1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry
*h
;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type
;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range
*next
;
121 bfd_signed_vma min_addend
;
122 bfd_signed_vma max_addend
;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range
*ranges
;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry
*global_gotsym
;
146 /* The number of global .got entries. */
147 unsigned int global_gotno
;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno
;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno
;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno
;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno
;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno
;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno
;
161 /* A hash table holding members of the got. */
162 struct htab
*got_entries
;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab
*got_page_entries
;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab
*bfd2got
;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info
*next
;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset
;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash
{
182 struct mips_got_info
*g
;
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
188 struct mips_elf_got_per_bfd_arg
190 /* A hashtable that maps bfds to gots. */
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* Another structure used to pass arguments for got entries traversal. */
217 struct mips_elf_set_global_got_offset_arg
219 struct mips_got_info
*g
;
221 unsigned int needed_relocs
;
222 struct bfd_link_info
*info
;
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
228 struct mips_elf_count_tls_arg
230 struct bfd_link_info
*info
;
234 struct _mips_elf_section_data
236 struct bfd_elf_section_data elf
;
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
269 #define GGA_RELOC_ONLY 1
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
276 addiu $25,$25,%lo(func)
278 immediately before a PIC function "func". The second is to add:
282 addiu $25,$25,%lo(func)
284 to a separate trampoline section.
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub
{
290 /* The generated section that contains this stub. */
291 asection
*stub_section
;
293 /* The offset of the stub from the start of STUB_SECTION. */
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry
*h
;
301 /* Macros for populating a mips_elf_la25_stub. */
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
310 struct mips_elf_hash_sort_data
312 /* The symbol in the global GOT with the lowest dynamic symbol table
314 struct elf_link_hash_entry
*low
;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx
;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx
;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx
;
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
330 struct mips_elf_link_hash_entry
332 struct elf_link_hash_entry root
;
334 /* External symbol information. */
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub
*la25_stub
;
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 unsigned int possibly_dynamic_relocs
;
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection
*call_fp_stub
;
358 #define GOT_TLS_LDM 2
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type
;
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset
;
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area
: 2;
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc
: 1;
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs
: 1;
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub
: 1;
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub
: 1;
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches
: 1;
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub
: 1;
404 /* MIPS ELF linker hash table. */
406 struct mips_elf_link_hash_table
408 struct elf_link_hash_table root
;
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count
;
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size
;
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head
;
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen
;
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs
;
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks
;
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported
;
440 /* Shortcuts to some dynamic sections, or NULL if they are not
451 /* The master GOT information. */
452 struct mips_got_info
*got_info
;
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size
;
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size
;
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count
;
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size
;
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno
;
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection
*strampoline
;
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
482 The function returns the new section on success, otherwise it
484 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info
{
489 /* The usual link-wide information. */
490 struct bfd_link_info
*info
;
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
512 /* Structure used to pass information to mips_elf_output_extsym. */
517 struct bfd_link_info
*info
;
518 struct ecoff_debug_info
*debug
;
519 const struct ecoff_debug_swap
*swap
;
523 /* The names of the runtime procedure table symbols used on IRIX5. */
525 static const char * const mips_elf_dynsym_rtproc_names
[] =
528 "_procedure_string_table",
529 "_procedure_table_size",
533 /* These structures are used to generate the .compact_rel section on
538 unsigned long id1
; /* Always one? */
539 unsigned long num
; /* Number of compact relocation entries. */
540 unsigned long id2
; /* Always two? */
541 unsigned long offset
; /* The file offset of the first relocation. */
542 unsigned long reserved0
; /* Zero? */
543 unsigned long reserved1
; /* Zero? */
552 bfd_byte reserved0
[4];
553 bfd_byte reserved1
[4];
554 } Elf32_External_compact_rel
;
558 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype
: 4; /* Relocation types. See below. */
560 unsigned int dist2to
: 8;
561 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst
; /* KONST field. See below. */
563 unsigned long vaddr
; /* VADDR to be relocated. */
568 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype
: 4; /* Relocation types. See below. */
570 unsigned int dist2to
: 8;
571 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst
; /* KONST field. See below. */
580 } Elf32_External_crinfo
;
586 } Elf32_External_crinfo2
;
588 /* These are the constants used to swap the bitfields in a crinfo. */
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
628 typedef struct runtime_pdr
{
629 bfd_vma adr
; /* Memory address of start of procedure. */
630 long regmask
; /* Save register mask. */
631 long regoffset
; /* Save register offset. */
632 long fregmask
; /* Save floating point register mask. */
633 long fregoffset
; /* Save floating point register offset. */
634 long frameoffset
; /* Frame size. */
635 short framereg
; /* Frame pointer register. */
636 short pcreg
; /* Offset or reg of return pc. */
637 long irpss
; /* Index into the runtime string table. */
639 struct exception_info
*exception_info
;/* Pointer to exception array. */
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
644 static struct mips_got_entry
*mips_elf_create_local_got_entry
645 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
646 struct mips_elf_link_hash_entry
*, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry
*, void *);
649 static bfd_vma mips_elf_high
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
653 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
654 bfd_vma
*, asection
*);
655 static hashval_t mips_elf_got_entry_hash
657 static bfd_vma mips_elf_adjust_gp
658 (bfd
*, struct mips_got_info
*, bfd
*);
659 static struct mips_got_info
*mips_elf_got_for_ibfd
660 (struct mips_got_info
*, bfd
*);
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd
*reldyn_sorting_bfd
;
665 /* True if ABFD is a PIC object. */
666 #define PIC_OBJECT_P(abfd) \
667 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
669 /* Nonzero if ABFD is using the N32 ABI. */
670 #define ABI_N32_P(abfd) \
671 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
673 /* Nonzero if ABFD is using the N64 ABI. */
674 #define ABI_64_P(abfd) \
675 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
677 /* Nonzero if ABFD is using NewABI conventions. */
678 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
680 /* The IRIX compatibility level we are striving for. */
681 #define IRIX_COMPAT(abfd) \
682 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
684 /* Whether we are trying to be compatible with IRIX at all. */
685 #define SGI_COMPAT(abfd) \
686 (IRIX_COMPAT (abfd) != ict_none)
688 /* The name of the options section. */
689 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
690 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
692 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
693 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
694 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
695 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
697 /* Whether the section is readonly. */
698 #define MIPS_ELF_READONLY_SECTION(sec) \
699 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
700 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
702 /* The name of the stub section. */
703 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
705 /* The size of an external REL relocation. */
706 #define MIPS_ELF_REL_SIZE(abfd) \
707 (get_elf_backend_data (abfd)->s->sizeof_rel)
709 /* The size of an external RELA relocation. */
710 #define MIPS_ELF_RELA_SIZE(abfd) \
711 (get_elf_backend_data (abfd)->s->sizeof_rela)
713 /* The size of an external dynamic table entry. */
714 #define MIPS_ELF_DYN_SIZE(abfd) \
715 (get_elf_backend_data (abfd)->s->sizeof_dyn)
717 /* The size of a GOT entry. */
718 #define MIPS_ELF_GOT_SIZE(abfd) \
719 (get_elf_backend_data (abfd)->s->arch_size / 8)
721 /* The size of a symbol-table entry. */
722 #define MIPS_ELF_SYM_SIZE(abfd) \
723 (get_elf_backend_data (abfd)->s->sizeof_sym)
725 /* The default alignment for sections, as a power of two. */
726 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
727 (get_elf_backend_data (abfd)->s->log_file_align)
729 /* Get word-sized data. */
730 #define MIPS_ELF_GET_WORD(abfd, ptr) \
731 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
733 /* Put out word-sized data. */
734 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
736 ? bfd_put_64 (abfd, val, ptr) \
737 : bfd_put_32 (abfd, val, ptr))
739 /* The opcode for word-sized loads (LW or LD). */
740 #define MIPS_ELF_LOAD_WORD(abfd) \
741 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
743 /* Add a dynamic symbol table-entry. */
744 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
745 _bfd_elf_add_dynamic_entry (info, tag, val)
747 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
748 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
750 /* Determine whether the internal relocation of index REL_IDX is REL
751 (zero) or RELA (non-zero). The assumption is that, if there are
752 two relocation sections for this section, one of them is REL and
753 the other is RELA. If the index of the relocation we're testing is
754 in range for the first relocation section, check that the external
755 relocation size is that for RELA. It is also assumed that, if
756 rel_idx is not in range for the first section, and this first
757 section contains REL relocs, then the relocation is in the second
758 section, that is RELA. */
759 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
760 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
761 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
762 > (bfd_vma)(rel_idx)) \
763 == (elf_section_data (sec)->rel_hdr.sh_entsize \
764 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
765 : sizeof (Elf32_External_Rela))))
767 /* The name of the dynamic relocation section. */
768 #define MIPS_ELF_REL_DYN_NAME(INFO) \
769 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
771 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
772 from smaller values. Start with zero, widen, *then* decrement. */
773 #define MINUS_ONE (((bfd_vma)0) - 1)
774 #define MINUS_TWO (((bfd_vma)0) - 2)
776 /* The value to write into got[1] for SVR4 targets, to identify it is
777 a GNU object. The dynamic linker can then use got[1] to store the
779 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
780 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
782 /* The offset of $gp from the beginning of the .got section. */
783 #define ELF_MIPS_GP_OFFSET(INFO) \
784 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
786 /* The maximum size of the GOT for it to be addressable using 16-bit
788 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
790 /* Instructions which appear in a stub. */
791 #define STUB_LW(abfd) \
793 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
794 : 0x8f998010)) /* lw t9,0x8010(gp) */
795 #define STUB_MOVE(abfd) \
797 ? 0x03e0782d /* daddu t7,ra */ \
798 : 0x03e07821)) /* addu t7,ra */
799 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
800 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
801 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
802 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
803 #define STUB_LI16S(abfd, VAL) \
805 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
806 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
808 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
809 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
811 /* The name of the dynamic interpreter. This is put in the .interp
814 #define ELF_DYNAMIC_INTERPRETER(abfd) \
815 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
816 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
817 : "/usr/lib/libc.so.1")
820 #define MNAME(bfd,pre,pos) \
821 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
822 #define ELF_R_SYM(bfd, i) \
823 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
824 #define ELF_R_TYPE(bfd, i) \
825 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
826 #define ELF_R_INFO(bfd, s, t) \
827 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
829 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
830 #define ELF_R_SYM(bfd, i) \
832 #define ELF_R_TYPE(bfd, i) \
834 #define ELF_R_INFO(bfd, s, t) \
835 (ELF32_R_INFO (s, t))
838 /* The mips16 compiler uses a couple of special sections to handle
839 floating point arguments.
841 Section names that look like .mips16.fn.FNNAME contain stubs that
842 copy floating point arguments from the fp regs to the gp regs and
843 then jump to FNNAME. If any 32 bit function calls FNNAME, the
844 call should be redirected to the stub instead. If no 32 bit
845 function calls FNNAME, the stub should be discarded. We need to
846 consider any reference to the function, not just a call, because
847 if the address of the function is taken we will need the stub,
848 since the address might be passed to a 32 bit function.
850 Section names that look like .mips16.call.FNNAME contain stubs
851 that copy floating point arguments from the gp regs to the fp
852 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
853 then any 16 bit function that calls FNNAME should be redirected
854 to the stub instead. If FNNAME is not a 32 bit function, the
855 stub should be discarded.
857 .mips16.call.fp.FNNAME sections are similar, but contain stubs
858 which call FNNAME and then copy the return value from the fp regs
859 to the gp regs. These stubs store the return value in $18 while
860 calling FNNAME; any function which might call one of these stubs
861 must arrange to save $18 around the call. (This case is not
862 needed for 32 bit functions that call 16 bit functions, because
863 16 bit functions always return floating point values in both
866 Note that in all cases FNNAME might be defined statically.
867 Therefore, FNNAME is not used literally. Instead, the relocation
868 information will indicate which symbol the section is for.
870 We record any stubs that we find in the symbol table. */
872 #define FN_STUB ".mips16.fn."
873 #define CALL_STUB ".mips16.call."
874 #define CALL_FP_STUB ".mips16.call.fp."
876 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
877 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
878 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
880 /* The format of the first PLT entry in an O32 executable. */
881 static const bfd_vma mips_o32_exec_plt0_entry
[] = {
882 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
883 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
884 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
885 0x031cc023, /* subu $24, $24, $28 */
886 0x03e07821, /* move $15, $31 */
887 0x0018c082, /* srl $24, $24, 2 */
888 0x0320f809, /* jalr $25 */
889 0x2718fffe /* subu $24, $24, 2 */
892 /* The format of the first PLT entry in an N32 executable. Different
893 because gp ($28) is not available; we use t2 ($14) instead. */
894 static const bfd_vma mips_n32_exec_plt0_entry
[] = {
895 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
896 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
897 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
898 0x030ec023, /* subu $24, $24, $14 */
899 0x03e07821, /* move $15, $31 */
900 0x0018c082, /* srl $24, $24, 2 */
901 0x0320f809, /* jalr $25 */
902 0x2718fffe /* subu $24, $24, 2 */
905 /* The format of the first PLT entry in an N64 executable. Different
906 from N32 because of the increased size of GOT entries. */
907 static const bfd_vma mips_n64_exec_plt0_entry
[] = {
908 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
909 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
910 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
911 0x030ec023, /* subu $24, $24, $14 */
912 0x03e07821, /* move $15, $31 */
913 0x0018c0c2, /* srl $24, $24, 3 */
914 0x0320f809, /* jalr $25 */
915 0x2718fffe /* subu $24, $24, 2 */
918 /* The format of subsequent PLT entries. */
919 static const bfd_vma mips_exec_plt_entry
[] = {
920 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
921 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
922 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
923 0x03200008 /* jr $25 */
926 /* The format of the first PLT entry in a VxWorks executable. */
927 static const bfd_vma mips_vxworks_exec_plt0_entry
[] = {
928 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
929 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
930 0x8f390008, /* lw t9, 8(t9) */
931 0x00000000, /* nop */
932 0x03200008, /* jr t9 */
936 /* The format of subsequent PLT entries. */
937 static const bfd_vma mips_vxworks_exec_plt_entry
[] = {
938 0x10000000, /* b .PLT_resolver */
939 0x24180000, /* li t8, <pltindex> */
940 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
941 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
942 0x8f390000, /* lw t9, 0(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
948 /* The format of the first PLT entry in a VxWorks shared object. */
949 static const bfd_vma mips_vxworks_shared_plt0_entry
[] = {
950 0x8f990008, /* lw t9, 8(gp) */
951 0x00000000, /* nop */
952 0x03200008, /* jr t9 */
953 0x00000000, /* nop */
954 0x00000000, /* nop */
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_shared_plt_entry
[] = {
960 0x10000000, /* b .PLT_resolver */
961 0x24180000 /* li t8, <pltindex> */
964 /* Look up an entry in a MIPS ELF linker hash table. */
966 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
967 ((struct mips_elf_link_hash_entry *) \
968 elf_link_hash_lookup (&(table)->root, (string), (create), \
971 /* Traverse a MIPS ELF linker hash table. */
973 #define mips_elf_link_hash_traverse(table, func, info) \
974 (elf_link_hash_traverse \
976 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
979 /* Get the MIPS ELF linker hash table from a link_info structure. */
981 #define mips_elf_hash_table(p) \
982 ((struct mips_elf_link_hash_table *) ((p)->hash))
984 /* Find the base offsets for thread-local storage in this object,
985 for GD/LD and IE/LE respectively. */
987 #define TP_OFFSET 0x7000
988 #define DTP_OFFSET 0x8000
991 dtprel_base (struct bfd_link_info
*info
)
993 /* If tls_sec is NULL, we should have signalled an error already. */
994 if (elf_hash_table (info
)->tls_sec
== NULL
)
996 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1000 tprel_base (struct bfd_link_info
*info
)
1002 /* If tls_sec is NULL, we should have signalled an error already. */
1003 if (elf_hash_table (info
)->tls_sec
== NULL
)
1005 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1008 /* Create an entry in a MIPS ELF linker hash table. */
1010 static struct bfd_hash_entry
*
1011 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1012 struct bfd_hash_table
*table
, const char *string
)
1014 struct mips_elf_link_hash_entry
*ret
=
1015 (struct mips_elf_link_hash_entry
*) entry
;
1017 /* Allocate the structure if it has not already been allocated by a
1020 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1022 return (struct bfd_hash_entry
*) ret
;
1024 /* Call the allocation method of the superclass. */
1025 ret
= ((struct mips_elf_link_hash_entry
*)
1026 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1030 /* Set local fields. */
1031 memset (&ret
->esym
, 0, sizeof (EXTR
));
1032 /* We use -2 as a marker to indicate that the information has
1033 not been set. -1 means there is no associated ifd. */
1036 ret
->possibly_dynamic_relocs
= 0;
1037 ret
->fn_stub
= NULL
;
1038 ret
->call_stub
= NULL
;
1039 ret
->call_fp_stub
= NULL
;
1040 ret
->tls_type
= GOT_NORMAL
;
1041 ret
->global_got_area
= GGA_NONE
;
1042 ret
->readonly_reloc
= FALSE
;
1043 ret
->has_static_relocs
= FALSE
;
1044 ret
->no_fn_stub
= FALSE
;
1045 ret
->need_fn_stub
= FALSE
;
1046 ret
->has_nonpic_branches
= FALSE
;
1047 ret
->needs_lazy_stub
= FALSE
;
1050 return (struct bfd_hash_entry
*) ret
;
1054 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1056 if (!sec
->used_by_bfd
)
1058 struct _mips_elf_section_data
*sdata
;
1059 bfd_size_type amt
= sizeof (*sdata
);
1061 sdata
= bfd_zalloc (abfd
, amt
);
1064 sec
->used_by_bfd
= sdata
;
1067 return _bfd_elf_new_section_hook (abfd
, sec
);
1070 /* Read ECOFF debugging information from a .mdebug section into a
1071 ecoff_debug_info structure. */
1074 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1075 struct ecoff_debug_info
*debug
)
1078 const struct ecoff_debug_swap
*swap
;
1081 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1082 memset (debug
, 0, sizeof (*debug
));
1084 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1085 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1088 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1089 swap
->external_hdr_size
))
1092 symhdr
= &debug
->symbolic_header
;
1093 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1095 /* The symbolic header contains absolute file offsets and sizes to
1097 #define READ(ptr, offset, count, size, type) \
1098 if (symhdr->count == 0) \
1099 debug->ptr = NULL; \
1102 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1103 debug->ptr = bfd_malloc (amt); \
1104 if (debug->ptr == NULL) \
1105 goto error_return; \
1106 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1107 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1108 goto error_return; \
1111 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1112 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1113 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1114 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1115 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1116 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1118 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1119 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1120 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1121 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1122 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1130 if (ext_hdr
!= NULL
)
1132 if (debug
->line
!= NULL
)
1134 if (debug
->external_dnr
!= NULL
)
1135 free (debug
->external_dnr
);
1136 if (debug
->external_pdr
!= NULL
)
1137 free (debug
->external_pdr
);
1138 if (debug
->external_sym
!= NULL
)
1139 free (debug
->external_sym
);
1140 if (debug
->external_opt
!= NULL
)
1141 free (debug
->external_opt
);
1142 if (debug
->external_aux
!= NULL
)
1143 free (debug
->external_aux
);
1144 if (debug
->ss
!= NULL
)
1146 if (debug
->ssext
!= NULL
)
1147 free (debug
->ssext
);
1148 if (debug
->external_fdr
!= NULL
)
1149 free (debug
->external_fdr
);
1150 if (debug
->external_rfd
!= NULL
)
1151 free (debug
->external_rfd
);
1152 if (debug
->external_ext
!= NULL
)
1153 free (debug
->external_ext
);
1157 /* Swap RPDR (runtime procedure table entry) for output. */
1160 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1162 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1163 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1164 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1165 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1166 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1167 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1169 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1170 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1172 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1175 /* Create a runtime procedure table from the .mdebug section. */
1178 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1179 struct bfd_link_info
*info
, asection
*s
,
1180 struct ecoff_debug_info
*debug
)
1182 const struct ecoff_debug_swap
*swap
;
1183 HDRR
*hdr
= &debug
->symbolic_header
;
1185 struct rpdr_ext
*erp
;
1187 struct pdr_ext
*epdr
;
1188 struct sym_ext
*esym
;
1192 bfd_size_type count
;
1193 unsigned long sindex
;
1197 const char *no_name_func
= _("static procedure (no name)");
1205 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1207 sindex
= strlen (no_name_func
) + 1;
1208 count
= hdr
->ipdMax
;
1211 size
= swap
->external_pdr_size
;
1213 epdr
= bfd_malloc (size
* count
);
1217 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1220 size
= sizeof (RPDR
);
1221 rp
= rpdr
= bfd_malloc (size
* count
);
1225 size
= sizeof (char *);
1226 sv
= bfd_malloc (size
* count
);
1230 count
= hdr
->isymMax
;
1231 size
= swap
->external_sym_size
;
1232 esym
= bfd_malloc (size
* count
);
1236 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1239 count
= hdr
->issMax
;
1240 ss
= bfd_malloc (count
);
1243 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1246 count
= hdr
->ipdMax
;
1247 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1249 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1250 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1251 rp
->adr
= sym
.value
;
1252 rp
->regmask
= pdr
.regmask
;
1253 rp
->regoffset
= pdr
.regoffset
;
1254 rp
->fregmask
= pdr
.fregmask
;
1255 rp
->fregoffset
= pdr
.fregoffset
;
1256 rp
->frameoffset
= pdr
.frameoffset
;
1257 rp
->framereg
= pdr
.framereg
;
1258 rp
->pcreg
= pdr
.pcreg
;
1260 sv
[i
] = ss
+ sym
.iss
;
1261 sindex
+= strlen (sv
[i
]) + 1;
1265 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1266 size
= BFD_ALIGN (size
, 16);
1267 rtproc
= bfd_alloc (abfd
, size
);
1270 mips_elf_hash_table (info
)->procedure_count
= 0;
1274 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1277 memset (erp
, 0, sizeof (struct rpdr_ext
));
1279 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1280 strcpy (str
, no_name_func
);
1281 str
+= strlen (no_name_func
) + 1;
1282 for (i
= 0; i
< count
; i
++)
1284 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1285 strcpy (str
, sv
[i
]);
1286 str
+= strlen (sv
[i
]) + 1;
1288 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1290 /* Set the size and contents of .rtproc section. */
1292 s
->contents
= rtproc
;
1294 /* Skip this section later on (I don't think this currently
1295 matters, but someday it might). */
1296 s
->map_head
.link_order
= NULL
;
1325 /* We're going to create a stub for H. Create a symbol for the stub's
1326 value and size, to help make the disassembly easier to read. */
1329 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1330 struct mips_elf_link_hash_entry
*h
,
1331 const char *prefix
, asection
*s
, bfd_vma value
,
1334 struct bfd_link_hash_entry
*bh
;
1335 struct elf_link_hash_entry
*elfh
;
1338 /* Create a new symbol. */
1339 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1341 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1342 BSF_LOCAL
, s
, value
, NULL
,
1346 /* Make it a local function. */
1347 elfh
= (struct elf_link_hash_entry
*) bh
;
1348 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1350 elfh
->forced_local
= 1;
1354 /* We're about to redefine H. Create a symbol to represent H's
1355 current value and size, to help make the disassembly easier
1359 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1360 struct mips_elf_link_hash_entry
*h
,
1363 struct bfd_link_hash_entry
*bh
;
1364 struct elf_link_hash_entry
*elfh
;
1369 /* Read the symbol's value. */
1370 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1371 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1372 s
= h
->root
.root
.u
.def
.section
;
1373 value
= h
->root
.root
.u
.def
.value
;
1375 /* Create a new symbol. */
1376 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1378 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1379 BSF_LOCAL
, s
, value
, NULL
,
1383 /* Make it local and copy the other attributes from H. */
1384 elfh
= (struct elf_link_hash_entry
*) bh
;
1385 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1386 elfh
->other
= h
->root
.other
;
1387 elfh
->size
= h
->root
.size
;
1388 elfh
->forced_local
= 1;
1392 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1393 function rather than to a hard-float stub. */
1396 section_allows_mips16_refs_p (asection
*section
)
1400 name
= bfd_get_section_name (section
->owner
, section
);
1401 return (FN_STUB_P (name
)
1402 || CALL_STUB_P (name
)
1403 || CALL_FP_STUB_P (name
)
1404 || strcmp (name
, ".pdr") == 0);
1407 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1408 stub section of some kind. Return the R_SYMNDX of the target
1409 function, or 0 if we can't decide which function that is. */
1411 static unsigned long
1412 mips16_stub_symndx (asection
*sec
, const Elf_Internal_Rela
*relocs
,
1413 const Elf_Internal_Rela
*relend
)
1415 const Elf_Internal_Rela
*rel
;
1417 /* Trust the first R_MIPS_NONE relocation, if any. */
1418 for (rel
= relocs
; rel
< relend
; rel
++)
1419 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1420 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1422 /* Otherwise trust the first relocation, whatever its kind. This is
1423 the traditional behavior. */
1424 if (relocs
< relend
)
1425 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1430 /* Check the mips16 stubs for a particular symbol, and see if we can
1434 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1435 struct mips_elf_link_hash_entry
*h
)
1437 /* Dynamic symbols must use the standard call interface, in case other
1438 objects try to call them. */
1439 if (h
->fn_stub
!= NULL
1440 && h
->root
.dynindx
!= -1)
1442 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1443 h
->need_fn_stub
= TRUE
;
1446 if (h
->fn_stub
!= NULL
1447 && ! h
->need_fn_stub
)
1449 /* We don't need the fn_stub; the only references to this symbol
1450 are 16 bit calls. Clobber the size to 0 to prevent it from
1451 being included in the link. */
1452 h
->fn_stub
->size
= 0;
1453 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1454 h
->fn_stub
->reloc_count
= 0;
1455 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1458 if (h
->call_stub
!= NULL
1459 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1461 /* We don't need the call_stub; this is a 16 bit function, so
1462 calls from other 16 bit functions are OK. Clobber the size
1463 to 0 to prevent it from being included in the link. */
1464 h
->call_stub
->size
= 0;
1465 h
->call_stub
->flags
&= ~SEC_RELOC
;
1466 h
->call_stub
->reloc_count
= 0;
1467 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1470 if (h
->call_fp_stub
!= NULL
1471 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1473 /* We don't need the call_stub; this is a 16 bit function, so
1474 calls from other 16 bit functions are OK. Clobber the size
1475 to 0 to prevent it from being included in the link. */
1476 h
->call_fp_stub
->size
= 0;
1477 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1478 h
->call_fp_stub
->reloc_count
= 0;
1479 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1483 /* Hashtable callbacks for mips_elf_la25_stubs. */
1486 mips_elf_la25_stub_hash (const void *entry_
)
1488 const struct mips_elf_la25_stub
*entry
;
1490 entry
= (struct mips_elf_la25_stub
*) entry_
;
1491 return entry
->h
->root
.root
.u
.def
.section
->id
1492 + entry
->h
->root
.root
.u
.def
.value
;
1496 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1498 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1500 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1501 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1502 return ((entry1
->h
->root
.root
.u
.def
.section
1503 == entry2
->h
->root
.root
.u
.def
.section
)
1504 && (entry1
->h
->root
.root
.u
.def
.value
1505 == entry2
->h
->root
.root
.u
.def
.value
));
1508 /* Called by the linker to set up the la25 stub-creation code. FN is
1509 the linker's implementation of add_stub_function. Return true on
1513 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1514 asection
*(*fn
) (const char *, asection
*,
1517 struct mips_elf_link_hash_table
*htab
;
1519 htab
= mips_elf_hash_table (info
);
1520 htab
->add_stub_section
= fn
;
1521 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1522 mips_elf_la25_stub_eq
, NULL
);
1523 if (htab
->la25_stubs
== NULL
)
1529 /* Return true if H is a locally-defined PIC function, in the sense
1530 that it might need $25 to be valid on entry. Note that MIPS16
1531 functions never need $25 to be valid on entry; they set up $gp
1532 using PC-relative instructions instead. */
1535 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1537 return ((h
->root
.root
.type
== bfd_link_hash_defined
1538 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1539 && h
->root
.def_regular
1540 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1541 && !ELF_ST_IS_MIPS16 (h
->root
.other
)
1542 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1543 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1546 /* STUB describes an la25 stub that we have decided to implement
1547 by inserting an LUI/ADDIU pair before the target function.
1548 Create the section and redirect the function symbol to it. */
1551 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1552 struct bfd_link_info
*info
)
1554 struct mips_elf_link_hash_table
*htab
;
1556 asection
*s
, *input_section
;
1559 htab
= mips_elf_hash_table (info
);
1561 /* Create a unique name for the new section. */
1562 name
= bfd_malloc (11 + sizeof (".text.stub."));
1565 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1567 /* Create the section. */
1568 input_section
= stub
->h
->root
.root
.u
.def
.section
;
1569 s
= htab
->add_stub_section (name
, input_section
,
1570 input_section
->output_section
);
1574 /* Make sure that any padding goes before the stub. */
1575 align
= input_section
->alignment_power
;
1576 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1579 s
->size
= (1 << align
) - 8;
1581 /* Create a symbol for the stub. */
1582 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1583 stub
->stub_section
= s
;
1584 stub
->offset
= s
->size
;
1586 /* Allocate room for it. */
1591 /* STUB describes an la25 stub that we have decided to implement
1592 with a separate trampoline. Allocate room for it and redirect
1593 the function symbol to it. */
1596 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1597 struct bfd_link_info
*info
)
1599 struct mips_elf_link_hash_table
*htab
;
1602 htab
= mips_elf_hash_table (info
);
1604 /* Create a trampoline section, if we haven't already. */
1605 s
= htab
->strampoline
;
1608 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1609 s
= htab
->add_stub_section (".text", NULL
,
1610 input_section
->output_section
);
1611 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1613 htab
->strampoline
= s
;
1616 /* Create a symbol for the stub. */
1617 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1618 stub
->stub_section
= s
;
1619 stub
->offset
= s
->size
;
1621 /* Allocate room for it. */
1626 /* H describes a symbol that needs an la25 stub. Make sure that an
1627 appropriate stub exists and point H at it. */
1630 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1631 struct mips_elf_link_hash_entry
*h
)
1633 struct mips_elf_link_hash_table
*htab
;
1634 struct mips_elf_la25_stub search
, *stub
;
1635 bfd_boolean use_trampoline_p
;
1640 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1641 of the section and if we would need no more than 2 nops. */
1642 s
= h
->root
.root
.u
.def
.section
;
1643 value
= h
->root
.root
.u
.def
.value
;
1644 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1646 /* Describe the stub we want. */
1647 search
.stub_section
= NULL
;
1651 /* See if we've already created an equivalent stub. */
1652 htab
= mips_elf_hash_table (info
);
1653 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1657 stub
= (struct mips_elf_la25_stub
*) *slot
;
1660 /* We can reuse the existing stub. */
1661 h
->la25_stub
= stub
;
1665 /* Create a permanent copy of ENTRY and add it to the hash table. */
1666 stub
= bfd_malloc (sizeof (search
));
1672 h
->la25_stub
= stub
;
1673 return (use_trampoline_p
1674 ? mips_elf_add_la25_trampoline (stub
, info
)
1675 : mips_elf_add_la25_intro (stub
, info
));
1678 /* A mips_elf_link_hash_traverse callback that is called before sizing
1679 sections. DATA points to a mips_htab_traverse_info structure. */
1682 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1684 struct mips_htab_traverse_info
*hti
;
1686 hti
= (struct mips_htab_traverse_info
*) data
;
1687 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1688 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1690 if (!hti
->info
->relocatable
)
1691 mips_elf_check_mips16_stubs (hti
->info
, h
);
1693 if (mips_elf_local_pic_function_p (h
))
1695 /* H is a function that might need $25 to be valid on entry.
1696 If we're creating a non-PIC relocatable object, mark H as
1697 being PIC. If we're creating a non-relocatable object with
1698 non-PIC branches and jumps to H, make sure that H has an la25
1700 if (hti
->info
->relocatable
)
1702 if (!PIC_OBJECT_P (hti
->output_bfd
))
1703 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1705 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1714 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1715 Most mips16 instructions are 16 bits, but these instructions
1718 The format of these instructions is:
1720 +--------------+--------------------------------+
1721 | JALX | X| Imm 20:16 | Imm 25:21 |
1722 +--------------+--------------------------------+
1724 +-----------------------------------------------+
1726 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1727 Note that the immediate value in the first word is swapped.
1729 When producing a relocatable object file, R_MIPS16_26 is
1730 handled mostly like R_MIPS_26. In particular, the addend is
1731 stored as a straight 26-bit value in a 32-bit instruction.
1732 (gas makes life simpler for itself by never adjusting a
1733 R_MIPS16_26 reloc to be against a section, so the addend is
1734 always zero). However, the 32 bit instruction is stored as 2
1735 16-bit values, rather than a single 32-bit value. In a
1736 big-endian file, the result is the same; in a little-endian
1737 file, the two 16-bit halves of the 32 bit value are swapped.
1738 This is so that a disassembler can recognize the jal
1741 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1742 instruction stored as two 16-bit values. The addend A is the
1743 contents of the targ26 field. The calculation is the same as
1744 R_MIPS_26. When storing the calculated value, reorder the
1745 immediate value as shown above, and don't forget to store the
1746 value as two 16-bit values.
1748 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1752 +--------+----------------------+
1756 +--------+----------------------+
1759 +----------+------+-------------+
1763 +----------+--------------------+
1764 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1765 ((sub1 << 16) | sub2)).
1767 When producing a relocatable object file, the calculation is
1768 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1769 When producing a fully linked file, the calculation is
1770 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1771 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1773 The table below lists the other MIPS16 instruction relocations.
