No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / alias.c
blob68dff253abf82e0a840d989b7f5938c8ae13d3f3
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 HOST_WIDE_INT alias_set;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (rtx, rtx);
152 static rtx find_symbolic_term (rtx);
153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
154 static void record_set (rtx, rtx, void *);
155 static int base_alias_check (rtx, rtx, enum machine_mode,
156 enum machine_mode);
157 static rtx find_base_value (rtx);
158 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
159 static int insert_subset_children (splay_tree_node, void*);
160 static tree find_base_decl (tree);
161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
163 int (*) (rtx, int));
164 static int aliases_everything_p (rtx);
165 static bool nonoverlapping_component_refs_p (tree, tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int nonoverlapping_memrefs_p (rtx, rtx);
169 static int write_dependence_p (rtx, rtx, int);
171 static void memory_modified_1 (rtx, rtx, void *);
172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
174 /* Set up all info needed to perform alias analysis on memory references. */
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
182 not legal ANSI C. */
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
209 static GTY(()) varray_type reg_base_value;
210 static rtx *new_reg_base_value;
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
214 array. */
215 static GTY((deletable)) varray_type old_reg_base_value;
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
221 #define REG_BASE_VALUE(X) \
222 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
223 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
225 /* Vector of known invariant relationships between registers. Set in
226 loop unrolling. Indexed by register number, if nonzero the value
227 is an expression describing this register in terms of another.
229 The length of this array is REG_BASE_VALUE_SIZE.
231 Because this array contains only pseudo registers it has no effect
232 after reload. */
233 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
234 static GTY(()) unsigned int alias_invariant_size;
236 /* Vector indexed by N giving the initial (unchanging) value known for
237 pseudo-register N. This array is initialized in init_alias_analysis,
238 and does not change until end_alias_analysis is called. */
239 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
241 /* Indicates number of valid entries in reg_known_value. */
242 static GTY(()) unsigned int reg_known_value_size;
244 /* Vector recording for each reg_known_value whether it is due to a
245 REG_EQUIV note. Future passes (viz., reload) may replace the
246 pseudo with the equivalent expression and so we account for the
247 dependences that would be introduced if that happens.
249 The REG_EQUIV notes created in assign_parms may mention the arg
250 pointer, and there are explicit insns in the RTL that modify the
251 arg pointer. Thus we must ensure that such insns don't get
252 scheduled across each other because that would invalidate the
253 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
254 wrong, but solving the problem in the scheduler will likely give
255 better code, so we do it here. */
256 static bool *reg_known_equiv_p;
258 /* True when scanning insns from the start of the rtl to the
259 NOTE_INSN_FUNCTION_BEG note. */
260 static bool copying_arguments;
262 /* The splay-tree used to store the various alias set entries. */
263 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
265 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
266 such an entry, or NULL otherwise. */
268 static inline alias_set_entry
269 get_alias_set_entry (HOST_WIDE_INT alias_set)
271 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
274 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
275 the two MEMs cannot alias each other. */
277 static inline int
278 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
280 /* Perform a basic sanity check. Namely, that there are no alias sets
281 if we're not using strict aliasing. This helps to catch bugs
282 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
283 where a MEM is allocated in some way other than by the use of
284 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
285 use alias sets to indicate that spilled registers cannot alias each
286 other, we might need to remove this check. */
287 gcc_assert (flag_strict_aliasing
288 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
290 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
293 /* Insert the NODE into the splay tree given by DATA. Used by
294 record_alias_subset via splay_tree_foreach. */
296 static int
297 insert_subset_children (splay_tree_node node, void *data)
299 splay_tree_insert ((splay_tree) data, node->key, node->value);
301 return 0;
304 /* Return 1 if the two specified alias sets may conflict. */
307 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
309 alias_set_entry ase;
311 /* If have no alias set information for one of the operands, we have
312 to assume it can alias anything. */
313 if (set1 == 0 || set2 == 0
314 /* If the two alias sets are the same, they may alias. */
315 || set1 == set2)
316 return 1;
318 /* See if the first alias set is a subset of the second. */
319 ase = get_alias_set_entry (set1);
320 if (ase != 0
321 && (ase->has_zero_child
322 || splay_tree_lookup (ase->children,
323 (splay_tree_key) set2)))
324 return 1;
326 /* Now do the same, but with the alias sets reversed. */
327 ase = get_alias_set_entry (set2);
328 if (ase != 0
329 && (ase->has_zero_child
330 || splay_tree_lookup (ase->children,
331 (splay_tree_key) set1)))
332 return 1;
334 /* The two alias sets are distinct and neither one is the
335 child of the other. Therefore, they cannot alias. */
336 return 0;
339 /* Return 1 if the two specified alias sets might conflict, or if any subtype
340 of these alias sets might conflict. */
343 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
345 if (set1 == 0 || set2 == 0 || set1 == set2)
346 return 1;
348 return 0;
352 /* Return 1 if any MEM object of type T1 will always conflict (using the
353 dependency routines in this file) with any MEM object of type T2.
354 This is used when allocating temporary storage. If T1 and/or T2 are
355 NULL_TREE, it means we know nothing about the storage. */
358 objects_must_conflict_p (tree t1, tree t2)
360 HOST_WIDE_INT set1, set2;
362 /* If neither has a type specified, we don't know if they'll conflict
363 because we may be using them to store objects of various types, for
364 example the argument and local variables areas of inlined functions. */
365 if (t1 == 0 && t2 == 0)
366 return 0;
368 /* If they are the same type, they must conflict. */
369 if (t1 == t2
370 /* Likewise if both are volatile. */
371 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
372 return 1;
374 set1 = t1 ? get_alias_set (t1) : 0;
375 set2 = t2 ? get_alias_set (t2) : 0;
377 /* Otherwise they conflict if they have no alias set or the same. We
378 can't simply use alias_sets_conflict_p here, because we must make
379 sure that every subtype of t1 will conflict with every subtype of
380 t2 for which a pair of subobjects of these respective subtypes
381 overlaps on the stack. */
382 return set1 == 0 || set2 == 0 || set1 == set2;
385 /* T is an expression with pointer type. Find the DECL on which this
386 expression is based. (For example, in `a[i]' this would be `a'.)
387 If there is no such DECL, or a unique decl cannot be determined,
388 NULL_TREE is returned. */
390 static tree
391 find_base_decl (tree t)
393 tree d0, d1;
395 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
396 return 0;
398 /* If this is a declaration, return it. If T is based on a restrict
399 qualified decl, return that decl. */
400 if (DECL_P (t))
402 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
403 t = DECL_GET_RESTRICT_BASE (t);
404 return t;
407 /* Handle general expressions. It would be nice to deal with
408 COMPONENT_REFs here. If we could tell that `a' and `b' were the
409 same, then `a->f' and `b->f' are also the same. */
410 switch (TREE_CODE_CLASS (TREE_CODE (t)))
412 case tcc_unary:
413 return find_base_decl (TREE_OPERAND (t, 0));
415 case tcc_binary:
416 /* Return 0 if found in neither or both are the same. */
417 d0 = find_base_decl (TREE_OPERAND (t, 0));
418 d1 = find_base_decl (TREE_OPERAND (t, 1));
419 if (d0 == d1)
420 return d0;
421 else if (d0 == 0)
422 return d1;
423 else if (d1 == 0)
424 return d0;
425 else
426 return 0;
428 default:
429 return 0;
433 /* Return true if all nested component references handled by
434 get_inner_reference in T are such that we should use the alias set
435 provided by the object at the heart of T.
437 This is true for non-addressable components (which don't have their
438 own alias set), as well as components of objects in alias set zero.
439 This later point is a special case wherein we wish to override the
440 alias set used by the component, but we don't have per-FIELD_DECL
441 assignable alias sets. */
443 bool
444 component_uses_parent_alias_set (tree t)
446 while (1)
448 /* If we're at the end, it vacuously uses its own alias set. */
449 if (!handled_component_p (t))
450 return false;
452 switch (TREE_CODE (t))
454 case COMPONENT_REF:
455 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
456 return true;
457 break;
459 case ARRAY_REF:
460 case ARRAY_RANGE_REF:
461 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
462 return true;
463 break;
465 case REALPART_EXPR:
466 case IMAGPART_EXPR:
467 break;
469 default:
470 /* Bitfields and casts are never addressable. */
471 return true;
474 t = TREE_OPERAND (t, 0);
475 if (get_alias_set (TREE_TYPE (t)) == 0)
476 return true;
480 /* Return the alias set for T, which may be either a type or an
481 expression. Call language-specific routine for help, if needed. */
483 HOST_WIDE_INT
484 get_alias_set (tree t)
486 HOST_WIDE_INT set;
488 /* If we're not doing any alias analysis, just assume everything
489 aliases everything else. Also return 0 if this or its type is
490 an error. */
491 if (! flag_strict_aliasing || t == error_mark_node
492 || (! TYPE_P (t)
493 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
494 return 0;
496 /* We can be passed either an expression or a type. This and the
497 language-specific routine may make mutually-recursive calls to each other
498 to figure out what to do. At each juncture, we see if this is a tree
499 that the language may need to handle specially. First handle things that
500 aren't types. */
501 if (! TYPE_P (t))
503 tree inner = t;
505 /* Remove any nops, then give the language a chance to do
506 something with this tree before we look at it. */
507 STRIP_NOPS (t);
508 set = lang_hooks.get_alias_set (t);
509 if (set != -1)
510 return set;
512 /* First see if the actual object referenced is an INDIRECT_REF from a
513 restrict-qualified pointer or a "void *". */
514 while (handled_component_p (inner))
516 inner = TREE_OPERAND (inner, 0);
517 STRIP_NOPS (inner);
520 /* Check for accesses through restrict-qualified pointers. */
521 if (INDIRECT_REF_P (inner))
523 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
525 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
527 /* If we haven't computed the actual alias set, do it now. */
528 if (DECL_POINTER_ALIAS_SET (decl) == -2)
530 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
532 /* No two restricted pointers can point at the same thing.
