No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / iq2000 / iq2000.h
blobf60b6277f8a3716f078142add9e76a7a67f37a8c
1 /* Definitions of target machine for GNU compiler.
2 Vitesse IQ2000 processors
3 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Driver configuration. */
24 #undef SWITCH_TAKES_ARG
25 #define SWITCH_TAKES_ARG(CHAR) \
26 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
28 /* The svr4.h LIB_SPEC with -leval and --*group tacked on */
29 #undef LIB_SPEC
30 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
32 #undef STARTFILE_SPEC
33 #undef ENDFILE_SPEC
36 /* Run-time target specifications. */
38 #define TARGET_CPU_CPP_BUILTINS() \
39 do \
40 { \
41 builtin_define ("__iq2000__"); \
42 builtin_assert ("cpu=iq2000"); \
43 builtin_assert ("machine=iq2000"); \
44 } \
45 while (0)
47 /* Macros used in the machine description to test the flags. */
49 #define TARGET_STATS 0
51 #define TARGET_DEBUG_MODE 0
52 #define TARGET_DEBUG_A_MODE 0
53 #define TARGET_DEBUG_B_MODE 0
54 #define TARGET_DEBUG_C_MODE 0
55 #define TARGET_DEBUG_D_MODE 0
57 #ifndef IQ2000_ISA_DEFAULT
58 #define IQ2000_ISA_DEFAULT 1
59 #endif
61 #define IQ2000_VERSION "[1.0]"
63 #ifndef MACHINE_TYPE
64 #define MACHINE_TYPE "IQ2000"
65 #endif
67 #ifndef TARGET_VERSION_INTERNAL
68 #define TARGET_VERSION_INTERNAL(STREAM) \
69 fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
70 #endif
72 #ifndef TARGET_VERSION
73 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
74 #endif
76 #define OVERRIDE_OPTIONS override_options ()
78 #define CAN_DEBUG_WITHOUT_FP
80 /* Storage Layout. */
82 #define BITS_BIG_ENDIAN 0
83 #define BYTES_BIG_ENDIAN 1
84 #define WORDS_BIG_ENDIAN 1
85 #define LIBGCC2_WORDS_BIG_ENDIAN 1
86 #define BITS_PER_WORD 32
87 #define MAX_BITS_PER_WORD 64
88 #define UNITS_PER_WORD 4
89 #define MIN_UNITS_PER_WORD 4
90 #define POINTER_SIZE 32
92 /* Define this macro if it is advisable to hold scalars in registers
93 in a wider mode than that declared by the program. In such cases,
94 the value is constrained to be within the bounds of the declared
95 type, but kept valid in the wider mode. The signedness of the
96 extension may differ from that of the type.
98 We promote any value smaller than SImode up to SImode. */
100 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
101 if (GET_MODE_CLASS (MODE) == MODE_INT \
102 && GET_MODE_SIZE (MODE) < 4) \
103 (MODE) = SImode;
105 #define PARM_BOUNDARY 32
107 #define STACK_BOUNDARY 64
109 #define FUNCTION_BOUNDARY 32
111 #define BIGGEST_ALIGNMENT 64
113 #undef DATA_ALIGNMENT
114 #define DATA_ALIGNMENT(TYPE, ALIGN) \
115 ((((ALIGN) < BITS_PER_WORD) \
116 && (TREE_CODE (TYPE) == ARRAY_TYPE \
117 || TREE_CODE (TYPE) == UNION_TYPE \
118 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
120 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
121 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
122 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
124 #define EMPTY_FIELD_BOUNDARY 32
126 #define STRUCTURE_SIZE_BOUNDARY 8
128 #define STRICT_ALIGNMENT 1
130 #define PCC_BITFIELD_TYPE_MATTERS 1
132 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
135 /* Layout of Source Language Data Types. */
137 #define INT_TYPE_SIZE 32
138 #define SHORT_TYPE_SIZE 16
139 #define LONG_TYPE_SIZE 32
140 #define LONG_LONG_TYPE_SIZE 64
141 #define CHAR_TYPE_SIZE BITS_PER_UNIT