1774 Each one is calculated in the same way as the non-MIPS16 relocation
1775 given on the right, but using the extended MIPS16 layout of 16-bit
1778 R_MIPS16_GPREL R_MIPS_GPREL16
1779 R_MIPS16_GOT16 R_MIPS_GOT16
1780 R_MIPS16_CALL16 R_MIPS_CALL16
1781 R_MIPS16_HI16 R_MIPS_HI16
1782 R_MIPS16_LO16 R_MIPS_LO16
1784 A typical instruction will have a format like this:
1786 +--------------+--------------------------------+
1787 | EXTEND | Imm 10:5 | Imm 15:11 |
1788 +--------------+--------------------------------+
1789 | Major | rx | ry | Imm 4:0 |
1790 +--------------+--------------------------------+
1792 EXTEND is the five bit value 11110. Major is the instruction
1795 All we need to do here is shuffle the bits appropriately.
1796 As above, the two 16-bit halves must be swapped on a
1797 little-endian system. */
1799 static inline bfd_boolean
1800 mips16_reloc_p (int r_type
)
1805 case R_MIPS16_GPREL
:
1806 case R_MIPS16_GOT16
:
1807 case R_MIPS16_CALL16
:
1817 static inline bfd_boolean
1818 got16_reloc_p (int r_type
)
1820 return r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS16_GOT16
;
1823 static inline bfd_boolean
1824 call16_reloc_p (int r_type
)
1826 return r_type
== R_MIPS_CALL16
|| r_type
== R_MIPS16_CALL16
;
1829 static inline bfd_boolean
1830 hi16_reloc_p (int r_type
)
1832 return r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
;
1835 static inline bfd_boolean
1836 lo16_reloc_p (int r_type
)
1838 return r_type
== R_MIPS_LO16
|| r_type
== R_MIPS16_LO16
;
1841 static inline bfd_boolean
1842 mips16_call_reloc_p (int r_type
)
1844 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
1848 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1849 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1851 bfd_vma extend
, insn
, val
;
1853 if (!mips16_reloc_p (r_type
))
1856 /* Pick up the mips16 extend instruction and the real instruction. */
1857 extend
= bfd_get_16 (abfd
, data
);
1858 insn
= bfd_get_16 (abfd
, data
+ 2);
1859 if (r_type
== R_MIPS16_26
)
1862 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1863 | ((extend
& 0x1f) << 21) | insn
;
1865 val
= extend
<< 16 | insn
;
1868 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1869 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1870 bfd_put_32 (abfd
, val
, data
);
1874 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1875 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1877 bfd_vma extend
, insn
, val
;
1879 if (!mips16_reloc_p (r_type
))
1882 val
= bfd_get_32 (abfd
, data
);
1883 if (r_type
== R_MIPS16_26
)
1887 insn
= val
& 0xffff;
1888 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1889 | ((val
>> 21) & 0x1f);
1893 insn
= val
& 0xffff;
1899 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1900 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1902 bfd_put_16 (abfd
, insn
, data
+ 2);
1903 bfd_put_16 (abfd
, extend
, data
);
1906 bfd_reloc_status_type
1907 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1908 arelent
*reloc_entry
, asection
*input_section
,
1909 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1913 bfd_reloc_status_type status
;
1915 if (bfd_is_com_section (symbol
->section
))
1918 relocation
= symbol
->value
;
1920 relocation
+= symbol
->section
->output_section
->vma
;
1921 relocation
+= symbol
->section
->output_offset
;
1923 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1924 return bfd_reloc_outofrange
;
1926 /* Set val to the offset into the section or symbol. */
1927 val
= reloc_entry
->addend
;
1929 _bfd_mips_elf_sign_extend (val
, 16);
1931 /* Adjust val for the final section location and GP value. If we
1932 are producing relocatable output, we don't want to do this for
1933 an external symbol. */
1935 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1936 val
+= relocation
- gp
;
1938 if (reloc_entry
->howto
->partial_inplace
)
1940 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1942 + reloc_entry
->address
);
1943 if (status
!= bfd_reloc_ok
)
1947 reloc_entry
->addend
= val
;
1950 reloc_entry
->address
+= input_section
->output_offset
;
1952 return bfd_reloc_ok
;
1955 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1956 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1957 that contains the relocation field and DATA points to the start of
1962 struct mips_hi16
*next
;
1964 asection
*input_section
;
1968 /* FIXME: This should not be a static variable. */
1970 static struct mips_hi16
*mips_hi16_list
;
1972 /* A howto special_function for REL *HI16 relocations. We can only
1973 calculate the correct value once we've seen the partnering
1974 *LO16 relocation, so just save the information for later.
1976 The ABI requires that the *LO16 immediately follow the *HI16.
1977 However, as a GNU extension, we permit an arbitrary number of
1978 *HI16s to be associated with a single *LO16. This significantly
1979 simplies the relocation handling in gcc. */
1981 bfd_reloc_status_type
1982 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1983 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1984 asection
*input_section
, bfd
*output_bfd
,
1985 char **error_message ATTRIBUTE_UNUSED
)
1987 struct mips_hi16
*n
;
1989 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1990 return bfd_reloc_outofrange
;
1992 n
= bfd_malloc (sizeof *n
);
1994 return bfd_reloc_outofrange
;
1996 n
->next
= mips_hi16_list
;
1998 n
->input_section
= input_section
;
1999 n
->rel
= *reloc_entry
;
2002 if (output_bfd
!= NULL
)
2003 reloc_entry
->address
+= input_section
->output_offset
;
2005 return bfd_reloc_ok
;
2008 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2009 like any other 16-bit relocation when applied to global symbols, but is
2010 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2012 bfd_reloc_status_type
2013 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2014 void *data
, asection
*input_section
,
2015 bfd
*output_bfd
, char **error_message
)
2017 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2018 || bfd_is_und_section (bfd_get_section (symbol
))
2019 || bfd_is_com_section (bfd_get_section (symbol
)))
2020 /* The relocation is against a global symbol. */
2021 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2022 input_section
, output_bfd
,
2025 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2026 input_section
, output_bfd
, error_message
);
2029 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2030 is a straightforward 16 bit inplace relocation, but we must deal with
2031 any partnering high-part relocations as well. */
2033 bfd_reloc_status_type
2034 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2035 void *data
, asection
*input_section
,
2036 bfd
*output_bfd
, char **error_message
)
2039 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2041 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2042 return bfd_reloc_outofrange
;
2044 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2046 vallo
= bfd_get_32 (abfd
, location
);
2047 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2050 while (mips_hi16_list
!= NULL
)
2052 bfd_reloc_status_type ret
;
2053 struct mips_hi16
*hi
;
2055 hi
= mips_hi16_list
;
2057 /* R_MIPS*_GOT16 relocations are something of a special case. We
2058 want to install the addend in the same way as for a R_MIPS*_HI16
2059 relocation (with a rightshift of 16). However, since GOT16
2060 relocations can also be used with global symbols, their howto
2061 has a rightshift of 0. */
2062 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2063 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2064 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2065 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2067 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2068 carry or borrow will induce a change of +1 or -1 in the high part. */
2069 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2071 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2072 hi
->input_section
, output_bfd
,
2074 if (ret
!= bfd_reloc_ok
)
2077 mips_hi16_list
= hi
->next
;
2081 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2082 input_section
, output_bfd
,
2086 /* A generic howto special_function. This calculates and installs the
2087 relocation itself, thus avoiding the oft-discussed problems in
2088 bfd_perform_relocation and bfd_install_relocation. */
2090 bfd_reloc_status_type
2091 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2092 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2093 asection
*input_section
, bfd
*output_bfd
,
2094 char **error_message ATTRIBUTE_UNUSED
)
2097 bfd_reloc_status_type status
;
2098 bfd_boolean relocatable
;
2100 relocatable
= (output_bfd
!= NULL
);
2102 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2103 return bfd_reloc_outofrange
;
2105 /* Build up the field adjustment in VAL. */
2107 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2109 /* Either we're calculating the final field value or we have a
2110 relocation against a section symbol. Add in the section's
2111 offset or address. */
2112 val
+= symbol
->section
->output_section
->vma
;
2113 val
+= symbol
->section
->output_offset
;
2118 /* We're calculating the final field value. Add in the symbol's value
2119 and, if pc-relative, subtract the address of the field itself. */
2120 val
+= symbol
->value
;
2121 if (reloc_entry
->howto
->pc_relative
)
2123 val
-= input_section
->output_section
->vma
;
2124 val
-= input_section
->output_offset
;
2125 val
-= reloc_entry
->address
;
2129 /* VAL is now the final adjustment. If we're keeping this relocation
2130 in the output file, and if the relocation uses a separate addend,
2131 we just need to add VAL to that addend. Otherwise we need to add
2132 VAL to the relocation field itself. */
2133 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2134 reloc_entry
->addend
+= val
;
2137 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2139 /* Add in the separate addend, if any. */
2140 val
+= reloc_entry
->addend
;
2142 /* Add VAL to the relocation field. */
2143 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2145 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2147 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2150 if (status
!= bfd_reloc_ok
)
2155 reloc_entry
->address
+= input_section
->output_offset
;
2157 return bfd_reloc_ok
;
2160 /* Swap an entry in a .gptab section. Note that these routines rely
2161 on the equivalence of the two elements of the union. */
2164 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2167 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2168 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2172 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2173 Elf32_External_gptab
*ex
)
2175 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2176 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2180 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2181 Elf32_External_compact_rel
*ex
)
2183 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2184 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2185 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2186 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2187 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2188 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2192 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2193 Elf32_External_crinfo
*ex
)
2197 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2198 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2199 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2200 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2201 H_PUT_32 (abfd
, l
, ex
->info
);
2202 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2203 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2206 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2207 routines swap this structure in and out. They are used outside of
2208 BFD, so they are globally visible. */
2211 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2214 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2215 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2216 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2217 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2218 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2219 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2223 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2224 Elf32_External_RegInfo
*ex
)
2226 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2227 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2228 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2229 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2230 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2231 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2234 /* In the 64 bit ABI, the .MIPS.options section holds register
2235 information in an Elf64_Reginfo structure. These routines swap
2236 them in and out. They are globally visible because they are used
2237 outside of BFD. These routines are here so that gas can call them
2238 without worrying about whether the 64 bit ABI has been included. */
2241 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2242 Elf64_Internal_RegInfo
*in
)
2244 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2245 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2246 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2247 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2248 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2249 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2250 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2254 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2255 Elf64_External_RegInfo
*ex
)
2257 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2258 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2259 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2260 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2261 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2262 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2263 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2266 /* Swap in an options header. */
2269 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2270 Elf_Internal_Options
*in
)
2272 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2273 in
->size
= H_GET_8 (abfd
, ex
->size
);
2274 in
->section
= H_GET_16 (abfd
, ex
->section
);
2275 in
->info
= H_GET_32 (abfd
, ex
->info
);
2278 /* Swap out an options header. */
2281 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2282 Elf_External_Options
*ex
)
2284 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2285 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2286 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2287 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2290 /* This function is called via qsort() to sort the dynamic relocation
2291 entries by increasing r_symndx value. */
2294 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2296 Elf_Internal_Rela int_reloc1
;
2297 Elf_Internal_Rela int_reloc2
;
2300 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2301 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2303 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2307 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2309 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2314 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2317 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2318 const void *arg2 ATTRIBUTE_UNUSED
)
2321 Elf_Internal_Rela int_reloc1
[3];
2322 Elf_Internal_Rela int_reloc2
[3];
2324 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2325 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2326 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2327 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2329 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2331 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2334 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2336 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2345 /* This routine is used to write out ECOFF debugging external symbol
2346 information. It is called via mips_elf_link_hash_traverse. The
2347 ECOFF external symbol information must match the ELF external
2348 symbol information. Unfortunately, at this point we don't know
2349 whether a symbol is required by reloc information, so the two
2350 tables may wind up being different. We must sort out the external
2351 symbol information before we can set the final size of the .mdebug
2352 section, and we must set the size of the .mdebug section before we
2353 can relocate any sections, and we can't know which symbols are
2354 required by relocation until we relocate the sections.
2355 Fortunately, it is relatively unlikely that any symbol will be
2356 stripped but required by a reloc. In particular, it can not happen
2357 when generating a final executable. */
2360 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2362 struct extsym_info
*einfo
= data
;
2364 asection
*sec
, *output_section
;
2366 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2367 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2369 if (h
->root
.indx
== -2)
2371 else if ((h
->root
.def_dynamic
2372 || h
->root
.ref_dynamic
2373 || h
->root
.type
== bfd_link_hash_new
)
2374 && !h
->root
.def_regular
2375 && !h
->root
.ref_regular
)
2377 else if (einfo
->info
->strip
== strip_all
2378 || (einfo
->info
->strip
== strip_some
2379 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2380 h
->root
.root
.root
.string
,
2381 FALSE
, FALSE
) == NULL
))
2389 if (h
->esym
.ifd
== -2)
2392 h
->esym
.cobol_main
= 0;
2393 h
->esym
.weakext
= 0;
2394 h
->esym
.reserved
= 0;
2395 h
->esym
.ifd
= ifdNil
;
2396 h
->esym
.asym
.value
= 0;
2397 h
->esym
.asym
.st
= stGlobal
;
2399 if (h
->root
.root
.type
== bfd_link_hash_undefined
2400 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2404 /* Use undefined class. Also, set class and type for some
2406 name
= h
->root
.root
.root
.string
;
2407 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2408 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2410 h
->esym
.asym
.sc
= scData
;
2411 h
->esym
.asym
.st
= stLabel
;
2412 h
->esym
.asym
.value
= 0;
2414 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2416 h
->esym
.asym
.sc
= scAbs
;
2417 h
->esym
.asym
.st
= stLabel
;
2418 h
->esym
.asym
.value
=
2419 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2421 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2423 h
->esym
.asym
.sc
= scAbs
;
2424 h
->esym
.asym
.st
= stLabel
;
2425 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2428 h
->esym
.asym
.sc
= scUndefined
;
2430 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2431 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2432 h
->esym
.asym
.sc
= scAbs
;
2437 sec
= h
->root
.root
.u
.def
.section
;
2438 output_section
= sec
->output_section
;
2440 /* When making a shared library and symbol h is the one from
2441 the another shared library, OUTPUT_SECTION may be null. */
2442 if (output_section
== NULL
)
2443 h
->esym
.asym
.sc
= scUndefined
;
2446 name
= bfd_section_name (output_section
->owner
, output_section
);
2448 if (strcmp (name
, ".text") == 0)
2449 h
->esym
.asym
.sc
= scText
;
2450 else if (strcmp (name
, ".data") == 0)
2451 h
->esym
.asym
.sc
= scData
;
2452 else if (strcmp (name
, ".sdata") == 0)
2453 h
->esym
.asym
.sc
= scSData
;
2454 else if (strcmp (name
, ".rodata") == 0
2455 || strcmp (name
, ".rdata") == 0)
2456 h
->esym
.asym
.sc
= scRData
;
2457 else if (strcmp (name
, ".bss") == 0)
2458 h
->esym
.asym
.sc
= scBss
;
2459 else if (strcmp (name
, ".sbss") == 0)
2460 h
->esym
.asym
.sc
= scSBss
;
2461 else if (strcmp (name
, ".init") == 0)
2462 h
->esym
.asym
.sc
= scInit
;
2463 else if (strcmp (name
, ".fini") == 0)
2464 h
->esym
.asym
.sc
= scFini
;
2466 h
->esym
.asym
.sc
= scAbs
;
2470 h
->esym
.asym
.reserved
= 0;
2471 h
->esym
.asym
.index
= indexNil
;
2474 if (h
->root
.root
.type
== bfd_link_hash_common
)
2475 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2476 else if (h
->root
.root
.type
== bfd_link_hash_defined
2477 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2479 if (h
->esym
.asym
.sc
== scCommon
)
2480 h
->esym
.asym
.sc
= scBss
;
2481 else if (h
->esym
.asym
.sc
== scSCommon
)
2482 h
->esym
.asym
.sc
= scSBss
;
2484 sec
= h
->root
.root
.u
.def
.section
;
2485 output_section
= sec
->output_section
;
2486 if (output_section
!= NULL
)
2487 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2488 + sec
->output_offset
2489 + output_section
->vma
);
2491 h
->esym
.asym
.value
= 0;
2495 struct mips_elf_link_hash_entry
*hd
= h
;
2497 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2498 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2500 if (hd
->needs_lazy_stub
)
2502 /* Set type and value for a symbol with a function stub. */
2503 h
->esym
.asym
.st
= stProc
;
2504 sec
= hd
->root
.root
.u
.def
.section
;
2506 h
->esym
.asym
.value
= 0;
2509 output_section
= sec
->output_section
;
2510 if (output_section
!= NULL
)
2511 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2512 + sec
->output_offset
2513 + output_section
->vma
);
2515 h
->esym
.asym
.value
= 0;
2520 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2521 h
->root
.root
.root
.string
,
2524 einfo
->failed
= TRUE
;
2531 /* A comparison routine used to sort .gptab entries. */
2534 gptab_compare (const void *p1
, const void *p2
)
2536 const Elf32_gptab
*a1
= p1
;
2537 const Elf32_gptab
*a2
= p2
;
2539 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2542 /* Functions to manage the got entry hash table. */
2544 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2547 static INLINE hashval_t
2548 mips_elf_hash_bfd_vma (bfd_vma addr
)
2551 return addr
+ (addr
>> 32);
2557 /* got_entries only match if they're identical, except for gotidx, so
2558 use all fields to compute the hash, and compare the appropriate
2562 mips_elf_got_entry_hash (const void *entry_
)
2564 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2566 return entry
->symndx
2567 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2568 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2570 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2571 : entry
->d
.h
->root
.root
.root
.hash
));
2575 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2577 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2578 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2580 /* An LDM entry can only match another LDM entry. */
2581 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2584 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2585 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2586 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2587 : e1
->d
.h
== e2
->d
.h
);
2590 /* multi_got_entries are still a match in the case of global objects,
2591 even if the input bfd in which they're referenced differs, so the
2592 hash computation and compare functions are adjusted
2596 mips_elf_multi_got_entry_hash (const void *entry_
)
2598 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2600 return entry
->symndx
2602 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2603 : entry
->symndx
>= 0
2604 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2605 ? (GOT_TLS_LDM
<< 17)
2607 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2608 : entry
->d
.h
->root
.root
.root
.hash
);
2612 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2614 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2615 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2617 /* Any two LDM entries match. */
2618 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2621 /* Nothing else matches an LDM entry. */
2622 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2625 return e1
->symndx
== e2
->symndx
2626 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2627 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2628 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2629 : e1
->d
.h
== e2
->d
.h
);
2633 mips_got_page_entry_hash (const void *entry_
)
2635 const struct mips_got_page_entry
*entry
;
2637 entry
= (const struct mips_got_page_entry
*) entry_
;
2638 return entry
->abfd
->id
+ entry
->symndx
;
2642 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2644 const struct mips_got_page_entry
*entry1
, *entry2
;
2646 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2647 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2648 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2651 /* Return the dynamic relocation section. If it doesn't exist, try to
2652 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2653 if creation fails. */
2656 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2662 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2663 dynobj
= elf_hash_table (info
)->dynobj
;
2664 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2665 if (sreloc
== NULL
&& create_p
)
2667 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2672 | SEC_LINKER_CREATED
2675 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2676 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2682 /* Count the number of relocations needed for a TLS GOT entry, with
2683 access types from TLS_TYPE, and symbol H (or a local symbol if H
2687 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2688 struct elf_link_hash_entry
*h
)
2692 bfd_boolean need_relocs
= FALSE
;
2693 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2695 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2696 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2699 if ((info
->shared
|| indx
!= 0)
2701 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2702 || h
->root
.type
!= bfd_link_hash_undefweak
))
2708 if (tls_type
& GOT_TLS_GD
)
2715 if (tls_type
& GOT_TLS_IE
)
2718 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2724 /* Count the number of TLS relocations required for the GOT entry in
2725 ARG1, if it describes a local symbol. */
2728 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2730 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2731 struct mips_elf_count_tls_arg
*arg
= arg2
;
2733 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2734 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2739 /* Count the number of TLS GOT entries required for the global (or
2740 forced-local) symbol in ARG1. */
2743 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2745 struct mips_elf_link_hash_entry
*hm
2746 = (struct mips_elf_link_hash_entry
*) arg1
;
2747 struct mips_elf_count_tls_arg
*arg
= arg2
;
2749 if (hm
->tls_type
& GOT_TLS_GD
)
2751 if (hm
->tls_type
& GOT_TLS_IE
)
2757 /* Count the number of TLS relocations required for the global (or
2758 forced-local) symbol in ARG1. */
2761 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2763 struct mips_elf_link_hash_entry
*hm
2764 = (struct mips_elf_link_hash_entry
*) arg1
;
2765 struct mips_elf_count_tls_arg
*arg
= arg2
;
2767 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2772 /* Output a simple dynamic relocation into SRELOC. */
2775 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2777 unsigned long reloc_index
,
2782 Elf_Internal_Rela rel
[3];
2784 memset (rel
, 0, sizeof (rel
));
2786 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2787 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2789 if (ABI_64_P (output_bfd
))
2791 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2792 (output_bfd
, &rel
[0],
2794 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2797 bfd_elf32_swap_reloc_out
2798 (output_bfd
, &rel
[0],
2800 + reloc_index
* sizeof (Elf32_External_Rel
)));
2803 /* Initialize a set of TLS GOT entries for one symbol. */
2806 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2807 unsigned char *tls_type_p
,
2808 struct bfd_link_info
*info
,
2809 struct mips_elf_link_hash_entry
*h
,
2812 struct mips_elf_link_hash_table
*htab
;
2814 asection
*sreloc
, *sgot
;
2815 bfd_vma offset
, offset2
;
2816 bfd_boolean need_relocs
= FALSE
;
2818 htab
= mips_elf_hash_table (info
);
2824 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2826 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2827 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2828 indx
= h
->root
.dynindx
;
2831 if (*tls_type_p
& GOT_TLS_DONE
)
2834 if ((info
->shared
|| indx
!= 0)
2836 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2837 || h
->root
.type
!= bfd_link_hash_undefweak
))
2840 /* MINUS_ONE means the symbol is not defined in this object. It may not
2841 be defined at all; assume that the value doesn't matter in that
2842 case. Otherwise complain if we would use the value. */
2843 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2844 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2846 /* Emit necessary relocations. */
2847 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2849 /* General Dynamic. */
2850 if (*tls_type_p
& GOT_TLS_GD
)
2852 offset
= got_offset
;
2853 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2857 mips_elf_output_dynamic_relocation
2858 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2859 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2860 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2863 mips_elf_output_dynamic_relocation
2864 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2865 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2866 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2868 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2869 sgot
->contents
+ offset2
);
2873 MIPS_ELF_PUT_WORD (abfd
, 1,
2874 sgot
->contents
+ offset
);
2875 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2876 sgot
->contents
+ offset2
);
2879 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2882 /* Initial Exec model. */
2883 if (*tls_type_p
& GOT_TLS_IE
)
2885 offset
= got_offset
;
2890 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2891 sgot
->contents
+ offset
);
2893 MIPS_ELF_PUT_WORD (abfd
, 0,
2894 sgot
->contents
+ offset
);
2896 mips_elf_output_dynamic_relocation
2897 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2898 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2899 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2902 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2903 sgot
->contents
+ offset
);
2906 if (*tls_type_p
& GOT_TLS_LDM
)
2908 /* The initial offset is zero, and the LD offsets will include the
2909 bias by DTP_OFFSET. */
2910 MIPS_ELF_PUT_WORD (abfd
, 0,
2911 sgot
->contents
+ got_offset
2912 + MIPS_ELF_GOT_SIZE (abfd
));
2915 MIPS_ELF_PUT_WORD (abfd
, 1,
2916 sgot
->contents
+ got_offset
);
2918 mips_elf_output_dynamic_relocation
2919 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2920 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2921 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2924 *tls_type_p
|= GOT_TLS_DONE
;
2927 /* Return the GOT index to use for a relocation of type R_TYPE against
2928 a symbol accessed using TLS_TYPE models. The GOT entries for this
2929 symbol in this GOT start at GOT_INDEX. This function initializes the
2930 GOT entries and corresponding relocations. */
2933 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2934 int r_type
, struct bfd_link_info
*info
,
2935 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2937 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2938 || r_type
== R_MIPS_TLS_LDM
);
2940 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2942 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2944 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2945 if (*tls_type
& GOT_TLS_GD
)
2946 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2951 if (r_type
== R_MIPS_TLS_GD
)
2953 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2957 if (r_type
== R_MIPS_TLS_LDM
)
2959 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2966 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2967 for global symbol H. .got.plt comes before the GOT, so the offset
2968 will be negative. */
2971 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2972 struct elf_link_hash_entry
*h
)
2974 bfd_vma plt_index
, got_address
, got_value
;
2975 struct mips_elf_link_hash_table
*htab
;
2977 htab
= mips_elf_hash_table (info
);
2978 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
2980 /* This function only works for VxWorks, because a non-VxWorks .got.plt
2981 section starts with reserved entries. */
2982 BFD_ASSERT (htab
->is_vxworks
);
2984 /* Calculate the index of the symbol's PLT entry. */
2985 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
2987 /* Calculate the address of the associated .got.plt entry. */
2988 got_address
= (htab
->sgotplt
->output_section
->vma
2989 + htab
->sgotplt
->output_offset
2992 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2993 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
2994 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
2995 + htab
->root
.hgot
->root
.u
.def
.value
);
2997 return got_address
- got_value
;
3000 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3001 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3002 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3003 offset can be found. */
3006 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3007 bfd_vma value
, unsigned long r_symndx
,
3008 struct mips_elf_link_hash_entry
*h
, int r_type
)
3010 struct mips_elf_link_hash_table
*htab
;
3011 struct mips_got_entry
*entry
;
3013 htab
= mips_elf_hash_table (info
);
3014 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3015 r_symndx
, h
, r_type
);
3019 if (TLS_RELOC_P (r_type
))
3021 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3022 /* A type (3) entry in the single-GOT case. We use the symbol's
3023 hash table entry to track the index. */
3024 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3025 r_type
, info
, h
, value
);
3027 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3028 r_type
, info
, h
, value
);
3031 return entry
->gotidx
;
3034 /* Returns the GOT index for the global symbol indicated by H. */
3037 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3038 int r_type
, struct bfd_link_info
*info
)
3040 struct mips_elf_link_hash_table
*htab
;
3042 struct mips_got_info
*g
, *gg
;
3043 long global_got_dynindx
= 0;
3045 htab
= mips_elf_hash_table (info
);
3046 gg
= g
= htab
->got_info
;
3047 if (g
->bfd2got
&& ibfd
)
3049 struct mips_got_entry e
, *p
;
3051 BFD_ASSERT (h
->dynindx
>= 0);
3053 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3054 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3058 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3061 p
= htab_find (g
->got_entries
, &e
);
3063 BFD_ASSERT (p
->gotidx
> 0);
3065 if (TLS_RELOC_P (r_type
))
3067 bfd_vma value
= MINUS_ONE
;
3068 if ((h
->root
.type
== bfd_link_hash_defined
3069 || h
->root
.type
== bfd_link_hash_defweak
)
3070 && h
->root
.u
.def
.section
->output_section
)
3071 value
= (h
->root
.u
.def
.value
3072 + h
->root
.u
.def
.section
->output_offset
3073 + h
->root
.u
.def
.section
->output_section
->vma
);
3075 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3076 info
, e
.d
.h
, value
);
3083 if (gg
->global_gotsym
!= NULL
)
3084 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3086 if (TLS_RELOC_P (r_type
))
3088 struct mips_elf_link_hash_entry
*hm
3089 = (struct mips_elf_link_hash_entry
*) h
;
3090 bfd_vma value
= MINUS_ONE
;
3092 if ((h
->root
.type
== bfd_link_hash_defined
3093 || h
->root
.type
== bfd_link_hash_defweak
)
3094 && h
->root
.u
.def
.section
->output_section
)
3095 value
= (h
->root
.u
.def
.value
3096 + h
->root
.u
.def
.section
->output_offset
3097 + h
->root
.u
.def
.section
->output_section
->vma
);
3099 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3100 r_type
, info
, hm
, value
);
3104 /* Once we determine the global GOT entry with the lowest dynamic
3105 symbol table index, we must put all dynamic symbols with greater
3106 indices into the GOT. That makes it easy to calculate the GOT
3108 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3109 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3110 * MIPS_ELF_GOT_SIZE (abfd
));
3112 BFD_ASSERT (index
< htab
->sgot
->size
);
3117 /* Find a GOT page entry that points to within 32KB of VALUE. These
3118 entries are supposed to be placed at small offsets in the GOT, i.e.,
3119 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3120 entry could be created. If OFFSETP is nonnull, use it to return the
3121 offset of the GOT entry from VALUE. */
3124 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3125 bfd_vma value
, bfd_vma
*offsetp
)
3127 bfd_vma page
, index
;
3128 struct mips_got_entry
*entry
;
3130 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3131 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3132 NULL
, R_MIPS_GOT_PAGE
);
3137 index
= entry
->gotidx
;
3140 *offsetp
= value
- entry
->d
.address
;
3145 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3146 EXTERNAL is true if the relocation was against a global symbol
3147 that has been forced local. */
3150 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3151 bfd_vma value
, bfd_boolean external
)
3153 struct mips_got_entry
*entry
;
3155 /* GOT16 relocations against local symbols are followed by a LO16
3156 relocation; those against global symbols are not. Thus if the
3157 symbol was originally local, the GOT16 relocation should load the
3158 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3160 value
= mips_elf_high (value
) << 16;
3162 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3163 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3164 same in all cases. */
3165 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3166 NULL
, R_MIPS_GOT16
);
3168 return entry
->gotidx
;
3173 /* Returns the offset for the entry at the INDEXth position
3177 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3178 bfd
*input_bfd
, bfd_vma index
)
3180 struct mips_elf_link_hash_table
*htab
;
3184 htab
= mips_elf_hash_table (info
);
3186 gp
= _bfd_get_gp_value (output_bfd
)
3187 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3189 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
3192 /* Create and return a local GOT entry for VALUE, which was calculated
3193 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3194 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3197 static struct mips_got_entry
*
3198 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3199 bfd
*ibfd
, bfd_vma value
,
3200 unsigned long r_symndx
,
3201 struct mips_elf_link_hash_entry
*h
,
3204 struct mips_got_entry entry
, **loc
;
3205 struct mips_got_info
*g
;
3206 struct mips_elf_link_hash_table
*htab
;
3208 htab
= mips_elf_hash_table (info
);
3212 entry
.d
.address
= value
;
3215 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3218 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3219 BFD_ASSERT (g
!= NULL
);
3222 /* We might have a symbol, H, if it has been forced local. Use the
3223 global entry then. It doesn't matter whether an entry is local
3224 or global for TLS, since the dynamic linker does not
3225 automatically relocate TLS GOT entries. */
3226 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
3227 if (TLS_RELOC_P (r_type
))
3229 struct mips_got_entry
*p
;
3232 if (r_type
== R_MIPS_TLS_LDM
)
3234 entry
.tls_type
= GOT_TLS_LDM
;
3240 entry
.symndx
= r_symndx
;
3246 p
= (struct mips_got_entry
*)
3247 htab_find (g
->got_entries
, &entry
);
3253 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3258 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3261 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3266 memcpy (*loc
, &entry
, sizeof entry
);
3268 if (g
->assigned_gotno
> g
->local_gotno
)
3270 (*loc
)->gotidx
= -1;
3271 /* We didn't allocate enough space in the GOT. */
3272 (*_bfd_error_handler
)
3273 (_("not enough GOT space for local GOT entries"));
3274 bfd_set_error (bfd_error_bad_value
);
3278 MIPS_ELF_PUT_WORD (abfd
, value
,
3279 (htab
->sgot
->contents
+ entry
.gotidx
));
3281 /* These GOT entries need a dynamic relocation on VxWorks. */
3282 if (htab
->is_vxworks
)
3284 Elf_Internal_Rela outrel
;
3287 bfd_vma got_address
;
3289 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3290 got_address
= (htab
->sgot
->output_section
->vma
3291 + htab
->sgot
->output_offset
3294 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3295 outrel
.r_offset
= got_address
;
3296 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3297 outrel
.r_addend
= value
;
3298 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
3304 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3305 The number might be exact or a worst-case estimate, depending on how
3306 much information is available to elf_backend_omit_section_dynsym at
3307 the current linking stage. */
3309 static bfd_size_type
3310 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3312 bfd_size_type count
;
3315 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3318 const struct elf_backend_data
*bed
;
3320 bed
= get_elf_backend_data (output_bfd
);
3321 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3322 if ((p
->flags
& SEC_EXCLUDE
) == 0
3323 && (p
->flags
& SEC_ALLOC
) != 0
3324 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3330 /* Sort the dynamic symbol table so that symbols that need GOT entries
3331 appear towards the end. */
3334 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3336 struct mips_elf_link_hash_table
*htab
;
3337 struct mips_elf_hash_sort_data hsd
;
3338 struct mips_got_info
*g
;
3340 if (elf_hash_table (info
)->dynsymcount
== 0)
3343 htab
= mips_elf_hash_table (info
);
3349 hsd
.max_unref_got_dynindx
3350 = hsd
.min_got_dynindx
3351 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3352 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3353 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3354 elf_hash_table (info
)),
3355 mips_elf_sort_hash_table_f
,
3358 /* There should have been enough room in the symbol table to
3359 accommodate both the GOT and non-GOT symbols. */
3360 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3361 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3362 == elf_hash_table (info
)->dynsymcount
);
3363 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3364 == g
->global_gotno
);
3366 /* Now we know which dynamic symbol has the lowest dynamic symbol
3367 table index in the GOT. */
3368 g
->global_gotsym
= hsd
.low
;
3373 /* If H needs a GOT entry, assign it the highest available dynamic
3374 index. Otherwise, assign it the lowest available dynamic
3378 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3380 struct mips_elf_hash_sort_data
*hsd
= data
;
3382 if (h
->root
.root
.type
== bfd_link_hash_warning
)
3383 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3385 /* Symbols without dynamic symbol table entries aren't interesting
3387 if (h
->root
.dynindx
== -1)
3390 switch (h
->global_got_area
)
3393 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3397 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3399 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3400 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3403 case GGA_RELOC_ONLY
:
3404 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3406 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3407 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3408 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3415 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3416 symbol table index lower than any we've seen to date, record it for
3420 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3421 bfd
*abfd
, struct bfd_link_info
*info
,
3422 unsigned char tls_flag
)
3424 struct mips_elf_link_hash_table
*htab
;
3425 struct mips_elf_link_hash_entry
*hmips
;
3426 struct mips_got_entry entry
, **loc
;
3427 struct mips_got_info
*g
;
3429 htab
= mips_elf_hash_table (info
);
3430 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3432 /* A global symbol in the GOT must also be in the dynamic symbol
3434 if (h
->dynindx
== -1)
3436 switch (ELF_ST_VISIBILITY (h
->other
))
3440 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3443 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3447 /* Make sure we have a GOT to put this entry into. */
3449 BFD_ASSERT (g
!= NULL
);
3453 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3456 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3459 /* If we've already marked this entry as needing GOT space, we don't
3460 need to do it again. */
3463 (*loc
)->tls_type
|= tls_flag
;
3467 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3473 entry
.tls_type
= tls_flag
;
3475 memcpy (*loc
, &entry
, sizeof entry
);
3478 hmips
->global_got_area
= GGA_NORMAL
;
3483 /* Reserve space in G for a GOT entry containing the value of symbol
3484 SYMNDX in input bfd ABDF, plus ADDEND. */
3487 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3488 struct bfd_link_info
*info
,
3489 unsigned char tls_flag
)
3491 struct mips_elf_link_hash_table
*htab
;
3492 struct mips_got_info
*g
;
3493 struct mips_got_entry entry
, **loc
;
3495 htab
= mips_elf_hash_table (info
);
3497 BFD_ASSERT (g
!= NULL
);
3500 entry
.symndx
= symndx
;
3501 entry
.d
.addend
= addend
;
3502 entry
.tls_type
= tls_flag
;
3503 loc
= (struct mips_got_entry
**)
3504 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3508 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3511 (*loc
)->tls_type
|= tls_flag
;
3513 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3516 (*loc
)->tls_type
|= tls_flag
;
3524 entry
.tls_type
= tls_flag
;
3525 if (tls_flag
== GOT_TLS_IE
)
3527 else if (tls_flag
== GOT_TLS_GD
)
3529 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3531 g
->tls_ldm_offset
= MINUS_TWO
;
3537 entry
.gotidx
= g
->local_gotno
++;
3541 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3546 memcpy (*loc
, &entry
, sizeof entry
);
3551 /* Return the maximum number of GOT page entries required for RANGE. */
3554 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3556 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3559 /* Record that ABFD has a page relocation against symbol SYMNDX and
3560 that ADDEND is the addend for that relocation.
