475 use the least significant bit to record whether we
2476 have initialized it already.
2478 When doing a dynamic link, we create a .rela.got
2479 relocation entry to initialize the value. This is
2480 done in the finish_dynamic_symbol routine. */
2485 bfd_put_64 (output_bfd
, relocation
,
2486 base_got
->contents
+ off
);
2487 /* Note that this is harmless for the GOTPLT64 case,
2488 as -1 | 1 still is -1. */
2493 unresolved_reloc
= FALSE
;
2497 if (local_got_offsets
== NULL
)
2500 off
= local_got_offsets
[r_symndx
];
2502 /* The offset must always be a multiple of 8. We use
2503 the least significant bit to record whether we have
2504 already generated the necessary reloc. */
2509 bfd_put_64 (output_bfd
, relocation
,
2510 base_got
->contents
+ off
);
2515 Elf_Internal_Rela outrel
;
2518 /* We need to generate a R_X86_64_RELATIVE reloc
2519 for the dynamic linker. */
2524 outrel
.r_offset
= (base_got
->output_section
->vma
2525 + base_got
->output_offset
2527 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2528 outrel
.r_addend
= relocation
;
2530 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2531 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2534 local_got_offsets
[r_symndx
] |= 1;
2538 if (off
>= (bfd_vma
) -2)
2541 relocation
= base_got
->output_section
->vma
2542 + base_got
->output_offset
+ off
;
2543 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
2544 relocation
-= htab
->sgotplt
->output_section
->vma
2545 - htab
->sgotplt
->output_offset
;
2549 case R_X86_64_GOTOFF64
:
2550 /* Relocation is relative to the start of the global offset
2553 /* Check to make sure it isn't a protected function symbol
2554 for shared library since it may not be local when used
2555 as function address. */
2559 && h
->type
== STT_FUNC
2560 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2562 (*_bfd_error_handler
)
2563 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2564 input_bfd
, h
->root
.root
.string
);
2565 bfd_set_error (bfd_error_bad_value
);
2569 /* Note that sgot is not involved in this
2570 calculation. We always want the start of .got.plt. If we
2571 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2572 permitted by the ABI, we might have to change this
2574 relocation
-= htab
->sgotplt
->output_section
->vma
2575 + htab
->sgotplt
->output_offset
;
2578 case R_X86_64_GOTPC32
:
2579 case R_X86_64_GOTPC64
:
2580 /* Use global offset table as symbol value. */
2581 relocation
= htab
->sgotplt
->output_section
->vma
2582 + htab
->sgotplt
->output_offset
;
2583 unresolved_reloc
= FALSE
;
2586 case R_X86_64_PLTOFF64
:
2587 /* Relocation is PLT entry relative to GOT. For local
2588 symbols it's the symbol itself relative to GOT. */
2590 /* See PLT32 handling. */
2591 && h
->plt
.offset
!= (bfd_vma
) -1
2592 && htab
->splt
!= NULL
)
2594 relocation
= (htab
->splt
->output_section
->vma
2595 + htab
->splt
->output_offset
2597 unresolved_reloc
= FALSE
;
2600 relocation
-= htab
->sgotplt
->output_section
->vma
2601 + htab
->sgotplt
->output_offset
;
2604 case R_X86_64_PLT32
:
2605 /* Relocation is to the entry for this symbol in the
2606 procedure linkage table. */
2608 /* Resolve a PLT32 reloc against a local symbol directly,
2609 without using the procedure linkage table. */
2613 if (h
->plt
.offset
== (bfd_vma
) -1
2614 || htab
->splt
== NULL
)
2616 /* We didn't make a PLT entry for this symbol. This
2617 happens when statically linking PIC code, or when
2618 using -Bsymbolic. */
2622 relocation
= (htab
->splt
->output_section
->vma
2623 + htab
->splt
->output_offset
2625 unresolved_reloc
= FALSE
;
2632 && (input_section
->flags
& SEC_ALLOC
) != 0
2633 && (input_section
->flags
& SEC_READONLY
) != 0
2636 bfd_boolean fail
= FALSE
;
2638 = (r_type
== R_X86_64_PC32
2639 && is_32bit_relative_branch (contents
, rel
->r_offset
));
2641 if (SYMBOL_REFERENCES_LOCAL (info
, h
))
2643 /* Symbol is referenced locally. Make sure it is
2644 defined locally or for a branch. */
2645 fail
= !h
->def_regular
&& !branch
;
2649 /* Symbol isn't referenced locally. We only allow