142 #define FLOAT_TYPE_SIZE 32
143 #define DOUBLE_TYPE_SIZE 64
144 #define LONG_DOUBLE_TYPE_SIZE 64
145 #define DEFAULT_SIGNED_CHAR 1
148 /* Register Basics. */
150 /* On the IQ2000, we have 32 integer registers. */
151 #define FIRST_PSEUDO_REGISTER 33
153 #define FIXED_REGISTERS \
155 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
156 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
159 #define CALL_USED_REGISTERS \
161 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
162 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
166 /* Order of allocation of registers. */
168 #define REG_ALLOC_ORDER \
169 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
170 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
174 /* How Values Fit in Registers. */
176 #define HARD_REGNO_NREGS(REGNO, MODE) \
177 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
179 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
180 ((REGNO_REG_CLASS (REGNO) == GR_REGS) \
181 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
182 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
184 #define MODES_TIEABLE_P(MODE1, MODE2) \
185 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
186 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
187 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
188 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
190 #define AVOID_CCMODE_COPIES
193 /* Register Classes. */
195 enum reg_class
197 NO_REGS, /* No registers in set. */
198 GR_REGS, /* Integer registers. */
199 ALL_REGS, /* All registers. */
200 LIM_REG_CLASSES /* Max value + 1. */
203 #define GENERAL_REGS GR_REGS
205 #define N_REG_CLASSES (int) LIM_REG_CLASSES
207 #define REG_CLASS_NAMES \
209 "NO_REGS", \
210 "GR_REGS", \
211 "ALL_REGS" \
214 #define REG_CLASS_CONTENTS \
216 { 0x00000000, 0x00000000 }, /* No registers, */ \
217 { 0xffffffff, 0x00000000 }, /* Integer registers. */ \
218 { 0xffffffff, 0x00000001 } /* All registers. */ \
221 #define REGNO_REG_CLASS(REGNO) \
222 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
224 #define BASE_REG_CLASS (GR_REGS)
226 #define INDEX_REG_CLASS NO_REGS
228 #define REG_CLASS_FROM_LETTER(C) \
229 ((C) == 'd' ? GR_REGS : \
230 (C) == 'b' ? ALL_REGS : \
231 (C) == 'y' ? GR_REGS : \
232 NO_REGS)
234 #define REGNO_OK_FOR_INDEX_P(regno) 0
236 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
237 ((CLASS) != ALL_REGS \
238 ? (CLASS) \
239 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
240 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
241 ? (GR_REGS) \
242 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
243 || GET_MODE (X) == VOIDmode) \
244 ? (GR_REGS) \
245 : (CLASS))))
247 #define SMALL_REGISTER_CLASSES 0
249 #define CLASS_MAX_NREGS(CLASS, MODE) \
250 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
252 /* For IQ2000:
254 `I' is used for the range of constants an arithmetic insn can
255 actually contain (16 bits signed integers).
257 `J' is used for the range which is just zero (i.e., $r0).
259 `K' is used for the range of constants a logical insn can actually
260 contain (16 bit zero-extended integers).
262 `L' is used for the range of constants that be loaded with lui
263 (i.e., the bottom 16 bits are zero).
265 `M' is used for the range of constants that take two words to load
266 (i.e., not matched by `I', `K', and `L').