3562 This function creates an upper bound on the number of GOT slots
3563 required; no attempt is made to combine references to non-overridable
3564 global symbols across multiple input files. */
3567 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3568 long symndx
, bfd_signed_vma addend
)
3570 struct mips_elf_link_hash_table
*htab
;
3571 struct mips_got_info
*g
;
3572 struct mips_got_page_entry lookup
, *entry
;
3573 struct mips_got_page_range
**range_ptr
, *range
;
3574 bfd_vma old_pages
, new_pages
;
3577 htab
= mips_elf_hash_table (info
);
3579 BFD_ASSERT (g
!= NULL
);
3581 /* Find the mips_got_page_entry hash table entry for this symbol. */
3583 lookup
.symndx
= symndx
;
3584 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3588 /* Create a mips_got_page_entry if this is the first time we've
3590 entry
= (struct mips_got_page_entry
*) *loc
;
3593 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3598 entry
->symndx
= symndx
;
3599 entry
->ranges
= NULL
;
3600 entry
->num_pages
= 0;
3604 /* Skip over ranges whose maximum extent cannot share a page entry
3606 range_ptr
= &entry
->ranges
;
3607 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3608 range_ptr
= &(*range_ptr
)->next
;
3610 /* If we scanned to the end of the list, or found a range whose
3611 minimum extent cannot share a page entry with ADDEND, create
3612 a new singleton range. */
3614 if (!range
|| addend
< range
->min_addend
- 0xffff)
3616 range
= bfd_alloc (abfd
, sizeof (*range
));
3620 range
->next
= *range_ptr
;
3621 range
->min_addend
= addend
;
3622 range
->max_addend
= addend
;
3630 /* Remember how many pages the old range contributed. */
3631 old_pages
= mips_elf_pages_for_range (range
);
3633 /* Update the ranges. */
3634 if (addend
< range
->min_addend
)
3635 range
->min_addend
= addend
;
3636 else if (addend
> range
->max_addend
)
3638 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3640 old_pages
+= mips_elf_pages_for_range (range
->next
);
3641 range
->max_addend
= range
->next
->max_addend
;
3642 range
->next
= range
->next
->next
;
3645 range
->max_addend
= addend
;
3648 /* Record any change in the total estimate. */
3649 new_pages
= mips_elf_pages_for_range (range
);
3650 if (old_pages
!= new_pages
)
3652 entry
->num_pages
+= new_pages
- old_pages
;
3653 g
->page_gotno
+= new_pages
- old_pages
;
3659 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3662 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3666 struct mips_elf_link_hash_table
*htab
;
3668 htab
= mips_elf_hash_table (info
);
3669 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3670 BFD_ASSERT (s
!= NULL
);
3672 if (htab
->is_vxworks
)
3673 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3678 /* Make room for a null element. */
3679 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3682 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3686 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3687 if the GOT entry is for an indirect or warning symbol. */
3690 mips_elf_check_recreate_got (void **entryp
, void *data
)
3692 struct mips_got_entry
*entry
;
3693 bfd_boolean
*must_recreate
;
3695 entry
= (struct mips_got_entry
*) *entryp
;
3696 must_recreate
= (bfd_boolean
*) data
;
3697 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3699 struct mips_elf_link_hash_entry
*h
;
3702 if (h
->root
.root
.type
== bfd_link_hash_indirect
3703 || h
->root
.root
.type
== bfd_link_hash_warning
)
3705 *must_recreate
= TRUE
;
3712 /* A htab_traverse callback for GOT entries. Add all entries to
3713 hash table *DATA, converting entries for indirect and warning
3714 symbols into entries for the target symbol. Set *DATA to null
3718 mips_elf_recreate_got (void **entryp
, void *data
)
3721 struct mips_got_entry
*entry
;
3724 new_got
= (htab_t
*) data
;
3725 entry
= (struct mips_got_entry
*) *entryp
;
3726 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3728 struct mips_elf_link_hash_entry
*h
;
3731 while (h
->root
.root
.type
== bfd_link_hash_indirect
3732 || h
->root
.root
.type
== bfd_link_hash_warning
)
3734 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3735 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3739 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3752 /* If any entries in G->got_entries are for indirect or warning symbols,
3753 replace them with entries for the target symbol. */
3756 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3758 bfd_boolean must_recreate
;
3761 must_recreate
= FALSE
;
3762 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3765 new_got
= htab_create (htab_size (g
->got_entries
),
3766 mips_elf_got_entry_hash
,
3767 mips_elf_got_entry_eq
, NULL
);
3768 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3769 if (new_got
== NULL
)
3772 /* Each entry in g->got_entries has either been copied to new_got
3773 or freed. Now delete the hash table itself. */
3774 htab_delete (g
->got_entries
);
3775 g
->got_entries
= new_got
;
3780 /* A mips_elf_link_hash_traverse callback for which DATA points
3781 to a mips_got_info. Count the number of type (3) entries. */
3784 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
3786 struct mips_got_info
*g
;
3788 g
= (struct mips_got_info
*) data
;
3789 if (h
->global_got_area
!= GGA_NONE
)
3791 if (h
->root
.forced_local
|| h
->root
.dynindx
== -1)
3793 /* We no longer need this entry if it was only used for
3794 relocations; those relocations will be against the
3795 null or section symbol instead of H. */
3796 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
3798 h
->global_got_area
= GGA_NONE
;
3803 if (h
->global_got_area
== GGA_RELOC_ONLY
)
3804 g
->reloc_only_gotno
++;
3810 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3813 mips_elf_bfd2got_entry_hash (const void *entry_
)
3815 const struct mips_elf_bfd2got_hash
*entry
3816 = (struct mips_elf_bfd2got_hash
*)entry_
;
3818 return entry
->bfd
->id
;
3821 /* Check whether two hash entries have the same bfd. */
3824 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
3826 const struct mips_elf_bfd2got_hash
*e1
3827 = (const struct mips_elf_bfd2got_hash
*)entry1
;
3828 const struct mips_elf_bfd2got_hash
*e2
3829 = (const struct mips_elf_bfd2got_hash
*)entry2
;
3831 return e1
->bfd
== e2
->bfd
;
3834 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3835 be the master GOT data. */
3837 static struct mips_got_info
*
3838 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
3840 struct mips_elf_bfd2got_hash e
, *p
;
3846 p
= htab_find (g
->bfd2got
, &e
);
3847 return p
? p
->g
: NULL
;
3850 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3851 Return NULL if an error occured. */
3853 static struct mips_got_info
*
3854 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
3857 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3858 struct mips_got_info
*g
;
3861 bfdgot_entry
.bfd
= input_bfd
;
3862 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3863 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
3867 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
3868 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
3874 g
= ((struct mips_got_info
*)
3875 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
3879 bfdgot
->bfd
= input_bfd
;
3882 g
->global_gotsym
= NULL
;
3883 g
->global_gotno
= 0;
3884 g
->reloc_only_gotno
= 0;
3887 g
->assigned_gotno
= -1;
3889 g
->tls_assigned_gotno
= 0;
3890 g
->tls_ldm_offset
= MINUS_ONE
;
3891 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3892 mips_elf_multi_got_entry_eq
, NULL
);
3893 if (g
->got_entries
== NULL
)
3896 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
3897 mips_got_page_entry_eq
, NULL
);
3898 if (g
->got_page_entries
== NULL
)
3908 /* A htab_traverse callback for the entries in the master got.
3909 Create one separate got for each bfd that has entries in the global
3910 got, such that we can tell how many local and global entries each
3914 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
3916 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3917 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3918 struct mips_got_info
*g
;
3920 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3927 /* Insert the GOT entry in the bfd's got entry hash table. */
3928 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3929 if (*entryp
!= NULL
)
3934 if (entry
->tls_type
)
3936 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3938 if (entry
->tls_type
& GOT_TLS_IE
)
3941 else if (entry
->symndx
>= 0 || entry
->d
.h
->root
.forced_local
)
3949 /* A htab_traverse callback for the page entries in the master got.
3950 Associate each page entry with the bfd's got. */
3953 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
3955 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
3956 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
3957 struct mips_got_info
*g
;
3959 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3966 /* Insert the GOT entry in the bfd's got entry hash table. */
3967 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
3968 if (*entryp
!= NULL
)
3972 g
->page_gotno
+= entry
->num_pages
;
3976 /* Consider merging the got described by BFD2GOT with TO, using the
3977 information given by ARG. Return -1 if this would lead to overflow,
3978 1 if they were merged successfully, and 0 if a merge failed due to
3979 lack of memory. (These values are chosen so that nonnegative return
3980 values can be returned by a htab_traverse callback.) */
3983 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
3984 struct mips_got_info
*to
,
3985 struct mips_elf_got_per_bfd_arg
*arg
)
3987 struct mips_got_info
*from
= bfd2got
->g
;
3988 unsigned int estimate
;
3990 /* Work out how many page entries we would need for the combined GOT. */
3991 estimate
= arg
->max_pages
;
3992 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
3993 estimate
= from
->page_gotno
+ to
->page_gotno
;
3995 /* And conservatively estimate how many local, global and TLS entries
3997 estimate
+= (from
->local_gotno
3998 + from
->global_gotno
4004 /* Bail out if the combined GOT might be too big. */
4005 if (estimate
> arg
->max_count
)
4008 /* Commit to the merge. Record that TO is now the bfd for this got. */
4011 /* Transfer the bfd's got information from FROM to TO. */
4012 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4013 if (arg
->obfd
== NULL
)
4016 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4017 if (arg
->obfd
== NULL
)
4020 /* We don't have to worry about releasing memory of the actual
4021 got entries, since they're all in the master got_entries hash
4023 htab_delete (from
->got_entries
);
4024 htab_delete (from
->got_page_entries
);
4028 /* Attempt to merge gots of different input bfds. Try to use as much
4029 as possible of the primary got, since it doesn't require explicit
4030 dynamic relocations, but don't use bfds that would reference global
4031 symbols out of the addressable range. Failing the primary got,
4032 attempt to merge with the current got, or finish the current got
4033 and then make make the new got current. */
4036 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4038 struct mips_elf_bfd2got_hash
*bfd2got
4039 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4040 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4041 struct mips_got_info
*g
;
4042 unsigned int estimate
;
4047 /* Work out the number of page, local and TLS entries. */
4048 estimate
= arg
->max_pages
;
4049 if (estimate
> g
->page_gotno
)
4050 estimate
= g
->page_gotno
;
4051 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4053 /* We place TLS GOT entries after both locals and globals. The globals
4054 for the primary GOT may overflow the normal GOT size limit, so be
4055 sure not to merge a GOT which requires TLS with the primary GOT in that
4056 case. This doesn't affect non-primary GOTs. */
4057 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4059 if (estimate
<= arg
->max_count
)
4061 /* If we don't have a primary GOT, use it as
4062 a starting point for the primary GOT. */
4065 arg
->primary
= bfd2got
->g
;
4069 /* Try merging with the primary GOT. */
4070 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4075 /* If we can merge with the last-created got, do it. */
4078 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4083 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4084 fits; if it turns out that it doesn't, we'll get relocation
4085 overflows anyway. */
4086 g
->next
= arg
->current
;
4092 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4093 is null iff there is just a single GOT. */
4096 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4098 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4099 struct mips_got_info
*g
= p
;
4101 unsigned char tls_type
;
4103 /* We're only interested in TLS symbols. */
4104 if (entry
->tls_type
== 0)
4107 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4109 if (entry
->symndx
== -1 && g
->next
== NULL
)
4111 /* A type (3) got entry in the single-GOT case. We use the symbol's
4112 hash table entry to track its index. */
4113 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4115 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4116 entry
->d
.h
->tls_got_offset
= next_index
;
4117 tls_type
= entry
->d
.h
->tls_type
;
4121 if (entry
->tls_type
& GOT_TLS_LDM
)
4123 /* There are separate mips_got_entry objects for each input bfd
4124 that requires an LDM entry. Make sure that all LDM entries in
4125 a GOT resolve to the same index. */
4126 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4128 entry
->gotidx
= g
->tls_ldm_offset
;
4131 g
->tls_ldm_offset
= next_index
;
4133 entry
->gotidx
= next_index
;
4134 tls_type
= entry
->tls_type
;
4137 /* Account for the entries we've just allocated. */
4138 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4139 g
->tls_assigned_gotno
+= 2;
4140 if (tls_type
& GOT_TLS_IE
)
4141 g
->tls_assigned_gotno
+= 1;
4146 /* If passed a NULL mips_got_info in the argument, set the marker used
4147 to tell whether a global symbol needs a got entry (in the primary
4148 got) to the given VALUE.
4150 If passed a pointer G to a mips_got_info in the argument (it must
4151 not be the primary GOT), compute the offset from the beginning of
4152 the (primary) GOT section to the entry in G corresponding to the
4153 global symbol. G's assigned_gotno must contain the index of the
4154 first available global GOT entry in G. VALUE must contain the size
4155 of a GOT entry in bytes. For each global GOT entry that requires a
4156 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4157 marked as not eligible for lazy resolution through a function
4160 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4162 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4163 struct mips_elf_set_global_got_offset_arg
*arg
4164 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4165 struct mips_got_info
*g
= arg
->g
;
4167 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4168 arg
->needed_relocs
+=
4169 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4170 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4172 if (entry
->abfd
!= NULL
4173 && entry
->symndx
== -1
4174 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4178 BFD_ASSERT (g
->global_gotsym
== NULL
);
4180 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4181 if (arg
->info
->shared
4182 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4183 && entry
->d
.h
->root
.def_dynamic
4184 && !entry
->d
.h
->root
.def_regular
))
4185 ++arg
->needed_relocs
;
4188 entry
->d
.h
->global_got_area
= arg
->value
;
4194 /* A htab_traverse callback for GOT entries for which DATA is the
4195 bfd_link_info. Forbid any global symbols from having traditional
4196 lazy-binding stubs. */
4199 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4201 struct bfd_link_info
*info
;
4202 struct mips_elf_link_hash_table
*htab
;
4203 struct mips_got_entry
*entry
;
4205 entry
= (struct mips_got_entry
*) *entryp
;
4206 info
= (struct bfd_link_info
*) data
;
4207 htab
= mips_elf_hash_table (info
);
4208 if (entry
->abfd
!= NULL
4209 && entry
->symndx
== -1
4210 && entry
->d
.h
->needs_lazy_stub
)
4212 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4213 htab
->lazy_stub_count
--;
4219 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4222 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4224 if (g
->bfd2got
== NULL
)
4227 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4231 BFD_ASSERT (g
->next
);
4235 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4236 * MIPS_ELF_GOT_SIZE (abfd
);
4239 /* Turn a single GOT that is too big for 16-bit addressing into
4240 a sequence of GOTs, each one 16-bit addressable. */
4243 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4244 asection
*got
, bfd_size_type pages
)
4246 struct mips_elf_link_hash_table
*htab
;
4247 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4248 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4249 struct mips_got_info
*g
, *gg
;
4250 unsigned int assign
, needed_relocs
;
4253 dynobj
= elf_hash_table (info
)->dynobj
;
4254 htab
= mips_elf_hash_table (info
);
4256 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4257 mips_elf_bfd2got_entry_eq
, NULL
);
4258 if (g
->bfd2got
== NULL
)
4261 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4262 got_per_bfd_arg
.obfd
= abfd
;
4263 got_per_bfd_arg
.info
= info
;
4265 /* Count how many GOT entries each input bfd requires, creating a
4266 map from bfd to got info while at that. */
4267 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4268 if (got_per_bfd_arg
.obfd
== NULL
)
4271 /* Also count how many page entries each input bfd requires. */
4272 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4274 if (got_per_bfd_arg
.obfd
== NULL
)
4277 got_per_bfd_arg
.current
= NULL
;
4278 got_per_bfd_arg
.primary
= NULL
;
4279 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4280 / MIPS_ELF_GOT_SIZE (abfd
))
4281 - htab
->reserved_gotno
);
4282 got_per_bfd_arg
.max_pages
= pages
;
4283 /* The number of globals that will be included in the primary GOT.
4284 See the calls to mips_elf_set_global_got_offset below for more
4286 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4288 /* Try to merge the GOTs of input bfds together, as long as they
4289 don't seem to exceed the maximum GOT size, choosing one of them
4290 to be the primary GOT. */
4291 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4292 if (got_per_bfd_arg
.obfd
== NULL
)
4295 /* If we do not find any suitable primary GOT, create an empty one. */
4296 if (got_per_bfd_arg
.primary
== NULL
)
4298 g
->next
= (struct mips_got_info
*)
4299 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4300 if (g
->next
== NULL
)
4303 g
->next
->global_gotsym
= NULL
;
4304 g
->next
->global_gotno
= 0;
4305 g
->next
->reloc_only_gotno
= 0;
4306 g
->next
->local_gotno
= 0;
4307 g
->next
->page_gotno
= 0;
4308 g
->next
->tls_gotno
= 0;
4309 g
->next
->assigned_gotno
= 0;
4310 g
->next
->tls_assigned_gotno
= 0;
4311 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4312 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4313 mips_elf_multi_got_entry_eq
,
4315 if (g
->next
->got_entries
== NULL
)
4317 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4318 mips_got_page_entry_eq
,
4320 if (g
->next
->got_page_entries
== NULL
)
4322 g
->next
->bfd2got
= NULL
;
4325 g
->next
= got_per_bfd_arg
.primary
;
4326 g
->next
->next
= got_per_bfd_arg
.current
;
4328 /* GG is now the master GOT, and G is the primary GOT. */
4332 /* Map the output bfd to the primary got. That's what we're going
4333 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4334 didn't mark in check_relocs, and we want a quick way to find it.
4335 We can't just use gg->next because we're going to reverse the
4338 struct mips_elf_bfd2got_hash
*bfdgot
;
4341 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4342 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4349 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4351 BFD_ASSERT (*bfdgotp
== NULL
);
4355 /* Every symbol that is referenced in a dynamic relocation must be
4356 present in the primary GOT, so arrange for them to appear after
4357 those that are actually referenced. */
4358 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4359 g
->global_gotno
= gg
->global_gotno
;
4361 set_got_offset_arg
.g
= NULL
;
4362 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4363 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4364 &set_got_offset_arg
);
4365 set_got_offset_arg
.value
= GGA_NORMAL
;
4366 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4367 &set_got_offset_arg
);
4369 /* Now go through the GOTs assigning them offset ranges.
4370 [assigned_gotno, local_gotno[ will be set to the range of local
4371 entries in each GOT. We can then compute the end of a GOT by
4372 adding local_gotno to global_gotno. We reverse the list and make
4373 it circular since then we'll be able to quickly compute the
4374 beginning of a GOT, by computing the end of its predecessor. To
4375 avoid special cases for the primary GOT, while still preserving
4376 assertions that are valid for both single- and multi-got links,
4377 we arrange for the main got struct to have the right number of
4378 global entries, but set its local_gotno such that the initial
4379 offset of the primary GOT is zero. Remember that the primary GOT
4380 will become the last item in the circular linked list, so it
4381 points back to the master GOT. */
4382 gg
->local_gotno
= -g
->global_gotno
;
4383 gg
->global_gotno
= g
->global_gotno
;
4390 struct mips_got_info
*gn
;
4392 assign
+= htab
->reserved_gotno
;
4393 g
->assigned_gotno
= assign
;
4394 g
->local_gotno
+= assign
;
4395 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4396 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4398 /* Take g out of the direct list, and push it onto the reversed
4399 list that gg points to. g->next is guaranteed to be nonnull after
4400 this operation, as required by mips_elf_initialize_tls_index. */
4405 /* Set up any TLS entries. We always place the TLS entries after
4406 all non-TLS entries. */
4407 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4408 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4410 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4413 /* Forbid global symbols in every non-primary GOT from having
4414 lazy-binding stubs. */
4416 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4420 got
->size
= (gg
->next
->local_gotno
4421 + gg
->next
->global_gotno
4422 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4425 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4426 set_got_offset_arg
.info
= info
;
4427 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4429 unsigned int save_assign
;
4431 /* Assign offsets to global GOT entries. */
4432 save_assign
= g
->assigned_gotno
;
4433 g
->assigned_gotno
= g
->local_gotno
;
4434 set_got_offset_arg
.g
= g
;
4435 set_got_offset_arg
.needed_relocs
= 0;
4436 htab_traverse (g
->got_entries
,
4437 mips_elf_set_global_got_offset
,
4438 &set_got_offset_arg
);
4439 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4440 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4442 g
->assigned_gotno
= save_assign
;
4445 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4446 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4447 + g
->next
->global_gotno
4448 + g
->next
->tls_gotno
4449 + htab
->reserved_gotno
);
4454 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4461 /* Returns the first relocation of type r_type found, beginning with
4462 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4464 static const Elf_Internal_Rela
*
4465 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4466 const Elf_Internal_Rela
*relocation
,
4467 const Elf_Internal_Rela
*relend
)
4469 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4471 while (relocation
< relend
)
4473 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4474 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4480 /* We didn't find it. */
4484 /* Return whether a relocation is against a local symbol. */
4487 mips_elf_local_relocation_p (bfd
*input_bfd
,
4488 const Elf_Internal_Rela
*relocation
,
4489 asection
**local_sections
,
4490 bfd_boolean check_forced
)
4492 unsigned long r_symndx
;
4493 Elf_Internal_Shdr
*symtab_hdr
;
4494 struct mips_elf_link_hash_entry
*h
;
4497 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4498 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4499 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4501 if (r_symndx
< extsymoff
)
4503 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4508 /* Look up the hash table to check whether the symbol
4509 was forced local. */
4510 h
= (struct mips_elf_link_hash_entry
*)
4511 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
4512 /* Find the real hash-table entry for this symbol. */
4513 while (h
->root
.root
.type
== bfd_link_hash_indirect
4514 || h
->root
.root
.type
== bfd_link_hash_warning
)
4515 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4516 if (h
->root
.forced_local
)
4523 /* Sign-extend VALUE, which has the indicated number of BITS. */
4526 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4528 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4529 /* VALUE is negative. */
4530 value
|= ((bfd_vma
) - 1) << bits
;
4535 /* Return non-zero if the indicated VALUE has overflowed the maximum
4536 range expressible by a signed number with the indicated number of
4540 mips_elf_overflow_p (bfd_vma value
, int bits
)
4542 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4544 if (svalue
> (1 << (bits
- 1)) - 1)
4545 /* The value is too big. */
4547 else if (svalue
< -(1 << (bits
- 1)))
4548 /* The value is too small. */
4555 /* Calculate the %high function. */
4558 mips_elf_high (bfd_vma value
)
4560 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4563 /* Calculate the %higher function. */
4566 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4569 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4576 /* Calculate the %highest function. */
4579 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4582 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4589 /* Create the .compact_rel section. */
4592 mips_elf_create_compact_rel_section
4593 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4596 register asection
*s
;
4598 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4600 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4603 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4605 || ! bfd_set_section_alignment (abfd
, s
,
4606 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4609 s
->size
= sizeof (Elf32_External_compact_rel
);
4615 /* Create the .got section to hold the global offset table. */
4618 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4621 register asection
*s
;
4622 struct elf_link_hash_entry
*h
;
4623 struct bfd_link_hash_entry
*bh
;
4624 struct mips_got_info
*g
;
4626 struct mips_elf_link_hash_table
*htab
;
4628 htab
= mips_elf_hash_table (info
);
4630 /* This function may be called more than once. */
4634 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4635 | SEC_LINKER_CREATED
);
4637 /* We have to use an alignment of 2**4 here because this is hardcoded
4638 in the function stub generation and in the linker script. */
4639 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4641 || ! bfd_set_section_alignment (abfd
, s
, 4))
4645 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4646 linker script because we don't want to define the symbol if we
4647 are not creating a global offset table. */
4649 if (! (_bfd_generic_link_add_one_symbol
4650 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4651 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4654 h
= (struct elf_link_hash_entry
*) bh
;
4657 h
->type
= STT_OBJECT
;
4658 elf_hash_table (info
)->hgot
= h
;
4661 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4664 amt
= sizeof (struct mips_got_info
);
4665 g
= bfd_alloc (abfd
, amt
);
4668 g
->global_gotsym
= NULL
;
4669 g
->global_gotno
= 0;
4670 g
->reloc_only_gotno
= 0;
4674 g
->assigned_gotno
= 0;
4677 g
->tls_ldm_offset
= MINUS_ONE
;
4678 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4679 mips_elf_got_entry_eq
, NULL
);
4680 if (g
->got_entries
== NULL
)
4682 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4683 mips_got_page_entry_eq
, NULL
);
4684 if (g
->got_page_entries
== NULL
)
4687 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4688 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4690 /* We also need a .got.plt section when generating PLTs. */
4691 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4692 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4693 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4701 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4702 __GOTT_INDEX__ symbols. These symbols are only special for
4703 shared objects; they are not used in executables. */
4706 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4708 return (mips_elf_hash_table (info
)->is_vxworks
4710 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4711 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4714 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4715 require an la25 stub. See also mips_elf_local_pic_function_p,
4716 which determines whether the destination function ever requires a
4720 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
)
4722 /* We specifically ignore branches and jumps from EF_PIC objects,
4723 where the onus is on the compiler or programmer to perform any
4724 necessary initialization of $25. Sometimes such initialization
4725 is unnecessary; for example, -mno-shared functions do not use
4726 the incoming value of $25, and may therefore be called directly. */
4727 if (PIC_OBJECT_P (input_bfd
))
4742 /* Calculate the value produced by the RELOCATION (which comes from
4743 the INPUT_BFD). The ADDEND is the addend to use for this
4744 RELOCATION; RELOCATION->R_ADDEND is ignored.
4746 The result of the relocation calculation is stored in VALUEP.
4747 REQUIRE_JALXP indicates whether or not the opcode used with this
4748 relocation must be JALX.
4750 This function returns bfd_reloc_continue if the caller need take no
4751 further action regarding this relocation, bfd_reloc_notsupported if
4752 something goes dramatically wrong, bfd_reloc_overflow if an
4753 overflow occurs, and bfd_reloc_ok to indicate success. */
4755 static bfd_reloc_status_type
4756 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
4757 asection
*input_section
,
4758 struct bfd_link_info
*info
,
4759 const Elf_Internal_Rela
*relocation
,
4760 bfd_vma addend
, reloc_howto_type
*howto
,
4761 Elf_Internal_Sym
*local_syms
,
4762 asection
**local_sections
, bfd_vma
*valuep
,
4763 const char **namep
, bfd_boolean
*require_jalxp
,
4764 bfd_boolean save_addend
)
4766 /* The eventual value we will return. */
4768 /* The address of the symbol against which the relocation is
4771 /* The final GP value to be used for the relocatable, executable, or
4772 shared object file being produced. */
4774 /* The place (section offset or address) of the storage unit being
4777 /* The value of GP used to create the relocatable object. */
4779 /* The offset into the global offset table at which the address of
4780 the relocation entry symbol, adjusted by the addend, resides
4781 during execution. */
4782 bfd_vma g
= MINUS_ONE
;
4783 /* The section in which the symbol referenced by the relocation is
4785 asection
*sec
= NULL
;
4786 struct mips_elf_link_hash_entry
*h
= NULL
;
4787 /* TRUE if the symbol referred to by this relocation is a local
4789 bfd_boolean local_p
, was_local_p
;
4790 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4791 bfd_boolean gp_disp_p
= FALSE
;
4792 /* TRUE if the symbol referred to by this relocation is
4793 "__gnu_local_gp". */
4794 bfd_boolean gnu_local_gp_p
= FALSE
;
4795 Elf_Internal_Shdr
*symtab_hdr
;
4797 unsigned long r_symndx
;
4799 /* TRUE if overflow occurred during the calculation of the
4800 relocation value. */
4801 bfd_boolean overflowed_p
;
4802 /* TRUE if this relocation refers to a MIPS16 function. */
4803 bfd_boolean target_is_16_bit_code_p
= FALSE
;
4804 struct mips_elf_link_hash_table
*htab
;
4807 dynobj
= elf_hash_table (info
)->dynobj
;
4808 htab
= mips_elf_hash_table (info
);
4810 /* Parse the relocation. */
4811 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4812 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4813 p
= (input_section
->output_section
->vma
4814 + input_section
->output_offset
4815 + relocation
->r_offset
);
4817 /* Assume that there will be no overflow. */
4818 overflowed_p
= FALSE
;
4820 /* Figure out whether or not the symbol is local, and get the offset
4821 used in the array of hash table entries. */
4822 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4823 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4824 local_sections
, FALSE
);
4825 was_local_p
= local_p
;
4826 if (! elf_bad_symtab (input_bfd
))
4827 extsymoff
= symtab_hdr
->sh_info
;
4830 /* The symbol table does not follow the rule that local symbols
4831 must come before globals. */
4835 /* Figure out the value of the symbol. */
4838 Elf_Internal_Sym
*sym
;
4840 sym
= local_syms
+ r_symndx
;
4841 sec
= local_sections
[r_symndx
];
4843 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4844 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
4845 || (sec
->flags
& SEC_MERGE
))
4846 symbol
+= sym
->st_value
;
4847 if ((sec
->flags
& SEC_MERGE
)
4848 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4850 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
4852 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
4855 /* MIPS16 text labels should be treated as odd. */
4856 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
4859 /* Record the name of this symbol, for our caller. */
4860 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
4861 symtab_hdr
->sh_link
,
4864 *namep
= bfd_section_name (input_bfd
, sec
);
4866 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
4870 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4872 /* For global symbols we look up the symbol in the hash-table. */
4873 h
= ((struct mips_elf_link_hash_entry
*)
4874 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
4875 /* Find the real hash-table entry for this symbol. */
4876 while (h
->root
.root
.type
== bfd_link_hash_indirect
4877 || h
->root
.root
.type
== bfd_link_hash_warning
)
4878 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4880 /* Record the name of this symbol, for our caller. */
4881 *namep
= h
->root
.root
.root
.string
;
4883 /* See if this is the special _gp_disp symbol. Note that such a
4884 symbol must always be a global symbol. */
4885 if (strcmp (*namep
, "_gp_disp") == 0
4886 && ! NEWABI_P (input_bfd
))
4888 /* Relocations against _gp_disp are permitted only with
4889 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4890 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
4891 return bfd_reloc_notsupported
;
4895 /* See if this is the special _gp symbol. Note that such a
4896 symbol must always be a global symbol. */
4897 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4898 gnu_local_gp_p
= TRUE
;
4901 /* If this symbol is defined, calculate its address. Note that
4902 _gp_disp is a magic symbol, always implicitly defined by the
4903 linker, so it's inappropriate to check to see whether or not
4905 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4906 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4907 && h
->root
.root
.u
.def
.section
)
4909 sec
= h
->root
.root
.u
.def
.section
;
4910 if (sec
->output_section
)
4911 symbol
= (h
->root
.root
.u
.def
.value
4912 + sec
->output_section
->vma
4913 + sec
->output_offset
);
4915 symbol
= h
->root
.root
.u
.def
.value
;
4917 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4918 /* We allow relocations against undefined weak symbols, giving
4919 it the value zero, so that you can undefined weak functions
4920 and check to see if they exist by looking at their
4923 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4924 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4926 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4927 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4929 /* If this is a dynamic link, we should have created a
4930 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4931 in in _bfd_mips_elf_create_dynamic_sections.
4932 Otherwise, we should define the symbol with a value of 0.
4933 FIXME: It should probably get into the symbol table
4935 BFD_ASSERT (! info
->shared
);
4936 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4939 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4941 /* This is an optional symbol - an Irix specific extension to the
4942 ELF spec. Ignore it for now.
4943 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4944 than simply ignoring them, but we do not handle this for now.
4945 For information see the "64-bit ELF Object File Specification"
4946 which is available from here:
4947 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4952 if (! ((*info
->callbacks
->undefined_symbol
)
4953 (info
, h
->root
.root
.root
.string
, input_bfd
,
4954 input_section
, relocation
->r_offset
,
4955 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4956 || ELF_ST_VISIBILITY (h
->root
.other
))))
4957 return bfd_reloc_undefined
;
4961 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
4964 /* If this is a reference to a 16-bit function with a stub, we need
4965 to redirect the relocation to the stub unless:
4967 (a) the relocation is for a MIPS16 JAL;
4969 (b) the relocation is for a MIPS16 PIC call, and there are no
4970 non-MIPS16 uses of the GOT slot; or
4972 (c) the section allows direct references to MIPS16 functions. */
4973 if (r_type
!= R_MIPS16_26
4974 && !info
->relocatable
4976 && h
->fn_stub
!= NULL
4977 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
4979 && elf_tdata (input_bfd
)->local_stubs
!= NULL
4980 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
4981 && !section_allows_mips16_refs_p (input_section
))
4983 /* This is a 32- or 64-bit call to a 16-bit function. We should
4984 have already noticed that we were going to need the
4987 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
4990 BFD_ASSERT (h
->need_fn_stub
);
4994 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4995 /* The target is 16-bit, but the stub isn't. */
4996 target_is_16_bit_code_p
= FALSE
;
4998 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4999 need to redirect the call to the stub. Note that we specifically
5000 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5001 use an indirect stub instead. */
5002 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5003 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5005 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5006 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5007 && !target_is_16_bit_code_p
)
5010 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5013 /* If both call_stub and call_fp_stub are defined, we can figure
5014 out which one to use by checking which one appears in the input
5016 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5021 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5023 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5025 sec
= h
->call_fp_stub
;
5032 else if (h
->call_stub
!= NULL
)
5035 sec
= h
->call_fp_stub
;
5038 BFD_ASSERT (sec
->size
> 0);
5039 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5041 /* If this is a direct call to a PIC function, redirect to the
5043 else if (h
!= NULL
&& h
->la25_stub
5044 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
))
5045 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5046 + h
->la25_stub
->stub_section
->output_offset
5047 + h
->la25_stub
->offset
);
5049 /* Calls from 16-bit code to 32-bit code and vice versa require the
5050 special jalx instruction. */
5051 *require_jalxp
= (!info
->relocatable
5052 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
5053 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
5055 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5056 local_sections
, TRUE
);
5058 gp0
= _bfd_get_gp_value (input_bfd
);
5059 gp
= _bfd_get_gp_value (abfd
);
5061 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5066 /* If we haven't already determined the GOT offset, oand we're going
5067 to need it, get it now. */
5070 case R_MIPS_GOT_PAGE
:
5071 case R_MIPS_GOT_OFST
:
5072 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5074 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
5075 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
5079 case R_MIPS16_CALL16
:
5080 case R_MIPS16_GOT16
:
5083 case R_MIPS_GOT_DISP
:
5084 case R_MIPS_GOT_HI16
:
5085 case R_MIPS_CALL_HI16
:
5086 case R_MIPS_GOT_LO16
:
5087 case R_MIPS_CALL_LO16
:
5089 case R_MIPS_TLS_GOTTPREL
:
5090 case R_MIPS_TLS_LDM
:
5091 /* Find the index into the GOT where this value is located. */
5092 if (r_type
== R_MIPS_TLS_LDM
)
5094 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5095 0, 0, NULL
, r_type
);
5097 return bfd_reloc_outofrange
;
5101 /* On VxWorks, CALL relocations should refer to the .got.plt
5102 entry, which is initialized to point at the PLT stub. */
5103 if (htab
->is_vxworks
5104 && (r_type
== R_MIPS_CALL_HI16
5105 || r_type
== R_MIPS_CALL_LO16
5106 || call16_reloc_p (r_type
)))
5108 BFD_ASSERT (addend
== 0);
5109 BFD_ASSERT (h
->root
.needs_plt
);
5110 g
= mips_elf_gotplt_index (info
, &h
->root
);
5114 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5115 GOT_PAGE relocation that decays to GOT_DISP because the
5116 symbol turns out to be global. The addend is then added
5118 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
5119 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5120 &h
->root
, r_type
, info
);
5121 if (h
->tls_type
== GOT_NORMAL
5122 && (! elf_hash_table(info
)->dynamic_sections_created
5124 && (info
->symbolic
|| h
->root
.forced_local
)
5125 && h
->root
.def_regular
)))
5126 /* This is a static link or a -Bsymbolic link. The
5127 symbol is defined locally, or was forced to be local.