2650 branch to symbol with non-default visibility. */
2652 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
);
2659 const char *pic
= "";
2661 switch (ELF_ST_VISIBILITY (h
->other
))
2664 v
= _("hidden symbol");
2667 v
= _("internal symbol");
2670 v
= _("protected symbol");
2674 pic
= _("; recompile with -fPIC");
2679 fmt
= _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
2681 fmt
= _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
2683 (*_bfd_error_handler
) (fmt
, input_bfd
,
2684 x86_64_elf_howto_table
[r_type
].name
,
2685 v
, h
->root
.root
.string
, pic
);
2686 bfd_set_error (bfd_error_bad_value
);
2697 /* FIXME: The ABI says the linker should make sure the value is
2698 the same when it's zeroextended to 64 bit. */
2700 if ((input_section
->flags
& SEC_ALLOC
) == 0)
2705 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2706 || h
->root
.type
!= bfd_link_hash_undefweak
)
2707 && ((r_type
!= R_X86_64_PC8
2708 && r_type
!= R_X86_64_PC16
2709 && r_type
!= R_X86_64_PC32
2710 && r_type
!= R_X86_64_PC64
)
2711 || !SYMBOL_CALLS_LOCAL (info
, h
)))
2712 || (ELIMINATE_COPY_RELOCS
2719 || h
->root
.type
== bfd_link_hash_undefweak
2720 || h
->root
.type
== bfd_link_hash_undefined
)))
2722 Elf_Internal_Rela outrel
;
2724 bfd_boolean skip
, relocate
;
2727 /* When generating a shared object, these relocations
2728 are copied into the output file to be resolved at run
2734 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2736 if (outrel
.r_offset
== (bfd_vma
) -1)
2738 else if (outrel
.r_offset
== (bfd_vma
) -2)
2739 skip
= TRUE
, relocate
= TRUE
;
2741 outrel
.r_offset
+= (input_section
->output_section
->vma
2742 + input_section
->output_offset
);
2745 memset (&outrel
, 0, sizeof outrel
);
2747 /* h->dynindx may be -1 if this symbol was marked to
2751 && (r_type
== R_X86_64_PC8
2752 || r_type
== R_X86_64_PC16
2753 || r_type
== R_X86_64_PC32
2754 || r_type
== R_X86_64_PC64
2756 || !SYMBOLIC_BIND (info
, h
)
2757 || !h
->def_regular
))
2759 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2760 outrel
.r_addend
= rel
->r_addend
;
2764 /* This symbol is local, or marked to become local. */
2765 if (r_type
== R_X86_64_64
)
2768 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2769 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2775 if (bfd_is_abs_section (sec
))
2777 else if (sec
== NULL
|| sec
->owner
== NULL
)
2779 bfd_set_error (bfd_error_bad_value
);
2786 /* We are turning this relocation into one
2787 against a section symbol. It would be
2788 proper to subtract the symbol's value,
2789 osec->vma, from the emitted reloc addend,
2790 but ld.so expects buggy relocs. */
2791 osec
= sec
->output_section
;
2792 sindx
= elf_section_data (osec
)->dynindx
;
2795 asection
*oi
= htab
->elf
.text_index_section
;
2796 sindx
= elf_section_data (oi
)->dynindx
;
2798 BFD_ASSERT (sindx
!= 0);
2801 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
2802 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2806 sreloc
= elf_section_data (input_section
)->sreloc
;
2810 loc
= sreloc
->contents
;
2811 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2812 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2814 /* If this reloc is against an external symbol, we do
2815 not want to fiddle with the addend. Otherwise, we
2816 need to include the symbol value so that it becomes
2817 an addend for the dynamic reloc. */
2824 case R_X86_64_TLSGD
:
2825 case R_X86_64_GOTPC32_TLSDESC
:
2826 case R_X86_64_TLSDESC_CALL
:
2827 case R_X86_64_GOTTPOFF
:
2828 tls_type
= GOT_UNKNOWN
;
2829 if (h
== NULL
&& local_got_offsets
)
2830 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
2832 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
2834 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
2835 input_section
, contents
,
2836 symtab_hdr
, sym_hashes
,
2837 &r_type
, tls_type
, rel
,
2841 if (r_type
== R_X86_64_TPOFF32
)
2843 bfd_vma roff
= rel
->r_offset
;
2845 BFD_ASSERT (! unresolved_reloc
);
2847 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
2849 /* GD->LE transition.