268 `N' is used for constants 0xffffnnnn or 0xnnnnffff
270 `O' is a 5 bit zero-extended integer. */
272 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
273 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
274 : (C) == 'J' ? ((VALUE) == 0) \
275 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
276 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
277 && (((VALUE) & ~2147483647) == 0 \
278 || ((VALUE) & ~2147483647) == ~2147483647)) \
279 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
280 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
281 && (((VALUE) & 0x0000ffff) != 0 \
282 || (((VALUE) & ~2147483647) != 0 \
283 && ((VALUE) & ~2147483647) != ~2147483647))) \
284 : (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff) \
285 || (((VALUE) & 0xffff0000) == 0xffff0000)) \
286 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40) \
287 : 0)
289 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
290 ((C) == 'G' \
291 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
293 /* `R' is for memory references which take 1 word for the instruction. */
295 #define EXTRA_CONSTRAINT(OP,CODE) \
296 (((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
297 : FALSE)
300 /* Basic Stack Layout. */
302 #define STACK_GROWS_DOWNWARD
304 #define FRAME_GROWS_DOWNWARD 0
306 #define STARTING_FRAME_OFFSET \
307 (current_function_outgoing_args_size)
309 /* Use the default value zero. */
310 /* #define STACK_POINTER_OFFSET 0 */
312 #define FIRST_PARM_OFFSET(FNDECL) 0
314 /* The return address for the current frame is in r31 if this is a leaf
315 function. Otherwise, it is on the stack. It is at a variable offset
316 from sp/fp/ap, so we define a fake hard register rap which is a
317 pointer to the return address on the stack. This always gets eliminated
318 during reload to be either the frame pointer or the stack pointer plus
319 an offset. */
321 #define RETURN_ADDR_RTX(count, frame) \
322 (((count) == 0) \
323 ? (leaf_function_p () \
324 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
325 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
326 RETURN_ADDRESS_POINTER_REGNUM))) \
327 : (rtx) 0)
329 /* Before the prologue, RA lives in r31. */
330 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
333 /* Register That Address the Stack Frame. */
335 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
336 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
337 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 27)
338 #define ARG_POINTER_REGNUM GP_REG_FIRST
339 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
340 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
343 /* Eliminating the Frame Pointer and the Arg Pointer. */
345 #define FRAME_POINTER_REQUIRED 0
347 #define ELIMINABLE_REGS \
348 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
349 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
350 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
351 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
352 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
353 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
354 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
357 /* We can always eliminate to the frame pointer. We can eliminate to the
358 stack pointer unless a frame pointer is needed. */
360 #define CAN_ELIMINATE(FROM, TO) \
361 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
362 || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
363 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
364 && ((TO) == HARD_FRAME_POINTER_REGNUM \
365 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed))))
367 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
368 (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
370 /* Passing Function Arguments on the Stack. */
372 /* #define PUSH_ROUNDING(BYTES) 0 */
374 #define ACCUMULATE_OUTGOING_ARGS 1
376 #define REG_PARM_STACK_SPACE(FNDECL) 0
378 #define OUTGOING_REG_PARM_STACK_SPACE
380 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
383 /* Function Arguments in Registers. */
385 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
386 function_arg (& CUM, MODE, TYPE, NAMED)
388 #define MAX_ARGS_IN_REGISTERS 8
390 typedef struct iq2000_args
392 int gp_reg_found; /* Whether a gp register was found yet. */
393 unsigned int arg_number; /* Argument number. */
394 unsigned int arg_words; /* # total words the arguments take. */
395 unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only). */
396 int last_arg_fp; /* Nonzero if last arg was FP (EABI only). */
397 int fp_code; /* Mode of FP arguments. */
398 unsigned int num_adjusts; /* Number of adjustments made. */
399 /* Adjustments made to args pass in regs. */
400 struct rtx_def * adjust[MAX_ARGS_IN_REGISTERS * 2];
401 } CUMULATIVE_ARGS;
403 /* Initialize a variable CUM of type CUMULATIVE_ARGS
404 for a call to a function whose data type is FNTYPE.