533 However, a restricted pointer can point at the same thing
534 as an unrestricted pointer, if that unrestricted pointer
535 is based on the restricted pointer. So, we make the
536 alias set for the restricted pointer a subset of the
537 alias set for the type pointed to by the type of the
538 decl. */
539 HOST_WIDE_INT pointed_to_alias_set
540 = get_alias_set (pointed_to_type);
542 if (pointed_to_alias_set == 0)
543 /* It's not legal to make a subset of alias set zero. */
544 DECL_POINTER_ALIAS_SET (decl) = 0;
545 else if (AGGREGATE_TYPE_P (pointed_to_type))
546 /* For an aggregate, we must treat the restricted
547 pointer the same as an ordinary pointer. If we
548 were to make the type pointed to by the
549 restricted pointer a subset of the pointed-to
550 type, then we would believe that other subsets
551 of the pointed-to type (such as fields of that
552 type) do not conflict with the type pointed to
553 by the restricted pointer. */
554 DECL_POINTER_ALIAS_SET (decl)
555 = pointed_to_alias_set;
556 else
558 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
559 record_alias_subset (pointed_to_alias_set,
560 DECL_POINTER_ALIAS_SET (decl));
564 /* We use the alias set indicated in the declaration. */
565 return DECL_POINTER_ALIAS_SET (decl);
568 /* If we have an INDIRECT_REF via a void pointer, we don't
569 know anything about what that might alias. Likewise if the
570 pointer is marked that way. */
571 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
572 || (TYPE_REF_CAN_ALIAS_ALL
573 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
574 return 0;
577 /* Otherwise, pick up the outermost object that we could have a pointer
578 to, processing conversions as above. */
579 while (component_uses_parent_alias_set (t))
581 t = TREE_OPERAND (t, 0);
582 STRIP_NOPS (t);
585 /* If we've already determined the alias set for a decl, just return
586 it. This is necessary for C++ anonymous unions, whose component
587 variables don't look like union members (boo!). */
588 if (TREE_CODE (t) == VAR_DECL
589 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
590 return MEM_ALIAS_SET (DECL_RTL (t));
592 /* Now all we care about is the type. */
593 t = TREE_TYPE (t);
596 /* Variant qualifiers don't affect the alias set, so get the main
597 variant. If this is a type with a known alias set, return it. */
598 t = TYPE_MAIN_VARIANT (t);
599 if (TYPE_ALIAS_SET_KNOWN_P (t))
600 return TYPE_ALIAS_SET (t);
602 /* See if the language has special handling for this type. */
603 set = lang_hooks.get_alias_set (t);
604 if (set != -1)
605 return set;
607 /* There are no objects of FUNCTION_TYPE, so there's no point in
608 using up an alias set for them. (There are, of course, pointers
609 and references to functions, but that's different.) */
610 else if (TREE_CODE (t) == FUNCTION_TYPE)
611 set = 0;
613 /* Unless the language specifies otherwise, let vector types alias
614 their components. This avoids some nasty type punning issues in
615 normal usage. And indeed lets vectors be treated more like an
616 array slice. */
617 else if (TREE_CODE (t) == VECTOR_TYPE)
618 set = get_alias_set (TREE_TYPE (t));
620 else
621 /* Otherwise make a new alias set for this type. */
622 set = new_alias_set ();
624 TYPE_ALIAS_SET (t) = set;
626 /* If this is an aggregate type, we must record any component aliasing
627 information. */
628 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
629 record_component_aliases (t);
631 return set;
634 /* Return a brand-new alias set. */
636 static GTY(()) HOST_WIDE_INT last_alias_set;
638 HOST_WIDE_INT
639 new_alias_set (void)
641 if (flag_strict_aliasing)
643 if (!alias_sets)
644 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
645 else
646 VARRAY_GROW (alias_sets, last_alias_set + 2);
647 return ++last_alias_set;
649 else
650 return 0;
653 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
654 not everything that aliases SUPERSET also aliases SUBSET. For example,
655 in C, a store to an `int' can alias a load of a structure containing an
656 `int', and vice versa. But it can't alias a load of a 'double' member
657 of the same structure. Here, the structure would be the SUPERSET and
658 `int' the SUBSET. This relationship is also described in the comment at
659 the beginning of this file.
661 This function should be called only once per SUPERSET/SUBSET pair.
663 It is illegal for SUPERSET to be zero; everything is implicitly a
664 subset of alias set zero. */
666 static void
667 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
669 alias_set_entry superset_entry;
670 alias_set_entry subset_entry;
672 /* It is possible in complex type situations for both sets to be the same,
673 in which case we can ignore this operation. */
674 if (superset == subset)
675 return;
677 gcc_assert (superset);
679 superset_entry = get_alias_set_entry (superset);
680 if (superset_entry == 0)
682 /* Create an entry for the SUPERSET, so that we have a place to
683 attach the SUBSET. */
684 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
685 superset_entry->alias_set = superset;
686 superset_entry->children
687 = splay_tree_new_ggc (splay_tree_compare_ints);
688 superset_entry->has_zero_child = 0;
689 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
692 if (subset == 0)
693 superset_entry->has_zero_child = 1;
694 else
696 subset_entry = get_alias_set_entry (subset);
697 /* If there is an entry for the subset, enter all of its children
698 (if they are not already present) as children of the SUPERSET. */
699 if (subset_entry)
701 if (subset_entry->has_zero_child)
702 superset_entry->has_zero_child = 1;
704 splay_tree_foreach (subset_entry->children, insert_subset_children,
705 superset_entry->children);
708 /* Enter the SUBSET itself as a child of the SUPERSET. */
709 splay_tree_insert (superset_entry->children,
710 (splay_tree_key) subset, 0);
714 /* Record that component types of TYPE, if any, are part of that type for
715 aliasing purposes. For record types, we only record component types
716 for fields that are marked addressable. For array types, we always
717 record the component types, so the front end should not call this
718 function if the individual component aren't addressable. */
720 void
721 record_component_aliases (tree type)
723 HOST_WIDE_INT superset = get_alias_set (type);
724 tree field;
726 if (superset == 0)
727 return;
729 switch (TREE_CODE (type))
731 case ARRAY_TYPE:
732 if (! TYPE_NONALIASED_COMPONENT (type))
733 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
734 break;
736 case RECORD_TYPE:
737 case UNION_TYPE:
738 case QUAL_UNION_TYPE:
739 /* Recursively record aliases for the base classes, if there are any. */
740 if (TYPE_BINFO (type))
742 int i;
743 tree binfo, base_binfo;
745 for (binfo = TYPE_BINFO (type), i = 0;
746 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
747 record_alias_subset (superset,
748 get_alias_set (BINFO_TYPE (base_binfo)));
750 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
751 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
752 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
753 break;
755 case COMPLEX_TYPE:
756 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
757 break;
759 default:
760 break;
764 /* Allocate an alias set for use in storing and reading from the varargs
765 spill area. */
767 static GTY(()) HOST_WIDE_INT varargs_set = -1;
769 HOST_WIDE_INT
770 get_varargs_alias_set (void)
772 #if 1
773 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
774 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
775 consistently use the varargs alias set for loads from the varargs
776 area. So don't use it anywhere. */
777 return 0;
778 #else
779 if (varargs_set == -1)
780 varargs_set = new_alias_set ();
782 return varargs_set;
783 #endif
786 /* Likewise, but used for the fixed portions of the frame, e.g., register
787 save areas. */
789 static GTY(()) HOST_WIDE_INT frame_set = -1;
791 HOST_WIDE_INT
792 get_frame_alias_set (void)
794 if (frame_set == -1)
795 frame_set = new_alias_set ();
797 return frame_set;
800 /* Inside SRC, the source of a SET, find a base address. */
802 static rtx
803 find_base_value (rtx src)
805 unsigned int regno;
807 switch (GET_CODE (src))
809 case SYMBOL_REF:
810 case LABEL_REF:
811 return src;
813 case REG:
814 regno = REGNO (src);
815 /* At the start of a function, argument registers have known base
816 values which may be lost later. Returning an ADDRESS
817 expression here allows optimization based on argument values
818 even when the argument registers are used for other purposes. */
819 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
820 return new_reg_base_value[regno];
822 /* If a pseudo has a known base value, return it. Do not do this
823 for non-fixed hard regs since it can result in a circular
824 dependency chain for registers which have values at function entry.