5128 We must initialize this entry in the GOT. */
5129 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5132 else if (!htab
->is_vxworks
5133 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5134 /* The calculation below does not involve "g". */
5138 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5139 symbol
+ addend
, r_symndx
, h
, r_type
);
5141 return bfd_reloc_outofrange
;
5144 /* Convert GOT indices to actual offsets. */
5145 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5149 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5150 symbols are resolved by the loader. Add them to .rela.dyn. */
5151 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5153 Elf_Internal_Rela outrel
;
5157 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5158 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5160 outrel
.r_offset
= (input_section
->output_section
->vma
5161 + input_section
->output_offset
5162 + relocation
->r_offset
);
5163 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5164 outrel
.r_addend
= addend
;
5165 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5167 /* If we've written this relocation for a readonly section,
5168 we need to set DF_TEXTREL again, so that we do not delete the
5170 if (MIPS_ELF_READONLY_SECTION (input_section
))
5171 info
->flags
|= DF_TEXTREL
;
5174 return bfd_reloc_ok
;
5177 /* Figure out what kind of relocation is being performed. */
5181 return bfd_reloc_continue
;
5184 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5185 overflowed_p
= mips_elf_overflow_p (value
, 16);
5192 || (htab
->root
.dynamic_sections_created
5194 && h
->root
.def_dynamic
5195 && !h
->root
.def_regular
5196 && !h
->has_static_relocs
))
5199 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5200 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5201 && (input_section
->flags
& SEC_ALLOC
) != 0)
5203 /* If we're creating a shared library, then we can't know
5204 where the symbol will end up. So, we create a relocation
5205 record in the output, and leave the job up to the dynamic
5206 linker. We must do the same for executable references to
5207 shared library symbols, unless we've decided to use copy
5208 relocs or PLTs instead. */
5210 if (!mips_elf_create_dynamic_relocation (abfd
,
5218 return bfd_reloc_undefined
;
5222 if (r_type
!= R_MIPS_REL32
)
5223 value
= symbol
+ addend
;
5227 value
&= howto
->dst_mask
;
5231 value
= symbol
+ addend
- p
;
5232 value
&= howto
->dst_mask
;
5236 /* The calculation for R_MIPS16_26 is just the same as for an
5237 R_MIPS_26. It's only the storage of the relocated field into
5238 the output file that's different. That's handled in
5239 mips_elf_perform_relocation. So, we just fall through to the
5240 R_MIPS_26 case here. */
5243 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
5246 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
5247 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5248 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
5250 value
&= howto
->dst_mask
;
5253 case R_MIPS_TLS_DTPREL_HI16
:
5254 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5258 case R_MIPS_TLS_DTPREL_LO16
:
5259 case R_MIPS_TLS_DTPREL32
:
5260 case R_MIPS_TLS_DTPREL64
:
5261 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5264 case R_MIPS_TLS_TPREL_HI16
:
5265 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5269 case R_MIPS_TLS_TPREL_LO16
:
5270 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5277 value
= mips_elf_high (addend
+ symbol
);
5278 value
&= howto
->dst_mask
;
5282 /* For MIPS16 ABI code we generate this sequence
5283 0: li $v0,%hi(_gp_disp)
5284 4: addiupc $v1,%lo(_gp_disp)
5288 So the offsets of hi and lo relocs are the same, but the
5289 $pc is four higher than $t9 would be, so reduce
5290 both reloc addends by 4. */
5291 if (r_type
== R_MIPS16_HI16
)
5292 value
= mips_elf_high (addend
+ gp
- p
- 4);
5294 value
= mips_elf_high (addend
+ gp
- p
);
5295 overflowed_p
= mips_elf_overflow_p (value
, 16);
5302 value
= (symbol
+ addend
) & howto
->dst_mask
;
5305 /* See the comment for R_MIPS16_HI16 above for the reason
5306 for this conditional. */
5307 if (r_type
== R_MIPS16_LO16
)
5308 value
= addend
+ gp
- p
;
5310 value
= addend
+ gp
- p
+ 4;
5311 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5312 for overflow. But, on, say, IRIX5, relocations against
5313 _gp_disp are normally generated from the .cpload
5314 pseudo-op. It generates code that normally looks like
5317 lui $gp,%hi(_gp_disp)
5318 addiu $gp,$gp,%lo(_gp_disp)
5321 Here $t9 holds the address of the function being called,
5322 as required by the MIPS ELF ABI. The R_MIPS_LO16
5323 relocation can easily overflow in this situation, but the
5324 R_MIPS_HI16 relocation will handle the overflow.
5325 Therefore, we consider this a bug in the MIPS ABI, and do
5326 not check for overflow here. */
5330 case R_MIPS_LITERAL
:
5331 /* Because we don't merge literal sections, we can handle this
5332 just like R_MIPS_GPREL16. In the long run, we should merge
5333 shared literals, and then we will need to additional work
5338 case R_MIPS16_GPREL
:
5339 /* The R_MIPS16_GPREL performs the same calculation as
5340 R_MIPS_GPREL16, but stores the relocated bits in a different
5341 order. We don't need to do anything special here; the
5342 differences are handled in mips_elf_perform_relocation. */
5343 case R_MIPS_GPREL16
:
5344 /* Only sign-extend the addend if it was extracted from the
5345 instruction. If the addend was separate, leave it alone,
5346 otherwise we may lose significant bits. */
5347 if (howto
->partial_inplace
)
5348 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5349 value
= symbol
+ addend
- gp
;
5350 /* If the symbol was local, any earlier relocatable links will
5351 have adjusted its addend with the gp offset, so compensate
5352 for that now. Don't do it for symbols forced local in this
5353 link, though, since they won't have had the gp offset applied
5357 overflowed_p
= mips_elf_overflow_p (value
, 16);
5360 case R_MIPS16_GOT16
:
5361 case R_MIPS16_CALL16
:
5364 /* VxWorks does not have separate local and global semantics for
5365 R_MIPS*_GOT16; every relocation evaluates to "G". */
5366 if (!htab
->is_vxworks
&& local_p
)
5370 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
5371 local_sections
, FALSE
);
5372 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5373 symbol
+ addend
, forced
);
5374 if (value
== MINUS_ONE
)
5375 return bfd_reloc_outofrange
;
5377 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5378 overflowed_p
= mips_elf_overflow_p (value
, 16);
5385 case R_MIPS_TLS_GOTTPREL
:
5386 case R_MIPS_TLS_LDM
:
5387 case R_MIPS_GOT_DISP
:
5390 overflowed_p
= mips_elf_overflow_p (value
, 16);
5393 case R_MIPS_GPREL32
:
5394 value
= (addend
+ symbol
+ gp0
- gp
);
5396 value
&= howto
->dst_mask
;
5400 case R_MIPS_GNU_REL16_S2
:
5401 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5402 overflowed_p
= mips_elf_overflow_p (value
, 18);
5403 value
>>= howto
->rightshift
;
5404 value
&= howto
->dst_mask
;
5407 case R_MIPS_GOT_HI16
:
5408 case R_MIPS_CALL_HI16
:
5409 /* We're allowed to handle these two relocations identically.
5410 The dynamic linker is allowed to handle the CALL relocations
5411 differently by creating a lazy evaluation stub. */
5413 value
= mips_elf_high (value
);
5414 value
&= howto
->dst_mask
;
5417 case R_MIPS_GOT_LO16
:
5418 case R_MIPS_CALL_LO16
:
5419 value
= g
& howto
->dst_mask
;
5422 case R_MIPS_GOT_PAGE
:
5423 /* GOT_PAGE relocations that reference non-local symbols decay
5424 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5428 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5429 if (value
== MINUS_ONE
)
5430 return bfd_reloc_outofrange
;
5431 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5432 overflowed_p
= mips_elf_overflow_p (value
, 16);
5435 case R_MIPS_GOT_OFST
:
5437 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5440 overflowed_p
= mips_elf_overflow_p (value
, 16);
5444 value
= symbol
- addend
;
5445 value
&= howto
->dst_mask
;
5449 value
= mips_elf_higher (addend
+ symbol
);
5450 value
&= howto
->dst_mask
;
5453 case R_MIPS_HIGHEST
:
5454 value
= mips_elf_highest (addend
+ symbol
);
5455 value
&= howto
->dst_mask
;
5458 case R_MIPS_SCN_DISP
:
5459 value
= symbol
+ addend
- sec
->output_offset
;
5460 value
&= howto
->dst_mask
;
5464 /* This relocation is only a hint. In some cases, we optimize
5465 it into a bal instruction. But we don't try to optimize
5466 branches to the PLT; that will wind up wasting time. */
5467 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
5468 return bfd_reloc_continue
;
5469 value
= symbol
+ addend
;
5473 case R_MIPS_GNU_VTINHERIT
:
5474 case R_MIPS_GNU_VTENTRY
:
5475 /* We don't do anything with these at present. */
5476 return bfd_reloc_continue
;
5479 /* An unrecognized relocation type. */
5480 return bfd_reloc_notsupported
;
5483 /* Store the VALUE for our caller. */
5485 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5488 /* Obtain the field relocated by RELOCATION. */
5491 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5492 const Elf_Internal_Rela
*relocation
,
5493 bfd
*input_bfd
, bfd_byte
*contents
)
5496 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5498 /* Obtain the bytes. */
5499 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5504 /* It has been determined that the result of the RELOCATION is the
5505 VALUE. Use HOWTO to place VALUE into the output file at the
5506 appropriate position. The SECTION is the section to which the
5507 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5508 for the relocation must be either JAL or JALX, and it is
5509 unconditionally converted to JALX.
5511 Returns FALSE if anything goes wrong. */
5514 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5515 reloc_howto_type
*howto
,
5516 const Elf_Internal_Rela
*relocation
,
5517 bfd_vma value
, bfd
*input_bfd
,
5518 asection
*input_section
, bfd_byte
*contents
,
5519 bfd_boolean require_jalx
)
5523 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5525 /* Figure out where the relocation is occurring. */
5526 location
= contents
+ relocation
->r_offset
;
5528 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5530 /* Obtain the current value. */
5531 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5533 /* Clear the field we are setting. */
5534 x
&= ~howto
->dst_mask
;
5536 /* Set the field. */
5537 x
|= (value
& howto
->dst_mask
);
5539 /* If required, turn JAL into JALX. */
5543 bfd_vma opcode
= x
>> 26;
5544 bfd_vma jalx_opcode
;
5546 /* Check to see if the opcode is already JAL or JALX. */
5547 if (r_type
== R_MIPS16_26
)
5549 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5554 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5558 /* If the opcode is not JAL or JALX, there's a problem. */
5561 (*_bfd_error_handler
)
5562 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5565 (unsigned long) relocation
->r_offset
);
5566 bfd_set_error (bfd_error_bad_value
);
5570 /* Make this the JALX opcode. */
5571 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5574 /* On the RM9000, bal is faster than jal, because bal uses branch
5575 prediction hardware. If we are linking for the RM9000, and we
5576 see jal, and bal fits, use it instead. Note that this
5577 transformation should be safe for all architectures. */
5578 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
5579 && !info
->relocatable
5581 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
5582 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
5588 addr
= (input_section
->output_section
->vma
5589 + input_section
->output_offset
5590 + relocation
->r_offset
5592 if (r_type
== R_MIPS_26
)
5593 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5597 if (off
<= 0x1ffff && off
>= -0x20000)
5598 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5601 /* Put the value into the output. */
5602 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5604 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
5610 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5611 is the original relocation, which is now being transformed into a
5612 dynamic relocation. The ADDENDP is adjusted if necessary; the
5613 caller should store the result in place of the original addend. */
5616 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5617 struct bfd_link_info
*info
,
5618 const Elf_Internal_Rela
*rel
,
5619 struct mips_elf_link_hash_entry
*h
,
5620 asection
*sec
, bfd_vma symbol
,
5621 bfd_vma
*addendp
, asection
*input_section
)
5623 Elf_Internal_Rela outrel
[3];
5628 bfd_boolean defined_p
;
5629 struct mips_elf_link_hash_table
*htab
;
5631 htab
= mips_elf_hash_table (info
);
5632 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5633 dynobj
= elf_hash_table (info
)->dynobj
;
5634 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
5635 BFD_ASSERT (sreloc
!= NULL
);
5636 BFD_ASSERT (sreloc
->contents
!= NULL
);
5637 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
5640 outrel
[0].r_offset
=
5641 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
5642 if (ABI_64_P (output_bfd
))
5644 outrel
[1].r_offset
=
5645 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
5646 outrel
[2].r_offset
=
5647 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
5650 if (outrel
[0].r_offset
== MINUS_ONE
)
5651 /* The relocation field has been deleted. */
5654 if (outrel
[0].r_offset
== MINUS_TWO
)
5656 /* The relocation field has been converted into a relative value of
5657 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5658 the field to be fully relocated, so add in the symbol's value. */
5663 /* We must now calculate the dynamic symbol table index to use
5664 in the relocation. */
5666 && (!h
->root
.def_regular
5667 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
5669 indx
= h
->root
.dynindx
;
5670 if (SGI_COMPAT (output_bfd
))
5671 defined_p
= h
->root
.def_regular
;
5673 /* ??? glibc's ld.so just adds the final GOT entry to the
5674 relocation field. It therefore treats relocs against
5675 defined symbols in the same way as relocs against
5676 undefined symbols. */
5681 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5683 else if (sec
== NULL
|| sec
->owner
== NULL
)
5685 bfd_set_error (bfd_error_bad_value
);
5690 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5693 asection
*osec
= htab
->root
.text_index_section
;
5694 indx
= elf_section_data (osec
)->dynindx
;
5700 /* Instead of generating a relocation using the section
5701 symbol, we may as well make it a fully relative
5702 relocation. We want to avoid generating relocations to
5703 local symbols because we used to generate them
5704 incorrectly, without adding the original symbol value,
5705 which is mandated by the ABI for section symbols. In
5706 order to give dynamic loaders and applications time to
5707 phase out the incorrect use, we refrain from emitting
5708 section-relative relocations. It's not like they're
5709 useful, after all. This should be a bit more efficient
5711 /* ??? Although this behavior is compatible with glibc's ld.so,
5712 the ABI says that relocations against STN_UNDEF should have
5713 a symbol value of 0. Irix rld honors this, so relocations
5714 against STN_UNDEF have no effect. */
5715 if (!SGI_COMPAT (output_bfd
))
5720 /* If the relocation was previously an absolute relocation and
5721 this symbol will not be referred to by the relocation, we must
5722 adjust it by the value we give it in the dynamic symbol table.
5723 Otherwise leave the job up to the dynamic linker. */
5724 if (defined_p
&& r_type
!= R_MIPS_REL32
)
5727 if (htab
->is_vxworks
)
5728 /* VxWorks uses non-relative relocations for this. */
5729 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
5731 /* The relocation is always an REL32 relocation because we don't
5732 know where the shared library will wind up at load-time. */
5733 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
5736 /* For strict adherence to the ABI specification, we should
5737 generate a R_MIPS_64 relocation record by itself before the
5738 _REL32/_64 record as well, such that the addend is read in as
5739 a 64-bit value (REL32 is a 32-bit relocation, after all).
5740 However, since none of the existing ELF64 MIPS dynamic
5741 loaders seems to care, we don't waste space with these
5742 artificial relocations. If this turns out to not be true,
5743 mips_elf_allocate_dynamic_relocation() should be tweaked so
5744 as to make room for a pair of dynamic relocations per
5745 invocation if ABI_64_P, and here we should generate an
5746 additional relocation record with R_MIPS_64 by itself for a
5747 NULL symbol before this relocation record. */
5748 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
5749 ABI_64_P (output_bfd
)
5752 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
5754 /* Adjust the output offset of the relocation to reference the
5755 correct location in the output file. */
5756 outrel
[0].r_offset
+= (input_section
->output_section
->vma
5757 + input_section
->output_offset
);
5758 outrel
[1].r_offset
+= (input_section
->output_section
->vma
5759 + input_section
->output_offset
);
5760 outrel
[2].r_offset
+= (input_section
->output_section
->vma
5761 + input_section
->output_offset
);
5763 /* Put the relocation back out. We have to use the special
5764 relocation outputter in the 64-bit case since the 64-bit
5765 relocation format is non-standard. */
5766 if (ABI_64_P (output_bfd
))
5768 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5769 (output_bfd
, &outrel
[0],
5771 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5773 else if (htab
->is_vxworks
)
5775 /* VxWorks uses RELA rather than REL dynamic relocations. */
5776 outrel
[0].r_addend
= *addendp
;
5777 bfd_elf32_swap_reloca_out
5778 (output_bfd
, &outrel
[0],
5780 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
5783 bfd_elf32_swap_reloc_out
5784 (output_bfd
, &outrel
[0],
5785 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
5787 /* We've now added another relocation. */
5788 ++sreloc
->reloc_count
;
5790 /* Make sure the output section is writable. The dynamic linker
5791 will be writing to it. */
5792 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5795 /* On IRIX5, make an entry of compact relocation info. */
5796 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
5798 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5803 Elf32_crinfo cptrel
;
5805 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5806 cptrel
.vaddr
= (rel
->r_offset
5807 + input_section
->output_section
->vma
5808 + input_section
->output_offset
);
5809 if (r_type
== R_MIPS_REL32
)
5810 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5812 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5813 mips_elf_set_cr_dist2to (cptrel
, 0);
5814 cptrel
.konst
= *addendp
;
5816 cr
= (scpt
->contents
5817 + sizeof (Elf32_External_compact_rel
));
5818 mips_elf_set_cr_relvaddr (cptrel
, 0);
5819 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5820 ((Elf32_External_crinfo
*) cr
5821 + scpt
->reloc_count
));
5822 ++scpt
->reloc_count
;
5826 /* If we've written this relocation for a readonly section,
5827 we need to set DF_TEXTREL again, so that we do not delete the
5829 if (MIPS_ELF_READONLY_SECTION (input_section
))
5830 info
->flags
|= DF_TEXTREL
;
5835 /* Return the MACH for a MIPS e_flags value. */
5838 _bfd_elf_mips_mach (flagword flags
)
5840 switch (flags
& EF_MIPS_MACH
)
5842 case E_MIPS_MACH_3900
:
5843 return bfd_mach_mips3900
;
5845 case E_MIPS_MACH_4010
:
5846 return bfd_mach_mips4010
;
5848 case E_MIPS_MACH_4100
:
5849 return bfd_mach_mips4100
;
5851 case E_MIPS_MACH_4111
:
5852 return bfd_mach_mips4111
;
5854 case E_MIPS_MACH_4120
:
5855 return bfd_mach_mips4120
;
5857 case E_MIPS_MACH_4650
:
5858 return bfd_mach_mips4650
;
5860 case E_MIPS_MACH_5400
:
5861 return bfd_mach_mips5400
;
5863 case E_MIPS_MACH_5500
:
5864 return bfd_mach_mips5500
;
5866 case E_MIPS_MACH_9000
:
5867 return bfd_mach_mips9000
;
5869 case E_MIPS_MACH_SB1
:
5870 return bfd_mach_mips_sb1
;
5872 case E_MIPS_MACH_LS2E
:
5873 return bfd_mach_mips_loongson_2e
;
5875 case E_MIPS_MACH_LS2F
:
5876 return bfd_mach_mips_loongson_2f
;
5878 case E_MIPS_MACH_OCTEON
:
5879 return bfd_mach_mips_octeon
;
5882 switch (flags
& EF_MIPS_ARCH
)
5886 return bfd_mach_mips3000
;
5889 return bfd_mach_mips6000
;
5892 return bfd_mach_mips4000
;
5895 return bfd_mach_mips8000
;
5898 return bfd_mach_mips5
;
5900 case E_MIPS_ARCH_32
:
5901 return bfd_mach_mipsisa32
;
5903 case E_MIPS_ARCH_64
:
5904 return bfd_mach_mipsisa64
;
5906 case E_MIPS_ARCH_32R2
:
5907 return bfd_mach_mipsisa32r2
;
5909 case E_MIPS_ARCH_64R2
:
5910 return bfd_mach_mipsisa64r2
;
5917 /* Return printable name for ABI. */
5919 static INLINE
char *
5920 elf_mips_abi_name (bfd
*abfd
)
5924 flags
= elf_elfheader (abfd
)->e_flags
;
5925 switch (flags
& EF_MIPS_ABI
)
5928 if (ABI_N32_P (abfd
))
5930 else if (ABI_64_P (abfd
))
5934 case E_MIPS_ABI_O32
:
5936 case E_MIPS_ABI_O64
:
5938 case E_MIPS_ABI_EABI32
:
5940 case E_MIPS_ABI_EABI64
:
5943 return "unknown abi";
5947 /* MIPS ELF uses two common sections. One is the usual one, and the
5948 other is for small objects. All the small objects are kept
5949 together, and then referenced via the gp pointer, which yields
5950 faster assembler code. This is what we use for the small common
5951 section. This approach is copied from ecoff.c. */
5952 static asection mips_elf_scom_section
;
5953 static asymbol mips_elf_scom_symbol
;
5954 static asymbol
*mips_elf_scom_symbol_ptr
;
5956 /* MIPS ELF also uses an acommon section, which represents an
5957 allocated common symbol which may be overridden by a
5958 definition in a shared library. */
5959 static asection mips_elf_acom_section
;
5960 static asymbol mips_elf_acom_symbol
;
5961 static asymbol
*mips_elf_acom_symbol_ptr
;
5963 /* This is used for both the 32-bit and the 64-bit ABI. */
5966 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5968 elf_symbol_type
*elfsym
;
5970 /* Handle the special MIPS section numbers that a symbol may use. */
5971 elfsym
= (elf_symbol_type
*) asym
;
5972 switch (elfsym
->internal_elf_sym
.st_shndx
)
5974 case SHN_MIPS_ACOMMON
:
5975 /* This section is used in a dynamically linked executable file.
5976 It is an allocated common section. The dynamic linker can
5977 either resolve these symbols to something in a shared
5978 library, or it can just leave them here. For our purposes,
5979 we can consider these symbols to be in a new section. */
5980 if (mips_elf_acom_section
.name
== NULL
)
5982 /* Initialize the acommon section. */
5983 mips_elf_acom_section
.name
= ".acommon";
5984 mips_elf_acom_section
.flags
= SEC_ALLOC
;
5985 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
5986 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
5987 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
5988 mips_elf_acom_symbol
.name
= ".acommon";
5989 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
5990 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
5991 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
5993 asym
->section
= &mips_elf_acom_section
;
5997 /* Common symbols less than the GP size are automatically
5998 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5999 if (asym
->value
> elf_gp_size (abfd
)
6000 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6001 || IRIX_COMPAT (abfd
) == ict_irix6
)
6004 case SHN_MIPS_SCOMMON
:
6005 if (mips_elf_scom_section
.name
== NULL
)
6007 /* Initialize the small common section. */
6008 mips_elf_scom_section
.name
= ".scommon";
6009 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6010 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6011 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6012 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6013 mips_elf_scom_symbol
.name
= ".scommon";
6014 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6015 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6016 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6018 asym
->section
= &mips_elf_scom_section
;
6019 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6022 case SHN_MIPS_SUNDEFINED
:
6023 asym
->section
= bfd_und_section_ptr
;
6028 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6030 BFD_ASSERT (SGI_COMPAT (abfd
));
6031 if (section
!= NULL
)
6033 asym
->section
= section
;
6034 /* MIPS_TEXT is a bit special, the address is not an offset
6035 to the base of the .text section. So substract the section
6036 base address to make it an offset. */
6037 asym
->value
-= section
->vma
;
6044 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6046 BFD_ASSERT (SGI_COMPAT (abfd
));
6047 if (section
!= NULL
)
6049 asym
->section
= section
;
6050 /* MIPS_DATA is a bit special, the address is not an offset
6051 to the base of the .data section. So substract the section
6052 base address to make it an offset. */
6053 asym
->value
-= section
->vma
;
6059 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6060 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6061 && (asym
->value
& 1) != 0)
6064 elfsym
->internal_elf_sym
.st_other
6065 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6069 /* Implement elf_backend_eh_frame_address_size. This differs from
6070 the default in the way it handles EABI64.
6072 EABI64 was originally specified as an LP64 ABI, and that is what
6073 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6074 historically accepted the combination of -mabi=eabi and -mlong32,
6075 and this ILP32 variation has become semi-official over time.
6076 Both forms use elf32 and have pointer-sized FDE addresses.
6078 If an EABI object was generated by GCC 4.0 or above, it will have
6079 an empty .gcc_compiled_longXX section, where XX is the size of longs
6080 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6081 have no special marking to distinguish them from LP64 objects.
6083 We don't want users of the official LP64 ABI to be punished for the
6084 existence of the ILP32 variant, but at the same time, we don't want
6085 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6086 We therefore take the following approach:
6088 - If ABFD contains a .gcc_compiled_longXX section, use it to
6089 determine the pointer size.
6091 - Otherwise check the type of the first relocation. Assume that
6092 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6096 The second check is enough to detect LP64 objects generated by pre-4.0
6097 compilers because, in the kind of output generated by those compilers,
6098 the first relocation will be associated with either a CIE personality
6099 routine or an FDE start address. Furthermore, the compilers never
6100 used a special (non-pointer) encoding for this ABI.
6102 Checking the relocation type should also be safe because there is no
6103 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6107 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6109 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6111 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6113 bfd_boolean long32_p
, long64_p
;
6115 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6116 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6117 if (long32_p
&& long64_p
)
6124 if (sec
->reloc_count
> 0
6125 && elf_section_data (sec
)->relocs
!= NULL
6126 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6135 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6136 relocations against two unnamed section symbols to resolve to the
6137 same address. For example, if we have code like:
6139 lw $4,%got_disp(.data)($gp)
6140 lw $25,%got_disp(.text)($gp)
6143 then the linker will resolve both relocations to .data and the program
6144 will jump there rather than to .text.
6146 We can work around this problem by giving names to local section symbols.
6147 This is also what the MIPSpro tools do. */
6150 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6152 return SGI_COMPAT (abfd
);
6155 /* Work over a section just before writing it out. This routine is
6156 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6157 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6161 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6163 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6164 && hdr
->sh_size
> 0)
6168 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6169 BFD_ASSERT (hdr
->contents
== NULL
);
6172 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6175 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6176 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6180 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6181 && hdr
->bfd_section
!= NULL
6182 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6183 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6185 bfd_byte
*contents
, *l
, *lend
;
6187 /* We stored the section contents in the tdata field in the
6188 set_section_contents routine. We save the section contents
6189 so that we don't have to read them again.
6190 At this point we know that elf_gp is set, so we can look
6191 through the section contents to see if there is an
6192 ODK_REGINFO structure. */
6194 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6196 lend
= contents
+ hdr
->sh_size
;
6197 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6199 Elf_Internal_Options intopt
;
6201 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6203 if (intopt
.size
< sizeof (Elf_External_Options
))
6205 (*_bfd_error_handler
)
6206 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6207 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6210 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6217 + sizeof (Elf_External_Options
)
6218 + (sizeof (Elf64_External_RegInfo
) - 8)),
6221 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6222 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6225 else if (intopt
.kind
== ODK_REGINFO
)
6232 + sizeof (Elf_External_Options
)
6233 + (sizeof (Elf32_External_RegInfo
) - 4)),
6236 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6237 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6244 if (hdr
->bfd_section
!= NULL
)
6246 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6248 if (strcmp (name
, ".sdata") == 0
6249 || strcmp (name
, ".lit8") == 0
6250 || strcmp (name
, ".lit4") == 0)
6252 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6253 hdr
->sh_type
= SHT_PROGBITS
;
6255 else if (strcmp (name
, ".sbss") == 0)
6257 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6258 hdr
->sh_type
= SHT_NOBITS
;
6260 else if (strcmp (name
, ".srdata") == 0)
6262 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6263 hdr
->sh_type
= SHT_PROGBITS
;
6265 else if (strcmp (name
, ".compact_rel") == 0)
6268 hdr
->sh_type
= SHT_PROGBITS
;
6270 else if (strcmp (name
, ".rtproc") == 0)
6272 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6274 unsigned int adjust
;
6276 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6278 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6286 /* Handle a MIPS specific section when reading an object file. This
6287 is called when elfcode.h finds a section with an unknown type.
6288 This routine supports both the 32-bit and 64-bit ELF ABI.
6290 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6294 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6295 Elf_Internal_Shdr
*hdr
,
6301 /* There ought to be a place to keep ELF backend specific flags, but
6302 at the moment there isn't one. We just keep track of the
6303 sections by their name, instead. Fortunately, the ABI gives
6304 suggested names for all the MIPS specific sections, so we will
6305 probably get away with this. */
6306 switch (hdr
->sh_type
)
6308 case SHT_MIPS_LIBLIST
:
6309 if (strcmp (name
, ".liblist") != 0)
6313 if (strcmp (name
, ".msym") != 0)
6316 case SHT_MIPS_CONFLICT
:
6317 if (strcmp (name
, ".conflict") != 0)
6320 case SHT_MIPS_GPTAB
:
6321 if (! CONST_STRNEQ (name
, ".gptab."))
6324 case SHT_MIPS_UCODE
:
6325 if (strcmp (name
, ".ucode") != 0)
6328 case SHT_MIPS_DEBUG
:
6329 if (strcmp (name
, ".mdebug") != 0)
6331 flags
= SEC_DEBUGGING
;
6333 case SHT_MIPS_REGINFO
:
6334 if (strcmp (name
, ".reginfo") != 0
6335 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6337 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6339 case SHT_MIPS_IFACE
:
6340 if (strcmp (name
, ".MIPS.interfaces") != 0)
6343 case SHT_MIPS_CONTENT
:
6344 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6347 case SHT_MIPS_OPTIONS
:
6348 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6351 case SHT_MIPS_DWARF
:
6352 if (! CONST_STRNEQ (name
, ".debug_")
6353 && ! CONST_STRNEQ (name
, ".zdebug_"))
6356 case SHT_MIPS_SYMBOL_LIB
:
6357 if (strcmp (name
, ".MIPS.symlib") != 0)
6360 case SHT_MIPS_EVENTS
:
6361 if (! CONST_STRNEQ (name
, ".MIPS.events")
6362 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6369 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6374 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6375 (bfd_get_section_flags (abfd
,
6381 /* FIXME: We should record sh_info for a .gptab section. */
6383 /* For a .reginfo section, set the gp value in the tdata information
6384 from the contents of this section. We need the gp value while
6385 processing relocs, so we just get it now. The .reginfo section
6386 is not used in the 64-bit MIPS ELF ABI. */
6387 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6389 Elf32_External_RegInfo ext
;
6392 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6393 &ext
, 0, sizeof ext
))
6395 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6396 elf_gp (abfd
) = s
.ri_gp_value
;
6399 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6400 set the gp value based on what we find. We may see both
6401 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6402 they should agree. */
6403 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6405 bfd_byte
*contents
, *l
, *lend
;
6407 contents
= bfd_malloc (hdr
->sh_size
);
6408 if (contents
== NULL
)
6410 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6417 lend
= contents
+ hdr
->sh_size
;
6418 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6420 Elf_Internal_Options intopt
;
6422 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6424 if (intopt
.size
< sizeof (Elf_External_Options
))
6426 (*_bfd_error_handler
)
6427 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6428 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6431 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6433 Elf64_Internal_RegInfo intreg
;
6435 bfd_mips_elf64_swap_reginfo_in
6437 ((Elf64_External_RegInfo
*)
6438 (l
+ sizeof (Elf_External_Options
))),
6440 elf_gp (abfd
) = intreg
.ri_gp_value
;
6442 else if (intopt
.kind
== ODK_REGINFO
)
6444 Elf32_RegInfo intreg
;
6446 bfd_mips_elf32_swap_reginfo_in
6448 ((Elf32_External_RegInfo
*)
6449 (l
+ sizeof (Elf_External_Options
))),
6451 elf_gp (abfd
) = intreg
.ri_gp_value
;
6461 /* Set the correct type for a MIPS ELF section. We do this by the
6462 section name, which is a hack, but ought to work. This routine is
6463 used by both the 32-bit and the 64-bit ABI. */
6466 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6468 const char *name
= bfd_get_section_name (abfd
, sec
);
6470 if (strcmp (name
, ".liblist") == 0)
6472 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6473 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6474 /* The sh_link field is set in final_write_processing. */
6476 else if (strcmp (name
, ".conflict") == 0)
6477 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6478 else if (CONST_STRNEQ (name
, ".gptab."))
6480 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6481 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6482 /* The sh_info field is set in final_write_processing. */
6484 else if (strcmp (name
, ".ucode") == 0)
6485 hdr
->sh_type
= SHT_MIPS_UCODE
;
6486 else if (strcmp (name
, ".mdebug") == 0)
6488 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6489 /* In a shared object on IRIX 5.3, the .mdebug section has an
6490 entsize of 0. FIXME: Does this matter? */
6491 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6492 hdr
->sh_entsize
= 0;
6494 hdr
->sh_entsize
= 1;
6496 else if (strcmp (name
, ".reginfo") == 0)
6498 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6499 /* In a shared object on IRIX 5.3, the .reginfo section has an
6500 entsize of 0x18. FIXME: Does this matter? */
6501 if (SGI_COMPAT (abfd
))
6503 if ((abfd
->flags
& DYNAMIC
) != 0)
6504 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6506 hdr
->sh_entsize
= 1;
6509 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6511 else if (SGI_COMPAT (abfd
)
6512 && (strcmp (name
, ".hash") == 0
6513 || strcmp (name
, ".dynamic") == 0
6514 || strcmp (name
, ".dynstr") == 0))
6516 if (SGI_COMPAT (abfd
))
6517 hdr
->sh_entsize
= 0;
6519 /* This isn't how the IRIX6 linker behaves. */
6520 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6523 else if (strcmp (name
, ".got") == 0
6524 || strcmp (name
, ".srdata") == 0
6525 || strcmp (name
, ".sdata") == 0
6526 || strcmp (name
, ".sbss") == 0
6527 || strcmp (name
, ".lit4") == 0
6528 || strcmp (name
, ".lit8") == 0)
6529 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6530 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6532 hdr
->sh_type
= SHT_MIPS_IFACE
;
6533 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6535 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6537 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6538 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6539 /* The sh_info field is set in final_write_processing. */
6541 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6543 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6544 hdr
->sh_entsize
= 1;
6545 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6547 else if (CONST_STRNEQ (name
, ".debug_")
6548 || CONST_STRNEQ (name
, ".zdebug_"))
6550 hdr
->sh_type
= SHT_MIPS_DWARF
;
6552 /* Irix facilities such as libexc expect a single .debug_frame
6553 per executable, the system ones have NOSTRIP set and the linker
6554 doesn't merge sections with different flags so ... */
6555 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6556 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6558 else if (strcmp (name
, ".MIPS.symlib") == 0)
6560 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6561 /* The sh_link and sh_info fields are set in
6562 final_write_processing. */
6564 else if (CONST_STRNEQ (name
, ".MIPS.events")
6565 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6567 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6568 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6569 /* The sh_link field is set in final_write_processing. */
6571 else if (strcmp (name
, ".msym") == 0)
6573 hdr
->sh_type
= SHT_MIPS_MSYM
;
6574 hdr
->sh_flags
|= SHF_ALLOC
;
6575 hdr
->sh_entsize
= 8;
6578 /* The generic elf_fake_sections will set up REL_HDR using the default
6579 kind of relocations. We used to set up a second header for the
6580 non-default kind of relocations here, but only NewABI would use
6581 these, and the IRIX ld doesn't like resulting empty RELA sections.
6582 Thus we create those header only on demand now. */
6587 /* Given a BFD section, try to locate the corresponding ELF section
6588 index. This is used by both the 32-bit and the 64-bit ABI.