405 For a library call, FNTYPE is 0. */
406 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
407 init_cumulative_args (& CUM, FNTYPE, LIBNAME) \
409 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
410 function_arg_advance (& CUM, MODE, TYPE, NAMED)
412 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
413 (! BYTES_BIG_ENDIAN \
414 ? upward \
415 : (((MODE) == BLKmode \
416 ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
417 && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
418 : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
419 && (GET_MODE_CLASS (MODE) == MODE_INT))) \
420 ? downward : upward))
422 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
423 (((TYPE) != 0) \
424 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
425 ? PARM_BOUNDARY \
426 : TYPE_ALIGN(TYPE)) \
427 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
428 ? PARM_BOUNDARY \
429 : GET_MODE_ALIGNMENT(MODE)))
431 #define FUNCTION_ARG_REGNO_P(N) \
432 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
435 /* How Scalar Function Values are Returned. */
437 #define FUNCTION_VALUE(VALTYPE, FUNC) iq2000_function_value (VALTYPE, FUNC)
439 #define LIBCALL_VALUE(MODE) \
440 gen_rtx_REG (((GET_MODE_CLASS (MODE) != MODE_INT \
441 || GET_MODE_SIZE (MODE) >= 4) \
442 ? (MODE) \
443 : SImode), \
444 GP_RETURN)
446 /* On the IQ2000, R2 and R3 are the only register thus used. */
448 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN)
451 /* How Large Values are Returned. */
453 #define DEFAULT_PCC_STRUCT_RETURN 0
455 /* Function Entry and Exit. */
457 #define EXIT_IGNORE_STACK 1
460 /* Generating Code for Profiling. */
462 #define FUNCTION_PROFILER(FILE, LABELNO) \
464 fprintf (FILE, "\t.set\tnoreorder\n"); \
465 fprintf (FILE, "\t.set\tnoat\n"); \
466 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
467 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
468 fprintf (FILE, "\tjal\t_mcount\n"); \
469 fprintf (FILE, \
470 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
471 "subu", \
472 reg_names[STACK_POINTER_REGNUM], \
473 reg_names[STACK_POINTER_REGNUM], \
474 Pmode == DImode ? 16 : 8); \
475 fprintf (FILE, "\t.set\treorder\n"); \
476 fprintf (FILE, "\t.set\tat\n"); \
480 /* Implementing the Varargs Macros. */
482 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
483 iq2000_va_start (valist, nextarg)
486 /* Trampolines for Nested Functions. */
488 /* A C statement to output, on the stream FILE, assembler code for a
489 block of data that contains the constant parts of a trampoline.
490 This code should not include a label--the label is taken care of
491 automatically. */
493 #define TRAMPOLINE_TEMPLATE(STREAM) \
495 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
496 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
497 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
498 if (Pmode == DImode) \
500 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
501 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
503 else \
505 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
506 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
508 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
509 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
510 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
511 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
512 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
515 #define TRAMPOLINE_SIZE (40)
517 #define TRAMPOLINE_ALIGNMENT 32
519 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
521 rtx addr = ADDR; \
522 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
523 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
527 /* Addressing Modes. */
529 #define CONSTANT_ADDRESS_P(X) \
530 ( (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
531 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
532 || (GET_CODE (X) == CONST)))
534 #define MAX_REGS_PER_ADDRESS 1
536 #ifdef REG_OK_STRICT
537 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
539 if (iq2000_legitimate_address_p (MODE, X, 1)) \
540 goto ADDR; \
542 #else
543 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
545 if (iq2000_legitimate_address_p (MODE, X, 0)) \
546 goto ADDR; \
548 #endif
550 #define REG_OK_FOR_INDEX_P(X) 0
553 /* For the IQ2000, transform:
555 memory(X + <large int>)
556 into:
557 Y = <large int> & ~0x7fff;