826 The test above is not sufficient because the scheduler may move
827 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
828 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
829 && regno < VARRAY_SIZE (reg_base_value))
831 /* If we're inside init_alias_analysis, use new_reg_base_value
832 to reduce the number of relaxation iterations. */
833 if (new_reg_base_value && new_reg_base_value[regno]
834 && REG_N_SETS (regno) == 1)
835 return new_reg_base_value[regno];
837 if (VARRAY_RTX (reg_base_value, regno))
838 return VARRAY_RTX (reg_base_value, regno);
841 return 0;
843 case MEM:
844 /* Check for an argument passed in memory. Only record in the
845 copying-arguments block; it is too hard to track changes
846 otherwise. */
847 if (copying_arguments
848 && (XEXP (src, 0) == arg_pointer_rtx
849 || (GET_CODE (XEXP (src, 0)) == PLUS
850 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
851 return gen_rtx_ADDRESS (VOIDmode, src);
852 return 0;
854 case CONST:
855 src = XEXP (src, 0);
856 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
857 break;
859 /* ... fall through ... */
861 case PLUS:
862 case MINUS:
864 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
866 /* If either operand is a REG that is a known pointer, then it
867 is the base. */
868 if (REG_P (src_0) && REG_POINTER (src_0))
869 return find_base_value (src_0);
870 if (REG_P (src_1) && REG_POINTER (src_1))
871 return find_base_value (src_1);
873 /* If either operand is a REG, then see if we already have
874 a known value for it. */
875 if (REG_P (src_0))
877 temp = find_base_value (src_0);
878 if (temp != 0)
879 src_0 = temp;
882 if (REG_P (src_1))
884 temp = find_base_value (src_1);
885 if (temp!= 0)
886 src_1 = temp;
889 /* If either base is named object or a special address
890 (like an argument or stack reference), then use it for the
891 base term. */
892 if (src_0 != 0
893 && (GET_CODE (src_0) == SYMBOL_REF
894 || GET_CODE (src_0) == LABEL_REF
895 || (GET_CODE (src_0) == ADDRESS
896 && GET_MODE (src_0) != VOIDmode)))
897 return src_0;
899 if (src_1 != 0
900 && (GET_CODE (src_1) == SYMBOL_REF
901 || GET_CODE (src_1) == LABEL_REF
902 || (GET_CODE (src_1) == ADDRESS
903 && GET_MODE (src_1) != VOIDmode)))
904 return src_1;
906 /* Guess which operand is the base address:
907 If either operand is a symbol, then it is the base. If
908 either operand is a CONST_INT, then the other is the base. */
909 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
910 return find_base_value (src_0);
911 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
912 return find_base_value (src_1);
914 return 0;
917 case LO_SUM:
918 /* The standard form is (lo_sum reg sym) so look only at the
919 second operand. */
920 return find_base_value (XEXP (src, 1));
922 case AND:
923 /* If the second operand is constant set the base
924 address to the first operand. */
925 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
926 return find_base_value (XEXP (src, 0));
927 return 0;
929 case TRUNCATE:
930 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
931 break;
932 /* Fall through. */
933 case HIGH:
934 case PRE_INC:
935 case PRE_DEC:
936 case POST_INC:
937 case POST_DEC:
938 case PRE_MODIFY:
939 case POST_MODIFY:
940 return find_base_value (XEXP (src, 0));
942 case ZERO_EXTEND:
943 case SIGN_EXTEND: /* used for NT/Alpha pointers */
945 rtx temp = find_base_value (XEXP (src, 0));
947 if (temp != 0 && CONSTANT_P (temp))
948 temp = convert_memory_address (Pmode, temp);
950 return temp;
953 default:
954 break;
957 return 0;
960 /* Called from init_alias_analysis indirectly through note_stores. */
962 /* While scanning insns to find base values, reg_seen[N] is nonzero if
963 register N has been set in this function. */
964 static char *reg_seen;
966 /* Addresses which are known not to alias anything else are identified
967 by a unique integer. */
968 static int unique_id;
970 static void
971 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
973 unsigned regno;
974 rtx src;
975 int n;
977 if (!REG_P (dest))
978 return;
980 regno = REGNO (dest);
982 gcc_assert (regno < VARRAY_SIZE (reg_base_value));
984 /* If this spans multiple hard registers, then we must indicate that every
985 register has an unusable value. */
986 if (regno < FIRST_PSEUDO_REGISTER)
987 n = hard_regno_nregs[regno][GET_MODE (dest)];
988 else
989 n = 1;
990 if (n != 1)
992 while (--n >= 0)
994 reg_seen[regno + n] = 1;
995 new_reg_base_value[regno + n] = 0;
997 return;
1000 if (set)
1002 /* A CLOBBER wipes out any old value but does not prevent a previously
1003 unset register from acquiring a base address (i.e. reg_seen is not
1004 set). */
1005 if (GET_CODE (set) == CLOBBER)
1007 new_reg_base_value[regno] = 0;
1008 return;
1010 src = SET_SRC (set);
1012 else
1014 if (reg_seen[regno])
1016 new_reg_base_value[regno] = 0;
1017 return;
1019 reg_seen[regno] = 1;
1020 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1021 GEN_INT (unique_id++));
1022 return;
1025 /* If this is not the first set of REGNO, see whether the new value
1026 is related to the old one. There are two cases of interest:
1028 (1) The register might be assigned an entirely new value
1029 that has the same base term as the original set.
1031 (2) The set might be a simple self-modification that
1032 cannot change REGNO's base value.
