No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / arm / arm1026ejs.md
bloba2404eceaa764b74a16ad4307f9c88ad275f09f1
1 ;; ARM 1026EJ-S Pipeline Description
2 ;; Copyright (C) 2003 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 2, or (at your option)
10 ;; any later version.
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING.  If not, write to the Free
19 ;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 ;; 02110-1301, USA.  */
22 ;; These descriptions are based on the information contained in the
23 ;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
24 ;; Limited.
27 ;; This automaton provides a pipeline description for the ARM
28 ;; 1026EJ-S core.
30 ;; The model given here assumes that the condition for all conditional
31 ;; instructions is "true", i.e., that all of the instructions are
32 ;; actually executed.
34 (define_automaton "arm1026ejs")
36 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37 ;; Pipelines
38 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
40 ;; There are two pipelines:
41 ;; 
42 ;; - An Arithmetic Logic Unit (ALU) pipeline.
44 ;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
45 ;;   write stages. We only need to model the execute, memory and write
46 ;;   stages.
48 ;; - A Load-Store Unit (LSU) pipeline.
50 ;;   The LSU pipeline has decode, execute, memory, and write stages.
51 ;;   We only model the execute, memory and write stages.
53 (define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
54 (define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
56 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
57 ;; ALU Instructions
58 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
60 ;; ALU instructions require three cycles to execute, and use the ALU
61 ;; pipeline in each of the three stages.  The results are available
62 ;; after the execute stage stage has finished.
64 ;; If the destination register is the PC, the pipelines are stalled
65 ;; for several cycles.  That case is not modeled here.
67 ;; ALU operations with no shifted operand
68 (define_insn_reservation "alu_op" 1 
69  (and (eq_attr "tune" "arm1026ejs")
70       (eq_attr "type" "alu"))
71  "a_e,a_m,a_w")
73 ;; ALU operations with a shift-by-constant operand
74 (define_insn_reservation "alu_shift_op" 1 
75  (and (eq_attr "tune" "arm1026ejs")
76       (eq_attr "type" "alu_shift"))
77  "a_e,a_m,a_w")
79 ;; ALU operations with a shift-by-register operand
80 ;; These really stall in the decoder, in order to read
81 ;; the shift value in a second cycle. Pretend we take two cycles in
82 ;; the execute stage.
83 (define_insn_reservation "alu_shift_reg_op" 2 
84  (and (eq_attr "tune" "arm1026ejs")
85       (eq_attr "type" "alu_shift_reg"))
86  "a_e*2,a_m,a_w")
88 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
89 ;; Multiplication Instructions
90 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
92 ;; Multiplication instructions loop in the execute stage until the
93 ;; instruction has been passed through the multiplier array enough
94 ;; times.
96 ;; The result of the "smul" and "smulw" instructions is not available
97 ;; until after the memory stage.
98 (define_insn_reservation "mult1" 2
99  (and (eq_attr "tune" "arm1026ejs")
100       (eq_attr "insn" "smulxy,smulwy"))
101  "a_e,a_m,a_w")
103 ;; The "smlaxy" and "smlawx" instructions require two iterations through
104 ;; the execute stage; the result is available immediately following
105 ;; the execute stage.
106 (define_insn_reservation "mult2" 2
107  (and (eq_attr "tune" "arm1026ejs")
108       (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
109  "a_e*2,a_m,a_w")
111 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
112 ;; through the execute stage; the result is not available until after
113 ;; the memory stage.
114 (define_insn_reservation "mult3" 3
115  (and (eq_attr "tune" "arm1026ejs")
116       (eq_attr "insn" "smlalxy,mul,mla"))
117  "a_e*2,a_m,a_w")
119 ;; The "muls" and "mlas" instructions loop in the execute stage for
120 ;; four iterations in order to set the flags.  The value result is
121 ;; available after three iterations.
122 (define_insn_reservation "mult4" 3
123  (and (eq_attr "tune" "arm1026ejs")
124       (eq_attr "insn" "muls,mlas"))
125  "a_e*4,a_m,a_w")
127 ;; Long multiply instructions that produce two registers of
128 ;; output (such as umull) make their results available in two cycles;
129 ;; the least significant word is available before the most significant
130 ;; word.  That fact is not modeled; instead, the instructions are
131 ;; described.as if the entire result was available at the end of the
132 ;; cycle in which both words are available.