558 Z = X + Y
559 memory (Z + (<large int> & 0x7fff));
562 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
564 rtx xinsn = (X); \
566 if (TARGET_DEBUG_B_MODE) \
568 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
569 GO_DEBUG_RTX (xinsn); \
572 if (iq2000_check_split (X, MODE)) \
574 X = gen_rtx_LO_SUM (Pmode, \
575 copy_to_mode_reg (Pmode, \
576 gen_rtx_HIGH (Pmode, X)), \
577 X); \
578 goto WIN; \
581 if (GET_CODE (xinsn) == PLUS) \
583 rtx xplus0 = XEXP (xinsn, 0); \
584 rtx xplus1 = XEXP (xinsn, 1); \
585 enum rtx_code code0 = GET_CODE (xplus0); \
586 enum rtx_code code1 = GET_CODE (xplus1); \
588 if (code0 != REG && code1 == REG) \
590 xplus0 = XEXP (xinsn, 1); \
591 xplus1 = XEXP (xinsn, 0); \
592 code0 = GET_CODE (xplus0); \
593 code1 = GET_CODE (xplus1); \
596 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
597 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
599 rtx int_reg = gen_reg_rtx (Pmode); \
600 rtx ptr_reg = gen_reg_rtx (Pmode); \
602 emit_move_insn (int_reg, \
603 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
605 emit_insn (gen_rtx_SET (VOIDmode, \
606 ptr_reg, \
607 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
609 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
610 goto WIN; \
614 if (TARGET_DEBUG_B_MODE) \
615 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
618 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
620 #define LEGITIMATE_CONSTANT_P(X) (1)
623 /* Describing Relative Costs of Operations. */
625 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
627 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
628 (TO_P ? 2 : 16)
630 #define BRANCH_COST 2
632 #define SLOW_BYTE_ACCESS 1
634 #define NO_FUNCTION_CSE 1
636 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
637 if (REG_NOTE_KIND (LINK) != 0) \
638 (COST) = 0; /* Anti or output dependence. */
641 /* Dividing the output into sections. */
643 #define TEXT_SECTION_ASM_OP "\t.text" /* Instructions. */
645 #define DATA_SECTION_ASM_OP "\t.data" /* Large data. */
648 /* The Overall Framework of an Assembler File. */
650 #define ASM_COMMENT_START " #"
652 #define ASM_APP_ON "#APP\n"
654 #define ASM_APP_OFF "#NO_APP\n"
657 /* Output and Generation of Labels. */
659 #undef ASM_GENERATE_INTERNAL_LABEL
660 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
661 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
663 #define GLOBAL_ASM_OP "\t.globl\t"
666 /* Output of Assembler Instructions. */
668 #define REGISTER_NAMES \
670 "%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
671 "%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
672 "%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
673 "%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
676 #define ADDITIONAL_REGISTER_NAMES \
678 { "%0", 0 + GP_REG_FIRST }, \
679 { "%1", 1 + GP_REG_FIRST }, \
680 { "%2", 2 + GP_REG_FIRST }, \
681 { "%3", 3 + GP_REG_FIRST }, \
682 { "%4", 4 + GP_REG_FIRST }, \
683 { "%5", 5 + GP_REG_FIRST }, \
684 { "%6", 6 + GP_REG_FIRST }, \
685 { "%7", 7 + GP_REG_FIRST }, \
686 { "%8", 8 + GP_REG_FIRST }, \
687 { "%9", 9 + GP_REG_FIRST }, \
688 { "%10", 10 + GP_REG_FIRST }, \
689 { "%11", 11 + GP_REG_FIRST }, \
690 { "%12", 12 + GP_REG_FIRST }, \
691 { "%13", 13 + GP_REG_FIRST }, \
692 { "%14", 14 + GP_REG_FIRST }, \
693 { "%15", 15 + GP_REG_FIRST }, \
694 { "%16", 16 + GP_REG_FIRST }, \
695 { "%17", 17 + GP_REG_FIRST }, \
696 { "%18", 18 + GP_REG_FIRST }, \
697 { "%19", 19 + GP_REG_FIRST }, \
698 { "%20", 20 + GP_REG_FIRST }, \
699 { "%21", 21 + GP_REG_FIRST }, \
700 { "%22", 22 + GP_REG_FIRST }, \
701 { "%23", 23 + GP_REG_FIRST }, \
702 { "%24", 24 + GP_REG_FIRST }, \
703 { "%25", 25 + GP_REG_FIRST }, \
704 { "%26", 26 + GP_REG_FIRST }, \
705 { "%27", 27 + GP_REG_FIRST }, \
706 { "%28", 28 + GP_REG_FIRST }, \
707 { "%29", 29 + GP_REG_FIRST }, \
708 { "%30", 27 + GP_REG_FIRST }, \
709 { "%31", 31 + GP_REG_FIRST }, \
710 { "%rap", 32 + GP_REG_FIRST }, \
713 /* Check if the current insn needs a nop in front of it
714 because of load delays, and also update the delay slot statistics. */
716 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
717 final_prescan_insn (INSN, OPVEC, NOPERANDS)
719 /* See iq2000.c for the IQ2000 specific codes. */
720 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
722 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