1034 If neither case holds, reject the original base value as invalid.
1035 Note that the following situation is not detected:
1037 extern int x, y; int *p = &x; p += (&y-&x);
1039 ANSI C does not allow computing the difference of addresses
1040 of distinct top level objects. */
1041 if (new_reg_base_value[regno] != 0
1042 && find_base_value (src) != new_reg_base_value[regno])
1043 switch (GET_CODE (src))
1045 case LO_SUM:
1046 case MINUS:
1047 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1048 new_reg_base_value[regno] = 0;
1049 break;
1050 case PLUS:
1051 /* If the value we add in the PLUS is also a valid base value,
1052 this might be the actual base value, and the original value
1053 an index. */
1055 rtx other = NULL_RTX;
1057 if (XEXP (src, 0) == dest)
1058 other = XEXP (src, 1);
1059 else if (XEXP (src, 1) == dest)
1060 other = XEXP (src, 0);
1062 if (! other || find_base_value (other))
1063 new_reg_base_value[regno] = 0;
1064 break;
1066 case AND:
1067 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1068 new_reg_base_value[regno] = 0;
1069 break;
1070 default:
1071 new_reg_base_value[regno] = 0;
1072 break;
1074 /* If this is the first set of a register, record the value. */
1075 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1076 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1077 new_reg_base_value[regno] = find_base_value (src);
1079 reg_seen[regno] = 1;
1082 /* Called from loop optimization when a new pseudo-register is
1083 created. It indicates that REGNO is being set to VAL. f INVARIANT
1084 is true then this value also describes an invariant relationship
1085 which can be used to deduce that two registers with unknown values
1086 are different. */
1088 void
1089 record_base_value (unsigned int regno, rtx val, int invariant)
1091 if (invariant && alias_invariant && regno < alias_invariant_size)
1092 alias_invariant[regno] = val;
1094 if (regno >= VARRAY_SIZE (reg_base_value))
1095 VARRAY_GROW (reg_base_value, max_reg_num ());
1097 if (REG_P (val))
1099 VARRAY_RTX (reg_base_value, regno)
1100 = REG_BASE_VALUE (val);
1101 return;
1103 VARRAY_RTX (reg_base_value, regno)
1104 = find_base_value (val);
1107 /* Clear alias info for a register. This is used if an RTL transformation
1108 changes the value of a register. This is used in flow by AUTO_INC_DEC
1109 optimizations. We don't need to clear reg_base_value, since flow only
1110 changes the offset. */
1112 void
1113 clear_reg_alias_info (rtx reg)
1115 unsigned int regno = REGNO (reg);
1117 if (regno >= FIRST_PSEUDO_REGISTER)
1119 regno -= FIRST_PSEUDO_REGISTER;
1120 if (regno < reg_known_value_size)
1122 reg_known_value[regno] = reg;
1123 reg_known_equiv_p[regno] = false;
1128 /* If a value is known for REGNO, return it. */
1130 rtx
1131 get_reg_known_value (unsigned int regno)
1133 if (regno >= FIRST_PSEUDO_REGISTER)
1135 regno -= FIRST_PSEUDO_REGISTER;
1136 if (regno < reg_known_value_size)
1137 return reg_known_value[regno];
1139 return NULL;
1142 /* Set it. */
1144 static void
1145 set_reg_known_value (unsigned int regno, rtx val)
1147 if (regno >= FIRST_PSEUDO_REGISTER)
1149 regno -= FIRST_PSEUDO_REGISTER;
1150 if (regno < reg_known_value_size)
1151 reg_known_value[regno] = val;
1155 /* Similarly for reg_known_equiv_p. */
1157 bool
1158 get_reg_known_equiv_p (unsigned int regno)
1160 if (regno >= FIRST_PSEUDO_REGISTER)
1162 regno -= FIRST_PSEUDO_REGISTER;
1163 if (regno < reg_known_value_size)
1164 return reg_known_equiv_p[regno];
1166 return false;
1169 static void
1170 set_reg_known_equiv_p (unsigned int regno, bool val)
1172 if (regno >= FIRST_PSEUDO_REGISTER)
1174 regno -= FIRST_PSEUDO_REGISTER;
1175 if (regno < reg_known_value_size)
1176 reg_known_equiv_p[regno] = val;
1181 /* Returns a canonical version of X, from the point of view alias
1182 analysis. (For example, if X is a MEM whose address is a register,
1183 and the register has a known value (say a SYMBOL_REF), then a MEM
1184 whose address is the SYMBOL_REF is returned.) */
1187 canon_rtx (rtx x)
1189 /* Recursively look for equivalences. */
1190 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1192 rtx t = get_reg_known_value (REGNO (x));
1193 if (t == x)
1194 return x;
1195 if (t)
1196 return canon_rtx (t);
1199 if (GET_CODE (x) == PLUS)
1201 rtx x0 = canon_rtx (XEXP (x, 0));
1202 rtx x1 = canon_rtx (XEXP (x, 1));
1204 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1206 if (GET_CODE (x0) == CONST_INT)
1207 return plus_constant (x1, INTVAL (x0));
1208 else if (GET_CODE (x1) == CONST_INT)
1209 return plus_constant (x0, INTVAL (x1));
1210 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1214 /* This gives us much better alias analysis when called from
1215 the loop optimizer. Note we want to leave the original
1216 MEM alone, but need to return the canonicalized MEM with
1217 all the flags with their original values. */
1218 else if (MEM_P (x))
1219 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1221 return x;
1224 /* Return 1 if X and Y are identical-looking rtx's.
1225 Expect that X and Y has been already canonicalized.
1227 We use the data in reg_known_value above to see if two registers with
1228 different numbers are, in fact, equivalent. */
1230 static int
1231 rtx_equal_for_memref_p (rtx x, rtx y)
1233 int i;
1234 int j;
1235 enum rtx_code code;
1236 const char *fmt;
1238 if (x == 0 && y == 0)
1239 return 1;
1240 if (x == 0 || y == 0)
1241 return 0;
1243 if (x == y)
1244 return 1;
1246 code = GET_CODE (x);
1247 /* Rtx's of different codes cannot be equal. */
1248 if (code != GET_CODE (y))
1249 return 0;
1251 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1252 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1254 if (GET_MODE (x) != GET_MODE (y))
1255 return 0;
1257 /* Some RTL can be compared without a recursive examination. */
1258 switch (code)
1260 case REG:
1261 return REGNO (x) == REGNO (y);
1263 case LABEL_REF:
1264 return XEXP (x, 0) == XEXP (y, 0);
1266 case SYMBOL_REF:
1267 return XSTR (x, 0) == XSTR (y, 0);
1269 case VALUE:
1270 case CONST_INT:
1271 case CONST_DOUBLE:
1272 /* There's no need to compare the contents of CONST_DOUBLEs or
1273 CONST_INTs because pointer equality is a good enough
1274 comparison for these nodes. */
1275 return 0;
1277 default:
1278 break;
1281 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1282 if (code == PLUS)
1283 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1284 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1285 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1286 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1287 /* For commutative operations, the RTX match if the operand match in any
1288 order. Also handle the simple binary and unary cases without a loop. */
1289 if (COMMUTATIVE_P (x))
1291 rtx xop0 = canon_rtx (XEXP (x, 0));
1292 rtx yop0 = canon_rtx (XEXP (y, 0));
1293 rtx yop1 = canon_rtx (XEXP (y, 1));
1295 return ((rtx_equal_for_memref_p (xop0, yop0)
1296 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1297 || (rtx_equal_for_memref_p (xop0, yop1)
1298 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1300 else if (NON_COMMUTATIVE_P (x))
1302 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1303 canon_rtx (XEXP (y, 0)))
1304 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1305 canon_rtx (XEXP (y, 1))));
1307 else if (UNARY_P (x))
1308 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1309 canon_rtx (XEXP (y, 0)));
1311 /* Compare the elements. If any pair of corresponding elements
1312 fail to match, return 0 for the whole things.
1314 Limit cases to types which actually appear in addresses. */
1316 fmt = GET_RTX_FORMAT (code);
1317 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1319 switch (fmt[i])
1321 case 'i':
1322 if (XINT (x, i) != XINT (y, i))
1323 return 0;
1324 break;
1326 case 'E':
1327 /* Two vectors must have the same length. */
1328 if (XVECLEN (x, i) != XVECLEN (y, i))
1329 return 0;
1331 /* And the corresponding elements must match. */
1332 for (j = 0; j < XVECLEN (x, i); j++)
1333 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1334 canon_rtx (XVECEXP (y, i, j))) == 0)
1335 return 0;
1336 break;
1338 case 'e':
1339 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1340 canon_rtx (XEXP (y, i))) == 0)
1341 return 0;
1342 break;
1344 /* This can happen for asm operands. */
1345 case 's':
1346 if (strcmp (XSTR (x, i), XSTR (y, i)))
1347 return 0;
1348 break;
1350 /* This can happen for an asm which clobbers memory. */
1351 case '0':
1352 break;
1354 /* It is believed that rtx's at this level will never
1355 contain anything but integers and other rtx's,
1356 except for within LABEL_REFs and SYMBOL_REFs. */
1357 default:
1358 gcc_unreachable ();
1361 return 1;
1364 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1365 X and return it, or return 0 if none found. */
1367 static rtx
1368 find_symbolic_term (rtx x)
1370 int i;
1371 enum rtx_code code;
1372 const char *fmt;
1374 code = GET_CODE (x);
1375 if (code == SYMBOL_REF || code == LABEL_REF)
1376 return x;
1377 if (OBJECT_P (x))
1378 return 0;
1380 fmt = GET_RTX_FORMAT (code);
1381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1383 rtx t;
1385 if (fmt[i] == 'e')
1387 t = find_symbolic_term (XEXP (x, i));
1388 if (t != 0)
1389 return t;
1391 else if (fmt[i] == 'E')
1392 break;
1394 return 0;
1398 find_base_term (rtx x)
1400 cselib_val *val;
1401 struct elt_loc_list *l;
1403 #if defined (FIND_BASE_TERM)
1404 /* Try machine-dependent ways to find the base term. */
1405 x = FIND_BASE_TERM (x);
1406 #endif
1408 switch (GET_CODE (x))
1410 case REG:
1411 return REG_BASE_VALUE (x);
1413 case TRUNCATE:
1414 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1415 return 0;
1416 /* Fall through. */
1417 case HIGH:
1418 case PRE_INC:
1419 case PRE_DEC:
1420 case POST_INC:
1421 case POST_DEC:
1422 case PRE_MODIFY:
1423 case POST_MODIFY:
1424 return find_base_term (XEXP (x, 0));
1426 case ZERO_EXTEND:
1427 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1429 rtx temp = find_base_term (XEXP (x, 0));
1431 if (temp != 0 && CONSTANT_P (temp))
1432 temp = convert_memory_address (Pmode, temp);
1434 return temp;
1437 case VALUE:
1438 val = CSELIB_VAL_PTR (x);
1439 if (!val)
1440 return 0;
1441 for (l = val->locs; l; l = l->next)
1442 if ((x = find_base_term (l->loc)) != 0)
1443 return x;
1444 return 0;
1446 case CONST:
1447 x = XEXP (x, 0);
1448 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1449 return 0;
1450 /* Fall through. */
1451 case LO_SUM:
1452 case PLUS:
1453 case MINUS:
1455 rtx tmp1 = XEXP (x, 0);
1456 rtx tmp2 = XEXP (x, 1);
1458 /* This is a little bit tricky since we have to determine which of
1459 the two operands represents the real base address. Otherwise this
1460 routine may return the index register instead of the base register.