2850 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2851 .word 0x6666; rex64; call __tls_get_addr
2854 leaq foo@tpoff(%rax), %rax */
2855 memcpy (contents
+ roff
- 4,
2856 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2858 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2859 contents
+ roff
+ 8);
2860 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2864 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
2866 /* GDesc -> LE transition.
2867 It's originally something like:
2868 leaq x@tlsdesc(%rip), %rax
2874 unsigned int val
, type
, type2
;
2876 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2877 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2878 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2879 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
2880 contents
+ roff
- 3);
2881 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
2882 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
2883 contents
+ roff
- 1);
2884 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2888 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
2890 /* GDesc -> LE transition.
2895 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
2896 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
2899 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
2901 /* IE->LE transition:
2902 Originally it can be one of:
2903 movq foo@gottpoff(%rip), %reg
2904 addq foo@gottpoff(%rip), %reg
2907 leaq foo(%reg), %reg
2910 unsigned int val
, type
, reg
;
2912 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2913 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2914 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2920 bfd_put_8 (output_bfd
, 0x49,
2921 contents
+ roff
- 3);
2922 bfd_put_8 (output_bfd
, 0xc7,
2923 contents
+ roff
- 2);
2924 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2925 contents
+ roff
- 1);
2929 /* addq -> addq - addressing with %rsp/%r12 is
2932 bfd_put_8 (output_bfd
, 0x49,
2933 contents
+ roff
- 3);
2934 bfd_put_8 (output_bfd
, 0x81,
2935 contents
+ roff
- 2);
2936 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2937 contents
+ roff
- 1);
2943 bfd_put_8 (output_bfd
, 0x4d,
2944 contents
+ roff
- 3);
2945 bfd_put_8 (output_bfd
, 0x8d,
2946 contents
+ roff
- 2);
2947 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
2948 contents
+ roff
- 1);
2950 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2958 if (htab
->sgot
== NULL
)
2963 off
= h
->got
.offset
;
2964 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
2968 if (local_got_offsets
== NULL
)
2971 off
= local_got_offsets
[r_symndx
];
2972 offplt
= local_tlsdesc_gotents
[r_symndx
];
2979 Elf_Internal_Rela outrel
;
2984 if (htab
->srelgot
== NULL
)
2987 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2989 if (GOT_TLS_GDESC_P (tls_type
))
2991 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
2992 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
2993 + 2 * GOT_ENTRY_SIZE
<= htab
->sgotplt
->size
);
2994 outrel
.r_offset
= (htab
->sgotplt
->output_section
->vma
2995 + htab
->sgotplt
->output_offset
2997 + htab
->sgotplt_jump_table_size
);
2998 sreloc
= htab
->srelplt
;
2999 loc
= sreloc
->contents
;
3000 loc
+= sreloc
->reloc_count
++
3001 * sizeof (Elf64_External_Rela
);
3002 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3003 <= sreloc
->contents
+ sreloc
->size
);
3005 outrel
.r_addend
= relocation
- dtpoff_base (info
);
3007 outrel
.r_addend
= 0;
3008 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3011 sreloc
= htab
->srelgot
;
3013 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
3014 + htab
->sgot
->output_offset
+ off
);
3016 if (GOT_TLS_GD_P (tls_type
))
3017 dr_type
= R_X86_64_DTPMOD64
;
3018 else if (GOT_TLS_GDESC_P (tls_type
))
3021 dr_type
= R_X86_64_TPOFF64
;
3023 bfd_put_64 (output_bfd
, 0, htab
->sgot
->contents
+ off
);
3024 outrel
.r_addend
= 0;
3025 if ((dr_type
== R_X86_64_TPOFF64
3026 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
3027 outrel
.r_addend
= relocation
- dtpoff_base (info
);
3028 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
3030 loc
= sreloc
->contents
;
3031 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3032 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3033 <= sreloc
->contents
+ sreloc
->size
);
3034 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3036 if (GOT_TLS_GD_P (tls_type
))
3040 BFD_ASSERT (! unresolved_reloc
);
3041 bfd_put_64 (output_bfd
,
3042 relocation
- dtpoff_base (info
),
3043 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3047 bfd_put_64 (output_bfd
, 0,
3048 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3049 outrel
.r_info
= ELF64_R_INFO (indx
,
3051 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
3052 sreloc
->reloc_count
++;
3053 loc
+= sizeof (Elf64_External_Rela
);
3054 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
3055 <= sreloc
->contents
+ sreloc
->size
);
3056 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3064 local_got_offsets
[r_symndx
] |= 1;
3067 if (off
>= (bfd_vma
) -2
3068 && ! GOT_TLS_GDESC_P (tls_type
))
3070 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
3072 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3073 || r_type
== R_X86_64_TLSDESC_CALL
)
3074 relocation
= htab
->sgotplt
->output_section
->vma
3075 + htab
->sgotplt
->output_offset
3076 + offplt
+ htab
->sgotplt_jump_table_size
;
3078 relocation
= htab
->sgot
->output_section
->vma
3079 + htab
->sgot
->output_offset
+ off
;
3080 unresolved_reloc
= FALSE
;
3084 bfd_vma roff
= rel
->r_offset
;
3086 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3088 /* GD->IE transition.