6589 Actually, it's not clear to me that the 64-bit ABI supports these,
6590 but for non-PIC objects we will certainly want support for at least
6591 the .scommon section. */
6594 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6595 asection
*sec
, int *retval
)
6597 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6599 *retval
= SHN_MIPS_SCOMMON
;
6602 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6604 *retval
= SHN_MIPS_ACOMMON
;
6610 /* Hook called by the linker routine which adds symbols from an object
6611 file. We must handle the special MIPS section numbers here. */
6614 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
6615 Elf_Internal_Sym
*sym
, const char **namep
,
6616 flagword
*flagsp ATTRIBUTE_UNUSED
,
6617 asection
**secp
, bfd_vma
*valp
)
6619 if (SGI_COMPAT (abfd
)
6620 && (abfd
->flags
& DYNAMIC
) != 0
6621 && strcmp (*namep
, "_rld_new_interface") == 0)
6623 /* Skip IRIX5 rld entry name. */
6628 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6629 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6630 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6631 a magic symbol resolved by the linker, we ignore this bogus definition
6632 of _gp_disp. New ABI objects do not suffer from this problem so this
6633 is not done for them. */
6635 && (sym
->st_shndx
== SHN_ABS
)
6636 && (strcmp (*namep
, "_gp_disp") == 0))
6642 switch (sym
->st_shndx
)
6645 /* Common symbols less than the GP size are automatically
6646 treated as SHN_MIPS_SCOMMON symbols. */
6647 if (sym
->st_size
> elf_gp_size (abfd
)
6648 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
6649 || IRIX_COMPAT (abfd
) == ict_irix6
)
6652 case SHN_MIPS_SCOMMON
:
6653 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
6654 (*secp
)->flags
|= SEC_IS_COMMON
;
6655 *valp
= sym
->st_size
;
6659 /* This section is used in a shared object. */
6660 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
6662 asymbol
*elf_text_symbol
;
6663 asection
*elf_text_section
;
6664 bfd_size_type amt
= sizeof (asection
);
6666 elf_text_section
= bfd_zalloc (abfd
, amt
);
6667 if (elf_text_section
== NULL
)
6670 amt
= sizeof (asymbol
);
6671 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
6672 if (elf_text_symbol
== NULL
)
6675 /* Initialize the section. */
6677 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
6678 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
6680 elf_text_section
->symbol
= elf_text_symbol
;
6681 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
6683 elf_text_section
->name
= ".text";
6684 elf_text_section
->flags
= SEC_NO_FLAGS
;
6685 elf_text_section
->output_section
= NULL
;
6686 elf_text_section
->owner
= abfd
;
6687 elf_text_symbol
->name
= ".text";
6688 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6689 elf_text_symbol
->section
= elf_text_section
;
6691 /* This code used to do *secp = bfd_und_section_ptr if
6692 info->shared. I don't know why, and that doesn't make sense,
6693 so I took it out. */
6694 *secp
= elf_tdata (abfd
)->elf_text_section
;
6697 case SHN_MIPS_ACOMMON
:
6698 /* Fall through. XXX Can we treat this as allocated data? */
6700 /* This section is used in a shared object. */
6701 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
6703 asymbol
*elf_data_symbol
;
6704 asection
*elf_data_section
;
6705 bfd_size_type amt
= sizeof (asection
);
6707 elf_data_section
= bfd_zalloc (abfd
, amt
);
6708 if (elf_data_section
== NULL
)
6711 amt
= sizeof (asymbol
);
6712 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
6713 if (elf_data_symbol
== NULL
)
6716 /* Initialize the section. */
6718 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
6719 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
6721 elf_data_section
->symbol
= elf_data_symbol
;
6722 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
6724 elf_data_section
->name
= ".data";
6725 elf_data_section
->flags
= SEC_NO_FLAGS
;
6726 elf_data_section
->output_section
= NULL
;
6727 elf_data_section
->owner
= abfd
;
6728 elf_data_symbol
->name
= ".data";
6729 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6730 elf_data_symbol
->section
= elf_data_section
;
6732 /* This code used to do *secp = bfd_und_section_ptr if
6733 info->shared. I don't know why, and that doesn't make sense,
6734 so I took it out. */
6735 *secp
= elf_tdata (abfd
)->elf_data_section
;
6738 case SHN_MIPS_SUNDEFINED
:
6739 *secp
= bfd_und_section_ptr
;
6743 if (SGI_COMPAT (abfd
)
6745 && info
->output_bfd
->xvec
== abfd
->xvec
6746 && strcmp (*namep
, "__rld_obj_head") == 0)
6748 struct elf_link_hash_entry
*h
;
6749 struct bfd_link_hash_entry
*bh
;
6751 /* Mark __rld_obj_head as dynamic. */
6753 if (! (_bfd_generic_link_add_one_symbol
6754 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
6755 get_elf_backend_data (abfd
)->collect
, &bh
)))
6758 h
= (struct elf_link_hash_entry
*) bh
;
6761 h
->type
= STT_OBJECT
;
6763 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6766 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
6769 /* If this is a mips16 text symbol, add 1 to the value to make it
6770 odd. This will cause something like .word SYM to come up with
6771 the right value when it is loaded into the PC. */
6772 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6778 /* This hook function is called before the linker writes out a global
6779 symbol. We mark symbols as small common if appropriate. This is
6780 also where we undo the increment of the value for a mips16 symbol. */
6783 _bfd_mips_elf_link_output_symbol_hook
6784 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6785 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
6786 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
6788 /* If we see a common symbol, which implies a relocatable link, then
6789 if a symbol was small common in an input file, mark it as small
6790 common in the output file. */
6791 if (sym
->st_shndx
== SHN_COMMON
6792 && strcmp (input_sec
->name
, ".scommon") == 0)
6793 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6795 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6796 sym
->st_value
&= ~1;
6801 /* Functions for the dynamic linker. */
6803 /* Create dynamic sections when linking against a dynamic object. */
6806 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6808 struct elf_link_hash_entry
*h
;
6809 struct bfd_link_hash_entry
*bh
;
6811 register asection
*s
;
6812 const char * const *namep
;
6813 struct mips_elf_link_hash_table
*htab
;
6815 htab
= mips_elf_hash_table (info
);
6816 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6817 | SEC_LINKER_CREATED
| SEC_READONLY
);
6819 /* The psABI requires a read-only .dynamic section, but the VxWorks
6821 if (!htab
->is_vxworks
)
6823 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6826 if (! bfd_set_section_flags (abfd
, s
, flags
))
6831 /* We need to create .got section. */
6832 if (!mips_elf_create_got_section (abfd
, info
))
6835 if (! mips_elf_rel_dyn_section (info
, TRUE
))
6838 /* Create .stub section. */
6839 s
= bfd_make_section_with_flags (abfd
,
6840 MIPS_ELF_STUB_SECTION_NAME (abfd
),
6843 || ! bfd_set_section_alignment (abfd
, s
,
6844 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6848 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6850 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6852 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
6853 flags
&~ (flagword
) SEC_READONLY
);
6855 || ! bfd_set_section_alignment (abfd
, s
,
6856 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6860 /* On IRIX5, we adjust add some additional symbols and change the
6861 alignments of several sections. There is no ABI documentation
6862 indicating that this is necessary on IRIX6, nor any evidence that
6863 the linker takes such action. */
6864 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6866 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6869 if (! (_bfd_generic_link_add_one_symbol
6870 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
6871 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6874 h
= (struct elf_link_hash_entry
*) bh
;
6877 h
->type
= STT_SECTION
;
6879 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6883 /* We need to create a .compact_rel section. */
6884 if (SGI_COMPAT (abfd
))
6886 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6890 /* Change alignments of some sections. */
6891 s
= bfd_get_section_by_name (abfd
, ".hash");
6893 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6894 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6896 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6897 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6899 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6900 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6902 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6903 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6905 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6912 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6914 if (!(_bfd_generic_link_add_one_symbol
6915 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6916 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6919 h
= (struct elf_link_hash_entry
*) bh
;
6922 h
->type
= STT_SECTION
;
6924 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6927 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6929 /* __rld_map is a four byte word located in the .data section
6930 and is filled in by the rtld to contain a pointer to
6931 the _r_debug structure. Its symbol value will be set in
6932 _bfd_mips_elf_finish_dynamic_symbol. */
6933 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6934 BFD_ASSERT (s
!= NULL
);
6936 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6938 if (!(_bfd_generic_link_add_one_symbol
6939 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6940 get_elf_backend_data (abfd
)->collect
, &bh
)))
6943 h
= (struct elf_link_hash_entry
*) bh
;
6946 h
->type
= STT_OBJECT
;
6948 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6953 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6954 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6955 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6958 /* Cache the sections created above. */
6959 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6960 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6961 if (htab
->is_vxworks
)
6963 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6964 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6967 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
6969 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
6974 if (htab
->is_vxworks
)
6976 /* Do the usual VxWorks handling. */
6977 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
6980 /* Work out the PLT sizes. */
6983 htab
->plt_header_size
6984 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
6985 htab
->plt_entry_size
6986 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
6990 htab
->plt_header_size
6991 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
6992 htab
->plt_entry_size
6993 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
6996 else if (!info
->shared
)
6998 /* All variants of the plt0 entry are the same size. */
6999 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7000 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7006 /* Return true if relocation REL against section SEC is a REL rather than
7007 RELA relocation. RELOCS is the first relocation in the section and
7008 ABFD is the bfd that contains SEC. */
7011 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7012 const Elf_Internal_Rela
*relocs
,
7013 const Elf_Internal_Rela
*rel
)
7015 Elf_Internal_Shdr
*rel_hdr
;
7016 const struct elf_backend_data
*bed
;
7018 /* To determine which flavor or relocation this is, we depend on the
7019 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7020 rel_hdr
= &elf_section_data (sec
)->rel_hdr
;
7021 bed
= get_elf_backend_data (abfd
);
7022 if ((size_t) (rel
- relocs
)
7023 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7024 rel_hdr
= elf_section_data (sec
)->rel_hdr2
;
7025 return rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (abfd
);
7028 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7029 HOWTO is the relocation's howto and CONTENTS points to the contents
7030 of the section that REL is against. */
7033 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7034 reloc_howto_type
*howto
, bfd_byte
*contents
)
7037 unsigned int r_type
;
7040 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7041 location
= contents
+ rel
->r_offset
;
7043 /* Get the addend, which is stored in the input file. */
7044 _bfd_mips16_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7045 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7046 _bfd_mips16_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7048 return addend
& howto
->src_mask
;
7051 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7052 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7053 and update *ADDEND with the final addend. Return true on success
7054 or false if the LO16 could not be found. RELEND is the exclusive
7055 upper bound on the relocations for REL's section. */
7058 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7059 const Elf_Internal_Rela
*rel
,
7060 const Elf_Internal_Rela
*relend
,
7061 bfd_byte
*contents
, bfd_vma
*addend
)
7063 unsigned int r_type
, lo16_type
;
7064 const Elf_Internal_Rela
*lo16_relocation
;
7065 reloc_howto_type
*lo16_howto
;
7068 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7069 if (mips16_reloc_p (r_type
))
7070 lo16_type
= R_MIPS16_LO16
;
7072 lo16_type
= R_MIPS_LO16
;
7074 /* The combined value is the sum of the HI16 addend, left-shifted by
7075 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7076 code does a `lui' of the HI16 value, and then an `addiu' of the
7079 Scan ahead to find a matching LO16 relocation.
7081 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7082 be immediately following. However, for the IRIX6 ABI, the next
7083 relocation may be a composed relocation consisting of several
7084 relocations for the same address. In that case, the R_MIPS_LO16
7085 relocation may occur as one of these. We permit a similar
7086 extension in general, as that is useful for GCC.
7088 In some cases GCC dead code elimination removes the LO16 but keeps
7089 the corresponding HI16. This is strictly speaking a violation of
7090 the ABI but not immediately harmful. */
7091 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7092 if (lo16_relocation
== NULL
)
7095 /* Obtain the addend kept there. */
7096 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7097 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7099 l
<<= lo16_howto
->rightshift
;
7100 l
= _bfd_mips_elf_sign_extend (l
, 16);
7107 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7108 store the contents in *CONTENTS on success. Assume that *CONTENTS
7109 already holds the contents if it is nonull on entry. */
7112 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7117 /* Get cached copy if it exists. */
7118 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7120 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7124 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7127 /* Look through the relocs for a section during the first phase, and
7128 allocate space in the global offset table. */
7131 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7132 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7136 Elf_Internal_Shdr
*symtab_hdr
;
7137 struct elf_link_hash_entry
**sym_hashes
;
7139 const Elf_Internal_Rela
*rel
;
7140 const Elf_Internal_Rela
*rel_end
;
7142 const struct elf_backend_data
*bed
;
7143 struct mips_elf_link_hash_table
*htab
;
7146 reloc_howto_type
*howto
;
7148 if (info
->relocatable
)
7151 htab
= mips_elf_hash_table (info
);
7152 dynobj
= elf_hash_table (info
)->dynobj
;
7153 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7154 sym_hashes
= elf_sym_hashes (abfd
);
7155 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7157 bed
= get_elf_backend_data (abfd
);
7158 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7160 /* Check for the mips16 stub sections. */
7162 name
= bfd_get_section_name (abfd
, sec
);
7163 if (FN_STUB_P (name
))
7165 unsigned long r_symndx
;
7167 /* Look at the relocation information to figure out which symbol
7170 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7173 (*_bfd_error_handler
)
7174 (_("%B: Warning: cannot determine the target function for"
7175 " stub section `%s'"),
7177 bfd_set_error (bfd_error_bad_value
);
7181 if (r_symndx
< extsymoff
7182 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7186 /* This stub is for a local symbol. This stub will only be
7187 needed if there is some relocation in this BFD, other
7188 than a 16 bit function call, which refers to this symbol. */
7189 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7191 Elf_Internal_Rela
*sec_relocs
;
7192 const Elf_Internal_Rela
*r
, *rend
;
7194 /* We can ignore stub sections when looking for relocs. */
7195 if ((o
->flags
& SEC_RELOC
) == 0
7196 || o
->reloc_count
== 0
7197 || section_allows_mips16_refs_p (o
))
7201 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7203 if (sec_relocs
== NULL
)
7206 rend
= sec_relocs
+ o
->reloc_count
;
7207 for (r
= sec_relocs
; r
< rend
; r
++)
7208 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7209 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7212 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7221 /* There is no non-call reloc for this stub, so we do
7222 not need it. Since this function is called before
7223 the linker maps input sections to output sections, we
7224 can easily discard it by setting the SEC_EXCLUDE
7226 sec
->flags
|= SEC_EXCLUDE
;
7230 /* Record this stub in an array of local symbol stubs for
7232 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7234 unsigned long symcount
;
7238 if (elf_bad_symtab (abfd
))
7239 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7241 symcount
= symtab_hdr
->sh_info
;
7242 amt
= symcount
* sizeof (asection
*);
7243 n
= bfd_zalloc (abfd
, amt
);
7246 elf_tdata (abfd
)->local_stubs
= n
;
7249 sec
->flags
|= SEC_KEEP
;
7250 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7252 /* We don't need to set mips16_stubs_seen in this case.
7253 That flag is used to see whether we need to look through
7254 the global symbol table for stubs. We don't need to set
7255 it here, because we just have a local stub. */
7259 struct mips_elf_link_hash_entry
*h
;
7261 h
= ((struct mips_elf_link_hash_entry
*)
7262 sym_hashes
[r_symndx
- extsymoff
]);
7264 while (h
->root
.root
.type
== bfd_link_hash_indirect
7265 || h
->root
.root
.type
== bfd_link_hash_warning
)
7266 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7268 /* H is the symbol this stub is for. */
7270 /* If we already have an appropriate stub for this function, we
7271 don't need another one, so we can discard this one. Since
7272 this function is called before the linker maps input sections
7273 to output sections, we can easily discard it by setting the
7274 SEC_EXCLUDE flag. */
7275 if (h
->fn_stub
!= NULL
)
7277 sec
->flags
|= SEC_EXCLUDE
;
7281 sec
->flags
|= SEC_KEEP
;
7283 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7286 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7288 unsigned long r_symndx
;
7289 struct mips_elf_link_hash_entry
*h
;
7292 /* Look at the relocation information to figure out which symbol
7295 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7298 (*_bfd_error_handler
)
7299 (_("%B: Warning: cannot determine the target function for"
7300 " stub section `%s'"),
7302 bfd_set_error (bfd_error_bad_value
);
7306 if (r_symndx
< extsymoff
7307 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7311 /* This stub is for a local symbol. This stub will only be
7312 needed if there is some relocation (R_MIPS16_26) in this BFD
7313 that refers to this symbol. */
7314 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7316 Elf_Internal_Rela
*sec_relocs
;
7317 const Elf_Internal_Rela
*r
, *rend
;
7319 /* We can ignore stub sections when looking for relocs. */
7320 if ((o
->flags
& SEC_RELOC
) == 0
7321 || o
->reloc_count
== 0
7322 || section_allows_mips16_refs_p (o
))
7326 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7328 if (sec_relocs
== NULL
)
7331 rend
= sec_relocs
+ o
->reloc_count
;
7332 for (r
= sec_relocs
; r
< rend
; r
++)
7333 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7334 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7337 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7346 /* There is no non-call reloc for this stub, so we do
7347 not need it. Since this function is called before
7348 the linker maps input sections to output sections, we
7349 can easily discard it by setting the SEC_EXCLUDE
7351 sec
->flags
|= SEC_EXCLUDE
;
7355 /* Record this stub in an array of local symbol call_stubs for
7357 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7359 unsigned long symcount
;
7363 if (elf_bad_symtab (abfd
))
7364 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7366 symcount
= symtab_hdr
->sh_info
;
7367 amt
= symcount
* sizeof (asection
*);
7368 n
= bfd_zalloc (abfd
, amt
);
7371 elf_tdata (abfd
)->local_call_stubs
= n
;
7374 sec
->flags
|= SEC_KEEP
;
7375 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7377 /* We don't need to set mips16_stubs_seen in this case.
7378 That flag is used to see whether we need to look through
7379 the global symbol table for stubs. We don't need to set
7380 it here, because we just have a local stub. */
7384 h
= ((struct mips_elf_link_hash_entry
*)
7385 sym_hashes
[r_symndx
- extsymoff
]);
7387 /* H is the symbol this stub is for. */
7389 if (CALL_FP_STUB_P (name
))
7390 loc
= &h
->call_fp_stub
;
7392 loc
= &h
->call_stub
;
7394 /* If we already have an appropriate stub for this function, we
7395 don't need another one, so we can discard this one. Since
7396 this function is called before the linker maps input sections
7397 to output sections, we can easily discard it by setting the
7398 SEC_EXCLUDE flag. */
7401 sec
->flags
|= SEC_EXCLUDE
;
7405 sec
->flags
|= SEC_KEEP
;
7407 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7413 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7415 unsigned long r_symndx
;
7416 unsigned int r_type
;
7417 struct elf_link_hash_entry
*h
;
7418 bfd_boolean can_make_dynamic_p
;
7420 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7421 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7423 if (r_symndx
< extsymoff
)
7425 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7427 (*_bfd_error_handler
)
7428 (_("%B: Malformed reloc detected for section %s"),
7430 bfd_set_error (bfd_error_bad_value
);
7435 h
= sym_hashes
[r_symndx
- extsymoff
];
7437 && (h
->root
.type
== bfd_link_hash_indirect
7438 || h
->root
.type
== bfd_link_hash_warning
))
7439 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7442 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7443 relocation into a dynamic one. */
7444 can_make_dynamic_p
= FALSE
;
7447 case R_MIPS16_GOT16
:
7448 case R_MIPS16_CALL16
:
7451 case R_MIPS_CALL_HI16
:
7452 case R_MIPS_CALL_LO16
:
7453 case R_MIPS_GOT_HI16
:
7454 case R_MIPS_GOT_LO16
:
7455 case R_MIPS_GOT_PAGE
:
7456 case R_MIPS_GOT_OFST
:
7457 case R_MIPS_GOT_DISP
:
7458 case R_MIPS_TLS_GOTTPREL
:
7460 case R_MIPS_TLS_LDM
:
7462 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7463 if (!mips_elf_create_got_section (dynobj
, info
))
7465 if (htab
->is_vxworks
&& !info
->shared
)
7467 (*_bfd_error_handler
)
7468 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7469 abfd
, (unsigned long) rel
->r_offset
);
7470 bfd_set_error (bfd_error_bad_value
);
7478 /* In VxWorks executables, references to external symbols
7479 must be handled using copy relocs or PLT entries; it is not
7480 possible to convert this relocation into a dynamic one.
7482 For executables that use PLTs and copy-relocs, we have a
7483 choice between converting the relocation into a dynamic
7484 one or using copy relocations or PLT entries. It is
7485 usually better to do the former, unless the relocation is
7486 against a read-only section. */
7489 && !htab
->is_vxworks
7490 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7491 && !(!info
->nocopyreloc
7492 && !PIC_OBJECT_P (abfd
)
7493 && MIPS_ELF_READONLY_SECTION (sec
))))
7494 && (sec
->flags
& SEC_ALLOC
) != 0)
7496 can_make_dynamic_p
= TRUE
;
7498 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7504 /* Most static relocations require pointer equality, except
7507 h
->pointer_equality_needed
= TRUE
;
7514 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7520 /* Relocations against the special VxWorks __GOTT_BASE__ and
7521 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7522 room for them in .rela.dyn. */
7523 if (is_gott_symbol (info
, h
))
7527 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7531 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7532 if (MIPS_ELF_READONLY_SECTION (sec
))
7533 /* We tell the dynamic linker that there are
7534 relocations against the text segment. */
7535 info
->flags
|= DF_TEXTREL
;
7538 else if (r_type
== R_MIPS_CALL_LO16
7539 || r_type
== R_MIPS_GOT_LO16
7540 || r_type
== R_MIPS_GOT_DISP
7541 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7543 /* We may need a local GOT entry for this relocation. We
7544 don't count R_MIPS_GOT_PAGE because we can estimate the
7545 maximum number of pages needed by looking at the size of
7546 the segment. Similar comments apply to R_MIPS*_GOT16 and
7547 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7548 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7549 R_MIPS_CALL_HI16 because these are always followed by an
7550 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7551 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7552 rel
->r_addend
, info
, 0))
7556 if (h
!= NULL
&& mips_elf_relocation_needs_la25_stub (abfd
, r_type
))
7557 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
7562 case R_MIPS16_CALL16
:
7565 (*_bfd_error_handler
)
7566 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7567 abfd
, (unsigned long) rel
->r_offset
);
7568 bfd_set_error (bfd_error_bad_value
);
7573 case R_MIPS_CALL_HI16
:
7574 case R_MIPS_CALL_LO16
:
7577 /* VxWorks call relocations point the function's .got.plt
7578 entry, which will be allocated by adjust_dynamic_symbol.
7579 Otherwise, this symbol requires a global GOT entry. */
7580 if ((!htab
->is_vxworks
|| h
->forced_local
)
7581 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7584 /* We need a stub, not a plt entry for the undefined
7585 function. But we record it as if it needs plt. See
7586 _bfd_elf_adjust_dynamic_symbol. */
7592 case R_MIPS_GOT_PAGE
:
7593 /* If this is a global, overridable symbol, GOT_PAGE will
7594 decay to GOT_DISP, so we'll need a GOT entry for it. */
7597 struct mips_elf_link_hash_entry
*hmips
=
7598 (struct mips_elf_link_hash_entry
*) h
;
7600 /* This symbol is definitely not overridable. */
7601 if (hmips
->root
.def_regular
7602 && ! (info
->shared
&& ! info
->symbolic
7603 && ! hmips
->root
.forced_local
))
7608 case R_MIPS16_GOT16
:
7610 case R_MIPS_GOT_HI16
:
7611 case R_MIPS_GOT_LO16
:
7612 if (!h
|| r_type
== R_MIPS_GOT_PAGE
)
7614 /* This relocation needs (or may need, if h != NULL) a
7615 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7616 know for sure until we know whether the symbol is
7618 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
7620 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7622 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7623 addend
= mips_elf_read_rel_addend (abfd
, rel
,
7625 if (r_type
== R_MIPS_GOT16
)
7626 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
7629 addend
<<= howto
->rightshift
;
7632 addend
= rel
->r_addend
;
7633 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
7640 case R_MIPS_GOT_DISP
:
7641 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7645 case R_MIPS_TLS_GOTTPREL
:
7647 info
->flags
|= DF_STATIC_TLS
;
7650 case R_MIPS_TLS_LDM
:
7651 if (r_type
== R_MIPS_TLS_LDM
)
7659 /* This symbol requires a global offset table entry, or two
7660 for TLS GD relocations. */
7662 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
7664 : r_type
== R_MIPS_TLS_LDM
7669 struct mips_elf_link_hash_entry
*hmips
=
7670 (struct mips_elf_link_hash_entry
*) h
;
7671 hmips
->tls_type
|= flag
;
7673 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
,
7679 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
7681 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7692 /* In VxWorks executables, references to external symbols
7693 are handled using copy relocs or PLT stubs, so there's
7694 no need to add a .rela.dyn entry for this relocation. */
7695 if (can_make_dynamic_p
)
7699 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7703 if (info
->shared
&& h
== NULL
)
7705 /* When creating a shared object, we must copy these
7706 reloc types into the output file as R_MIPS_REL32
7707 relocs. Make room for this reloc in .rel(a).dyn. */
7708 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7709 /* In the N32 and 64-bit ABIs there may be multiple
7710 consecutive relocations for the same offset. If we have
7711 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that
7712 relocation is complete and needs no futher adjustment. */
7714 || rel
[-1].r_offset
!= rel
->r_offset
7715 || r_type
!= R_MIPS_64
7716 || ELF_R_TYPE(abfd
, rel
[-1].r_info
) != R_MIPS_GPREL32
)
7717 && MIPS_ELF_READONLY_SECTION (sec
))
7719 /* We tell the dynamic linker that there are
7720 relocations against the text segment. */
7721 info
->flags
|= DF_TEXTREL
;
7722 info
->callbacks
->warning
7724 _("relocation emitted against readonly section"),
7725 NULL
, abfd
, sec
, rel
->r_offset
);
7730 struct mips_elf_link_hash_entry
*hmips
;
7732 /* For a shared object, we must copy this relocation
7733 unless the symbol turns out to be undefined and
7734 weak with non-default visibility, in which case
7735 it will be left as zero.
7737 We could elide R_MIPS_REL32 for locally binding symbols
7738 in shared libraries, but do not yet do so.
7740 For an executable, we only need to copy this
7741 reloc if the symbol is defined in a dynamic
7743 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7744 ++hmips
->possibly_dynamic_relocs
;
7745 if (MIPS_ELF_READONLY_SECTION (sec
))
7746 /* We need it to tell the dynamic linker if there
7747 are relocations against the text segment. */
7748 hmips
->readonly_reloc
= TRUE
;
7752 if (SGI_COMPAT (abfd
))
7753 mips_elf_hash_table (info
)->compact_rel_size
+=
7754 sizeof (Elf32_External_crinfo
);
7758 case R_MIPS_GPREL16
:
7759 case R_MIPS_LITERAL
:
7760 case R_MIPS_GPREL32
:
7761 if (SGI_COMPAT (abfd
))
7762 mips_elf_hash_table (info
)->compact_rel_size
+=
7763 sizeof (Elf32_External_crinfo
);
7766 /* This relocation describes the C++ object vtable hierarchy.
7767 Reconstruct it for later use during GC. */
7768 case R_MIPS_GNU_VTINHERIT
:
7769 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7773 /* This relocation describes which C++ vtable entries are actually
7774 used. Record for later use during GC. */
7775 case R_MIPS_GNU_VTENTRY
:
7776 BFD_ASSERT (h
!= NULL
);
7778 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7786 /* We must not create a stub for a symbol that has relocations
7787 related to taking the function's address. This doesn't apply to
7788 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7789 a normal .got entry. */
7790 if (!htab
->is_vxworks
&& h
!= NULL
)
7794 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
7796 case R_MIPS16_CALL16
:
7798 case R_MIPS_CALL_HI16
:
7799 case R_MIPS_CALL_LO16
:
7804 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7805 if there is one. We only need to handle global symbols here;
7806 we decide whether to keep or delete stubs for local symbols
7807 when processing the stub's relocations. */
7809 && !mips16_call_reloc_p (r_type
)
7810 && !section_allows_mips16_refs_p (sec
))
7812 struct mips_elf_link_hash_entry
*mh
;
7814 mh
= (struct mips_elf_link_hash_entry
*) h
;
7815 mh
->need_fn_stub
= TRUE
;
7818 /* Refuse some position-dependent relocations when creating a
7819 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7820 not PIC, but we can create dynamic relocations and the result
7821 will be fine. Also do not refuse R_MIPS_LO16, which can be
7822 combined with R_MIPS_GOT16. */
7830 case R_MIPS_HIGHEST
:
7831 /* Don't refuse a high part relocation if it's against
7832 no symbol (e.g. part of a compound relocation). */
7836 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7837 and has a special meaning. */
7838 if (!NEWABI_P (abfd
) && h
!= NULL
7839 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
7846 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7847 (*_bfd_error_handler
)
7848 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7850 (h
) ? h
->root
.root
.string
: "a local symbol");
7851 bfd_set_error (bfd_error_bad_value
);
7863 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
7864 struct bfd_link_info
*link_info
,
7867 Elf_Internal_Rela
*internal_relocs
;
7868 Elf_Internal_Rela
*irel
, *irelend
;
7869 Elf_Internal_Shdr
*symtab_hdr
;
7870 bfd_byte
*contents
= NULL
;
7872 bfd_boolean changed_contents
= FALSE
;
7873 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
7874 Elf_Internal_Sym
*isymbuf
= NULL
;
7876 /* We are not currently changing any sizes, so only one pass. */
7879 if (link_info
->relocatable
)
7882 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7883 link_info
->keep_memory
);
7884 if (internal_relocs
== NULL
)
7887 irelend
= internal_relocs
+ sec
->reloc_count
7888 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
7889 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7890 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7892 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7895 bfd_signed_vma sym_offset
;
7896 unsigned int r_type
;
7897 unsigned long r_symndx
;
7899 unsigned long instruction
;
7901 /* Turn jalr into bgezal, and jr into beq, if they're marked
7902 with a JALR relocation, that indicate where they jump to.
7903 This saves some pipeline bubbles. */
7904 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
7905 if (r_type
!= R_MIPS_JALR
)
7908 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
7909 /* Compute the address of the jump target. */
7910 if (r_symndx
>= extsymoff
)
7912 struct mips_elf_link_hash_entry
*h
7913 = ((struct mips_elf_link_hash_entry
*)
7914 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
7916 while (h
->root
.root
.type
== bfd_link_hash_indirect
7917 || h
->root
.root
.type
== bfd_link_hash_warning
)
7918 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7920 /* If a symbol is undefined, or if it may be overridden,
7922 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
7923 || h
->root
.root
.type
== bfd_link_hash_defweak
)
7924 && h
->root
.root
.u
.def
.section
)
7925 || (link_info
->shared
&& ! link_info
->symbolic
7926 && !h
->root
.forced_local
))
7929 sym_sec
= h
->root
.root
.u
.def
.section
;
7930 if (sym_sec
->output_section
)
7931 symval
= (h
->root
.root
.u
.def
.value
7932 + sym_sec
->output_section
->vma
7933 + sym_sec
->output_offset
);
7935 symval
= h
->root
.root
.u
.def
.value
;
7939 Elf_Internal_Sym
*isym
;
7941 /* Read this BFD's symbols if we haven't done so already. */
7942 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
7944 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7945 if (isymbuf
== NULL
)
7946 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
7947 symtab_hdr
->sh_info
, 0,
7949 if (isymbuf
== NULL
)
7953 isym
= isymbuf
+ r_symndx
;
7954 if (isym
->st_shndx
== SHN_UNDEF
)
7956 else if (isym
->st_shndx
== SHN_ABS
)
7957 sym_sec
= bfd_abs_section_ptr
;
7958 else if (isym
->st_shndx
== SHN_COMMON
)
7959 sym_sec
= bfd_com_section_ptr
;
7962 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
7963 symval
= isym
->st_value
7964 + sym_sec
->output_section
->vma
7965 + sym_sec
->output_offset
;
7968 /* Compute branch offset, from delay slot of the jump to the
7970 sym_offset
= (symval
+ irel
->r_addend
)
7971 - (sec_start
+ irel
->r_offset
+ 4);
7973 /* Branch offset must be properly aligned. */
7974 if ((sym_offset
& 3) != 0)
7979 /* Check that it's in range. */
7980 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
7983 /* Get the section contents if we haven't done so already. */
7984 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7987 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
7989 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7990 if ((instruction
& 0xfc1fffff) == 0x0000f809)
7991 instruction
= 0x04110000;
7992 /* If it was jr <reg>, turn it into b <target>. */
7993 else if ((instruction
& 0xfc1fffff) == 0x00000008)
7994 instruction
= 0x10000000;
7998 instruction
|= (sym_offset
& 0xffff);
7999 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8000 changed_contents
= TRUE
;
8003 if (contents
!= NULL
8004 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8006 if (!changed_contents
&& !link_info
->keep_memory
)
8010 /* Cache the section contents for elf_link_input_bfd. */
8011 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8017 if (contents
!= NULL
8018 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8023 /* Allocate space for global sym dynamic relocs. */
8026 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8028 struct bfd_link_info
*info
= inf
;
8030 struct mips_elf_link_hash_entry
*hmips
;
8031 struct mips_elf_link_hash_table
*htab
;
8033 htab
= mips_elf_hash_table (info
);
8034 dynobj
= elf_hash_table (info
)->dynobj
;
8035 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8037 /* VxWorks executables are handled elsewhere; we only need to
8038 allocate relocations in shared objects. */
8039 if (htab
->is_vxworks
&& !info
->shared
)
8042 /* Ignore indirect and warning symbols. All relocations against
8043 such symbols will be redirected to the target symbol. */
8044 if (h
->root
.type
== bfd_link_hash_indirect
8045 || h
->root
.type
== bfd_link_hash_warning
)
8048 /* If this symbol is defined in a dynamic object, or we are creating
8049 a shared library, we will need to copy any R_MIPS_32 or
8050 R_MIPS_REL32 relocs against it into the output file. */
8051 if (! info
->relocatable
8052 && hmips
->possibly_dynamic_relocs
!= 0
8053 && (h
->root
.type
== bfd_link_hash_defweak
8057 bfd_boolean do_copy
= TRUE
;
8059 if (h
->root
.type
== bfd_link_hash_undefweak
)
8061 /* Do not copy relocations for undefined weak symbols with
8062 non-default visibility. */
8063 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8066 /* Make sure undefined weak symbols are output as a dynamic
8068 else if (h
->dynindx
== -1 && !h
->forced_local
)
8070 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8077 /* Even though we don't directly need a GOT entry for this symbol,
8078 a symbol must have a dynamic symbol table index greater that
8079 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8080 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8081 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8083 mips_elf_allocate_dynamic_relocations
8084 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8085 if (hmips
->readonly_reloc
)
8086 /* We tell the dynamic linker that there are relocations
8087 against the text segment. */
8088 info
->flags
|= DF_TEXTREL
;
8095 /* Adjust a symbol defined by a dynamic object and referenced by a
8096 regular object. The current definition is in some section of the
8097 dynamic object, but we're not including those sections. We have to
8098 change the definition to something the rest of the link can
8102 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8103 struct elf_link_hash_entry
*h
)
8106 struct mips_elf_link_hash_entry
*hmips
;
8107 struct mips_elf_link_hash_table
*htab
;
8109 htab
= mips_elf_hash_table (info
);
8110 dynobj
= elf_hash_table (info
)->dynobj
;
8111 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8113 /* Make sure we know what is going on here. */
8114 BFD_ASSERT (dynobj
!= NULL
8116 || h
->u
.weakdef
!= NULL
8119 && !h
->def_regular
)));
8121 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8123 /* If there are call relocations against an externally-defined symbol,
8124 see whether we can create a MIPS lazy-binding stub for it. We can
8125 only do this if all references to the function are through call
8126 relocations, and in that case, the traditional lazy-binding stubs
8127 are much more efficient than PLT entries.