1462 That may cause us to believe no aliasing was possible, when in
1463 fact aliasing is possible.
1465 We use a few simple tests to guess the base register. Additional
1466 tests can certainly be added. For example, if one of the operands
1467 is a shift or multiply, then it must be the index register and the
1468 other operand is the base register. */
1470 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1471 return find_base_term (tmp2);
1473 /* If either operand is known to be a pointer, then use it
1474 to determine the base term. */
1475 if (REG_P (tmp1) && REG_POINTER (tmp1))
1476 return find_base_term (tmp1);
1478 if (REG_P (tmp2) && REG_POINTER (tmp2))
1479 return find_base_term (tmp2);
1481 /* Neither operand was known to be a pointer. Go ahead and find the
1482 base term for both operands. */
1483 tmp1 = find_base_term (tmp1);
1484 tmp2 = find_base_term (tmp2);
1486 /* If either base term is named object or a special address
1487 (like an argument or stack reference), then use it for the
1488 base term. */
1489 if (tmp1 != 0
1490 && (GET_CODE (tmp1) == SYMBOL_REF
1491 || GET_CODE (tmp1) == LABEL_REF
1492 || (GET_CODE (tmp1) == ADDRESS
1493 && GET_MODE (tmp1) != VOIDmode)))
1494 return tmp1;
1496 if (tmp2 != 0
1497 && (GET_CODE (tmp2) == SYMBOL_REF
1498 || GET_CODE (tmp2) == LABEL_REF
1499 || (GET_CODE (tmp2) == ADDRESS
1500 && GET_MODE (tmp2) != VOIDmode)))
1501 return tmp2;
1503 /* We could not determine which of the two operands was the
1504 base register and which was the index. So we can determine
1505 nothing from the base alias check. */
1506 return 0;
1509 case AND:
1510 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1511 return find_base_term (XEXP (x, 0));
1512 return 0;
1514 case SYMBOL_REF:
1515 case LABEL_REF:
1516 return x;
1518 default:
1519 return 0;
1523 /* Return 0 if the addresses X and Y are known to point to different
1524 objects, 1 if they might be pointers to the same object. */
1526 static int
1527 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1528 enum machine_mode y_mode)
1530 rtx x_base = find_base_term (x);
1531 rtx y_base = find_base_term (y);
1533 /* If the address itself has no known base see if a known equivalent
1534 value has one. If either address still has no known base, nothing
1535 is known about aliasing. */
1536 if (x_base == 0)
1538 rtx x_c;
1540 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1541 return 1;
1543 x_base = find_base_term (x_c);
1544 if (x_base == 0)
1545 return 1;
1548 if (y_base == 0)
1550 rtx y_c;
1551 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1552 return 1;
1554 y_base = find_base_term (y_c);
1555 if (y_base == 0)
1556 return 1;
1559 /* If the base addresses are equal nothing is known about aliasing. */
1560 if (rtx_equal_p (x_base, y_base))
1561 return 1;
1563 /* The base addresses of the read and write are different expressions.
1564 If they are both symbols and they are not accessed via AND, there is
1565 no conflict. We can bring knowledge of object alignment into play
1566 here. For example, on alpha, "char a, b;" can alias one another,
1567 though "char a; long b;" cannot. */
1568 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1570 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1571 return 1;
1572 if (GET_CODE (x) == AND
1573 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1574 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1575 return 1;
1576 if (GET_CODE (y) == AND
1577 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1578 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1579 return 1;
1580 /* Differing symbols never alias. */
1581 return 0;
1584 /* If one address is a stack reference there can be no alias:
1585 stack references using different base registers do not alias,
1586 a stack reference can not alias a parameter, and a stack reference
1587 can not alias a global. */
1588 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1589 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1590 return 0;
1592 if (! flag_argument_noalias)
1593 return 1;
1595 if (flag_argument_noalias > 1)
1596 return 0;
1598 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1599 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1602 /* Convert the address X into something we can use. This is done by returning
1603 it unchanged unless it is a value; in the latter case we call cselib to get
1604 a more useful rtx. */
1607 get_addr (rtx x)
1609 cselib_val *v;
1610 struct elt_loc_list *l;
1612 if (GET_CODE (x) != VALUE)
1613 return x;
1614 v = CSELIB_VAL_PTR (x);
1615 if (v)
1617 for (l = v->locs; l; l = l->next)
1618 if (CONSTANT_P (l->loc))
1619 return l->loc;
1620 for (l = v->locs; l; l = l->next)
1621 if (!REG_P (l->loc) && !MEM_P (l->loc))
1622 return l->loc;
1623 if (v->locs)
1624 return v->locs->loc;
1626 return x;
1629 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1630 where SIZE is the size in bytes of the memory reference. If ADDR
1631 is not modified by the memory reference then ADDR is returned. */
1633 static rtx
1634 addr_side_effect_eval (rtx addr, int size, int n_refs)
1636 int offset = 0;
1638 switch (GET_CODE (addr))
1640 case PRE_INC:
1641 offset = (n_refs + 1) * size;
1642 break;
1643 case PRE_DEC:
1644 offset = -(n_refs + 1) * size;
1645 break;
1646 case POST_INC:
1647 offset = n_refs * size;
1648 break;
1649 case POST_DEC:
1650 offset = -n_refs * size;
1651 break;
1653 default:
1654 return addr;
1657 if (offset)
1658 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1659 GEN_INT (offset));
1660 else
1661 addr = XEXP (addr, 0);
1662 addr = canon_rtx (addr);
1664 return addr;
1667 /* Return nonzero if X and Y (memory addresses) could reference the
1668 same location in memory. C is an offset accumulator. When
1669 C is nonzero, we are testing aliases between X and Y + C.
1670 XSIZE is the size in bytes of the X reference,
1671 similarly YSIZE is the size in bytes for Y.
1672 Expect that canon_rtx has been already called for X and Y.
1674 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1675 referenced (the reference was BLKmode), so make the most pessimistic
1676 assumptions.
1678 If XSIZE or YSIZE is negative, we may access memory outside the object
1679 being referenced as a side effect. This can happen when using AND to
1680 align memory references, as is done on the Alpha.