3089 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3090 .word 0x6666; rex64; call __tls_get_addr@plt
3093 addq foo@gottpoff(%rip), %rax */
3094 memcpy (contents
+ roff
- 4,
3095 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3098 relocation
= (htab
->sgot
->output_section
->vma
3099 + htab
->sgot
->output_offset
+ off
3101 - input_section
->output_section
->vma
3102 - input_section
->output_offset
3104 bfd_put_32 (output_bfd
, relocation
,
3105 contents
+ roff
+ 8);
3106 /* Skip R_X86_64_PLT32. */
3110 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3112 /* GDesc -> IE transition.
3113 It's originally something like:
3114 leaq x@tlsdesc(%rip), %rax
3117 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3120 unsigned int val
, type
, type2
;
3122 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3123 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3124 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3126 /* Now modify the instruction as appropriate. To
3127 turn a leaq into a movq in the form we use it, it
3128 suffices to change the second byte from 0x8d to
3130 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3132 bfd_put_32 (output_bfd
,
3133 htab
->sgot
->output_section
->vma
3134 + htab
->sgot
->output_offset
+ off
3136 - input_section
->output_section
->vma
3137 - input_section
->output_offset
3142 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3144 /* GDesc -> IE transition.
3151 unsigned int val
, type
;
3153 type
= bfd_get_8 (input_bfd
, contents
+ roff
);
3154 val
= bfd_get_8 (input_bfd
, contents
+ roff
+ 1);
3155 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3156 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3164 case R_X86_64_TLSLD
:
3165 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3166 input_section
, contents
,
3167 symtab_hdr
, sym_hashes
,
3168 &r_type
, GOT_UNKNOWN
,
3172 if (r_type
!= R_X86_64_TLSLD
)
3174 /* LD->LE transition:
3175 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3177 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3179 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3180 memcpy (contents
+ rel
->r_offset
- 3,
3181 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3182 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3187 if (htab
->sgot
== NULL
)
3190 off
= htab
->tls_ld_got
.offset
;
3195 Elf_Internal_Rela outrel
;
3198 if (htab
->srelgot
== NULL
)
3201 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
3202 + htab
->sgot
->output_offset
+ off
);
3204 bfd_put_64 (output_bfd
, 0,
3205 htab
->sgot
->contents
+ off
);
3206 bfd_put_64 (output_bfd
, 0,
3207 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3208 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3209 outrel
.r_addend
= 0;
3210 loc
= htab
->srelgot
->contents
;
3211 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3212 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3213 htab
->tls_ld_got
.offset
|= 1;
3215 relocation
= htab
->sgot
->output_section
->vma
3216 + htab
->sgot
->output_offset
+ off
;
3217 unresolved_reloc
= FALSE
;
3220 case R_X86_64_DTPOFF32
:
3221 if (info
->shared
|| (input_section
->flags
& SEC_CODE
) == 0)
3222 relocation
-= dtpoff_base (info
);
3224 relocation
= tpoff (info
, relocation
);
3227 case R_X86_64_TPOFF32
:
3228 BFD_ASSERT (! info
->shared
);
3229 relocation
= tpoff (info
, relocation
);
3236 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3237 because such sections are not SEC_ALLOC and thus ld.so will
3238 not process them. */
3239 if (unresolved_reloc
3240 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3242 (*_bfd_error_handler
)
3243 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3246 (long) rel
->r_offset
,
3248 h
->root
.root
.string
);
3250 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3251 contents
, rel
->r_offset
,
3252 relocation
, rel
->r_addend
);
3254 if (r
!= bfd_reloc_ok
)
3259 name
= h
->root
.root
.string
;
3262 name
= bfd_elf_string_from_elf_section (input_bfd
,
3263 symtab_hdr
->sh_link
,
3268 name
= bfd_section_name (input_bfd
, sec
);
3271 if (r
== bfd_reloc_overflow
)
3273 if (! ((*info
->callbacks
->reloc_overflow
)