8129 Traditional stubs are only available on SVR4 psABI-based systems;
8130 VxWorks always uses PLTs instead. */
8131 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8133 if (! elf_hash_table (info
)->dynamic_sections_created
)
8136 /* If this symbol is not defined in a regular file, then set
8137 the symbol to the stub location. This is required to make
8138 function pointers compare as equal between the normal
8139 executable and the shared library. */
8140 if (!h
->def_regular
)
8142 hmips
->needs_lazy_stub
= TRUE
;
8143 htab
->lazy_stub_count
++;
8147 /* As above, VxWorks requires PLT entries for externally-defined
8148 functions that are only accessed through call relocations.
8150 Both VxWorks and non-VxWorks targets also need PLT entries if there
8151 are static-only relocations against an externally-defined function.
8152 This can technically occur for shared libraries if there are
8153 branches to the symbol, although it is unlikely that this will be
8154 used in practice due to the short ranges involved. It can occur
8155 for any relative or absolute relocation in executables; in that
8156 case, the PLT entry becomes the function's canonical address. */
8157 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8158 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8159 && htab
->use_plts_and_copy_relocs
8160 && !SYMBOL_CALLS_LOCAL (info
, h
)
8161 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8162 && h
->root
.type
== bfd_link_hash_undefweak
))
8164 /* If this is the first symbol to need a PLT entry, allocate room
8166 if (htab
->splt
->size
== 0)
8168 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8170 /* If we're using the PLT additions to the psABI, each PLT
8171 entry is 16 bytes and the PLT0 entry is 32 bytes.
8172 Encourage better cache usage by aligning. We do this
8173 lazily to avoid pessimizing traditional objects. */
8174 if (!htab
->is_vxworks
8175 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8178 /* Make sure that .got.plt is word-aligned. We do this lazily
8179 for the same reason as above. */
8180 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8181 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8184 htab
->splt
->size
+= htab
->plt_header_size
;
8186 /* On non-VxWorks targets, the first two entries in .got.plt
8188 if (!htab
->is_vxworks
)
8189 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8191 /* On VxWorks, also allocate room for the header's
8192 .rela.plt.unloaded entries. */
8193 if (htab
->is_vxworks
&& !info
->shared
)
8194 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8197 /* Assign the next .plt entry to this symbol. */
8198 h
->plt
.offset
= htab
->splt
->size
;
8199 htab
->splt
->size
+= htab
->plt_entry_size
;
8201 /* If the output file has no definition of the symbol, set the
8202 symbol's value to the address of the stub. */
8203 if (!info
->shared
&& !h
->def_regular
)
8205 h
->root
.u
.def
.section
= htab
->splt
;
8206 h
->root
.u
.def
.value
= h
->plt
.offset
;
8207 /* For VxWorks, point at the PLT load stub rather than the
8208 lazy resolution stub; this stub will become the canonical
8209 function address. */
8210 if (htab
->is_vxworks
)
8211 h
->root
.u
.def
.value
+= 8;
8214 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8216 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8217 htab
->srelplt
->size
+= (htab
->is_vxworks
8218 ? MIPS_ELF_RELA_SIZE (dynobj
)
8219 : MIPS_ELF_REL_SIZE (dynobj
));
8221 /* Make room for the .rela.plt.unloaded relocations. */
8222 if (htab
->is_vxworks
&& !info
->shared
)
8223 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8225 /* All relocations against this symbol that could have been made
8226 dynamic will now refer to the PLT entry instead. */
8227 hmips
->possibly_dynamic_relocs
= 0;
8232 /* If this is a weak symbol, and there is a real definition, the
8233 processor independent code will have arranged for us to see the
8234 real definition first, and we can just use the same value. */
8235 if (h
->u
.weakdef
!= NULL
)
8237 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8238 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8239 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8240 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8244 /* Otherwise, there is nothing further to do for symbols defined
8245 in regular objects. */
8249 /* There's also nothing more to do if we'll convert all relocations
8250 against this symbol into dynamic relocations. */
8251 if (!hmips
->has_static_relocs
)
8254 /* We're now relying on copy relocations. Complain if we have
8255 some that we can't convert. */
8256 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8258 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8259 "dynamic symbol %s"),
8260 h
->root
.root
.string
);
8261 bfd_set_error (bfd_error_bad_value
);
8265 /* We must allocate the symbol in our .dynbss section, which will
8266 become part of the .bss section of the executable. There will be
8267 an entry for this symbol in the .dynsym section. The dynamic
8268 object will contain position independent code, so all references
8269 from the dynamic object to this symbol will go through the global
8270 offset table. The dynamic linker will use the .dynsym entry to
8271 determine the address it must put in the global offset table, so
8272 both the dynamic object and the regular object will refer to the
8273 same memory location for the variable. */
8275 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8277 if (htab
->is_vxworks
)
8278 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8280 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8284 /* All relocations against this symbol that could have been made
8285 dynamic will now refer to the local copy instead. */
8286 hmips
->possibly_dynamic_relocs
= 0;
8288 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8291 /* This function is called after all the input files have been read,
8292 and the input sections have been assigned to output sections. We
8293 check for any mips16 stub sections that we can discard. */
8296 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8297 struct bfd_link_info
*info
)
8300 struct mips_elf_link_hash_table
*htab
;
8301 struct mips_htab_traverse_info hti
;
8303 htab
= mips_elf_hash_table (info
);
8305 /* The .reginfo section has a fixed size. */
8306 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8308 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8311 hti
.output_bfd
= output_bfd
;
8313 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8314 mips_elf_check_symbols
, &hti
);
8321 /* If the link uses a GOT, lay it out and work out its size. */
8324 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8328 struct mips_got_info
*g
;
8329 bfd_size_type loadable_size
= 0;
8330 bfd_size_type page_gotno
;
8332 struct mips_elf_count_tls_arg count_tls_arg
;
8333 struct mips_elf_link_hash_table
*htab
;
8335 htab
= mips_elf_hash_table (info
);
8340 dynobj
= elf_hash_table (info
)->dynobj
;
8343 /* Allocate room for the reserved entries. VxWorks always reserves
8344 3 entries; other objects only reserve 2 entries. */
8345 BFD_ASSERT (g
->assigned_gotno
== 0);
8346 if (htab
->is_vxworks
)
8347 htab
->reserved_gotno
= 3;
8349 htab
->reserved_gotno
= 2;
8350 g
->local_gotno
+= htab
->reserved_gotno
;
8351 g
->assigned_gotno
= htab
->reserved_gotno
;
8353 /* Replace entries for indirect and warning symbols with entries for
8354 the target symbol. */
8355 if (!mips_elf_resolve_final_got_entries (g
))
8358 /* Count the number of GOT symbols. */
8359 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, g
);
8361 /* Calculate the total loadable size of the output. That
8362 will give us the maximum number of GOT_PAGE entries
8364 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8366 asection
*subsection
;
8368 for (subsection
= sub
->sections
;
8370 subsection
= subsection
->next
)
8372 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8374 loadable_size
+= ((subsection
->size
+ 0xf)
8375 &~ (bfd_size_type
) 0xf);
8379 if (htab
->is_vxworks
)
8380 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8381 relocations against local symbols evaluate to "G", and the EABI does
8382 not include R_MIPS_GOT_PAGE. */
8385 /* Assume there are two loadable segments consisting of contiguous
8386 sections. Is 5 enough? */
8387 page_gotno
= (loadable_size
>> 16) + 5;
8389 /* Choose the smaller of the two estimates; both are intended to be
8391 if (page_gotno
> g
->page_gotno
)
8392 page_gotno
= g
->page_gotno
;
8394 g
->local_gotno
+= page_gotno
;
8395 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8396 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8398 /* We need to calculate tls_gotno for global symbols at this point
8399 instead of building it up earlier, to avoid doublecounting
8400 entries for one global symbol from multiple input files. */
8401 count_tls_arg
.info
= info
;
8402 count_tls_arg
.needed
= 0;
8403 elf_link_hash_traverse (elf_hash_table (info
),
8404 mips_elf_count_global_tls_entries
,
8406 g
->tls_gotno
+= count_tls_arg
.needed
;
8407 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8409 /* VxWorks does not support multiple GOTs. It initializes $gp to
8410 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8412 if (htab
->is_vxworks
)
8414 /* VxWorks executables do not need a GOT. */
8417 /* Each VxWorks GOT entry needs an explicit relocation. */
8420 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8422 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8425 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8427 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8432 struct mips_elf_count_tls_arg arg
;
8434 /* Set up TLS entries. */
8435 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8436 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8438 /* Allocate room for the TLS relocations. */
8441 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8442 elf_link_hash_traverse (elf_hash_table (info
),
8443 mips_elf_count_global_tls_relocs
,
8446 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8452 /* Estimate the size of the .MIPS.stubs section. */
8455 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8457 struct mips_elf_link_hash_table
*htab
;
8458 bfd_size_type dynsymcount
;
8460 htab
= mips_elf_hash_table (info
);
8461 if (htab
->lazy_stub_count
== 0)
8464 /* IRIX rld assumes that a function stub isn't at the end of the .text
8465 section, so add a dummy entry to the end. */
8466 htab
->lazy_stub_count
++;
8468 /* Get a worst-case estimate of the number of dynamic symbols needed.
8469 At this point, dynsymcount does not account for section symbols
8470 and count_section_dynsyms may overestimate the number that will
8472 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8473 + count_section_dynsyms (output_bfd
, info
));
8475 /* Determine the size of one stub entry. */
8476 htab
->function_stub_size
= (dynsymcount
> 0x10000
8477 ? MIPS_FUNCTION_STUB_BIG_SIZE
8478 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8480 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8483 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8484 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8485 allocate an entry in the stubs section. */
8488 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8490 struct mips_elf_link_hash_table
*htab
;
8492 htab
= (struct mips_elf_link_hash_table
*) data
;
8493 if (h
->needs_lazy_stub
)
8495 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8496 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8497 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8498 htab
->sstubs
->size
+= htab
->function_stub_size
;
8503 /* Allocate offsets in the stubs section to each symbol that needs one.
8504 Set the final size of the .MIPS.stub section. */
8507 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8509 struct mips_elf_link_hash_table
*htab
;
8511 htab
= mips_elf_hash_table (info
);
8512 if (htab
->lazy_stub_count
== 0)
8515 htab
->sstubs
->size
= 0;
8516 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8517 mips_elf_allocate_lazy_stub
, htab
);
8518 htab
->sstubs
->size
+= htab
->function_stub_size
;
8519 BFD_ASSERT (htab
->sstubs
->size
8520 == htab
->lazy_stub_count
* htab
->function_stub_size
);
8523 /* Set the sizes of the dynamic sections. */
8526 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
8527 struct bfd_link_info
*info
)
8530 asection
*s
, *sreldyn
;
8531 bfd_boolean reltext
;
8532 struct mips_elf_link_hash_table
*htab
;
8534 htab
= mips_elf_hash_table (info
);
8535 dynobj
= elf_hash_table (info
)->dynobj
;
8536 BFD_ASSERT (dynobj
!= NULL
);
8538 if (elf_hash_table (info
)->dynamic_sections_created
)
8540 /* Set the contents of the .interp section to the interpreter. */
8541 if (info
->executable
)
8543 s
= bfd_get_section_by_name (dynobj
, ".interp");
8544 BFD_ASSERT (s
!= NULL
);
8546 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8548 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8551 /* Create a symbol for the PLT, if we know that we are using it. */
8552 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
8554 struct elf_link_hash_entry
*h
;
8556 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
8558 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
8559 "_PROCEDURE_LINKAGE_TABLE_");
8560 htab
->root
.hplt
= h
;
8567 /* Allocate space for global sym dynamic relocs. */
8568 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
8570 mips_elf_estimate_stub_size (output_bfd
, info
);
8572 if (!mips_elf_lay_out_got (output_bfd
, info
))
8575 mips_elf_lay_out_lazy_stubs (info
);
8577 /* The check_relocs and adjust_dynamic_symbol entry points have
8578 determined the sizes of the various dynamic sections. Allocate
8581 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8585 /* It's OK to base decisions on the section name, because none
8586 of the dynobj section names depend upon the input files. */
8587 name
= bfd_get_section_name (dynobj
, s
);
8589 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8592 if (CONST_STRNEQ (name
, ".rel"))
8596 const char *outname
;
8599 /* If this relocation section applies to a read only
8600 section, then we probably need a DT_TEXTREL entry.
8601 If the relocation section is .rel(a).dyn, we always
8602 assert a DT_TEXTREL entry rather than testing whether
8603 there exists a relocation to a read only section or
8605 outname
= bfd_get_section_name (output_bfd
,
8607 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8609 && (target
->flags
& SEC_READONLY
) != 0
8610 && (target
->flags
& SEC_ALLOC
) != 0)
8611 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
8614 /* We use the reloc_count field as a counter if we need
8615 to copy relocs into the output file. */
8616 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
8619 /* If combreloc is enabled, elf_link_sort_relocs() will
8620 sort relocations, but in a different way than we do,
8621 and before we're done creating relocations. Also, it
8622 will move them around between input sections'
8623 relocation's contents, so our sorting would be
8624 broken, so don't let it run. */
8625 info
->combreloc
= 0;
8628 else if (! info
->shared
8629 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8630 && CONST_STRNEQ (name
, ".rld_map"))
8632 /* We add a room for __rld_map. It will be filled in by the
8633 rtld to contain a pointer to the _r_debug structure. */
8636 else if (SGI_COMPAT (output_bfd
)
8637 && CONST_STRNEQ (name
, ".compact_rel"))
8638 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8639 else if (s
== htab
->splt
)
8641 /* If the last PLT entry has a branch delay slot, allocate
8642 room for an extra nop to fill the delay slot. */
8643 if (!htab
->is_vxworks
&& s
->size
> 0)
8646 else if (! CONST_STRNEQ (name
, ".init")
8648 && s
!= htab
->sgotplt
8649 && s
!= htab
->sstubs
8650 && s
!= htab
->sdynbss
)
8652 /* It's not one of our sections, so don't allocate space. */
8658 s
->flags
|= SEC_EXCLUDE
;
8662 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8665 /* Allocate memory for the section contents. */
8666 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
8667 if (s
->contents
== NULL
)
8669 bfd_set_error (bfd_error_no_memory
);
8674 if (elf_hash_table (info
)->dynamic_sections_created
)
8676 /* Add some entries to the .dynamic section. We fill in the
8677 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8678 must add the entries now so that we get the correct size for
8679 the .dynamic section. */
8681 /* SGI object has the equivalence of DT_DEBUG in the
8682 DT_MIPS_RLD_MAP entry. This must come first because glibc
8683 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8684 looks at the first one it sees. */
8686 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8689 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8690 used by the debugger. */
8691 if (info
->executable
8692 && !SGI_COMPAT (output_bfd
)
8693 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8696 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
8697 info
->flags
|= DF_TEXTREL
;
8699 if ((info
->flags
& DF_TEXTREL
) != 0)
8701 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8704 /* Clear the DF_TEXTREL flag. It will be set again if we
8705 write out an actual text relocation; we may not, because
8706 at this point we do not know whether e.g. any .eh_frame
8707 absolute relocations have been converted to PC-relative. */
8708 info
->flags
&= ~DF_TEXTREL
;
8711 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8714 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
8715 if (htab
->is_vxworks
)
8717 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8718 use any of the DT_MIPS_* tags. */
8719 if (sreldyn
&& sreldyn
->size
> 0)
8721 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
8724 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
8727 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
8733 if (sreldyn
&& sreldyn
->size
> 0)
8735 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8738 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8741 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8745 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8748 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8751 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8754 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8757 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8760 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8763 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8766 if (IRIX_COMPAT (dynobj
) == ict_irix5
8767 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8770 if (IRIX_COMPAT (dynobj
) == ict_irix6
8771 && (bfd_get_section_by_name
8772 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8773 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8776 if (htab
->splt
->size
> 0)
8778 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
8781 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
8784 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
8787 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
8790 if (htab
->is_vxworks
8791 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
8798 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8799 Adjust its R_ADDEND field so that it is correct for the output file.
8800 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8801 and sections respectively; both use symbol indexes. */
8804 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
8805 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
8806 asection
**local_sections
, Elf_Internal_Rela
*rel
)
8808 unsigned int r_type
, r_symndx
;
8809 Elf_Internal_Sym
*sym
;
8812 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8814 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8815 if (r_type
== R_MIPS16_GPREL
8816 || r_type
== R_MIPS_GPREL16
8817 || r_type
== R_MIPS_GPREL32
8818 || r_type
== R_MIPS_LITERAL
)
8820 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
8821 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
8824 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
8825 sym
= local_syms
+ r_symndx
;
8827 /* Adjust REL's addend to account for section merging. */
8828 if (!info
->relocatable
)
8830 sec
= local_sections
[r_symndx
];
8831 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8834 /* This would normally be done by the rela_normal code in elflink.c. */
8835 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8836 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
8840 /* Relocate a MIPS ELF section. */
8843 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
8844 bfd
*input_bfd
, asection
*input_section
,
8845 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
8846 Elf_Internal_Sym
*local_syms
,
8847 asection
**local_sections
)
8849 Elf_Internal_Rela
*rel
;
8850 const Elf_Internal_Rela
*relend
;
8852 bfd_boolean use_saved_addend_p
= FALSE
;
8853 const struct elf_backend_data
*bed
;
8855 bed
= get_elf_backend_data (output_bfd
);
8856 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8857 for (rel
= relocs
; rel
< relend
; ++rel
)
8861 reloc_howto_type
*howto
;
8862 bfd_boolean require_jalx
;
8863 /* TRUE if the relocation is a RELA relocation, rather than a
8865 bfd_boolean rela_relocation_p
= TRUE
;
8866 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8868 unsigned long r_symndx
;
8870 Elf_Internal_Shdr
*symtab_hdr
;
8871 struct elf_link_hash_entry
*h
;
8873 /* Find the relocation howto for this relocation. */
8874 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
8875 NEWABI_P (input_bfd
)
8876 && (MIPS_RELOC_RELA_P
8877 (input_bfd
, input_section
,
8880 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
8881 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8882 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8884 sec
= local_sections
[r_symndx
];
8889 unsigned long extsymoff
;
8892 if (!elf_bad_symtab (input_bfd
))
8893 extsymoff
= symtab_hdr
->sh_info
;
8894 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
8895 while (h
->root
.type
== bfd_link_hash_indirect
8896 || h
->root
.type
== bfd_link_hash_warning
)
8897 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8900 if (h
->root
.type
== bfd_link_hash_defined
8901 || h
->root
.type
== bfd_link_hash_defweak
)
8902 sec
= h
->root
.u
.def
.section
;
8905 if (sec
!= NULL
&& elf_discarded_section (sec
))
8907 /* For relocs against symbols from removed linkonce sections,
8908 or sections discarded by a linker script, we just want the
8909 section contents zeroed. Avoid any special processing. */
8910 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8916 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
8918 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8919 64-bit code, but make sure all their addresses are in the
8920 lowermost or uppermost 32-bit section of the 64-bit address
8921 space. Thus, when they use an R_MIPS_64 they mean what is
8922 usually meant by R_MIPS_32, with the exception that the
8923 stored value is sign-extended to 64 bits. */
8924 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
8926 /* On big-endian systems, we need to lie about the position
8928 if (bfd_big_endian (input_bfd
))
8932 if (!use_saved_addend_p
)
8934 /* If these relocations were originally of the REL variety,
8935 we must pull the addend out of the field that will be
8936 relocated. Otherwise, we simply use the contents of the
8938 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
8941 rela_relocation_p
= FALSE
;
8942 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
8944 if (hi16_reloc_p (r_type
)
8945 || (got16_reloc_p (r_type
)
8946 && mips_elf_local_relocation_p (input_bfd
, rel
,
8947 local_sections
, FALSE
)))
8949 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
8955 name
= h
->root
.root
.string
;
8957 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
8958 local_syms
+ r_symndx
,
8960 (*_bfd_error_handler
)
8961 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8962 input_bfd
, input_section
, name
, howto
->name
,
8967 addend
<<= howto
->rightshift
;
8970 addend
= rel
->r_addend
;
8971 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
8972 local_syms
, local_sections
, rel
);
8975 if (info
->relocatable
)
8977 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
8978 && bfd_big_endian (input_bfd
))
8981 if (!rela_relocation_p
&& rel
->r_addend
)
8983 addend
+= rel
->r_addend
;
8984 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
8985 addend
= mips_elf_high (addend
);
8986 else if (r_type
== R_MIPS_HIGHER
)
8987 addend
= mips_elf_higher (addend
);
8988 else if (r_type
== R_MIPS_HIGHEST
)
8989 addend
= mips_elf_highest (addend
);
8991 addend
>>= howto
->rightshift
;
8993 /* We use the source mask, rather than the destination
8994 mask because the place to which we are writing will be
8995 source of the addend in the final link. */
8996 addend
&= howto
->src_mask
;
8998 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
8999 /* See the comment above about using R_MIPS_64 in the 32-bit
9000 ABI. Here, we need to update the addend. It would be
9001 possible to get away with just using the R_MIPS_32 reloc
9002 but for endianness. */
9008 if (addend
& ((bfd_vma
) 1 << 31))
9010 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9017 /* If we don't know that we have a 64-bit type,
9018 do two separate stores. */
9019 if (bfd_big_endian (input_bfd
))
9021 /* Store the sign-bits (which are most significant)
9023 low_bits
= sign_bits
;
9029 high_bits
= sign_bits
;
9031 bfd_put_32 (input_bfd
, low_bits
,
9032 contents
+ rel
->r_offset
);
9033 bfd_put_32 (input_bfd
, high_bits
,
9034 contents
+ rel
->r_offset
+ 4);
9038 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9039 input_bfd
, input_section
,
9044 /* Go on to the next relocation. */
9048 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9049 relocations for the same offset. In that case we are
9050 supposed to treat the output of each relocation as the addend
9052 if (rel
+ 1 < relend
9053 && rel
->r_offset
== rel
[1].r_offset
9054 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9055 use_saved_addend_p
= TRUE
;
9057 use_saved_addend_p
= FALSE
;
9059 /* Figure out what value we are supposed to relocate. */
9060 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9061 input_section
, info
, rel
,
9062 addend
, howto
, local_syms
,
9063 local_sections
, &value
,
9064 &name
, &require_jalx
,
9065 use_saved_addend_p
))
9067 case bfd_reloc_continue
:
9068 /* There's nothing to do. */
9071 case bfd_reloc_undefined
:
9072 /* mips_elf_calculate_relocation already called the
9073 undefined_symbol callback. There's no real point in
9074 trying to perform the relocation at this point, so we
9075 just skip ahead to the next relocation. */
9078 case bfd_reloc_notsupported
:
9079 msg
= _("internal error: unsupported relocation error");
9080 info
->callbacks
->warning
9081 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9084 case bfd_reloc_overflow
:
9085 if (use_saved_addend_p
)
9086 /* Ignore overflow until we reach the last relocation for
9087 a given location. */
9091 struct mips_elf_link_hash_table
*htab
;
9093 htab
= mips_elf_hash_table (info
);
9094 BFD_ASSERT (name
!= NULL
);
9095 if (!htab
->small_data_overflow_reported
9096 && (howto
->type
== R_MIPS_GPREL16
9097 || howto
->type
== R_MIPS_LITERAL
))
9100 _("small-data section exceeds 64KB;"
9101 " lower small-data size limit (see option -G)");
9103 htab
->small_data_overflow_reported
= TRUE
;
9104 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9106 if (! ((*info
->callbacks
->reloc_overflow
)
9107 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9108 input_bfd
, input_section
, rel
->r_offset
)))
9121 /* If we've got another relocation for the address, keep going
9122 until we reach the last one. */
9123 if (use_saved_addend_p
)
9129 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9130 /* See the comment above about using R_MIPS_64 in the 32-bit
9131 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9132 that calculated the right value. Now, however, we
9133 sign-extend the 32-bit result to 64-bits, and store it as a
9134 64-bit value. We are especially generous here in that we
9135 go to extreme lengths to support this usage on systems with
9136 only a 32-bit VMA. */
9142 if (value
& ((bfd_vma
) 1 << 31))
9144 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9151 /* If we don't know that we have a 64-bit type,
9152 do two separate stores. */
9153 if (bfd_big_endian (input_bfd
))
9155 /* Undo what we did above. */
9157 /* Store the sign-bits (which are most significant)
9159 low_bits
= sign_bits
;
9165 high_bits
= sign_bits
;
9167 bfd_put_32 (input_bfd
, low_bits
,
9168 contents
+ rel
->r_offset
);
9169 bfd_put_32 (input_bfd
, high_bits
,
9170 contents
+ rel
->r_offset
+ 4);
9174 /* Actually perform the relocation. */
9175 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9176 input_bfd
, input_section
,
9177 contents
, require_jalx
))
9184 /* A function that iterates over each entry in la25_stubs and fills
9185 in the code for each one. DATA points to a mips_htab_traverse_info. */
9188 mips_elf_create_la25_stub (void **slot
, void *data
)
9190 struct mips_htab_traverse_info
*hti
;
9191 struct mips_elf_link_hash_table
*htab
;
9192 struct mips_elf_la25_stub
*stub
;
9195 bfd_vma offset
, target
, target_high
, target_low
;
9197 stub
= (struct mips_elf_la25_stub
*) *slot
;
9198 hti
= (struct mips_htab_traverse_info
*) data
;
9199 htab
= mips_elf_hash_table (hti
->info
);
9201 /* Create the section contents, if we haven't already. */
9202 s
= stub
->stub_section
;
9206 loc
= bfd_malloc (s
->size
);
9215 /* Work out where in the section this stub should go. */
9216 offset
= stub
->offset
;
9218 /* Work out the target address. */
9219 target
= (stub
->h
->root
.root
.u
.def
.section
->output_section
->vma
9220 + stub
->h
->root
.root
.u
.def
.section
->output_offset
9221 + stub
->h
->root
.root
.u
.def
.value
);
9222 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9223 target_low
= (target
& 0xffff);
9225 if (stub
->stub_section
!= htab
->strampoline
)
9227 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9228 of the section and write the two instructions at the end. */
9229 memset (loc
, 0, offset
);
9231 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9232 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9236 /* This is trampoline. */
9238 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9239 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9240 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9241 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9246 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9247 adjust it appropriately now. */
9250 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9251 const char *name
, Elf_Internal_Sym
*sym
)
9253 /* The linker script takes care of providing names and values for
9254 these, but we must place them into the right sections. */
9255 static const char* const text_section_symbols
[] = {
9258 "__dso_displacement",
9260 "__program_header_table",
9264 static const char* const data_section_symbols
[] = {
9272 const char* const *p
;
9275 for (i
= 0; i
< 2; ++i
)
9276 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9279 if (strcmp (*p
, name
) == 0)
9281 /* All of these symbols are given type STT_SECTION by the
9283 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9284 sym
->st_other
= STO_PROTECTED
;
9286 /* The IRIX linker puts these symbols in special sections. */
9288 sym
->st_shndx
= SHN_MIPS_TEXT
;
9290 sym
->st_shndx
= SHN_MIPS_DATA
;
9296 /* Finish up dynamic symbol handling. We set the contents of various
9297 dynamic sections here. */
9300 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9301 struct bfd_link_info
*info
,
9302 struct elf_link_hash_entry
*h
,
9303 Elf_Internal_Sym
*sym
)
9307 struct mips_got_info
*g
, *gg
;
9310 struct mips_elf_link_hash_table
*htab
;
9311 struct mips_elf_link_hash_entry
*hmips
;
9313 htab
= mips_elf_hash_table (info
);
9314 dynobj
= elf_hash_table (info
)->dynobj
;
9315 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9317 BFD_ASSERT (!htab
->is_vxworks
);
9319 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9321 /* We've decided to create a PLT entry for this symbol. */
9323 bfd_vma header_address
, plt_index
, got_address
;
9324 bfd_vma got_address_high
, got_address_low
, load
;
9325 const bfd_vma
*plt_entry
;
9327 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9328 BFD_ASSERT (h
->dynindx
!= -1);
9329 BFD_ASSERT (htab
->splt
!= NULL
);
9330 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9331 BFD_ASSERT (!h
->def_regular
);
9333 /* Calculate the address of the PLT header. */
9334 header_address
= (htab
->splt
->output_section
->vma
9335 + htab
->splt
->output_offset
);
9337 /* Calculate the index of the entry. */
9338 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9339 / htab
->plt_entry_size
);
9341 /* Calculate the address of the .got.plt entry. */
9342 got_address
= (htab
->sgotplt
->output_section
->vma
9343 + htab
->sgotplt
->output_offset
9344 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9345 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9346 got_address_low
= got_address
& 0xffff;
9348 /* Initially point the .got.plt entry at the PLT header. */
9349 loc
= (htab
->sgotplt
->contents
9350 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9351 if (ABI_64_P (output_bfd
))
9352 bfd_put_64 (output_bfd
, header_address
, loc
);
9354 bfd_put_32 (output_bfd
, header_address
, loc
);
9356 /* Find out where the .plt entry should go. */
9357 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9359 /* Pick the load opcode. */
9360 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9362 /* Fill in the PLT entry itself. */
9363 plt_entry
= mips_exec_plt_entry
;
9364 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9365 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9366 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9367 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9369 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9370 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9371 plt_index
, h
->dynindx
,
9372 R_MIPS_JUMP_SLOT
, got_address
);
9374 /* We distinguish between PLT entries and lazy-binding stubs by
9375 giving the former an st_other value of STO_MIPS_PLT. Set the
9376 flag and leave the value if there are any relocations in the
9377 binary where pointer equality matters. */
9378 sym
->st_shndx
= SHN_UNDEF
;
9379 if (h
->pointer_equality_needed
)
9380 sym
->st_other
= STO_MIPS_PLT
;
9384 else if (h
->plt
.offset
!= MINUS_ONE
)
9386 /* We've decided to create a lazy-binding stub. */
9387 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9389 /* This symbol has a stub. Set it up. */
9391 BFD_ASSERT (h
->dynindx
!= -1);
9393 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9394 || (h
->dynindx
<= 0xffff));
9396 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9397 sign extension at runtime in the stub, resulting in a negative
9399 if (h
->dynindx
& ~0x7fffffff)
9402 /* Fill the stub. */
9404 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9406 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9408 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9410 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9414 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9417 /* If a large stub is not required and sign extension is not a
9418 problem, then use legacy code in the stub. */
9419 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9420 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9421 else if (h
->dynindx
& ~0x7fff)
9422 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9424 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9427 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9428 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9429 stub
, htab
->function_stub_size
);
9431 /* Mark the symbol as undefined. plt.offset != -1 occurs
9432 only for the referenced symbol. */
9433 sym
->st_shndx
= SHN_UNDEF
;
9435 /* The run-time linker uses the st_value field of the symbol
9436 to reset the global offset table entry for this external
9437 to its stub address when unlinking a shared object. */
9438 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9439 + htab
->sstubs
->output_offset
9443 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9444 refer to the stub, since only the stub uses the standard calling
9446 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9448 BFD_ASSERT (hmips
->need_fn_stub
);
9449 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9450 + hmips
->fn_stub
->output_offset
);
9451 sym
->st_size
= hmips
->fn_stub
->size
;
9452 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9455 BFD_ASSERT (h
->dynindx
!= -1
9456 || h
->forced_local
);
9460 BFD_ASSERT (g
!= NULL
);
9462 /* Run through the global symbol table, creating GOT entries for all
9463 the symbols that need them. */
9464 if (g
->global_gotsym
!= NULL
9465 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9470 value
= sym
->st_value
;
9471 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9472 R_MIPS_GOT16
, info
);
9473 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9476 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
9478 struct mips_got_entry e
, *p
;
9484 e
.abfd
= output_bfd
;
9489 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
9492 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
9497 || (elf_hash_table (info
)->dynamic_sections_created
9499 && p
->d
.h
->root
.def_dynamic
9500 && !p
->d
.h
->root
.def_regular
))
9502 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9503 the various compatibility problems, it's easier to mock
9504 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9505 mips_elf_create_dynamic_relocation to calculate the
9506 appropriate addend. */
9507 Elf_Internal_Rela rel
[3];
9509 memset (rel
, 0, sizeof (rel
));
9510 if (ABI_64_P (output_bfd
))
9511 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
9513 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
9514 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
9517 if (! (mips_elf_create_dynamic_relocation
9518 (output_bfd
, info
, rel
,
9519 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
9523 entry
= sym
->st_value
;
9524 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
9529 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9530 name
= h
->root
.root
.string
;
9531 if (strcmp (name
, "_DYNAMIC") == 0
9532 || h
== elf_hash_table (info
)->hgot
)
9533 sym
->st_shndx
= SHN_ABS
;
9534 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9535 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9537 sym
->st_shndx
= SHN_ABS
;
9538 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9541 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
9543 sym
->st_shndx
= SHN_ABS
;
9544 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9545 sym
->st_value
= elf_gp (output_bfd
);
9547 else if (SGI_COMPAT (output_bfd
))
9549 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9550 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9552 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9553 sym
->st_other
= STO_PROTECTED
;
9555 sym
->st_shndx
= SHN_MIPS_DATA
;
9557 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9559 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9560 sym
->st_other
= STO_PROTECTED
;
9561 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9562 sym
->st_shndx
= SHN_ABS
;
9564 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9566 if (h
->type
== STT_FUNC
)
9567 sym
->st_shndx
= SHN_MIPS_TEXT
;
9568 else if (h
->type
== STT_OBJECT
)
9569 sym
->st_shndx
= SHN_MIPS_DATA
;
9573 /* Emit a copy reloc, if needed. */
9579 BFD_ASSERT (h
->dynindx
!= -1);
9580 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9582 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9583 symval
= (h
->root
.u
.def
.section
->output_section
->vma
9584 + h
->root
.u
.def
.section
->output_offset
9585 + h
->root
.u
.def
.value
);
9586 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
9587 h
->dynindx
, R_MIPS_COPY
, symval
);
9590 /* Handle the IRIX6-specific symbols. */