1682 Nice to notice that varying addresses cannot conflict with fp if no
1683 local variables had their addresses taken, but that's too hard now. */
1685 static int
1686 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1688 if (GET_CODE (x) == VALUE)
1689 x = get_addr (x);
1690 if (GET_CODE (y) == VALUE)
1691 y = get_addr (y);
1692 if (GET_CODE (x) == HIGH)
1693 x = XEXP (x, 0);
1694 else if (GET_CODE (x) == LO_SUM)
1695 x = XEXP (x, 1);
1696 else
1697 x = addr_side_effect_eval (x, xsize, 0);
1698 if (GET_CODE (y) == HIGH)
1699 y = XEXP (y, 0);
1700 else if (GET_CODE (y) == LO_SUM)
1701 y = XEXP (y, 1);
1702 else
1703 y = addr_side_effect_eval (y, ysize, 0);
1705 if (rtx_equal_for_memref_p (x, y))
1707 if (xsize <= 0 || ysize <= 0)
1708 return 1;
1709 if (c >= 0 && xsize > c)
1710 return 1;
1711 if (c < 0 && ysize+c > 0)
1712 return 1;
1713 return 0;
1716 /* This code used to check for conflicts involving stack references and
1717 globals but the base address alias code now handles these cases. */
1719 if (GET_CODE (x) == PLUS)
1721 /* The fact that X is canonicalized means that this
1722 PLUS rtx is canonicalized. */
1723 rtx x0 = XEXP (x, 0);
1724 rtx x1 = XEXP (x, 1);
1726 if (GET_CODE (y) == PLUS)
1728 /* The fact that Y is canonicalized means that this
1729 PLUS rtx is canonicalized. */
1730 rtx y0 = XEXP (y, 0);
1731 rtx y1 = XEXP (y, 1);
1733 if (rtx_equal_for_memref_p (x1, y1))
1734 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1735 if (rtx_equal_for_memref_p (x0, y0))
1736 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1737 if (GET_CODE (x1) == CONST_INT)
1739 if (GET_CODE (y1) == CONST_INT)
1740 return memrefs_conflict_p (xsize, x0, ysize, y0,
1741 c - INTVAL (x1) + INTVAL (y1));
1742 else
1743 return memrefs_conflict_p (xsize, x0, ysize, y,
1744 c - INTVAL (x1));
1746 else if (GET_CODE (y1) == CONST_INT)
1747 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1749 return 1;
1751 else if (GET_CODE (x1) == CONST_INT)
1752 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1754 else if (GET_CODE (y) == PLUS)
1756 /* The fact that Y is canonicalized means that this
1757 PLUS rtx is canonicalized. */
1758 rtx y0 = XEXP (y, 0);
1759 rtx y1 = XEXP (y, 1);
1761 if (GET_CODE (y1) == CONST_INT)
1762 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1763 else
1764 return 1;
1767 if (GET_CODE (x) == GET_CODE (y))
1768 switch (GET_CODE (x))
1770 case MULT:
1772 /* Handle cases where we expect the second operands to be the
1773 same, and check only whether the first operand would conflict
1774 or not. */
1775 rtx x0, y0;
1776 rtx x1 = canon_rtx (XEXP (x, 1));
1777 rtx y1 = canon_rtx (XEXP (y, 1));
1778 if (! rtx_equal_for_memref_p (x1, y1))
1779 return 1;
1780 x0 = canon_rtx (XEXP (x, 0));
1781 y0 = canon_rtx (XEXP (y, 0));
1782 if (rtx_equal_for_memref_p (x0, y0))
1783 return (xsize == 0 || ysize == 0
1784 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1786 /* Can't properly adjust our sizes. */
1787 if (GET_CODE (x1) != CONST_INT)
1788 return 1;
1789 xsize /= INTVAL (x1);
1790 ysize /= INTVAL (x1);
1791 c /= INTVAL (x1);
1792 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1795 case REG:
1796 /* Are these registers known not to be equal? */
1797 if (alias_invariant)
1799 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1800 rtx i_x, i_y; /* invariant relationships of X and Y */
1802 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1803 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1805 if (i_x == 0 && i_y == 0)
1806 break;
1808 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1809 ysize, i_y ? i_y : y, c))
1810 return 0;
1812 break;
1814 default:
1815 break;
1818 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1819 as an access with indeterminate size. Assume that references
1820 besides AND are aligned, so if the size of the other reference is
1821 at least as large as the alignment, assume no other overlap. */
1822 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1824 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1825 xsize = -1;
1826 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1828 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1830 /* ??? If we are indexing far enough into the array/structure, we
1831 may yet be able to determine that we can not overlap. But we
1832 also need to that we are far enough from the end not to overlap
1833 a following reference, so we do nothing with that for now. */
1834 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1835 ysize = -1;
1836 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1839 if (CONSTANT_P (x))
1841 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1843 c += (INTVAL (y) - INTVAL (x));
1844 return (xsize <= 0 || ysize <= 0
1845 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1848 if (GET_CODE (x) == CONST)
1850 if (GET_CODE (y) == CONST)
1851 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1852 ysize, canon_rtx (XEXP (y, 0)), c);
1853 else
1854 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1855 ysize, y, c);
1857 if (GET_CODE (y) == CONST)
1858 return memrefs_conflict_p (xsize, x, ysize,
1859 canon_rtx (XEXP (y, 0)), c);
1861 if (CONSTANT_P (y))
1862 return (xsize <= 0 || ysize <= 0
1863 || (rtx_equal_for_memref_p (x, y)
1864 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1866 return 1;
1868 return 1;
1871 /* Functions to compute memory dependencies.
1873 Since we process the insns in execution order, we can build tables
1874 to keep track of what registers are fixed (and not aliased), what registers
1875 are varying in known ways, and what registers are varying in unknown
1876 ways.
1878 If both memory references are volatile, then there must always be a
1879 dependence between the two references, since their order can not be
1880 changed. A volatile and non-volatile reference can be interchanged
1881 though.
1883 A MEM_IN_STRUCT reference at a non-AND varying address can never
1884 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1885 also must allow AND addresses, because they may generate accesses
1886 outside the object being referenced. This is used to generate
1887 aligned addresses from unaligned addresses, for instance, the alpha
1888 storeqi_unaligned pattern. */
1890 /* Read dependence: X is read after read in MEM takes place. There can
1891 only be a dependence here if both reads are volatile. */
1894 read_dependence (rtx mem, rtx x)
1896 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1899 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1900 MEM2 is a reference to a structure at a varying address, or returns
1901 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1902 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1903 to decide whether or not an address may vary; it should return
1904 nonzero whenever variation is possible.
1905 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1907 static rtx
1908 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1909 rtx mem2_addr,
1910 int (*varies_p) (rtx, int))
1912 if (! flag_strict_aliasing)
1913 return NULL_RTX;
1915 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1916 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1917 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1918 varying address. */
1919 return mem1;
1921 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1922 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1923 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1924 varying address. */
1925 return mem2;
1927 return NULL_RTX;
1930 /* Returns nonzero if something about the mode or address format MEM1
1931 indicates that it might well alias *anything*. */
1933 static int
1934 aliases_everything_p (rtx mem)
1936 if (GET_CODE (XEXP (mem, 0)) == AND)
1937 /* If the address is an AND, it's very hard to know at what it is
1938 actually pointing. */
1939 return 1;
1941 return 0;
1944 /* Return true if we can determine that the fields referenced cannot
1945 overlap for any pair of objects. */
1947 static bool
1948 nonoverlapping_component_refs_p (tree x, tree y)
1950 tree fieldx, fieldy, typex, typey, orig_y;
1954 /* The comparison has to be done at a common type, since we don't
1955 know how the inheritance hierarchy works. */
1956 orig_y = y;
1959 fieldx = TREE_OPERAND (x, 1);
1960 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1962 y = orig_y;
1965 fieldy = TREE_OPERAND (y, 1);
1966 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1968 if (typex == typey)
1969 goto found;
1971 y = TREE_OPERAND (y, 0);
1973 while (y && TREE_CODE (y) == COMPONENT_REF);
1975 x = TREE_OPERAND (x, 0);
1977 while (x && TREE_CODE (x) == COMPONENT_REF);
1978 /* Never found a common type. */
1979 return false;
1981 found:
1982 /* If we're left with accessing different fields of a structure,
1983 then no overlap. */
1984 if (TREE_CODE (typex) == RECORD_TYPE
1985 && fieldx != fieldy)
1986 return true;
1988 /* The comparison on the current field failed. If we're accessing
1989 a very nested structure, look at the next outer level. */
1990 x = TREE_OPERAND (x, 0);
1991 y = TREE_OPERAND (y, 0);
1993 while (x && y
1994 && TREE_CODE (x) == COMPONENT_REF
1995 && TREE_CODE (y) == COMPONENT_REF);
1997 return false;
2000 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2002 static tree
2003 decl_for_component_ref (tree x)
2007 x = TREE_OPERAND (x, 0);
2009 while (x && TREE_CODE (x) == COMPONENT_REF);
2011 return x && DECL_P (x) ? x : NULL_TREE;
2014 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2015 offset of the field reference. */
2017 static rtx
2018 adjust_offset_for_component_ref (tree x, rtx offset)
2020 HOST_WIDE_INT ioffset;
2022 if (! offset)
2023 return NULL_RTX;
2025 ioffset = INTVAL (offset);
2028 tree offset = component_ref_field_offset (x);
2029 tree field = TREE_OPERAND (x, 1);
2031 if (! host_integerp (offset, 1))
2032 return NULL_RTX;
2033 ioffset += (tree_low_cst (offset, 1)
2034 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2035 / BITS_PER_UNIT));
2037 x = TREE_OPERAND (x, 0);
2039 while (x && TREE_CODE (x) == COMPONENT_REF);
2041 return GEN_INT (ioffset);
2044 /* Return nonzero if we can determine the exprs corresponding to memrefs
2045 X and Y and they do not overlap. */
2047 static int
2048 nonoverlapping_memrefs_p (rtx x, rtx y)
2050 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2051 rtx rtlx, rtly;
2052 rtx basex, basey;
2053 rtx moffsetx, moffsety;
2054 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2056 /* Unless both have exprs, we can't tell anything. */
2057 if (exprx == 0 || expry == 0)
2058 return 0;
2060 /* If both are field references, we may be able to determine something. */
2061 if (TREE_CODE (exprx) == COMPONENT_REF
2062 && TREE_CODE (expry) == COMPONENT_REF
2063 && nonoverlapping_component_refs_p (exprx, expry))
2064 return 1;
2067 /* If the field reference test failed, look at the DECLs involved. */
2068 moffsetx = MEM_OFFSET (x);
2069 if (TREE_CODE (exprx) == COMPONENT_REF)
2071 if (TREE_CODE (expry) == VAR_DECL
2072 && POINTER_TYPE_P (TREE_TYPE (expry)))
2074 tree field = TREE_OPERAND (exprx, 1);
2075 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2076 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2077 TREE_TYPE (field)))
2078 return 1;
2081 tree t = decl_for_component_ref (exprx);
2082 if (! t)
2083 return 0;
2084 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2085 exprx = t;
2088 else if (INDIRECT_REF_P (exprx))
2090 exprx = TREE_OPERAND (exprx, 0);
2091 if (flag_argument_noalias < 2
2092 || TREE_CODE (exprx) != PARM_DECL)
2093 return 0;
2096 moffsety = MEM_OFFSET (y);
2097 if (TREE_CODE (expry) == COMPONENT_REF)
2099 if (TREE_CODE (exprx) == VAR_DECL
2100 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2102 tree field = TREE_OPERAND (expry, 1);
2103 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2104 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2105 TREE_TYPE (field)))
2106 return 1;
2109 tree t = decl_for_component_ref (expry);
2110 if (! t)
2111 return 0;
2112 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2113 expry = t;
2116 else if (INDIRECT_REF_P (expry))
2118 expry = TREE_OPERAND (expry, 0);
2119 if (flag_argument_noalias < 2
2120 || TREE_CODE (expry) != PARM_DECL)
2121 return 0;
2124 if (! DECL_P (exprx) || ! DECL_P (expry))
2125 return 0;
2127 rtlx = DECL_RTL (exprx);
2128 rtly = DECL_RTL (expry);
2130 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2131 can't overlap unless they are the same because we never reuse that part
2132 of the stack frame used for locals for spilled pseudos. */
2133 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2134 && ! rtx_equal_p (rtlx, rtly))
2135 return 1;
2137 /* Get the base and offsets of both decls. If either is a register, we
2138 know both are and are the same, so use that as the base. The only
2139 we can avoid overlap is if we can deduce that they are nonoverlapping
2140 pieces of that decl, which is very rare. */
2141 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2142 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2143 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2145 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2146 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2147 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2149 /* If the bases are different, we know they do not overlap if both
2150 are constants or if one is a constant and the other a pointer into the
2151 stack frame. Otherwise a different base means we can't tell if they
2152 overlap or not. */
2153 if (! rtx_equal_p (basex, basey))
2154 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2155 || (CONSTANT_P (basex) && REG_P (basey)
2156 && REGNO_PTR_FRAME_P (REGNO (basey)))
2157 || (CONSTANT_P (basey) && REG_P (basex)
2158 && REGNO_PTR_FRAME_P (REGNO (basex))));
2160 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2161 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2162 : -1);
2163 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2164 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2165 -1);
2167 /* If we have an offset for either memref, it can update the values computed
2168 above. */
2169 if (moffsetx)
2170 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2171 if (moffsety)
2172 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2174 /* If a memref has both a size and an offset, we can use the smaller size.