134 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
135 ;; three iterations through the execute cycle, and make their results
136 ;; available after the memory cycle.
137 (define_insn_reservation "mult5" 4
138  (and (eq_attr "tune" "arm1026ejs")
139       (eq_attr "insn" "umull,umlal,smull,smlal"))
140  "a_e*3,a_m,a_w")
142 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
143 ;; the execute stage for five iterations in order to set the flags.
144 ;; The value result is available after four iterations.
145 (define_insn_reservation "mult6" 4
146  (and (eq_attr "tune" "arm1026ejs")
147       (eq_attr "insn" "umulls,umlals,smulls,smlals"))
148  "a_e*5,a_m,a_w")
150 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
151 ;; Load/Store Instructions
152 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
154 ;; The models for load/store instructions do not accurately describe
155 ;; the difference between operations with a base register writeback
156 ;; (such as "ldm!").  These models assume that all memory references
157 ;; hit in dcache.
159 ;; LSU instructions require six cycles to execute.  They use the ALU
160 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
161 ;; three through six.
162 ;; Loads and stores which use a scaled register offset or scaled
163 ;; register pre-indexed addressing mode take three cycles EXCEPT for
164 ;; those that are base + offset with LSL of 0 or 2, or base - offset
165 ;; with LSL of zero.  The remainder take 1 cycle to execute.
166 ;; For 4byte loads there is a bypass from the load stage
168 (define_insn_reservation "load1_op" 2
169  (and (eq_attr "tune" "arm1026ejs")
170       (eq_attr "type" "load_byte,load1"))
171  "a_e+l_e,l_m,a_w+l_w")
173 (define_insn_reservation "store1_op" 0
174  (and (eq_attr "tune" "arm1026ejs")
175       (eq_attr "type" "store1"))
176  "a_e+l_e,l_m,a_w+l_w")
178 ;; A load's result can be stored by an immediately following store
179 (define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
181 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
182 ;; registers have been processed.
184 ;; The time it takes to load the data depends on whether or not the
185 ;; base address is 64-bit aligned; if it is not, an additional cycle
186 ;; is required.  This model assumes that the address is always 64-bit
187 ;; aligned.  Because the processor can load two registers per cycle,
188 ;; that assumption means that we use the same instruction reservations
189 ;; for loading 2k and 2k - 1 registers.
191 ;; The ALU pipeline is stalled until the completion of the last memory
192 ;; stage in the LSU pipeline.  That is modeled by keeping the ALU
193 ;; execute stage busy until that point.
195 ;; As with ALU operations, if one of the destination registers is the
196 ;; PC, there are additional stalls; that is not modeled.
198 (define_insn_reservation "load2_op" 2
199  (and (eq_attr "tune" "arm1026ejs")
200       (eq_attr "type" "load2"))
201  "a_e+l_e,l_m,a_w+l_w")
203 (define_insn_reservation "store2_op" 0
204  (and (eq_attr "tune" "arm1026ejs")
205       (eq_attr "type" "store2"))
206  "a_e+l_e,l_m,a_w+l_w")
208 (define_insn_reservation "load34_op" 3
209  (and (eq_attr "tune" "arm1026ejs")
210       (eq_attr "type" "load3,load4"))
211  "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
213 (define_insn_reservation "store34_op" 0
214  (and (eq_attr "tune" "arm1026ejs")
215       (eq_attr "type" "store3,store4"))
216  "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
218 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
219 ;; Branch and Call Instructions
220 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
222 ;; Branch instructions are difficult to model accurately.  The ARM
223 ;; core can predict most branches.  If the branch is predicted
224 ;; correctly, and predicted early enough, the branch can be completely
225 ;; eliminated from the instruction stream.  Some branches can
226 ;; therefore appear to require zero cycles to execute.  We assume that
227 ;; all branches are predicted correctly, and that the latency is
228 ;; therefore the minimum value.
230 (define_insn_reservation "branch_op" 0
231  (and (eq_attr "tune" "arm1026ejs")
232       (eq_attr "type" "branch"))
233  "nothing")
235 ;; The latency for a call is not predictable.  Therefore, we use 32 as
236 ;; roughly equivalent to positive infinity.
238 (define_insn_reservation "call_op" 32
239  (and (eq_attr "tune" "arm1026ejs")
240       (eq_attr "type" "call"))
241  "nothing")