3274 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3275 (bfd_vma
) 0, input_bfd
, input_section
,
3281 (*_bfd_error_handler
)
3282 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3283 input_bfd
, input_section
,
3284 (long) rel
->r_offset
, name
, (int) r
);
3293 /* Finish up dynamic symbol handling. We set the contents of various
3294 dynamic sections here. */
3297 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3298 struct bfd_link_info
*info
,
3299 struct elf_link_hash_entry
*h
,
3300 Elf_Internal_Sym
*sym
)
3302 struct elf64_x86_64_link_hash_table
*htab
;
3304 htab
= elf64_x86_64_hash_table (info
);
3306 if (h
->plt
.offset
!= (bfd_vma
) -1)
3310 Elf_Internal_Rela rela
;
3313 /* This symbol has an entry in the procedure linkage table. Set
3315 if (h
->dynindx
== -1
3316 || htab
->splt
== NULL
3317 || htab
->sgotplt
== NULL
3318 || htab
->srelplt
== NULL
)
3321 /* Get the index in the procedure linkage table which
3322 corresponds to this symbol. This is the index of this symbol
3323 in all the symbols for which we are making plt entries. The
3324 first entry in the procedure linkage table is reserved. */
3325 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3327 /* Get the offset into the .got table of the entry that
3328 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3329 bytes. The first three are reserved for the dynamic linker. */
3330 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3332 /* Fill in the entry in the procedure linkage table. */
3333 memcpy (htab
->splt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3336 /* Insert the relocation positions of the plt section. The magic
3337 numbers at the end of the statements are the positions of the
3338 relocations in the plt section. */
3339 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3340 instruction uses 6 bytes, subtract this value. */
3341 bfd_put_32 (output_bfd
,
3342 (htab
->sgotplt
->output_section
->vma
3343 + htab
->sgotplt
->output_offset
3345 - htab
->splt
->output_section
->vma
3346 - htab
->splt
->output_offset
3349 htab
->splt
->contents
+ h
->plt
.offset
+ 2);
3350 /* Put relocation index. */
3351 bfd_put_32 (output_bfd
, plt_index
,
3352 htab
->splt
->contents
+ h
->plt
.offset
+ 7);
3353 /* Put offset for jmp .PLT0. */
3354 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3355 htab
->splt
->contents
+ h
->plt
.offset
+ 12);
3357 /* Fill in the entry in the global offset table, initially this
3358 points to the pushq instruction in the PLT which is at offset 6. */
3359 bfd_put_64 (output_bfd
, (htab
->splt
->output_section
->vma
3360 + htab
->splt
->output_offset
3361 + h
->plt
.offset
+ 6),
3362 htab
->sgotplt
->contents
+ got_offset
);
3364 /* Fill in the entry in the .rela.plt section. */
3365 rela
.r_offset
= (htab
->sgotplt
->output_section
->vma
3366 + htab
->sgotplt
->output_offset
3368 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3370 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3371 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3373 if (!h
->def_regular
)
3375 /* Mark the symbol as undefined, rather than as defined in
3376 the .plt section. Leave the value if there were any
3377 relocations where pointer equality matters (this is a clue
3378 for the dynamic linker, to make function pointer
3379 comparisons work between an application and shared
3380 library), otherwise set it to zero. If a function is only
3381 called from a binary, there is no need to slow down
3382 shared libraries because of that. */
3383 sym
->st_shndx
= SHN_UNDEF
;
3384 if (!h
->pointer_equality_needed
)
3389 if (h
->got
.offset
!= (bfd_vma
) -1
3390 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3391 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3393 Elf_Internal_Rela rela
;
3396 /* This symbol has an entry in the global offset table. Set it
3398 if (htab
->sgot
== NULL
|| htab
->srelgot
== NULL
)
3401 rela
.r_offset
= (htab
->sgot
->output_section
->vma
3402 + htab
->sgot
->output_offset
3403 + (h
->got
.offset
&~ (bfd_vma
) 1));
3405 /* If this is a static link, or it is a -Bsymbolic link and the
3406 symbol is defined locally or was forced to be local because
3407 of a version file, we just want to emit a RELATIVE reloc.