2175 We can't do this if the offset isn't known because we must view this
2176 memref as being anywhere inside the DECL's MEM. */
2177 if (MEM_SIZE (x) && moffsetx)
2178 sizex = INTVAL (MEM_SIZE (x));
2179 if (MEM_SIZE (y) && moffsety)
2180 sizey = INTVAL (MEM_SIZE (y));
2182 /* Put the values of the memref with the lower offset in X's values. */
2183 if (offsetx > offsety)
2185 tem = offsetx, offsetx = offsety, offsety = tem;
2186 tem = sizex, sizex = sizey, sizey = tem;
2189 /* If we don't know the size of the lower-offset value, we can't tell
2190 if they conflict. Otherwise, we do the test. */
2191 return sizex >= 0 && offsety >= offsetx + sizex;
2194 /* True dependence: X is read after store in MEM takes place. */
2197 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2198 int (*varies) (rtx, int))
2200 rtx x_addr, mem_addr;
2201 rtx base;
2203 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2204 return 1;
2206 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2207 This is used in epilogue deallocation functions. */
2208 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2209 return 1;
2210 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2211 return 1;
2212 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2213 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2214 return 1;
2216 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2217 return 0;
2219 /* Read-only memory is by definition never modified, and therefore can't
2220 conflict with anything. We don't expect to find read-only set on MEM,
2221 but stupid user tricks can produce them, so don't die. */
2222 if (MEM_READONLY_P (x))
2223 return 0;
2225 if (nonoverlapping_memrefs_p (mem, x))
2226 return 0;
2228 if (mem_mode == VOIDmode)
2229 mem_mode = GET_MODE (mem);
2231 x_addr = get_addr (XEXP (x, 0));
2232 mem_addr = get_addr (XEXP (mem, 0));
2234 base = find_base_term (x_addr);
2235 if (base && (GET_CODE (base) == LABEL_REF
2236 || (GET_CODE (base) == SYMBOL_REF
2237 && CONSTANT_POOL_ADDRESS_P (base))))
2238 return 0;
2240 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2241 return 0;
2243 x_addr = canon_rtx (x_addr);
2244 mem_addr = canon_rtx (mem_addr);
2246 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2247 SIZE_FOR_MODE (x), x_addr, 0))
2248 return 0;
2250 if (aliases_everything_p (x))
2251 return 1;
2253 /* We cannot use aliases_everything_p to test MEM, since we must look
2254 at MEM_MODE, rather than GET_MODE (MEM). */
2255 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2256 return 1;
2258 /* In true_dependence we also allow BLKmode to alias anything. Why
2259 don't we do this in anti_dependence and output_dependence? */
2260 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2261 return 1;
2263 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2264 varies);
2267 /* Canonical true dependence: X is read after store in MEM takes place.
2268 Variant of true_dependence which assumes MEM has already been
2269 canonicalized (hence we no longer do that here).
2270 The mem_addr argument has been added, since true_dependence computed
2271 this value prior to canonicalizing. */
2274 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2275 rtx x, int (*varies) (rtx, int))
2277 rtx x_addr;
2279 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2280 return 1;
2282 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2283 This is used in epilogue deallocation functions. */
2284 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2285 return 1;
2286 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2287 return 1;
2288 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2289 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2290 return 1;
2292 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2293 return 0;
2295 /* Read-only memory is by definition never modified, and therefore can't
2296 conflict with anything. We don't expect to find read-only set on MEM,
2297 but stupid user tricks can produce them, so don't die. */
2298 if (MEM_READONLY_P (x))
2299 return 0;
2301 if (nonoverlapping_memrefs_p (x, mem))
2302 return 0;
2304 x_addr = get_addr (XEXP (x, 0));
2306 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2307 return 0;
2309 x_addr = canon_rtx (x_addr);
2310 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2311 SIZE_FOR_MODE (x), x_addr, 0))
2312 return 0;
2314 if (aliases_everything_p (x))
2315 return 1;
2317 /* We cannot use aliases_everything_p to test MEM, since we must look
2318 at MEM_MODE, rather than GET_MODE (MEM). */
2319 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2320 return 1;
2322 /* In true_dependence we also allow BLKmode to alias anything. Why
2323 don't we do this in anti_dependence and output_dependence? */
2324 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2325 return 1;
2327 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2328 varies);
2331 /* Returns nonzero if a write to X might alias a previous read from
2332 (or, if WRITEP is nonzero, a write to) MEM. */
2334 static int
2335 write_dependence_p (rtx mem, rtx x, int writep)
2337 rtx x_addr, mem_addr;
2338 rtx fixed_scalar;
2339 rtx base;
2341 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2342 return 1;
2344 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2345 This is used in epilogue deallocation functions. */
2346 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2347 return 1;
2348 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2349 return 1;
2350 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2351 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2352 return 1;
2354 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2355 return 0;
2357 /* A read from read-only memory can't conflict with read-write memory. */
2358 if (!writep && MEM_READONLY_P (mem))
2359 return 0;
2361 if (nonoverlapping_memrefs_p (x, mem))
2362 return 0;
2364 x_addr = get_addr (XEXP (x, 0));
2365 mem_addr = get_addr (XEXP (mem, 0));
2367 if (! writep)
2369 base = find_base_term (mem_addr);
2370 if (base && (GET_CODE (base) == LABEL_REF
2371 || (GET_CODE (base) == SYMBOL_REF
2372 && CONSTANT_POOL_ADDRESS_P (base))))
2373 return 0;
2376 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2377 GET_MODE (mem)))
2378 return 0;
2380 x_addr = canon_rtx (x_addr);
2381 mem_addr = canon_rtx (mem_addr);
2383 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2384 SIZE_FOR_MODE (x), x_addr, 0))
2385 return 0;
2387 fixed_scalar
2388 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2389 rtx_addr_varies_p);
2391 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2392 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2395 /* Anti dependence: X is written after read in MEM takes place. */
2398 anti_dependence (rtx mem, rtx x)
2400 return write_dependence_p (mem, x, /*writep=*/0);
2403 /* Output dependence: X is written after store in MEM takes place. */
2406 output_dependence (rtx mem, rtx x)
2408 return write_dependence_p (mem, x, /*writep=*/1);
2412 void
2413 init_alias_once (void)
2415 int i;
2417 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2418 /* Check whether this register can hold an incoming pointer
2419 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2420 numbers, so translate if necessary due to register windows. */
2421 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2422 && HARD_REGNO_MODE_OK (i, Pmode))
2423 static_reg_base_value[i]
2424 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2426 static_reg_base_value[STACK_POINTER_REGNUM]
2427 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2428 static_reg_base_value[ARG_POINTER_REGNUM]
2429 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2430 static_reg_base_value[FRAME_POINTER_REGNUM]
2431 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2432 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2433 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2434 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2435 #endif
2438 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2439 to be memory reference. */
2440 static bool memory_modified;
2441 static void
2442 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2444 if (MEM_P (x))
2446 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2447 memory_modified = true;
2452 /* Return true when INSN possibly modify memory contents of MEM
2453 (i.e. address can be modified). */
2454 bool
2455 memory_modified_in_insn_p (rtx mem, rtx insn)
2457 if (!INSN_P (insn))
2458 return false;
2459 memory_modified = false;
2460 note_stores (PATTERN (insn), memory_modified_1, mem);
2461 return memory_modified;
2464 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2465 array. */
2467 void
2468 init_alias_analysis (void)
2470 unsigned int maxreg = max_reg_num ();
2471 int changed, pass;
2472 int i;
2473 unsigned int ui;
2474 rtx insn;
2476 timevar_push (TV_ALIAS_ANALYSIS);
2478 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2479 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2480 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2482 /* Overallocate reg_base_value to allow some growth during loop
2483 optimization. Loop unrolling can create a large number of
2484 registers. */
2485 if (old_reg_base_value)
2487 reg_base_value = old_reg_base_value;
2488 /* If varray gets large zeroing cost may get important. */
2489 if (VARRAY_SIZE (reg_base_value) > 256
2490 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2491 VARRAY_GROW (reg_base_value, maxreg);
2492 VARRAY_CLEAR (reg_base_value);
2493 if (VARRAY_SIZE (reg_base_value) < maxreg)
2494 VARRAY_GROW (reg_base_value, maxreg);
2496 else
2498 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2501 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2502 reg_seen = xmalloc (maxreg);
2504 /* The basic idea is that each pass through this loop will use the
2505 "constant" information from the previous pass to propagate alias
2506 information through another level of assignments.