724 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
726 #define DBR_OUTPUT_SEQEND(STREAM) \
727 do \
729 fputs ("\n", STREAM); \
731 while (0)
733 #define LOCAL_LABEL_PREFIX "$"
735 #define USER_LABEL_PREFIX ""
738 /* Output of dispatch tables. */
740 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
741 do \
743 fprintf (STREAM, "\t%s\t%sL%d\n", \
744 Pmode == DImode ? ".dword" : ".word", \
745 LOCAL_LABEL_PREFIX, VALUE); \
747 while (0)
749 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
750 fprintf (STREAM, "\t%s\t%sL%d\n", \
751 Pmode == DImode ? ".dword" : ".word", \
752 LOCAL_LABEL_PREFIX, \
753 VALUE)
756 /* Assembler Commands for Alignment. */
758 #undef ASM_OUTPUT_SKIP
759 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
760 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
762 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
763 if ((LOG) != 0) \
764 fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
767 /* Macros Affecting all Debug Formats. */
769 #define DEBUGGER_AUTO_OFFSET(X) \
770 iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
772 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
773 iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
775 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
777 #define DWARF2_DEBUGGING_INFO 1
780 /* Miscellaneous Parameters. */
782 #define CASE_VECTOR_MODE SImode
784 #define WORD_REGISTER_OPERATIONS
786 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
788 #define MOVE_MAX 4
790 #define MAX_MOVE_MAX 8
792 #define SHIFT_COUNT_TRUNCATED 1
794 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
796 #define STORE_FLAG_VALUE 1
798 #define Pmode SImode
800 #define FUNCTION_MODE SImode
802 /* Standard GCC variables that we reference. */
804 extern char call_used_regs[];
806 /* IQ2000 external variables defined in iq2000.c. */
808 /* Comparison type. */
809 enum cmp_type
811 CMP_SI, /* Compare four byte integers. */
812 CMP_DI, /* Compare eight byte integers. */
813 CMP_SF, /* Compare single precision floats. */
814 CMP_DF, /* Compare double precision floats. */
815 CMP_MAX /* Max comparison type. */
818 /* Types of delay slot. */
819 enum delay_type
821 DELAY_NONE, /* No delay slot. */
822 DELAY_LOAD, /* Load from memory delay. */
823 DELAY_FCMP /* Delay after doing c.<xx>.{d,s}. */
826 /* Which processor to schedule for. */
828 enum processor_type
830 PROCESSOR_DEFAULT,
831 PROCESSOR_IQ2000,
832 PROCESSOR_IQ10
835 /* Recast the cpu class to be the cpu attribute. */
836 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
838 /* Functions to change what output section we are using. */
839 extern void rdata_section (void);
840 extern void sdata_section (void);
841 extern void sbss_section (void);
843 #define BITMASK_UPPER16 ((unsigned long) 0xffff << 16) /* 0xffff0000 */
844 #define BITMASK_LOWER16 ((unsigned long) 0xffff) /* 0x0000ffff */
847 #define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
849 /* Macros to decide whether certain features are available or not,
850 depending on the instruction set architecture level. */
852 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
854 /* ISA has branch likely instructions. */
855 #define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
858 #undef ASM_SPEC
861 /* The mapping from gcc register number to DWARF 2 CFA column number. */
862 #define DWARF_FRAME_REGNUM(REG) (REG)
864 /* The DWARF 2 CFA column which tracks the return address. */
865 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
867 /* Describe how we implement __builtin_eh_return. */
868 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
870 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
871 location used to store the amount to adjust the stack. This is
872 usually a register that is available from end of the function's body
873 to the end of the epilogue. Thus, this cannot be a register used as a
874 temporary by the epilogue.
876 This must be an integer register. */
877 #define EH_RETURN_STACKADJ_REGNO 3
878 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
880 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
881 location used to store the address the processor should jump to
882 catch exception. This is usually a registers that is available from
883 end of the function's body to the end of the epilogue. Thus, this
884 cannot be a register used as a temporary by the epilogue.