9591 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9592 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9596 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9597 && (strcmp (name
, "__rld_map") == 0
9598 || strcmp (name
, "__RLD_MAP") == 0))
9600 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9601 BFD_ASSERT (s
!= NULL
);
9602 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9603 bfd_put_32 (output_bfd
, 0, s
->contents
);
9604 if (mips_elf_hash_table (info
)->rld_value
== 0)
9605 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9607 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9608 && strcmp (name
, "__rld_obj_head") == 0)
9610 /* IRIX6 does not use a .rld_map section. */
9611 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9612 || IRIX_COMPAT (output_bfd
) == ict_none
)
9613 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9615 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9619 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9620 treat MIPS16 symbols like any other. */
9621 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9623 BFD_ASSERT (sym
->st_value
& 1);
9624 sym
->st_other
-= STO_MIPS16
;
9630 /* Likewise, for VxWorks. */
9633 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
9634 struct bfd_link_info
*info
,
9635 struct elf_link_hash_entry
*h
,
9636 Elf_Internal_Sym
*sym
)
9640 struct mips_got_info
*g
;
9641 struct mips_elf_link_hash_table
*htab
;
9643 htab
= mips_elf_hash_table (info
);
9644 dynobj
= elf_hash_table (info
)->dynobj
;
9646 if (h
->plt
.offset
!= (bfd_vma
) -1)
9649 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
9650 Elf_Internal_Rela rel
;
9651 static const bfd_vma
*plt_entry
;
9653 BFD_ASSERT (h
->dynindx
!= -1);
9654 BFD_ASSERT (htab
->splt
!= NULL
);
9655 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9657 /* Calculate the address of the .plt entry. */
9658 plt_address
= (htab
->splt
->output_section
->vma
9659 + htab
->splt
->output_offset
9662 /* Calculate the index of the entry. */
9663 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9664 / htab
->plt_entry_size
);
9666 /* Calculate the address of the .got.plt entry. */
9667 got_address
= (htab
->sgotplt
->output_section
->vma
9668 + htab
->sgotplt
->output_offset
9671 /* Calculate the offset of the .got.plt entry from
9672 _GLOBAL_OFFSET_TABLE_. */
9673 got_offset
= mips_elf_gotplt_index (info
, h
);
9675 /* Calculate the offset for the branch at the start of the PLT
9676 entry. The branch jumps to the beginning of .plt. */
9677 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
9679 /* Fill in the initial value of the .got.plt entry. */
9680 bfd_put_32 (output_bfd
, plt_address
,
9681 htab
->sgotplt
->contents
+ plt_index
* 4);
9683 /* Find out where the .plt entry should go. */
9684 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9688 plt_entry
= mips_vxworks_shared_plt_entry
;
9689 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9690 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9694 bfd_vma got_address_high
, got_address_low
;
9696 plt_entry
= mips_vxworks_exec_plt_entry
;
9697 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9698 got_address_low
= got_address
& 0xffff;
9700 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9701 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9702 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
9703 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
9704 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9705 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9706 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9707 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9709 loc
= (htab
->srelplt2
->contents
9710 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
9712 /* Emit a relocation for the .got.plt entry. */
9713 rel
.r_offset
= got_address
;
9714 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9715 rel
.r_addend
= h
->plt
.offset
;
9716 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9718 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9719 loc
+= sizeof (Elf32_External_Rela
);
9720 rel
.r_offset
= plt_address
+ 8;
9721 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9722 rel
.r_addend
= got_offset
;
9723 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9725 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9726 loc
+= sizeof (Elf32_External_Rela
);
9728 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9729 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9732 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9733 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
9734 rel
.r_offset
= got_address
;
9735 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
9737 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9739 if (!h
->def_regular
)
9740 sym
->st_shndx
= SHN_UNDEF
;
9743 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
9747 BFD_ASSERT (g
!= NULL
);
9749 /* See if this symbol has an entry in the GOT. */
9750 if (g
->global_gotsym
!= NULL
9751 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9754 Elf_Internal_Rela outrel
;
9758 /* Install the symbol value in the GOT. */
9759 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9760 R_MIPS_GOT16
, info
);
9761 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
9763 /* Add a dynamic relocation for it. */
9764 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9765 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
9766 outrel
.r_offset
= (sgot
->output_section
->vma
9767 + sgot
->output_offset
9769 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
9770 outrel
.r_addend
= 0;
9771 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
9774 /* Emit a copy reloc, if needed. */
9777 Elf_Internal_Rela rel
;
9779 BFD_ASSERT (h
->dynindx
!= -1);
9781 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
9782 + h
->root
.u
.def
.section
->output_offset
9783 + h
->root
.u
.def
.value
);
9784 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
9786 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
9787 htab
->srelbss
->contents
9788 + (htab
->srelbss
->reloc_count
9789 * sizeof (Elf32_External_Rela
)));
9790 ++htab
->srelbss
->reloc_count
;
9793 /* If this is a mips16 symbol, force the value to be even. */
9794 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9795 sym
->st_value
&= ~1;
9800 /* Write out a plt0 entry to the beginning of .plt. */
9803 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9806 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
9807 static const bfd_vma
*plt_entry
;
9808 struct mips_elf_link_hash_table
*htab
;
9810 htab
= mips_elf_hash_table (info
);
9811 if (ABI_64_P (output_bfd
))
9812 plt_entry
= mips_n64_exec_plt0_entry
;
9813 else if (ABI_N32_P (output_bfd
))
9814 plt_entry
= mips_n32_exec_plt0_entry
;
9816 plt_entry
= mips_o32_exec_plt0_entry
;
9818 /* Calculate the value of .got.plt. */
9819 gotplt_value
= (htab
->sgotplt
->output_section
->vma
9820 + htab
->sgotplt
->output_offset
);
9821 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
9822 gotplt_value_low
= gotplt_value
& 0xffff;
9824 /* The PLT sequence is not safe for N64 if .got.plt's address can
9825 not be loaded in two instructions. */
9826 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
9827 || ~(gotplt_value
| 0x7fffffff) == 0);
9829 /* Install the PLT header. */
9830 loc
= htab
->splt
->contents
;
9831 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
9832 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
9833 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
9834 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9835 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9836 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9837 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9838 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9841 /* Install the PLT header for a VxWorks executable and finalize the
9842 contents of .rela.plt.unloaded. */
9845 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9847 Elf_Internal_Rela rela
;
9849 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
9850 static const bfd_vma
*plt_entry
;
9851 struct mips_elf_link_hash_table
*htab
;
9853 htab
= mips_elf_hash_table (info
);
9854 plt_entry
= mips_vxworks_exec_plt0_entry
;
9856 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9857 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
9858 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
9859 + htab
->root
.hgot
->root
.u
.def
.value
);
9861 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
9862 got_value_low
= got_value
& 0xffff;
9864 /* Calculate the address of the PLT header. */
9865 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
9867 /* Install the PLT header. */
9868 loc
= htab
->splt
->contents
;
9869 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
9870 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
9871 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
9872 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9873 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9874 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9876 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9877 loc
= htab
->srelplt2
->contents
;
9878 rela
.r_offset
= plt_address
;
9879 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9881 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9882 loc
+= sizeof (Elf32_External_Rela
);
9884 /* Output the relocation for the following addiu of
9885 %lo(_GLOBAL_OFFSET_TABLE_). */
9887 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9888 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9889 loc
+= sizeof (Elf32_External_Rela
);
9891 /* Fix up the remaining relocations. They may have the wrong
9892 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9893 in which symbols were output. */
9894 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
9896 Elf_Internal_Rela rel
;
9898 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9899 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9900 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9901 loc
+= sizeof (Elf32_External_Rela
);
9903 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9904 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9905 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9906 loc
+= sizeof (Elf32_External_Rela
);
9908 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9909 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9910 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9911 loc
+= sizeof (Elf32_External_Rela
);
9915 /* Install the PLT header for a VxWorks shared library. */
9918 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9921 struct mips_elf_link_hash_table
*htab
;
9923 htab
= mips_elf_hash_table (info
);
9925 /* We just need to copy the entry byte-by-byte. */
9926 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
9927 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
9928 htab
->splt
->contents
+ i
* 4);
9931 /* Finish up the dynamic sections. */
9934 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
9935 struct bfd_link_info
*info
)
9940 struct mips_got_info
*gg
, *g
;
9941 struct mips_elf_link_hash_table
*htab
;
9943 htab
= mips_elf_hash_table (info
);
9944 dynobj
= elf_hash_table (info
)->dynobj
;
9946 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
9949 gg
= htab
->got_info
;
9951 if (elf_hash_table (info
)->dynamic_sections_created
)
9954 int dyn_to_skip
= 0, dyn_skipped
= 0;
9956 BFD_ASSERT (sdyn
!= NULL
);
9957 BFD_ASSERT (gg
!= NULL
);
9959 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
9960 BFD_ASSERT (g
!= NULL
);
9962 for (b
= sdyn
->contents
;
9963 b
< sdyn
->contents
+ sdyn
->size
;
9964 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
9966 Elf_Internal_Dyn dyn
;
9970 bfd_boolean swap_out_p
;
9972 /* Read in the current dynamic entry. */
9973 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
9975 /* Assume that we're going to modify it and write it out. */
9981 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
9985 BFD_ASSERT (htab
->is_vxworks
);
9986 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
9990 /* Rewrite DT_STRSZ. */
9992 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
9997 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10000 case DT_MIPS_PLTGOT
:
10002 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10005 case DT_MIPS_RLD_VERSION
:
10006 dyn
.d_un
.d_val
= 1; /* XXX */
10009 case DT_MIPS_FLAGS
:
10010 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10013 case DT_MIPS_TIME_STAMP
:
10017 dyn
.d_un
.d_val
= t
;
10021 case DT_MIPS_ICHECKSUM
:
10023 swap_out_p
= FALSE
;
10026 case DT_MIPS_IVERSION
:
10028 swap_out_p
= FALSE
;
10031 case DT_MIPS_BASE_ADDRESS
:
10032 s
= output_bfd
->sections
;
10033 BFD_ASSERT (s
!= NULL
);
10034 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10037 case DT_MIPS_LOCAL_GOTNO
:
10038 dyn
.d_un
.d_val
= g
->local_gotno
;
10041 case DT_MIPS_UNREFEXTNO
:
10042 /* The index into the dynamic symbol table which is the
10043 entry of the first external symbol that is not
10044 referenced within the same object. */
10045 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10048 case DT_MIPS_GOTSYM
:
10049 if (gg
->global_gotsym
)
10051 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10054 /* In case if we don't have global got symbols we default
10055 to setting DT_MIPS_GOTSYM to the same value as
10056 DT_MIPS_SYMTABNO, so we just fall through. */
10058 case DT_MIPS_SYMTABNO
:
10060 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10061 s
= bfd_get_section_by_name (output_bfd
, name
);
10062 BFD_ASSERT (s
!= NULL
);
10064 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10067 case DT_MIPS_HIPAGENO
:
10068 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10071 case DT_MIPS_RLD_MAP
:
10072 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
10075 case DT_MIPS_OPTIONS
:
10076 s
= (bfd_get_section_by_name
10077 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10078 dyn
.d_un
.d_ptr
= s
->vma
;
10082 BFD_ASSERT (htab
->is_vxworks
);
10083 /* The count does not include the JUMP_SLOT relocations. */
10085 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10089 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10090 if (htab
->is_vxworks
)
10091 dyn
.d_un
.d_val
= DT_RELA
;
10093 dyn
.d_un
.d_val
= DT_REL
;
10097 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10098 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10102 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10103 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10104 + htab
->srelplt
->output_offset
);
10108 /* If we didn't need any text relocations after all, delete
10109 the dynamic tag. */
10110 if (!(info
->flags
& DF_TEXTREL
))
10112 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10113 swap_out_p
= FALSE
;
10118 /* If we didn't need any text relocations after all, clear
10119 DF_TEXTREL from DT_FLAGS. */
10120 if (!(info
->flags
& DF_TEXTREL
))
10121 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10123 swap_out_p
= FALSE
;
10127 swap_out_p
= FALSE
;
10128 if (htab
->is_vxworks
10129 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10134 if (swap_out_p
|| dyn_skipped
)
10135 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10136 (dynobj
, &dyn
, b
- dyn_skipped
);
10140 dyn_skipped
+= dyn_to_skip
;
10145 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10146 if (dyn_skipped
> 0)
10147 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10150 if (sgot
!= NULL
&& sgot
->size
> 0
10151 && !bfd_is_abs_section (sgot
->output_section
))
10153 if (htab
->is_vxworks
)
10155 /* The first entry of the global offset table points to the
10156 ".dynamic" section. The second is initialized by the
10157 loader and contains the shared library identifier.
10158 The third is also initialized by the loader and points
10159 to the lazy resolution stub. */
10160 MIPS_ELF_PUT_WORD (output_bfd
,
10161 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10163 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10164 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10165 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10167 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10171 /* The first entry of the global offset table will be filled at
10172 runtime. The second entry will be used by some runtime loaders.
10173 This isn't the case of IRIX rld. */
10174 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10175 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10176 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10179 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10180 = MIPS_ELF_GOT_SIZE (output_bfd
);
10183 /* Generate dynamic relocations for the non-primary gots. */
10184 if (gg
!= NULL
&& gg
->next
)
10186 Elf_Internal_Rela rel
[3];
10187 bfd_vma addend
= 0;
10189 memset (rel
, 0, sizeof (rel
));
10190 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10192 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10194 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10195 + g
->next
->tls_gotno
;
10197 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10198 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10199 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10201 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10203 if (! info
->shared
)
10206 while (index
< g
->assigned_gotno
)
10208 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10209 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10210 if (!(mips_elf_create_dynamic_relocation
10211 (output_bfd
, info
, rel
, NULL
,
10212 bfd_abs_section_ptr
,
10213 0, &addend
, sgot
)))
10215 BFD_ASSERT (addend
== 0);
10220 /* The generation of dynamic relocations for the non-primary gots
10221 adds more dynamic relocations. We cannot count them until
10224 if (elf_hash_table (info
)->dynamic_sections_created
)
10227 bfd_boolean swap_out_p
;
10229 BFD_ASSERT (sdyn
!= NULL
);
10231 for (b
= sdyn
->contents
;
10232 b
< sdyn
->contents
+ sdyn
->size
;
10233 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10235 Elf_Internal_Dyn dyn
;
10238 /* Read in the current dynamic entry. */
10239 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10241 /* Assume that we're going to modify it and write it out. */
10247 /* Reduce DT_RELSZ to account for any relocations we
10248 decided not to make. This is for the n64 irix rld,
10249 which doesn't seem to apply any relocations if there
10250 are trailing null entries. */
10251 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10252 dyn
.d_un
.d_val
= (s
->reloc_count
10253 * (ABI_64_P (output_bfd
)
10254 ? sizeof (Elf64_Mips_External_Rel
)
10255 : sizeof (Elf32_External_Rel
)));
10256 /* Adjust the section size too. Tools like the prelinker
10257 can reasonably expect the values to the same. */
10258 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10263 swap_out_p
= FALSE
;
10268 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10275 Elf32_compact_rel cpt
;
10277 if (SGI_COMPAT (output_bfd
))
10279 /* Write .compact_rel section out. */
10280 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10284 cpt
.num
= s
->reloc_count
;
10286 cpt
.offset
= (s
->output_section
->filepos
10287 + sizeof (Elf32_External_compact_rel
));
10290 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10291 ((Elf32_External_compact_rel
*)
10294 /* Clean up a dummy stub function entry in .text. */
10295 if (htab
->sstubs
!= NULL
)
10297 file_ptr dummy_offset
;
10299 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10300 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10301 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10302 htab
->function_stub_size
);
10307 /* The psABI says that the dynamic relocations must be sorted in
10308 increasing order of r_symndx. The VxWorks EABI doesn't require
10309 this, and because the code below handles REL rather than RELA
10310 relocations, using it for VxWorks would be outright harmful. */
10311 if (!htab
->is_vxworks
)
10313 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10315 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10317 reldyn_sorting_bfd
= output_bfd
;
10319 if (ABI_64_P (output_bfd
))
10320 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10321 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10322 sort_dynamic_relocs_64
);
10324 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10325 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10326 sort_dynamic_relocs
);
10331 if (htab
->splt
&& htab
->splt
->size
> 0)
10333 if (htab
->is_vxworks
)
10336 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10338 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10342 BFD_ASSERT (!info
->shared
);
10343 mips_finish_exec_plt (output_bfd
, info
);
10350 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10353 mips_set_isa_flags (bfd
*abfd
)
10357 switch (bfd_get_mach (abfd
))
10360 case bfd_mach_mips3000
:
10361 val
= E_MIPS_ARCH_1
;
10364 case bfd_mach_mips3900
:
10365 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10368 case bfd_mach_mips6000
:
10369 val
= E_MIPS_ARCH_2
;
10372 case bfd_mach_mips4000
:
10373 case bfd_mach_mips4300
:
10374 case bfd_mach_mips4400
:
10375 case bfd_mach_mips4600
:
10376 val
= E_MIPS_ARCH_3
;
10379 case bfd_mach_mips4010
:
10380 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10383 case bfd_mach_mips4100
:
10384 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10387 case bfd_mach_mips4111
:
10388 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10391 case bfd_mach_mips4120
:
10392 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10395 case bfd_mach_mips4650
:
10396 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10399 case bfd_mach_mips5400
:
10400 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10403 case bfd_mach_mips5500
:
10404 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10407 case bfd_mach_mips9000
:
10408 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10411 case bfd_mach_mips5000
:
10412 case bfd_mach_mips7000
:
10413 case bfd_mach_mips8000
:
10414 case bfd_mach_mips10000
:
10415 case bfd_mach_mips12000
:
10416 val
= E_MIPS_ARCH_4
;
10419 case bfd_mach_mips5
:
10420 val
= E_MIPS_ARCH_5
;
10423 case bfd_mach_mips_loongson_2e
:
10424 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10427 case bfd_mach_mips_loongson_2f
:
10428 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10431 case bfd_mach_mips_sb1
:
10432 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10435 case bfd_mach_mips_octeon
:
10436 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10439 case bfd_mach_mipsisa32
:
10440 val
= E_MIPS_ARCH_32
;
10443 case bfd_mach_mipsisa64
:
10444 val
= E_MIPS_ARCH_64
;
10447 case bfd_mach_mipsisa32r2
:
10448 val
= E_MIPS_ARCH_32R2
;
10451 case bfd_mach_mipsisa64r2
:
10452 val
= E_MIPS_ARCH_64R2
;
10455 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10456 elf_elfheader (abfd
)->e_flags
|= val
;
10461 /* The final processing done just before writing out a MIPS ELF object
10462 file. This gets the MIPS architecture right based on the machine
10463 number. This is used by both the 32-bit and the 64-bit ABI. */
10466 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
10467 bfd_boolean linker ATTRIBUTE_UNUSED
)
10470 Elf_Internal_Shdr
**hdrpp
;
10474 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10475 is nonzero. This is for compatibility with old objects, which used
10476 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10477 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
10478 mips_set_isa_flags (abfd
);
10480 /* Set the sh_info field for .gptab sections and other appropriate
10481 info for each special section. */
10482 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
10483 i
< elf_numsections (abfd
);
10486 switch ((*hdrpp
)->sh_type
)
10488 case SHT_MIPS_MSYM
:
10489 case SHT_MIPS_LIBLIST
:
10490 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
10492 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10495 case SHT_MIPS_GPTAB
:
10496 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10497 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10498 BFD_ASSERT (name
!= NULL
10499 && CONST_STRNEQ (name
, ".gptab."));
10500 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
10501 BFD_ASSERT (sec
!= NULL
);
10502 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10505 case SHT_MIPS_CONTENT
:
10506 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10507 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10508 BFD_ASSERT (name
!= NULL
10509 && CONST_STRNEQ (name
, ".MIPS.content"));
10510 sec
= bfd_get_section_by_name (abfd
,
10511 name
+ sizeof ".MIPS.content" - 1);
10512 BFD_ASSERT (sec
!= NULL
);
10513 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10516 case SHT_MIPS_SYMBOL_LIB
:
10517 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
10519 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10520 sec
= bfd_get_section_by_name (abfd
, ".liblist");
10522 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10525 case SHT_MIPS_EVENTS
:
10526 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10527 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10528 BFD_ASSERT (name
!= NULL
);
10529 if (CONST_STRNEQ (name
, ".MIPS.events"))
10530 sec
= bfd_get_section_by_name (abfd
,
10531 name
+ sizeof ".MIPS.events" - 1);
10534 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
10535 sec
= bfd_get_section_by_name (abfd
,
10537 + sizeof ".MIPS.post_rel" - 1));
10539 BFD_ASSERT (sec
!= NULL
);
10540 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10547 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10551 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
10552 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
10557 /* See if we need a PT_MIPS_REGINFO segment. */
10558 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10559 if (s
&& (s
->flags
& SEC_LOAD
))
10562 /* See if we need a PT_MIPS_OPTIONS segment. */
10563 if (IRIX_COMPAT (abfd
) == ict_irix6
10564 && bfd_get_section_by_name (abfd
,
10565 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
10568 /* See if we need a PT_MIPS_RTPROC segment. */
10569 if (IRIX_COMPAT (abfd
) == ict_irix5
10570 && bfd_get_section_by_name (abfd
, ".dynamic")
10571 && bfd_get_section_by_name (abfd
, ".mdebug"))
10574 /* Allocate a PT_NULL header in dynamic objects. See
10575 _bfd_mips_elf_modify_segment_map for details. */
10576 if (!SGI_COMPAT (abfd
)
10577 && bfd_get_section_by_name (abfd
, ".dynamic"))
10583 /* Modify the segment map for an IRIX5 executable. */
10586 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
10587 struct bfd_link_info
*info
)
10590 struct elf_segment_map
*m
, **pm
;
10593 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10595 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10596 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10598 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10599 if (m
->p_type
== PT_MIPS_REGINFO
)
10604 m
= bfd_zalloc (abfd
, amt
);
10608 m
->p_type
= PT_MIPS_REGINFO
;
10610 m
->sections
[0] = s
;
10612 /* We want to put it after the PHDR and INTERP segments. */
10613 pm
= &elf_tdata (abfd
)->segment_map
;
10615 && ((*pm
)->p_type
== PT_PHDR
10616 || (*pm
)->p_type
== PT_INTERP
))
10624 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10625 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10626 PT_MIPS_OPTIONS segment immediately following the program header
10628 if (NEWABI_P (abfd
)
10629 /* On non-IRIX6 new abi, we'll have already created a segment
10630 for this section, so don't create another. I'm not sure this
10631 is not also the case for IRIX 6, but I can't test it right
10633 && IRIX_COMPAT (abfd
) == ict_irix6
)
10635 for (s
= abfd
->sections
; s
; s
= s
->next
)
10636 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
10641 struct elf_segment_map
*options_segment
;
10643 pm
= &elf_tdata (abfd
)->segment_map
;
10645 && ((*pm
)->p_type
== PT_PHDR
10646 || (*pm
)->p_type
== PT_INTERP
))
10649 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
10651 amt
= sizeof (struct elf_segment_map
);
10652 options_segment
= bfd_zalloc (abfd
, amt
);
10653 options_segment
->next
= *pm
;
10654 options_segment
->p_type
= PT_MIPS_OPTIONS
;
10655 options_segment
->p_flags
= PF_R
;
10656 options_segment
->p_flags_valid
= TRUE
;
10657 options_segment
->count
= 1;
10658 options_segment
->sections
[0] = s
;
10659 *pm
= options_segment
;
10665 if (IRIX_COMPAT (abfd
) == ict_irix5
)
10667 /* If there are .dynamic and .mdebug sections, we make a room
10668 for the RTPROC header. FIXME: Rewrite without section names. */
10669 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
10670 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
10671 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
10673 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10674 if (m
->p_type
== PT_MIPS_RTPROC
)
10679 m
= bfd_zalloc (abfd
, amt
);
10683 m
->p_type
= PT_MIPS_RTPROC
;
10685 s
= bfd_get_section_by_name (abfd
, ".rtproc");
10690 m
->p_flags_valid
= 1;
10695 m
->sections
[0] = s
;
10698 /* We want to put it after the DYNAMIC segment. */
10699 pm
= &elf_tdata (abfd
)->segment_map
;
10700 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
10710 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10711 .dynstr, .dynsym, and .hash sections, and everything in
10713 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
10715 if ((*pm
)->p_type
== PT_DYNAMIC
)
10718 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
10720 /* For a normal mips executable the permissions for the PT_DYNAMIC
10721 segment are read, write and execute. We do that here since
10722 the code in elf.c sets only the read permission. This matters
10723 sometimes for the dynamic linker. */
10724 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
10726 m
->p_flags
= PF_R
| PF_W
| PF_X
;
10727 m
->p_flags_valid
= 1;
10730 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10731 glibc's dynamic linker has traditionally derived the number of
10732 tags from the p_filesz field, and sometimes allocates stack
10733 arrays of that size. An overly-big PT_DYNAMIC segment can
10734 be actively harmful in such cases. Making PT_DYNAMIC contain
10735 other sections can also make life hard for the prelinker,
10736 which might move one of the other sections to a different
10737 PT_LOAD segment. */
10738 if (SGI_COMPAT (abfd
)
10741 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
10743 static const char *sec_names
[] =
10745 ".dynamic", ".dynstr", ".dynsym", ".hash"
10749 struct elf_segment_map
*n
;
10751 low
= ~(bfd_vma
) 0;
10753 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
10755 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
10756 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10763 if (high
< s
->vma
+ sz
)
10764 high
= s
->vma
+ sz
;
10769 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10770 if ((s
->flags
& SEC_LOAD
) != 0
10772 && s
->vma
+ s
->size
<= high
)
10775 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
10776 n
= bfd_zalloc (abfd
, amt
);
10783 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10785 if ((s
->flags
& SEC_LOAD
) != 0
10787 && s
->vma
+ s
->size
<= high
)
10789 n
->sections
[i
] = s
;
10798 /* Allocate a spare program header in dynamic objects so that tools
10799 like the prelinker can add an extra PT_LOAD entry.
10801 If the prelinker needs to make room for a new PT_LOAD entry, its
10802 standard procedure is to move the first (read-only) sections into
10803 the new (writable) segment. However, the MIPS ABI requires
10804 .dynamic to be in a read-only segment, and the section will often
10805 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10807 Although the prelinker could in principle move .dynamic to a
10808 writable segment, it seems better to allocate a spare program
10809 header instead, and avoid the need to move any sections.
10810 There is a long tradition of allocating spare dynamic tags,
10811 so allocating a spare program header seems like a natural
10814 If INFO is NULL, we may be copying an already prelinked binary
10815 with objcopy or strip, so do not add this header. */
10817 && !SGI_COMPAT (abfd
)
10818 && bfd_get_section_by_name (abfd
, ".dynamic"))
10820 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
10821 if ((*pm
)->p_type
== PT_NULL
)
10825 m
= bfd_zalloc (abfd
, sizeof (*m
));
10829 m
->p_type
= PT_NULL
;
10837 /* Return the section that should be marked against GC for a given
10841 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
10842 struct bfd_link_info
*info
,
10843 Elf_Internal_Rela
*rel
,
10844 struct elf_link_hash_entry
*h
,
10845 Elf_Internal_Sym
*sym
)
10847 /* ??? Do mips16 stub sections need to be handled special? */
10850 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
10852 case R_MIPS_GNU_VTINHERIT
:
10853 case R_MIPS_GNU_VTENTRY
:
10857 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10860 /* Update the got entry reference counts for the section being removed. */
10863 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
10864 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
10865 asection
*sec ATTRIBUTE_UNUSED
,
10866 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
10869 Elf_Internal_Shdr
*symtab_hdr
;
10870 struct elf_link_hash_entry
**sym_hashes
;
10871 bfd_signed_vma
*local_got_refcounts
;
10872 const Elf_Internal_Rela
*rel
, *relend
;
10873 unsigned long r_symndx
;
10874 struct elf_link_hash_entry
*h
;
10876 if (info
->relocatable
)
10879 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10880 sym_hashes
= elf_sym_hashes (abfd
);
10881 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10883 relend
= relocs
+ sec
->reloc_count
;
10884 for (rel
= relocs
; rel
< relend
; rel
++)
10885 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
10887 case R_MIPS16_GOT16
:
10888 case R_MIPS16_CALL16
:
10890 case R_MIPS_CALL16
:
10891 case R_MIPS_CALL_HI16
:
10892 case R_MIPS_CALL_LO16
:
10893 case R_MIPS_GOT_HI16
:
10894 case R_MIPS_GOT_LO16
:
10895 case R_MIPS_GOT_DISP
:
10896 case R_MIPS_GOT_PAGE
:
10897 case R_MIPS_GOT_OFST
:
10898 /* ??? It would seem that the existing MIPS code does no sort
10899 of reference counting or whatnot on its GOT and PLT entries,
10900 so it is not possible to garbage collect them at this time. */
10911 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10912 hiding the old indirect symbol. Process additional relocation
10913 information. Also called for weakdefs, in which case we just let
10914 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10917 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
10918 struct elf_link_hash_entry
*dir
,
10919 struct elf_link_hash_entry
*ind
)
10921 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
10923 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
10925 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
10926 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
10927 /* Any absolute non-dynamic relocations against an indirect or weak
10928 definition will be against the target symbol. */
10929 if (indmips
->has_static_relocs
)
10930 dirmips
->has_static_relocs
= TRUE
;
10932 if (ind
->root
.type
!= bfd_link_hash_indirect
)
10935 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
10936 if (indmips
->readonly_reloc
)
10937 dirmips
->readonly_reloc
= TRUE
;
10938 if (indmips
->no_fn_stub
)
10939 dirmips
->no_fn_stub
= TRUE
;
10940 if (indmips
->fn_stub
)
10942 dirmips
->fn_stub
= indmips
->fn_stub
;
10943 indmips
->fn_stub
= NULL
;
10945 if (indmips
->need_fn_stub
)
10947 dirmips
->need_fn_stub
= TRUE
;
10948 indmips
->need_fn_stub
= FALSE
;
10950 if (indmips
->call_stub
)
10952 dirmips
->call_stub
= indmips
->call_stub
;
10953 indmips
->call_stub
= NULL
;
10955 if (indmips
->call_fp_stub
)
10957 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
10958 indmips
->call_fp_stub
= NULL
;
10960 if (indmips
->global_got_area
< dirmips
->global_got_area
)
10961 dirmips
->global_got_area
= indmips
->global_got_area
;
10962 if (indmips
->global_got_area
< GGA_NONE
)
10963 indmips
->global_got_area
= GGA_NONE
;
10964 if (indmips
->has_nonpic_branches
)
10965 dirmips
->has_nonpic_branches
= TRUE
;
10967 if (dirmips
->tls_type
== 0)
10968 dirmips
->tls_type
= indmips
->tls_type
;
10971 #define PDR_SIZE 32
10974 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
10975 struct bfd_link_info
*info
)
10978 bfd_boolean ret
= FALSE
;
10979 unsigned char *tdata
;
10982 o
= bfd_get_section_by_name (abfd
, ".pdr");
10987 if (o
->size
% PDR_SIZE
!= 0)
10989 if (o
->output_section
!= NULL
10990 && bfd_is_abs_section (o
->output_section
))
10993 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
10997 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
10998 info
->keep_memory
);
11005 cookie
->rel
= cookie
->rels
;
11006 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11008 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11010 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11019 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11020 o
->size
-= skip
* PDR_SIZE
;
11026 if (! info
->keep_memory
)
11027 free (cookie
->rels
);
11033 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11035 if (strcmp (sec
->name
, ".pdr") == 0)
11041 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11042 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11043 asection
*sec
, bfd_byte
*contents
)
11045 bfd_byte
*to
, *from
, *end
;
11048 if (strcmp (sec
->name
, ".pdr") != 0)
11051 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11055 end
= contents
+ sec
->size
;
11056 for (from
= contents
, i
= 0;
11058 from
+= PDR_SIZE
, i
++)
11060 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11063 memcpy (to
, from
, PDR_SIZE
);
11066 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11067 sec
->output_offset
, sec
->size
);
11071 /* MIPS ELF uses a special find_nearest_line routine in order the
11072 handle the ECOFF debugging information. */
11074 struct mips_elf_find_line
11076 struct ecoff_debug_info d
;
11077 struct ecoff_find_line i
;
11081 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11082 asymbol
**symbols
, bfd_vma offset
,
11083 const char **filename_ptr
,
11084 const char **functionname_ptr
,
11085 unsigned int *line_ptr
)
11089 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11090 filename_ptr
, functionname_ptr
,
11094 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11095 filename_ptr
, functionname_ptr
,
11096 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11097 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11100 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11103 flagword origflags
;
11104 struct mips_elf_find_line
*fi
;
11105 const struct ecoff_debug_swap
* const swap
=
11106 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11108 /* If we are called during a link, mips_elf_final_link may have
11109 cleared the SEC_HAS_CONTENTS field. We force it back on here
11110 if appropriate (which it normally will be). */
11111 origflags
= msec
->flags
;
11112 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11113 msec
->flags
|= SEC_HAS_CONTENTS
;
11115 fi
= elf_tdata (abfd
)->find_line_info
;
11118 bfd_size_type external_fdr_size
;
11121 struct fdr
*fdr_ptr
;
11122 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11124 fi
= bfd_zalloc (abfd
, amt
);
11127 msec
->flags
= origflags
;
11131 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11133 msec
->flags
= origflags
;
11137 /* Swap in the FDR information. */
11138 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11139 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11140 if (fi
->d
.fdr
== NULL
)
11142 msec
->flags
= origflags
;
11145 external_fdr_size
= swap
->external_fdr_size
;
11146 fdr_ptr
= fi
->d
.fdr
;
11147 fraw_src
= (char *) fi
->d
.external_fdr
;
11148 fraw_end
= (fraw_src
11149 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11150 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11151 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11153 elf_tdata (abfd
)->find_line_info
= fi
;
11155 /* Note that we don't bother to ever free this information.