3408 The entry in the global offset table will already have been
3409 initialized in the relocate_section function. */
3411 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3413 if (!h
->def_regular
)
3415 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3416 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3417 rela
.r_addend
= (h
->root
.u
.def
.value
3418 + h
->root
.u
.def
.section
->output_section
->vma
3419 + h
->root
.u
.def
.section
->output_offset
);
3423 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3424 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3425 htab
->sgot
->contents
+ h
->got
.offset
);
3426 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3430 loc
= htab
->srelgot
->contents
;
3431 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3432 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3437 Elf_Internal_Rela rela
;
3440 /* This symbol needs a copy reloc. Set it up. */
3442 if (h
->dynindx
== -1
3443 || (h
->root
.type
!= bfd_link_hash_defined
3444 && h
->root
.type
!= bfd_link_hash_defweak
)
3445 || htab
->srelbss
== NULL
)
3448 rela
.r_offset
= (h
->root
.u
.def
.value
3449 + h
->root
.u
.def
.section
->output_section
->vma
3450 + h
->root
.u
.def
.section
->output_offset
);
3451 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
3453 loc
= htab
->srelbss
->contents
;
3454 loc
+= htab
->srelbss
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3455 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3458 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3459 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3460 || h
== htab
->elf
.hgot
)
3461 sym
->st_shndx
= SHN_ABS
;
3466 /* Used to decide how to sort relocs in an optimal manner for the
3467 dynamic linker, before writing them out. */
3469 static enum elf_reloc_type_class
3470 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
3472 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3474 case R_X86_64_RELATIVE
:
3475 return reloc_class_relative
;
3476 case R_X86_64_JUMP_SLOT
:
3477 return reloc_class_plt
;
3479 return reloc_class_copy
;
3481 return reloc_class_normal
;
3485 /* Finish up the dynamic sections. */
3488 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
3490 struct elf64_x86_64_link_hash_table
*htab
;
3494 htab
= elf64_x86_64_hash_table (info
);
3495 dynobj
= htab
->elf
.dynobj
;
3496 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3498 if (htab
->elf
.dynamic_sections_created
)
3500 Elf64_External_Dyn
*dyncon
, *dynconend
;
3502 if (sdyn
== NULL
|| htab
->sgot
== NULL
)
3505 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
3506 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3507 for (; dyncon
< dynconend
; dyncon
++)
3509 Elf_Internal_Dyn dyn
;
3512 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3521 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
3525 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
3529 s
= htab
->srelplt
->output_section
;
3530 dyn
.d_un
.d_val
= s
->size
;
3534 /* The procedure linkage table relocs (DT_JMPREL) should
3535 not be included in the overall relocs (DT_RELA).
3536 Therefore, we override the DT_RELASZ entry here to
3537 make it not include the JMPREL relocs. Since the
3538 linker script arranges for .rela.plt to follow all
3539 other relocation sections, we don't have to worry
3540 about changing the DT_RELA entry. */
3541 if (htab
->srelplt
!= NULL
)
3543 s
= htab
->srelplt
->output_section
;
3544 dyn
.d_un
.d_val
-= s
->size
;
3548 case DT_TLSDESC_PLT
:
3550 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3551 + htab
->tlsdesc_plt
;
3554 case DT_TLSDESC_GOT
:
3556 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3557 + htab
->tlsdesc_got
;
3561 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3564 /* Fill in the special first entry in the procedure linkage table. */
3565 if (htab
->splt
&& htab
->splt
->size
> 0)
3567 /* Fill in the first entry in the procedure linkage table. */
3568 memcpy (htab
->splt
->contents
, elf64_x86_64_plt0_entry
,
3570 /* Add offset for pushq GOT+8(%rip), since the instruction
3571 uses 6 bytes subtract this value. */
3572 bfd_put_32 (output_bfd
,
3573 (htab
->sgotplt
->output_section
->vma
3574 + htab
->sgotplt
->output_offset
3576 - htab
->splt
->output_section
->vma
3577 - htab
->splt
->output_offset
3579 htab
->splt
->contents
+ 2);
3580 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3581 the end of the instruction. */
3582 bfd_put_32 (output_bfd
,
3583 (htab
->sgotplt
->output_section
->vma
3584 + htab
->sgotplt
->output_offset
3586 - htab
->splt
->output_section
->vma
3587 - htab
->splt
->output_offset
3589 htab
->splt
->contents
+ 8);
3591 elf_section_data (htab
->splt
->output_section
)->this_hdr
.sh_entsize
=
3594 if (htab
->tlsdesc_plt
)
3596 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3597 htab
->sgot
->contents
+ htab
->tlsdesc_got
);
3599 memcpy (htab
->splt
->contents
+ htab
->tlsdesc_plt
,
3600 elf64_x86_64_plt0_entry
,
3603 /* Add offset for pushq GOT+8(%rip), since the