2508 This could get expensive if the assignment chains are long. Maybe
2509 we should throttle the number of iterations, possibly based on
2510 the optimization level or flag_expensive_optimizations.
2512 We could propagate more information in the first pass by making use
2513 of REG_N_SETS to determine immediately that the alias information
2514 for a pseudo is "constant".
2516 A program with an uninitialized variable can cause an infinite loop
2517 here. Instead of doing a full dataflow analysis to detect such problems
2518 we just cap the number of iterations for the loop.
2520 The state of the arrays for the set chain in question does not matter
2521 since the program has undefined behavior. */
2523 pass = 0;
2526 /* Assume nothing will change this iteration of the loop. */
2527 changed = 0;
2529 /* We want to assign the same IDs each iteration of this loop, so
2530 start counting from zero each iteration of the loop. */
2531 unique_id = 0;
2533 /* We're at the start of the function each iteration through the
2534 loop, so we're copying arguments. */
2535 copying_arguments = true;
2537 /* Wipe the potential alias information clean for this pass. */
2538 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2540 /* Wipe the reg_seen array clean. */
2541 memset (reg_seen, 0, maxreg);
2543 /* Mark all hard registers which may contain an address.
2544 The stack, frame and argument pointers may contain an address.
2545 An argument register which can hold a Pmode value may contain
2546 an address even if it is not in BASE_REGS.
2548 The address expression is VOIDmode for an argument and
2549 Pmode for other registers. */
2551 memcpy (new_reg_base_value, static_reg_base_value,
2552 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2554 /* Walk the insns adding values to the new_reg_base_value array. */
2555 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2557 if (INSN_P (insn))
2559 rtx note, set;
2561 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2562 /* The prologue/epilogue insns are not threaded onto the
2563 insn chain until after reload has completed. Thus,
2564 there is no sense wasting time checking if INSN is in
2565 the prologue/epilogue until after reload has completed. */
2566 if (reload_completed
2567 && prologue_epilogue_contains (insn))
2568 continue;
2569 #endif
2571 /* If this insn has a noalias note, process it, Otherwise,
2572 scan for sets. A simple set will have no side effects
2573 which could change the base value of any other register. */
2575 if (GET_CODE (PATTERN (insn)) == SET
2576 && REG_NOTES (insn) != 0
2577 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2578 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2579 else
2580 note_stores (PATTERN (insn), record_set, NULL);
2582 set = single_set (insn);
2584 if (set != 0
2585 && REG_P (SET_DEST (set))
2586 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2588 unsigned int regno = REGNO (SET_DEST (set));
2589 rtx src = SET_SRC (set);
2590 rtx t;
2592 if (REG_NOTES (insn) != 0
2593 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2594 && REG_N_SETS (regno) == 1)
2595 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2596 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2597 && ! rtx_varies_p (XEXP (note, 0), 1)
2598 && ! reg_overlap_mentioned_p (SET_DEST (set),
2599 XEXP (note, 0)))
2601 set_reg_known_value (regno, XEXP (note, 0));
2602 set_reg_known_equiv_p (regno,
2603 REG_NOTE_KIND (note) == REG_EQUIV);
2605 else if (REG_N_SETS (regno) == 1
2606 && GET_CODE (src) == PLUS
2607 && REG_P (XEXP (src, 0))
2608 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2609 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2611 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2612 set_reg_known_value (regno, t);
2613 set_reg_known_equiv_p (regno, 0);
2615 else if (REG_N_SETS (regno) == 1
2616 && ! rtx_varies_p (src, 1))
2618 set_reg_known_value (regno, src);
2619 set_reg_known_equiv_p (regno, 0);
2623 else if (NOTE_P (insn)
2624 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2625 copying_arguments = false;
2628 /* Now propagate values from new_reg_base_value to reg_base_value. */
2629 gcc_assert (maxreg == (unsigned int) max_reg_num());
2631 for (ui = 0; ui < maxreg; ui++)
2633 if (new_reg_base_value[ui]
2634 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2635 && ! rtx_equal_p (new_reg_base_value[ui],
2636 VARRAY_RTX (reg_base_value, ui)))
2638 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2639 changed = 1;
2643 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2645 /* Fill in the remaining entries. */
2646 for (i = 0; i < (int)reg_known_value_size; i++)
2647 if (reg_known_value[i] == 0)
2648 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2650 /* Simplify the reg_base_value array so that no register refers to
2651 another register, except to special registers indirectly through
2652 ADDRESS expressions.
2654 In theory this loop can take as long as O(registers^2), but unless
2655 there are very long dependency chains it will run in close to linear
2656 time.
2658 This loop may not be needed any longer now that the main loop does
2659 a better job at propagating alias information. */
2660 pass = 0;
2663 changed = 0;
2664 pass++;
2665 for (ui = 0; ui < maxreg; ui++)
2667 rtx base = VARRAY_RTX (reg_base_value, ui);
2668 if (base && REG_P (base))
2670 unsigned int base_regno = REGNO (base);
2671 if (base_regno == ui) /* register set from itself */
2672 VARRAY_RTX (reg_base_value, ui) = 0;
2673 else
2674 VARRAY_RTX (reg_base_value, ui)
2675 = VARRAY_RTX (reg_base_value, base_regno);
2676 changed = 1;
2680 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2682 /* Clean up. */
2683 free (new_reg_base_value);
2684 new_reg_base_value = 0;
2685 free (reg_seen);
2686 reg_seen = 0;
2687 timevar_pop (TV_ALIAS_ANALYSIS);
2690 void
2691 end_alias_analysis (void)
2693 old_reg_base_value = reg_base_value;
2694 ggc_free (reg_known_value);
2695 reg_known_value = 0;
2696 reg_known_value_size = 0;
2697 free (reg_known_equiv_p);
2698 reg_known_equiv_p = 0;
2699 if (alias_invariant)
2701 ggc_free (alias_invariant);
2702 alias_invariant = 0;
2703 alias_invariant_size = 0;
2707 /* Do control and data flow analysis; write some of the results to the
2708 dump file. */
2709 static void
2710 rest_of_handle_cfg (void)
2712 if (dump_file)
2713 dump_flow_info (dump_file);
2714 if (optimize)
2715 cleanup_cfg (CLEANUP_EXPENSIVE
2716 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2719 struct tree_opt_pass pass_cfg =
2721 "cfg", /* name */
2722 NULL, /* gate */
2723 rest_of_handle_cfg, /* execute */
2724 NULL, /* sub */
2725 NULL, /* next */
2726 0, /* static_pass_number */
2727 TV_FLOW, /* tv_id */
2728 0, /* properties_required */
2729 0, /* properties_provided */
2730 0, /* properties_destroyed */
2731 0, /* todo_flags_start */
2732 TODO_dump_func, /* todo_flags_finish */
2733 'f' /* letter */
2737 #include "gt-alias.h"