11156 find_nearest_line is either called all the time, as in
11157 objdump -l, so the information should be saved, or it is
11158 rarely called, as in ld error messages, so the memory
11159 wasted is unimportant. Still, it would probably be a
11160 good idea for free_cached_info to throw it away. */
11163 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11164 &fi
->i
, filename_ptr
, functionname_ptr
,
11167 msec
->flags
= origflags
;
11171 msec
->flags
= origflags
;
11174 /* Fall back on the generic ELF find_nearest_line routine. */
11176 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11177 filename_ptr
, functionname_ptr
,
11182 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11183 const char **filename_ptr
,
11184 const char **functionname_ptr
,
11185 unsigned int *line_ptr
)
11188 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11189 functionname_ptr
, line_ptr
,
11190 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11195 /* When are writing out the .options or .MIPS.options section,
11196 remember the bytes we are writing out, so that we can install the
11197 GP value in the section_processing routine. */
11200 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11201 const void *location
,
11202 file_ptr offset
, bfd_size_type count
)
11204 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11208 if (elf_section_data (section
) == NULL
)
11210 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11211 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11212 if (elf_section_data (section
) == NULL
)
11215 c
= mips_elf_section_data (section
)->u
.tdata
;
11218 c
= bfd_zalloc (abfd
, section
->size
);
11221 mips_elf_section_data (section
)->u
.tdata
= c
;
11224 memcpy (c
+ offset
, location
, count
);
11227 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11231 /* This is almost identical to bfd_generic_get_... except that some
11232 MIPS relocations need to be handled specially. Sigh. */
11235 _bfd_elf_mips_get_relocated_section_contents
11237 struct bfd_link_info
*link_info
,
11238 struct bfd_link_order
*link_order
,
11240 bfd_boolean relocatable
,
11243 /* Get enough memory to hold the stuff */
11244 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11245 asection
*input_section
= link_order
->u
.indirect
.section
;
11248 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11249 arelent
**reloc_vector
= NULL
;
11252 if (reloc_size
< 0)
11255 reloc_vector
= bfd_malloc (reloc_size
);
11256 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11259 /* read in the section */
11260 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11261 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11264 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11268 if (reloc_count
< 0)
11271 if (reloc_count
> 0)
11276 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11279 struct bfd_hash_entry
*h
;
11280 struct bfd_link_hash_entry
*lh
;
11281 /* Skip all this stuff if we aren't mixing formats. */
11282 if (abfd
&& input_bfd
11283 && abfd
->xvec
== input_bfd
->xvec
)
11287 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11288 lh
= (struct bfd_link_hash_entry
*) h
;
11295 case bfd_link_hash_undefined
:
11296 case bfd_link_hash_undefweak
:
11297 case bfd_link_hash_common
:
11300 case bfd_link_hash_defined
:
11301 case bfd_link_hash_defweak
:
11303 gp
= lh
->u
.def
.value
;
11305 case bfd_link_hash_indirect
:
11306 case bfd_link_hash_warning
:
11308 /* @@FIXME ignoring warning for now */
11310 case bfd_link_hash_new
:
11319 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11321 char *error_message
= NULL
;
11322 bfd_reloc_status_type r
;
11324 /* Specific to MIPS: Deal with relocation types that require
11325 knowing the gp of the output bfd. */
11326 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11328 /* If we've managed to find the gp and have a special
11329 function for the relocation then go ahead, else default
11330 to the generic handling. */
11332 && (*parent
)->howto
->special_function
11333 == _bfd_mips_elf32_gprel16_reloc
)
11334 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11335 input_section
, relocatable
,
11338 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11340 relocatable
? abfd
: NULL
,
11345 asection
*os
= input_section
->output_section
;
11347 /* A partial link, so keep the relocs */
11348 os
->orelocation
[os
->reloc_count
] = *parent
;
11352 if (r
!= bfd_reloc_ok
)
11356 case bfd_reloc_undefined
:
11357 if (!((*link_info
->callbacks
->undefined_symbol
)
11358 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11359 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11362 case bfd_reloc_dangerous
:
11363 BFD_ASSERT (error_message
!= NULL
);
11364 if (!((*link_info
->callbacks
->reloc_dangerous
)
11365 (link_info
, error_message
, input_bfd
, input_section
,
11366 (*parent
)->address
)))
11369 case bfd_reloc_overflow
:
11370 if (!((*link_info
->callbacks
->reloc_overflow
)
11372 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11373 (*parent
)->howto
->name
, (*parent
)->addend
,
11374 input_bfd
, input_section
, (*parent
)->address
)))
11377 case bfd_reloc_outofrange
:
11386 if (reloc_vector
!= NULL
)
11387 free (reloc_vector
);
11391 if (reloc_vector
!= NULL
)
11392 free (reloc_vector
);
11396 /* Allocate ABFD's target-dependent data. */
11399 _bfd_mips_elf_mkobject (bfd
*abfd
)
11401 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
11405 /* Create a MIPS ELF linker hash table. */
11407 struct bfd_link_hash_table
*
11408 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
11410 struct mips_elf_link_hash_table
*ret
;
11411 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
11413 ret
= bfd_malloc (amt
);
11417 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
11418 mips_elf_link_hash_newfunc
,
11419 sizeof (struct mips_elf_link_hash_entry
)))
11426 /* We no longer use this. */
11427 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
11428 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
11430 ret
->procedure_count
= 0;
11431 ret
->compact_rel_size
= 0;
11432 ret
->use_rld_obj_head
= FALSE
;
11433 ret
->rld_value
= 0;
11434 ret
->mips16_stubs_seen
= FALSE
;
11435 ret
->use_plts_and_copy_relocs
= FALSE
;
11436 ret
->is_vxworks
= FALSE
;
11437 ret
->small_data_overflow_reported
= FALSE
;
11438 ret
->srelbss
= NULL
;
11439 ret
->sdynbss
= NULL
;
11440 ret
->srelplt
= NULL
;
11441 ret
->srelplt2
= NULL
;
11442 ret
->sgotplt
= NULL
;
11444 ret
->sstubs
= NULL
;
11446 ret
->got_info
= NULL
;
11447 ret
->plt_header_size
= 0;
11448 ret
->plt_entry_size
= 0;
11449 ret
->lazy_stub_count
= 0;
11450 ret
->function_stub_size
= 0;
11451 ret
->strampoline
= NULL
;
11452 ret
->la25_stubs
= NULL
;
11453 ret
->add_stub_section
= NULL
;
11455 return &ret
->root
.root
;
11458 /* Likewise, but indicate that the target is VxWorks. */
11460 struct bfd_link_hash_table
*
11461 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
11463 struct bfd_link_hash_table
*ret
;
11465 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
11468 struct mips_elf_link_hash_table
*htab
;
11470 htab
= (struct mips_elf_link_hash_table
*) ret
;
11471 htab
->use_plts_and_copy_relocs
= TRUE
;
11472 htab
->is_vxworks
= TRUE
;
11477 /* A function that the linker calls if we are allowed to use PLTs
11478 and copy relocs. */
11481 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
11483 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
11486 /* We need to use a special link routine to handle the .reginfo and
11487 the .mdebug sections. We need to merge all instances of these
11488 sections together, not write them all out sequentially. */
11491 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11494 struct bfd_link_order
*p
;
11495 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
11496 asection
*rtproc_sec
;
11497 Elf32_RegInfo reginfo
;
11498 struct ecoff_debug_info debug
;
11499 struct mips_htab_traverse_info hti
;
11500 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11501 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
11502 HDRR
*symhdr
= &debug
.symbolic_header
;
11503 void *mdebug_handle
= NULL
;
11508 struct mips_elf_link_hash_table
*htab
;
11510 static const char * const secname
[] =
11512 ".text", ".init", ".fini", ".data",
11513 ".rodata", ".sdata", ".sbss", ".bss"
11515 static const int sc
[] =
11517 scText
, scInit
, scFini
, scData
,
11518 scRData
, scSData
, scSBss
, scBss
11521 /* Sort the dynamic symbols so that those with GOT entries come after
11523 htab
= mips_elf_hash_table (info
);
11524 if (!mips_elf_sort_hash_table (abfd
, info
))
11527 /* Create any scheduled LA25 stubs. */
11529 hti
.output_bfd
= abfd
;
11531 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
11535 /* Get a value for the GP register. */
11536 if (elf_gp (abfd
) == 0)
11538 struct bfd_link_hash_entry
*h
;
11540 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
11541 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
11542 elf_gp (abfd
) = (h
->u
.def
.value
11543 + h
->u
.def
.section
->output_section
->vma
11544 + h
->u
.def
.section
->output_offset
);
11545 else if (htab
->is_vxworks
11546 && (h
= bfd_link_hash_lookup (info
->hash
,
11547 "_GLOBAL_OFFSET_TABLE_",
11548 FALSE
, FALSE
, TRUE
))
11549 && h
->type
== bfd_link_hash_defined
)
11550 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
11551 + h
->u
.def
.section
->output_offset
11553 else if (info
->relocatable
)
11555 bfd_vma lo
= MINUS_ONE
;
11557 /* Find the GP-relative section with the lowest offset. */
11558 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11560 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
11563 /* And calculate GP relative to that. */
11564 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
11568 /* If the relocate_section function needs to do a reloc
11569 involving the GP value, it should make a reloc_dangerous
11570 callback to warn that GP is not defined. */
11574 /* Go through the sections and collect the .reginfo and .mdebug
11576 reginfo_sec
= NULL
;
11578 gptab_data_sec
= NULL
;
11579 gptab_bss_sec
= NULL
;
11580 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11582 if (strcmp (o
->name
, ".reginfo") == 0)
11584 memset (®info
, 0, sizeof reginfo
);
11586 /* We have found the .reginfo section in the output file.
11587 Look through all the link_orders comprising it and merge
11588 the information together. */
11589 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11591 asection
*input_section
;
11593 Elf32_External_RegInfo ext
;
11596 if (p
->type
!= bfd_indirect_link_order
)
11598 if (p
->type
== bfd_data_link_order
)
11603 input_section
= p
->u
.indirect
.section
;
11604 input_bfd
= input_section
->owner
;
11606 if (! bfd_get_section_contents (input_bfd
, input_section
,
11607 &ext
, 0, sizeof ext
))
11610 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
11612 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
11613 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
11614 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
11615 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
11616 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
11618 /* ri_gp_value is set by the function
11619 mips_elf32_section_processing when the section is
11620 finally written out. */
11622 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11623 elf_link_input_bfd ignores this section. */
11624 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11627 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11628 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
11630 /* Skip this section later on (I don't think this currently
11631 matters, but someday it might). */
11632 o
->map_head
.link_order
= NULL
;
11637 if (strcmp (o
->name
, ".mdebug") == 0)
11639 struct extsym_info einfo
;
11642 /* We have found the .mdebug section in the output file.
11643 Look through all the link_orders comprising it and merge
11644 the information together. */
11645 symhdr
->magic
= swap
->sym_magic
;
11646 /* FIXME: What should the version stamp be? */
11647 symhdr
->vstamp
= 0;
11648 symhdr
->ilineMax
= 0;
11649 symhdr
->cbLine
= 0;
11650 symhdr
->idnMax
= 0;
11651 symhdr
->ipdMax
= 0;
11652 symhdr
->isymMax
= 0;
11653 symhdr
->ioptMax
= 0;
11654 symhdr
->iauxMax
= 0;
11655 symhdr
->issMax
= 0;
11656 symhdr
->issExtMax
= 0;
11657 symhdr
->ifdMax
= 0;
11659 symhdr
->iextMax
= 0;
11661 /* We accumulate the debugging information itself in the
11662 debug_info structure. */
11664 debug
.external_dnr
= NULL
;
11665 debug
.external_pdr
= NULL
;
11666 debug
.external_sym
= NULL
;
11667 debug
.external_opt
= NULL
;
11668 debug
.external_aux
= NULL
;
11670 debug
.ssext
= debug
.ssext_end
= NULL
;
11671 debug
.external_fdr
= NULL
;
11672 debug
.external_rfd
= NULL
;
11673 debug
.external_ext
= debug
.external_ext_end
= NULL
;
11675 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
11676 if (mdebug_handle
== NULL
)
11680 esym
.cobol_main
= 0;
11684 esym
.asym
.iss
= issNil
;
11685 esym
.asym
.st
= stLocal
;
11686 esym
.asym
.reserved
= 0;
11687 esym
.asym
.index
= indexNil
;
11689 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
11691 esym
.asym
.sc
= sc
[i
];
11692 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
11695 esym
.asym
.value
= s
->vma
;
11696 last
= s
->vma
+ s
->size
;
11699 esym
.asym
.value
= last
;
11700 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
11701 secname
[i
], &esym
))
11705 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11707 asection
*input_section
;
11709 const struct ecoff_debug_swap
*input_swap
;
11710 struct ecoff_debug_info input_debug
;
11714 if (p
->type
!= bfd_indirect_link_order
)
11716 if (p
->type
== bfd_data_link_order
)
11721 input_section
= p
->u
.indirect
.section
;
11722 input_bfd
= input_section
->owner
;
11724 if (!is_mips_elf (input_bfd
))
11726 /* I don't know what a non MIPS ELF bfd would be
11727 doing with a .mdebug section, but I don't really
11728 want to deal with it. */
11732 input_swap
= (get_elf_backend_data (input_bfd
)
11733 ->elf_backend_ecoff_debug_swap
);
11735 BFD_ASSERT (p
->size
== input_section
->size
);
11737 /* The ECOFF linking code expects that we have already
11738 read in the debugging information and set up an
11739 ecoff_debug_info structure, so we do that now. */
11740 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
11744 if (! (bfd_ecoff_debug_accumulate
11745 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
11746 &input_debug
, input_swap
, info
)))
11749 /* Loop through the external symbols. For each one with
11750 interesting information, try to find the symbol in
11751 the linker global hash table and save the information
11752 for the output external symbols. */
11753 eraw_src
= input_debug
.external_ext
;
11754 eraw_end
= (eraw_src
11755 + (input_debug
.symbolic_header
.iextMax
11756 * input_swap
->external_ext_size
));
11758 eraw_src
< eraw_end
;
11759 eraw_src
+= input_swap
->external_ext_size
)
11763 struct mips_elf_link_hash_entry
*h
;
11765 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
11766 if (ext
.asym
.sc
== scNil
11767 || ext
.asym
.sc
== scUndefined
11768 || ext
.asym
.sc
== scSUndefined
)
11771 name
= input_debug
.ssext
+ ext
.asym
.iss
;
11772 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
11773 name
, FALSE
, FALSE
, TRUE
);
11774 if (h
== NULL
|| h
->esym
.ifd
!= -2)
11779 BFD_ASSERT (ext
.ifd
11780 < input_debug
.symbolic_header
.ifdMax
);
11781 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
11787 /* Free up the information we just read. */
11788 free (input_debug
.line
);
11789 free (input_debug
.external_dnr
);
11790 free (input_debug
.external_pdr
);
11791 free (input_debug
.external_sym
);
11792 free (input_debug
.external_opt
);
11793 free (input_debug
.external_aux
);
11794 free (input_debug
.ss
);
11795 free (input_debug
.ssext
);
11796 free (input_debug
.external_fdr
);
11797 free (input_debug
.external_rfd
);
11798 free (input_debug
.external_ext
);
11800 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11801 elf_link_input_bfd ignores this section. */
11802 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11805 if (SGI_COMPAT (abfd
) && info
->shared
)
11807 /* Create .rtproc section. */
11808 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
11809 if (rtproc_sec
== NULL
)
11811 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
11812 | SEC_LINKER_CREATED
| SEC_READONLY
);
11814 rtproc_sec
= bfd_make_section_with_flags (abfd
,
11817 if (rtproc_sec
== NULL
11818 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
11822 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
11828 /* Build the external symbol information. */
11831 einfo
.debug
= &debug
;
11833 einfo
.failed
= FALSE
;
11834 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
11835 mips_elf_output_extsym
, &einfo
);
11839 /* Set the size of the .mdebug section. */
11840 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
11842 /* Skip this section later on (I don't think this currently
11843 matters, but someday it might). */
11844 o
->map_head
.link_order
= NULL
;
11849 if (CONST_STRNEQ (o
->name
, ".gptab."))
11851 const char *subname
;
11854 Elf32_External_gptab
*ext_tab
;
11857 /* The .gptab.sdata and .gptab.sbss sections hold
11858 information describing how the small data area would
11859 change depending upon the -G switch. These sections
11860 not used in executables files. */
11861 if (! info
->relocatable
)
11863 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11865 asection
*input_section
;
11867 if (p
->type
!= bfd_indirect_link_order
)
11869 if (p
->type
== bfd_data_link_order
)
11874 input_section
= p
->u
.indirect
.section
;
11876 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11877 elf_link_input_bfd ignores this section. */
11878 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11881 /* Skip this section later on (I don't think this
11882 currently matters, but someday it might). */
11883 o
->map_head
.link_order
= NULL
;
11885 /* Really remove the section. */
11886 bfd_section_list_remove (abfd
, o
);
11887 --abfd
->section_count
;
11892 /* There is one gptab for initialized data, and one for
11893 uninitialized data. */
11894 if (strcmp (o
->name
, ".gptab.sdata") == 0)
11895 gptab_data_sec
= o
;
11896 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
11900 (*_bfd_error_handler
)
11901 (_("%s: illegal section name `%s'"),
11902 bfd_get_filename (abfd
), o
->name
);
11903 bfd_set_error (bfd_error_nonrepresentable_section
);
11907 /* The linker script always combines .gptab.data and
11908 .gptab.sdata into .gptab.sdata, and likewise for
11909 .gptab.bss and .gptab.sbss. It is possible that there is
11910 no .sdata or .sbss section in the output file, in which
11911 case we must change the name of the output section. */
11912 subname
= o
->name
+ sizeof ".gptab" - 1;
11913 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
11915 if (o
== gptab_data_sec
)
11916 o
->name
= ".gptab.data";
11918 o
->name
= ".gptab.bss";
11919 subname
= o
->name
+ sizeof ".gptab" - 1;
11920 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
11923 /* Set up the first entry. */
11925 amt
= c
* sizeof (Elf32_gptab
);
11926 tab
= bfd_malloc (amt
);
11929 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
11930 tab
[0].gt_header
.gt_unused
= 0;
11932 /* Combine the input sections. */
11933 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11935 asection
*input_section
;
11937 bfd_size_type size
;
11938 unsigned long last
;
11939 bfd_size_type gpentry
;
11941 if (p
->type
!= bfd_indirect_link_order
)
11943 if (p
->type
== bfd_data_link_order
)
11948 input_section
= p
->u
.indirect
.section
;
11949 input_bfd
= input_section
->owner
;
11951 /* Combine the gptab entries for this input section one
11952 by one. We know that the input gptab entries are
11953 sorted by ascending -G value. */
11954 size
= input_section
->size
;
11956 for (gpentry
= sizeof (Elf32_External_gptab
);
11958 gpentry
+= sizeof (Elf32_External_gptab
))
11960 Elf32_External_gptab ext_gptab
;
11961 Elf32_gptab int_gptab
;
11967 if (! (bfd_get_section_contents
11968 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
11969 sizeof (Elf32_External_gptab
))))
11975 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
11977 val
= int_gptab
.gt_entry
.gt_g_value
;
11978 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
11981 for (look
= 1; look
< c
; look
++)
11983 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
11984 tab
[look
].gt_entry
.gt_bytes
+= add
;
11986 if (tab
[look
].gt_entry
.gt_g_value
== val
)
11992 Elf32_gptab
*new_tab
;
11995 /* We need a new table entry. */
11996 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
11997 new_tab
= bfd_realloc (tab
, amt
);
11998 if (new_tab
== NULL
)
12004 tab
[c
].gt_entry
.gt_g_value
= val
;
12005 tab
[c
].gt_entry
.gt_bytes
= add
;
12007 /* Merge in the size for the next smallest -G
12008 value, since that will be implied by this new
12011 for (look
= 1; look
< c
; look
++)
12013 if (tab
[look
].gt_entry
.gt_g_value
< val
12015 || (tab
[look
].gt_entry
.gt_g_value
12016 > tab
[max
].gt_entry
.gt_g_value
)))
12020 tab
[c
].gt_entry
.gt_bytes
+=
12021 tab
[max
].gt_entry
.gt_bytes
;
12026 last
= int_gptab
.gt_entry
.gt_bytes
;
12029 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12030 elf_link_input_bfd ignores this section. */
12031 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12034 /* The table must be sorted by -G value. */
12036 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
12038 /* Swap out the table. */
12039 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
12040 ext_tab
= bfd_alloc (abfd
, amt
);
12041 if (ext_tab
== NULL
)
12047 for (j
= 0; j
< c
; j
++)
12048 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
12051 o
->size
= c
* sizeof (Elf32_External_gptab
);
12052 o
->contents
= (bfd_byte
*) ext_tab
;
12054 /* Skip this section later on (I don't think this currently
12055 matters, but someday it might). */
12056 o
->map_head
.link_order
= NULL
;
12060 /* Invoke the regular ELF backend linker to do all the work. */
12061 if (!bfd_elf_final_link (abfd
, info
))
12064 /* Now write out the computed sections. */
12066 if (reginfo_sec
!= NULL
)
12068 Elf32_External_RegInfo ext
;
12070 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
12071 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
12075 if (mdebug_sec
!= NULL
)
12077 BFD_ASSERT (abfd
->output_has_begun
);
12078 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
12080 mdebug_sec
->filepos
))
12083 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
12086 if (gptab_data_sec
!= NULL
)
12088 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
12089 gptab_data_sec
->contents
,
12090 0, gptab_data_sec
->size
))
12094 if (gptab_bss_sec
!= NULL
)
12096 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
12097 gptab_bss_sec
->contents
,
12098 0, gptab_bss_sec
->size
))
12102 if (SGI_COMPAT (abfd
))
12104 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
12105 if (rtproc_sec
!= NULL
)
12107 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
12108 rtproc_sec
->contents
,
12109 0, rtproc_sec
->size
))
12117 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12119 struct mips_mach_extension
{
12120 unsigned long extension
, base
;
12124 /* An array describing how BFD machines relate to one another. The entries
12125 are ordered topologically with MIPS I extensions listed last. */
12127 static const struct mips_mach_extension mips_mach_extensions
[] = {
12128 /* MIPS64r2 extensions. */
12129 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
12131 /* MIPS64 extensions. */
12132 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
12133 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
12135 /* MIPS V extensions. */
12136 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
12138 /* R10000 extensions. */
12139 { bfd_mach_mips12000
, bfd_mach_mips10000
},
12141 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12142 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12143 better to allow vr5400 and vr5500 code to be merged anyway, since
12144 many libraries will just use the core ISA. Perhaps we could add
12145 some sort of ASE flag if this ever proves a problem. */
12146 { bfd_mach_mips5500
, bfd_mach_mips5400
},
12147 { bfd_mach_mips5400
, bfd_mach_mips5000
},
12149 /* MIPS IV extensions. */
12150 { bfd_mach_mips5
, bfd_mach_mips8000
},
12151 { bfd_mach_mips10000
, bfd_mach_mips8000
},
12152 { bfd_mach_mips5000
, bfd_mach_mips8000
},
12153 { bfd_mach_mips7000
, bfd_mach_mips8000
},
12154 { bfd_mach_mips9000
, bfd_mach_mips8000
},
12156 /* VR4100 extensions. */
12157 { bfd_mach_mips4120
, bfd_mach_mips4100
},
12158 { bfd_mach_mips4111
, bfd_mach_mips4100
},
12160 /* MIPS III extensions. */
12161 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
12162 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
12163 { bfd_mach_mips8000
, bfd_mach_mips4000
},
12164 { bfd_mach_mips4650
, bfd_mach_mips4000
},
12165 { bfd_mach_mips4600
, bfd_mach_mips4000
},
12166 { bfd_mach_mips4400
, bfd_mach_mips4000
},
12167 { bfd_mach_mips4300
, bfd_mach_mips4000
},
12168 { bfd_mach_mips4100
, bfd_mach_mips4000
},
12169 { bfd_mach_mips4010
, bfd_mach_mips4000
},
12171 /* MIPS32 extensions. */
12172 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
12174 /* MIPS II extensions. */
12175 { bfd_mach_mips4000
, bfd_mach_mips6000
},
12176 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
12178 /* MIPS I extensions. */
12179 { bfd_mach_mips6000
, bfd_mach_mips3000
},
12180 { bfd_mach_mips3900
, bfd_mach_mips3000
}
12184 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12187 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
12191 if (extension
== base
)
12194 if (base
== bfd_mach_mipsisa32
12195 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
12198 if (base
== bfd_mach_mipsisa32r2
12199 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
12202 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
12203 if (extension
== mips_mach_extensions
[i
].extension
)
12205 extension
= mips_mach_extensions
[i
].base
;
12206 if (extension
== base
)
12214 /* Return true if the given ELF header flags describe a 32-bit binary. */
12217 mips_32bit_flags_p (flagword flags
)
12219 return ((flags
& EF_MIPS_32BITMODE
) != 0
12220 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
12221 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
12222 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
12223 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
12224 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
12225 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
12229 /* Merge object attributes from IBFD into OBFD. Raise an error if
12230 there are conflicting attributes. */
12232 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
12234 obj_attribute
*in_attr
;
12235 obj_attribute
*out_attr
;
12237 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
12239 /* This is the first object. Copy the attributes. */
12240 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
12242 /* Use the Tag_null value to indicate the attributes have been
12244 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
12249 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12250 non-conflicting ones. */
12251 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
12252 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
12253 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12255 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
12256 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12257 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
12258 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12260 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12262 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
12263 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12264 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12266 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
12267 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12269 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12272 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12276 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12282 (_("Warning: %B uses hard float, %B uses soft float"),
12288 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12298 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12302 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12308 (_("Warning: %B uses hard float, %B uses soft float"),
12314 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12324 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12330 (_("Warning: %B uses hard float, %B uses soft float"),
12340 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12344 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12350 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12356 (_("Warning: %B uses hard float, %B uses soft float"),
12370 /* Merge Tag_compatibility attributes and any common GNU ones. */
12371 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
12376 /* Merge backend specific data from an object file to the output
12377 object file when linking. */
12380 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
12382 flagword old_flags
;
12383 flagword new_flags
;
12385 bfd_boolean null_input_bfd
= TRUE
;
12388 /* Check if we have the same endianess */
12389 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
12391 (*_bfd_error_handler
)
12392 (_("%B: endianness incompatible with that of the selected emulation"),
12397 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
12400 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
12402 (*_bfd_error_handler
)
12403 (_("%B: ABI is incompatible with that of the selected emulation"),
12408 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
12411 new_flags
= elf_elfheader (ibfd
)->e_flags
;
12412 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
12413 old_flags
= elf_elfheader (obfd
)->e_flags
;
12415 if (! elf_flags_init (obfd
))
12417 elf_flags_init (obfd
) = TRUE
;
12418 elf_elfheader (obfd
)->e_flags
= new_flags
;
12419 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
12420 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
12422 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
12423 && (bfd_get_arch_info (obfd
)->the_default
12424 || mips_mach_extends_p (bfd_get_mach (obfd
),
12425 bfd_get_mach (ibfd
))))
12427 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
12428 bfd_get_mach (ibfd
)))
12435 /* Check flag compatibility. */
12437 new_flags
&= ~EF_MIPS_NOREORDER
;
12438 old_flags
&= ~EF_MIPS_NOREORDER
;
12440 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12441 doesn't seem to matter. */
12442 new_flags
&= ~EF_MIPS_XGOT
;
12443 old_flags
&= ~EF_MIPS_XGOT
;
12445 /* MIPSpro generates ucode info in n64 objects. Again, we should
12446 just be able to ignore this. */
12447 new_flags
&= ~EF_MIPS_UCODE
;
12448 old_flags
&= ~EF_MIPS_UCODE
;
12450 /* DSOs should only be linked with CPIC code. */
12451 if ((ibfd
->flags
& DYNAMIC
) != 0)
12452 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
12454 if (new_flags
== old_flags
)
12457 /* Check to see if the input BFD actually contains any sections.
12458 If not, its flags may not have been initialised either, but it cannot
12459 actually cause any incompatibility. */
12460 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
12462 /* Ignore synthetic sections and empty .text, .data and .bss sections
12463 which are automatically generated by gas. */
12464 if (strcmp (sec
->name
, ".reginfo")
12465 && strcmp (sec
->name
, ".mdebug")
12467 || (strcmp (sec
->name
, ".text")
12468 && strcmp (sec
->name
, ".data")
12469 && strcmp (sec
->name
, ".bss"))))
12471 null_input_bfd
= FALSE
;
12475 if (null_input_bfd
)
12480 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
12481 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
12483 (*_bfd_error_handler
)
12484 (_("%B: warning: linking abicalls files with non-abicalls files"),
12489 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
12490 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
12491 if (! (new_flags
& EF_MIPS_PIC
))
12492 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
12494 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12495 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12497 /* Compare the ISAs. */
12498 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
12500 (*_bfd_error_handler
)
12501 (_("%B: linking 32-bit code with 64-bit code"),
12505 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
12507 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12508 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
12510 /* Copy the architecture info from IBFD to OBFD. Also copy
12511 the 32-bit flag (if set) so that we continue to recognise
12512 OBFD as a 32-bit binary. */
12513 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
12514 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12515 elf_elfheader (obfd
)->e_flags
12516 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12518 /* Copy across the ABI flags if OBFD doesn't use them
12519 and if that was what caused us to treat IBFD as 32-bit. */
12520 if ((old_flags
& EF_MIPS_ABI
) == 0
12521 && mips_32bit_flags_p (new_flags
)
12522 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
12523 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
12527 /* The ISAs aren't compatible. */
12528 (*_bfd_error_handler
)
12529 (_("%B: linking %s module with previous %s modules"),
12531 bfd_printable_name (ibfd
),
12532 bfd_printable_name (obfd
));
12537 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12538 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12540 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12541 does set EI_CLASS differently from any 32-bit ABI. */
12542 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
12543 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12544 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12546 /* Only error if both are set (to different values). */
12547 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
12548 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12549 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12551 (*_bfd_error_handler
)
12552 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12554 elf_mips_abi_name (ibfd
),
12555 elf_mips_abi_name (obfd
));
12558 new_flags
&= ~EF_MIPS_ABI
;
12559 old_flags
&= ~EF_MIPS_ABI
;
12562 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12563 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
12565 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
12567 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
12568 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
12571 /* Warn about any other mismatches */
12572 if (new_flags
!= old_flags
)
12574 (*_bfd_error_handler
)
12575 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12576 ibfd
, (unsigned long) new_flags
,
12577 (unsigned long) old_flags
);
12583 bfd_set_error (bfd_error_bad_value
);
12590 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12593 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
12595 BFD_ASSERT (!elf_flags_init (abfd
)
12596 || elf_elfheader (abfd
)->e_flags
== flags
);
12598 elf_elfheader (abfd
)->e_flags
= flags
;
12599 elf_flags_init (abfd
) = TRUE
;
12604 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
12608 default: return "";
12609 case DT_MIPS_RLD_VERSION
:
12610 return "MIPS_RLD_VERSION";
12611 case DT_MIPS_TIME_STAMP
:
12612 return "MIPS_TIME_STAMP";
12613 case DT_MIPS_ICHECKSUM
:
12614 return "MIPS_ICHECKSUM";
12615 case DT_MIPS_IVERSION
:
12616 return "MIPS_IVERSION";
12617 case DT_MIPS_FLAGS
:
12618 return "MIPS_FLAGS";
12619 case DT_MIPS_BASE_ADDRESS
:
12620 return "MIPS_BASE_ADDRESS";
12622 return "MIPS_MSYM";
12623 case DT_MIPS_CONFLICT
:
12624 return "MIPS_CONFLICT";
12625 case DT_MIPS_LIBLIST
:
12626 return "MIPS_LIBLIST";
12627 case DT_MIPS_LOCAL_GOTNO
:
12628 return "MIPS_LOCAL_GOTNO";
12629 case DT_MIPS_CONFLICTNO
:
12630 return "MIPS_CONFLICTNO";
12631 case DT_MIPS_LIBLISTNO
:
12632 return "MIPS_LIBLISTNO";
12633 case DT_MIPS_SYMTABNO
:
12634 return "MIPS_SYMTABNO";
12635 case DT_MIPS_UNREFEXTNO
:
12636 return "MIPS_UNREFEXTNO";
12637 case DT_MIPS_GOTSYM
:
12638 return "MIPS_GOTSYM";
12639 case DT_MIPS_HIPAGENO
:
12640 return "MIPS_HIPAGENO";
12641 case DT_MIPS_RLD_MAP
:
12642 return "MIPS_RLD_MAP";
12643 case DT_MIPS_DELTA_CLASS
:
12644 return "MIPS_DELTA_CLASS";
12645 case DT_MIPS_DELTA_CLASS_NO
:
12646 return "MIPS_DELTA_CLASS_NO";
12647 case DT_MIPS_DELTA_INSTANCE
:
12648 return "MIPS_DELTA_INSTANCE";
12649 case DT_MIPS_DELTA_INSTANCE_NO
:
12650 return "MIPS_DELTA_INSTANCE_NO";
12651 case DT_MIPS_DELTA_RELOC
:
12652 return "MIPS_DELTA_RELOC";
12653 case DT_MIPS_DELTA_RELOC_NO
:
12654 return "MIPS_DELTA_RELOC_NO";
12655 case DT_MIPS_DELTA_SYM
:
12656 return "MIPS_DELTA_SYM";
12657 case DT_MIPS_DELTA_SYM_NO
:
12658 return "MIPS_DELTA_SYM_NO";
12659 case DT_MIPS_DELTA_CLASSSYM
:
12660 return "MIPS_DELTA_CLASSSYM";
12661 case DT_MIPS_DELTA_CLASSSYM_NO
:
12662 return "MIPS_DELTA_CLASSSYM_NO";
12663 case DT_MIPS_CXX_FLAGS
:
12664 return "MIPS_CXX_FLAGS";
12665 case DT_MIPS_PIXIE_INIT
:
12666 return "MIPS_PIXIE_INIT";
12667 case DT_MIPS_SYMBOL_LIB
:
12668 return "MIPS_SYMBOL_LIB";
12669 case DT_MIPS_LOCALPAGE_GOTIDX
:
12670 return "MIPS_LOCALPAGE_GOTIDX";
12671 case DT_MIPS_LOCAL_GOTIDX
:
12672 return "MIPS_LOCAL_GOTIDX";
12673 case DT_MIPS_HIDDEN_GOTIDX
:
12674 return "MIPS_HIDDEN_GOTIDX";
12675 case DT_MIPS_PROTECTED_GOTIDX
:
12676 return "MIPS_PROTECTED_GOT_IDX";
12677 case DT_MIPS_OPTIONS
:
12678 return "MIPS_OPTIONS";
12679 case DT_MIPS_INTERFACE
:
12680 return "MIPS_INTERFACE";
12681 case DT_MIPS_DYNSTR_ALIGN
:
12682 return "DT_MIPS_DYNSTR_ALIGN";
12683 case DT_MIPS_INTERFACE_SIZE
:
12684 return "DT_MIPS_INTERFACE_SIZE";
12685 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
12686 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12687 case DT_MIPS_PERF_SUFFIX
:
12688 return "DT_MIPS_PERF_SUFFIX";
12689 case DT_MIPS_COMPACT_SIZE
:
12690 return "DT_MIPS_COMPACT_SIZE";
12691 case DT_MIPS_GP_VALUE
:
12692 return "DT_MIPS_GP_VALUE";
12693 case DT_MIPS_AUX_DYNAMIC
:
12694 return "DT_MIPS_AUX_DYNAMIC";
12695 case DT_MIPS_PLTGOT
:
12696 return "DT_MIPS_PLTGOT";
12697 case DT_MIPS_RWPLT
:
12698 return "DT_MIPS_RWPLT";
12703 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
12707 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12709 /* Print normal ELF private data. */
12710 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12712 /* xgettext:c-format */
12713 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12715 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
12716 fprintf (file
, _(" [abi=O32]"));
12717 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
12718 fprintf (file
, _(" [abi=O64]"));
12719 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
12720 fprintf (file
, _(" [abi=EABI32]"));
12721 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
12722 fprintf (file
, _(" [abi=EABI64]"));
12723 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
12724 fprintf (file
, _(" [abi unknown]"));
12725 else if (ABI_N32_P (abfd
))
12726 fprintf (file
, _(" [abi=N32]"));
12727 else if (ABI_64_P (abfd
))
12728 fprintf (file
, _(" [abi=64]"));
12730 fprintf (file
, _(" [no abi set]"));
12732 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
12733 fprintf (file
, " [mips1]");
12734 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
12735 fprintf (file
, " [mips2]");
12736 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
12737 fprintf (file
, " [mips3]");
12738 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
12739 fprintf (file
, " [mips4]");
12740 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
12741 fprintf (file
, " [mips5]");
12742 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
12743 fprintf (file
, " [mips32]");
12744 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
12745 fprintf (file
, " [mips64]");
12746 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
12747 fprintf (file
, " [mips32r2]");
12748 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
12749 fprintf (file
, " [mips64r2]");
12751 fprintf (file
, _(" [unknown ISA]"));
12753 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
12754 fprintf (file
, " [mdmx]");
12756 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
12757 fprintf (file
, " [mips16]");
12759 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
12760 fprintf (file
, " [32bitmode]");
12762 fprintf (file
, _(" [not 32bitmode]"));
12764 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
12765 fprintf (file
, " [noreorder]");
12767 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
12768 fprintf (file
, " [PIC]");
12770 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
12771 fprintf (file
, " [CPIC]");
12773 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
12774 fprintf (file
, " [XGOT]");
12776 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
12777 fprintf (file
, " [UCODE]");
12779 fputc ('\n', file
);
12784 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
12786 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12787 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12788 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
12789 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12790 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12791 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
12792 { NULL
, 0, 0, 0, 0 }
12795 /* Merge non visibility st_other attributes. Ensure that the
12796 STO_OPTIONAL flag is copied into h->other, even if this is not a
12797 definiton of the symbol. */
12799 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
12800 const Elf_Internal_Sym
*isym
,
12801 bfd_boolean definition
,
12802 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
12804 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
12806 unsigned char other
;
12808 other
= (definition
? isym
->st_other
: h
->other
);
12809 other
&= ~ELF_ST_VISIBILITY (-1);
12810 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
12814 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
12815 h
->other
|= STO_OPTIONAL
;
12818 /* Decide whether an undefined symbol is special and can be ignored.
12819 This is the case for OPTIONAL symbols on IRIX. */
12821 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
12823 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
12827 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
12829 return (sym
->st_shndx
== SHN_COMMON
12830 || sym
->st_shndx
== SHN_MIPS_ACOMMON
12831 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
12834 /* Return address for Ith PLT stub in section PLT, for relocation REL
12835 or (bfd_vma) -1 if it should not be included. */
12838 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
12839 const arelent
*rel ATTRIBUTE_UNUSED
)
12842 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
12843 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
12847 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
12849 struct mips_elf_link_hash_table
*htab
;
12850 Elf_Internal_Ehdr
*i_ehdrp
;
12852 i_ehdrp
= elf_elfheader (abfd
);
12855 htab
= mips_elf_hash_table (link_info
);
12856 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
12857 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;