886 This must be an address register. */
887 #define EH_RETURN_HANDLER_REGNO 26
888 #define EH_RETURN_HANDLER_RTX \
889 gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
891 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
892 #define DWARF_CIE_DATA_ALIGNMENT 4
894 /* For IQ2000, width of a floating point register. */
895 #define UNITS_PER_FPREG 4
897 /* Force right-alignment for small varargs in 32 bit little_endian mode */
899 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
901 /* Internal macros to classify a register number as to whether it's a
902 general purpose register, a floating point register, a
903 multiply/divide register, or a status register. */
905 #define GP_REG_FIRST 0
906 #define GP_REG_LAST 31
907 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
909 #define RAP_REG_NUM 32
910 #define AT_REGNUM (GP_REG_FIRST + 1)
912 #define GP_REG_P(REGNO) \
913 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
915 /* IQ2000 registers used in prologue/epilogue code when the stack frame
916 is larger than 32K bytes. These registers must come from the
917 scratch register set, and not used for passing and returning
918 arguments and any other information used in the calling sequence. */
920 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
921 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
923 /* This macro is used later on in the file. */
924 #define GR_REG_CLASS_P(CLASS) \
925 ((CLASS) == GR_REGS)
927 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
928 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
930 /* Certain machines have the property that some registers cannot be
931 copied to some other registers without using memory. Define this
932 macro on those machines to be a C expression that is nonzero if
933 objects of mode MODE in registers of CLASS1 can only be copied to
934 registers of class CLASS2 by storing a register of CLASS1 into
935 memory and loading that memory location into a register of CLASS2.
937 Do not define this macro if its value would always be zero. */
939 /* Return the maximum number of consecutive registers
940 needed to represent mode MODE in a register of class CLASS. */
942 #define CLASS_UNITS(mode, size) \
943 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
945 /* If defined, gives a class of registers that cannot be used as the
946 operand of a SUBREG that changes the mode of the object illegally. */
948 #define CLASS_CANNOT_CHANGE_MODE 0
950 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
952 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
953 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
955 /* Make sure 4 words are always allocated on the stack. */
957 #ifndef STACK_ARGS_ADJUST
958 #define STACK_ARGS_ADJUST(SIZE) \
960 if (SIZE.constant < 4 * UNITS_PER_WORD) \
961 SIZE.constant = 4 * UNITS_PER_WORD; \
963 #endif
966 /* Symbolic macros for the registers used to return integer and floating
967 point values. */
969 #define GP_RETURN (GP_REG_FIRST + 2)
971 /* Symbolic macros for the first/last argument registers. */
973 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
974 #define GP_ARG_LAST (GP_REG_FIRST + 11)
976 #define MAX_ARGS_IN_REGISTERS 8
979 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
981 #define MUST_SAVE_REGISTER(regno) \
982 ((regs_ever_live[regno] && !call_used_regs[regno]) \
983 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
984 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
986 /* ALIGN FRAMES on double word boundaries */
987 #ifndef IQ2000_STACK_ALIGN
988 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
989 #endif
992 /* These assume that REGNO is a hard or pseudo reg number.
993 They give nonzero only if REGNO is a hard reg of the suitable class
994 or a pseudo reg currently allocated to a suitable hard reg.
995 These definitions are NOT overridden anywhere. */
997 #define BASE_REG_P(regno, mode) \
998 (GP_REG_P (regno))
1000 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
1001 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
1002 (mode))
1004 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
1005 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
1007 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
1008 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
1010 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1011 and check its validity for a certain class.
1012 We have two alternate definitions for each of them.
1013 The usual definition accepts all pseudo regs; the other rejects them all.
1014 The symbol REG_OK_STRICT causes the latter definition to be used.
1016 Most source files want to accept pseudo regs in the hope that
1017 they will get allocated to the class that the insn wants them to be in.