3604 instruction uses 6 bytes subtract this value. */
3605 bfd_put_32 (output_bfd
,
3606 (htab
->sgotplt
->output_section
->vma
3607 + htab
->sgotplt
->output_offset
3609 - htab
->splt
->output_section
->vma
3610 - htab
->splt
->output_offset
3613 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 2);
3614 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3615 htab->tlsdesc_got. The 12 is the offset to the end of
3617 bfd_put_32 (output_bfd
,
3618 (htab
->sgot
->output_section
->vma
3619 + htab
->sgot
->output_offset
3621 - htab
->splt
->output_section
->vma
3622 - htab
->splt
->output_offset
3625 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 8);
3632 /* Fill in the first three entries in the global offset table. */
3633 if (htab
->sgotplt
->size
> 0)
3635 /* Set the first entry in the global offset table to the address of
3636 the dynamic section. */
3638 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
);
3640 bfd_put_64 (output_bfd
,
3641 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3642 htab
->sgotplt
->contents
);
3643 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3644 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
);
3645 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
3648 elf_section_data (htab
->sgotplt
->output_section
)->this_hdr
.sh_entsize
=
3652 if (htab
->sgot
&& htab
->sgot
->size
> 0)
3653 elf_section_data (htab
->sgot
->output_section
)->this_hdr
.sh_entsize
3659 /* Return address for Ith PLT stub in section PLT, for relocation REL
3660 or (bfd_vma) -1 if it should not be included. */
3663 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
3664 const arelent
*rel ATTRIBUTE_UNUSED
)
3666 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
3669 /* Handle an x86-64 specific section when reading an object file. This
3670 is called when elfcode.h finds a section with an unknown type. */
3673 elf64_x86_64_section_from_shdr (bfd
*abfd
,
3674 Elf_Internal_Shdr
*hdr
,
3678 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
3681 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
3687 /* Hook called by the linker routine which adds symbols from an object
3688 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3692 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
3693 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3694 Elf_Internal_Sym
*sym
,
3695 const char **namep ATTRIBUTE_UNUSED
,
3696 flagword
*flagsp ATTRIBUTE_UNUSED
,
3697 asection
**secp
, bfd_vma
*valp
)
3701 switch (sym
->st_shndx
)
3703 case SHN_X86_64_LCOMMON
:
3704 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
3707 lcomm
= bfd_make_section_with_flags (abfd
,
3711 | SEC_LINKER_CREATED
));
3714 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
3717 *valp
= sym
->st_size
;
3724 /* Given a BFD section, try to locate the corresponding ELF section
3728 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
3729 asection
*sec
, int *index
)
3731 if (sec
== &_bfd_elf_large_com_section
)
3733 *index
= SHN_X86_64_LCOMMON
;
3739 /* Process a symbol. */
3742 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
3745 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
3747 switch (elfsym
->internal_elf_sym
.st_shndx
)
3749 case SHN_X86_64_LCOMMON
:
3750 asym
->section
= &_bfd_elf_large_com_section
;
3751 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3752 /* Common symbol doesn't set BSF_GLOBAL. */
3753 asym
->flags
&= ~BSF_GLOBAL
;
3759 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
3761 return (sym
->st_shndx
== SHN_COMMON
3762 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
3766 elf64_x86_64_common_section_index (asection
*sec
)
3768 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3771 return SHN_X86_64_LCOMMON
;
3775 elf64_x86_64_common_section (asection
*sec
)
3777 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3778 return bfd_com_section_ptr
;
3780 return &_bfd_elf_large_com_section
;
3784 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3785 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
3786 struct elf_link_hash_entry
*h
,
3787 Elf_Internal_Sym
*sym
,
3789 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
3790 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
3791 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
3792 bfd_boolean
*override ATTRIBUTE_UNUSED
,
3793 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
3794 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
3795 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
3796 bfd_boolean
*newdyn
,
3797 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
3798 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
3799 bfd
*abfd ATTRIBUTE_UNUSED
,
3801 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
3802 bfd_boolean
*olddyn
,
3803 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
3804 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
3808 /* A normal common symbol and a large common symbol result in a
3809 normal common symbol. We turn the large common symbol into a
3812 && h
->root
.type