1018 Some source files that are used after register allocation
1019 need to be strict. */
1021 #ifndef REG_OK_STRICT
1022 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1023 iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
1024 #else
1025 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1026 iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
1027 #endif
1029 #if 1
1030 #define GO_PRINTF(x) fprintf (stderr, (x))
1031 #define GO_PRINTF2(x,y) fprintf (stderr, (x), (y))
1032 #define GO_DEBUG_RTX(x) debug_rtx (x)
1034 #else
1035 #define GO_PRINTF(x)
1036 #define GO_PRINTF2(x,y)
1037 #define GO_DEBUG_RTX(x)
1038 #endif
1040 /* If defined, modifies the length assigned to instruction INSN as a
1041 function of the context in which it is used. LENGTH is an lvalue
1042 that contains the initially computed length of the insn and should
1043 be updated with the correct length of the insn. */
1044 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1045 ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
1050 /* How to tell the debugger about changes of source files. */
1052 #ifndef SET_FILE_NUMBER
1053 #define SET_FILE_NUMBER() ++ num_source_filenames
1054 #endif
1056 /* This is how to output a note the debugger telling it the line number
1057 to which the following sequence of instructions corresponds. */
1059 #ifndef LABEL_AFTER_LOC
1060 #define LABEL_AFTER_LOC(STREAM)
1061 #endif
1064 /* Default to -G 8 */
1065 #ifndef IQ2000_DEFAULT_GVALUE
1066 #define IQ2000_DEFAULT_GVALUE 8
1067 #endif
1069 #define SDATA_SECTION_ASM_OP "\t.sdata" /* Small data. */
1072 /* List of all IQ2000 punctuation characters used by print_operand. */
1073 extern char iq2000_print_operand_punct[256];
1075 /* The target cpu for optimization and scheduling. */
1076 extern enum processor_type iq2000_tune;
1078 /* Which instruction set architecture to use. */
1079 extern int iq2000_isa;
1081 /* Cached operands, and operator to compare for use in set/branch/trap
1082 on condition codes. */
1083 extern rtx branch_cmp[2];
1085 /* What type of branch to use. */
1086 extern enum cmp_type branch_type;
1088 enum iq2000_builtins
1090 IQ2000_BUILTIN_ADO16,
1091 IQ2000_BUILTIN_CFC0,
1092 IQ2000_BUILTIN_CFC1,
1093 IQ2000_BUILTIN_CFC2,
1094 IQ2000_BUILTIN_CFC3,
1095 IQ2000_BUILTIN_CHKHDR,
1096 IQ2000_BUILTIN_CTC0,
1097 IQ2000_BUILTIN_CTC1,
1098 IQ2000_BUILTIN_CTC2,
1099 IQ2000_BUILTIN_CTC3,
1100 IQ2000_BUILTIN_LU,
1101 IQ2000_BUILTIN_LUC32L,
1102 IQ2000_BUILTIN_LUC64,
1103 IQ2000_BUILTIN_LUC64L,
1104 IQ2000_BUILTIN_LUK,
1105 IQ2000_BUILTIN_LULCK,
1106 IQ2000_BUILTIN_LUM32,
1107 IQ2000_BUILTIN_LUM32L,
1108 IQ2000_BUILTIN_LUM64,
1109 IQ2000_BUILTIN_LUM64L,
1110 IQ2000_BUILTIN_LUR,
1111 IQ2000_BUILTIN_LURL,
1112 IQ2000_BUILTIN_MFC0,
1113 IQ2000_BUILTIN_MFC1,
1114 IQ2000_BUILTIN_MFC2,
1115 IQ2000_BUILTIN_MFC3,
1116 IQ2000_BUILTIN_MRGB,
1117 IQ2000_BUILTIN_MTC0,
1118 IQ2000_BUILTIN_MTC1,
1119 IQ2000_BUILTIN_MTC2,
1120 IQ2000_BUILTIN_MTC3,
1121 IQ2000_BUILTIN_PKRL,
1122 IQ2000_BUILTIN_RAM,
1123 IQ2000_BUILTIN_RB,
1124 IQ2000_BUILTIN_RX,
1125 IQ2000_BUILTIN_SRRD,
1126 IQ2000_BUILTIN_SRRDL,
1127 IQ2000_BUILTIN_SRULC,
1128 IQ2000_BUILTIN_SRULCK,
1129 IQ2000_BUILTIN_SRWR,
1130 IQ2000_BUILTIN_SRWRU,
1131 IQ2000_BUILTIN_TRAPQF,
1132 IQ2000_BUILTIN_TRAPQFL,
1133 IQ2000_BUILTIN_TRAPQN,
1134 IQ2000_BUILTIN_TRAPQNE,
1135 IQ2000_BUILTIN_TRAPRE,
1136 IQ2000_BUILTIN_TRAPREL,
1137 IQ2000_BUILTIN_WB,
1138 IQ2000_BUILTIN_WBR,
1139 IQ2000_BUILTIN_WBU,
1140 IQ2000_BUILTIN_WX,
1141 IQ2000_BUILTIN_SYSCALL