== bfd_link_hash_common
3814 && bfd_is_com_section (*sec
)
3817 if (sym
->st_shndx
== SHN_COMMON
3818 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
3820 h
->root
.u
.c
.p
->section
3821 = bfd_make_section_old_way (oldbfd
, "COMMON");
3822 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
3824 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
3825 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
3826 *psec
= *sec
= bfd_com_section_ptr
;
3833 elf64_x86_64_additional_program_headers (bfd
*abfd
,
3834 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3839 /* Check to see if we need a large readonly segment. */
3840 s
= bfd_get_section_by_name (abfd
, ".lrodata");
3841 if (s
&& (s
->flags
& SEC_LOAD
))
3844 /* Check to see if we need a large data segment. Since .lbss sections
3845 is placed right after the .bss section, there should be no need for
3846 a large data segment just because of .lbss. */
3847 s
= bfd_get_section_by_name (abfd
, ".ldata");
3848 if (s
&& (s
->flags
& SEC_LOAD
))
3854 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3857 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
3859 if (h
->plt
.offset
!= (bfd_vma
) -1
3861 && !h
->pointer_equality_needed
)
3864 return _bfd_elf_hash_symbol (h
);
3867 static const struct bfd_elf_special_section
3868 elf64_x86_64_special_sections
[]=
3870 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3871 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3872 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
3873 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3874 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3875 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3876 { NULL
, 0, 0, 0, 0 }
3879 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3880 #define TARGET_LITTLE_NAME "elf64-x86-64"
3881 #define ELF_ARCH bfd_arch_i386
3882 #define ELF_MACHINE_CODE EM_X86_64
3883 #define ELF_MAXPAGESIZE 0x200000
3884 #define ELF_MINPAGESIZE 0x1000
3885 #define ELF_COMMONPAGESIZE 0x1000
3887 #define elf_backend_can_gc_sections 1
3888 #define elf_backend_can_refcount 1
3889 #define elf_backend_want_got_plt 1
3890 #define elf_backend_plt_readonly 1
3891 #define elf_backend_want_plt_sym 0
3892 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3893 #define elf_backend_rela_normal 1
3895 #define elf_info_to_howto elf64_x86_64_info_to_howto
3897 #define bfd_elf64_bfd_link_hash_table_create \
3898 elf64_x86_64_link_hash_table_create
3899 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3900 #define bfd_elf64_bfd_reloc_name_lookup \
3901 elf64_x86_64_reloc_name_lookup
3903 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3904 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3905 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3906 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3907 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3908 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3909 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3910 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3911 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3912 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3913 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3914 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3915 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3916 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3917 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3918 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3919 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3920 #define elf_backend_object_p elf64_x86_64_elf_object_p
3921 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3923 #define elf_backend_section_from_shdr \
3924 elf64_x86_64_section_from_shdr
3926 #define elf_backend_section_from_bfd_section \
3927 elf64_x86_64_elf_section_from_bfd_section
3928 #define elf_backend_add_symbol_hook \
3929 elf64_x86_64_add_symbol_hook
3930 #define elf_backend_symbol_processing \
3931 elf64_x86_64_symbol_processing
3932 #define elf_backend_common_section_index \
3933 elf64_x86_64_common_section_index
3934 #define elf_backend_common_section \
3935 elf64_x86_64_common_section
3936 #define elf_backend_common_definition \
3937 elf64_x86_64_common_definition
3938 #define elf_backend_merge_symbol \
3939 elf64_x86_64_merge_symbol
3940 #define elf_backend_special_sections \
3941 elf64_x86_64_special_sections
3942 #define elf_backend_additional_program_headers \
3943 elf64_x86_64_additional_program_headers
3944 #define elf_backend_hash_symbol \
3945 elf64_x86_64_hash_symbol
3947 #include "elf64-target.h"
3949 /* FreeBSD support. */
3951 #undef TARGET_LITTLE_SYM
3952 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3953 #undef TARGET_LITTLE_NAME
3954 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3957 #define ELF_OSABI ELFOSABI_FREEBSD
3959 #undef elf_backend_post_process_headers
3960 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3963 #define elf64_bed elf64_x86_64_fbsd_bed
3965 #include "elf64-target.h"