No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / m32r / m32r.c
blobe7e1a2d30247a604a75b448b48e1229a3190deba
1 /* Subroutines used for code generation on the Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "real.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "flags.h"
36 #include "expr.h"
37 #include "function.h"
38 #include "recog.h"
39 #include "toplev.h"
40 #include "ggc.h"
41 #include "integrate.h"
42 #include "tm_p.h"
43 #include "target.h"
44 #include "target-def.h"
46 /* Save the operands last given to a compare for use when we
47 generate a scc or bcc insn. */
48 rtx m32r_compare_op0, m32r_compare_op1;
50 /* Array of valid operand punctuation characters. */
51 char m32r_punct_chars[256];
53 /* Selected code model. */
54 enum m32r_model m32r_model = M32R_MODEL_DEFAULT;
56 /* Selected SDA support. */
57 enum m32r_sdata m32r_sdata = M32R_SDATA_DEFAULT;
59 /* Machine-specific symbol_ref flags. */
60 #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
61 #define SYMBOL_REF_MODEL(X) \
62 ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3))
64 /* For string literals, etc. */
65 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
67 /* Forward declaration. */
68 static bool m32r_handle_option (size_t, const char *, int);
69 static void init_reg_tables (void);
70 static void block_move_call (rtx, rtx, rtx);
71 static int m32r_is_insn (rtx);
72 const struct attribute_spec m32r_attribute_table[];
73 static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *);
74 static void m32r_output_function_prologue (FILE *, HOST_WIDE_INT);
75 static void m32r_output_function_epilogue (FILE *, HOST_WIDE_INT);
77 static void m32r_file_start (void);
79 static int m32r_adjust_priority (rtx, int);
80 static int m32r_issue_rate (void);
82 static void m32r_encode_section_info (tree, rtx, int);
83 static bool m32r_in_small_data_p (tree);
84 static bool m32r_return_in_memory (tree, tree);
85 static void m32r_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
86 tree, int *, int);
87 static void init_idents (void);
88 static bool m32r_rtx_costs (rtx, int, int, int *);
89 static bool m32r_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
90 tree, bool);
91 static int m32r_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
92 tree, bool);
94 /* Initialize the GCC target structure. */
95 #undef TARGET_ATTRIBUTE_TABLE
96 #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
98 #undef TARGET_ASM_ALIGNED_HI_OP
99 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
100 #undef TARGET_ASM_ALIGNED_SI_OP
101 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
103 #undef TARGET_ASM_FUNCTION_PROLOGUE
104 #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
105 #undef TARGET_ASM_FUNCTION_EPILOGUE
106 #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
108 #undef TARGET_ASM_FILE_START
109 #define TARGET_ASM_FILE_START m32r_file_start
111 #undef TARGET_SCHED_ADJUST_PRIORITY
112 #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
113 #undef TARGET_SCHED_ISSUE_RATE
114 #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
116 #undef TARGET_DEFAULT_TARGET_FLAGS
117 #define TARGET_DEFAULT_TARGET_FLAGS TARGET_CPU_DEFAULT
118 #undef TARGET_HANDLE_OPTION
119 #define TARGET_HANDLE_OPTION m32r_handle_option
121 #undef TARGET_ENCODE_SECTION_INFO
122 #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
123 #undef TARGET_IN_SMALL_DATA_P
124 #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p
126 #undef TARGET_RTX_COSTS
127 #define TARGET_RTX_COSTS m32r_rtx_costs
128 #undef TARGET_ADDRESS_COST
129 #define TARGET_ADDRESS_COST hook_int_rtx_0
131 #undef TARGET_PROMOTE_PROTOTYPES
132 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
133 #undef TARGET_RETURN_IN_MEMORY
134 #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory
135 #undef TARGET_SETUP_INCOMING_VARARGS
136 #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs
137 #undef TARGET_MUST_PASS_IN_STACK
138 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
139 #undef TARGET_PASS_BY_REFERENCE
140 #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference
141 #undef TARGET_ARG_PARTIAL_BYTES
142 #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes
144 struct gcc_target targetm = TARGET_INITIALIZER;
146 /* Implement TARGET_HANDLE_OPTION. */
148 static bool
149 m32r_handle_option (size_t code, const char *arg, int value)
151 switch (code)
153 case OPT_m32r:
154 target_flags &= ~(MASK_M32R2 | MASK_M32RX);
155 return true;
157 case OPT_mmodel_:
158 if (strcmp (arg, "small") == 0)
159 m32r_model = M32R_MODEL_SMALL;
160 else if (strcmp (arg, "medium") == 0)
161 m32r_model = M32R_MODEL_MEDIUM;
162 else if (strcmp (arg, "large") == 0)
163 m32r_model = M32R_MODEL_LARGE;
164 else
165 return false;
166 return true;
168 case OPT_msdata_:
169 if (strcmp (arg, "none") == 0)
170 m32r_sdata = M32R_SDATA_NONE;
171 else if (strcmp (arg, "sdata") == 0)
172 m32r_sdata = M32R_SDATA_SDATA;
173 else if (strcmp (arg, "use") == 0)
174 m32r_sdata = M32R_SDATA_USE;
175 else
176 return false;
177 return true;
179 case OPT_mno_flush_func:
180 m32r_cache_flush_func = NULL;
181 return true;
183 case OPT_mflush_trap_:
184 return value <= 15;
186 case OPT_mno_flush_trap:
187 m32r_cache_flush_trap = -1;
188 return true;
190 default:
191 return true;
195 /* Called by OVERRIDE_OPTIONS to initialize various things. */
197 void
198 m32r_init (void)
200 init_reg_tables ();
202 /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
203 memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
204 m32r_punct_chars['#'] = 1;
205 m32r_punct_chars['@'] = 1; /* ??? no longer used */
207 /* Provide default value if not specified. */
208 if (!g_switch_set)
209 g_switch_value = SDATA_DEFAULT_SIZE;
212 /* Vectors to keep interesting information about registers where it can easily
213 be got. We use to use the actual mode value as the bit number, but there
214 is (or may be) more than 32 modes now. Instead we use two tables: one
215 indexed by hard register number, and one indexed by mode. */
217 /* The purpose of m32r_mode_class is to shrink the range of modes so that
218 they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
219 mapped into one m32r_mode_class mode. */
221 enum m32r_mode_class
223 C_MODE,
224 S_MODE, D_MODE, T_MODE, O_MODE,
225 SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
228 /* Modes for condition codes. */
229 #define C_MODES (1 << (int) C_MODE)
231 /* Modes for single-word and smaller quantities. */
232 #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
234 /* Modes for double-word and smaller quantities. */
235 #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
237 /* Modes for quad-word and smaller quantities. */
238 #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
240 /* Modes for accumulators. */
241 #define A_MODES (1 << (int) A_MODE)
243 /* Value is 1 if register/mode pair is acceptable on arc. */
245 const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
247 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
248 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
249 S_MODES, C_MODES, A_MODES, A_MODES
252 unsigned int m32r_mode_class [NUM_MACHINE_MODES];
254 enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
256 static void
257 init_reg_tables (void)
259 int i;
261 for (i = 0; i < NUM_MACHINE_MODES; i++)
263 switch (GET_MODE_CLASS (i))
265 case MODE_INT:
266 case MODE_PARTIAL_INT:
267 case MODE_COMPLEX_INT:
268 if (GET_MODE_SIZE (i) <= 4)
269 m32r_mode_class[i] = 1 << (int) S_MODE;
270 else if (GET_MODE_SIZE (i) == 8)
271 m32r_mode_class[i] = 1 << (int) D_MODE;
272 else if (GET_MODE_SIZE (i) == 16)
273 m32r_mode_class[i] = 1 << (int) T_MODE;
274 else if (GET_MODE_SIZE (i) == 32)
275 m32r_mode_class[i] = 1 << (int) O_MODE;
276 else
277 m32r_mode_class[i] = 0;
278 break;
279 case MODE_FLOAT:
280 case MODE_COMPLEX_FLOAT:
281 if (GET_MODE_SIZE (i) <= 4)
282 m32r_mode_class[i] = 1 << (int) SF_MODE;
283 else if (GET_MODE_SIZE (i) == 8)
284 m32r_mode_class[i] = 1 << (int) DF_MODE;
285 else if (GET_MODE_SIZE (i) == 16)
286 m32r_mode_class[i] = 1 << (int) TF_MODE;
287 else if (GET_MODE_SIZE (i) == 32)
288 m32r_mode_class[i] = 1 << (int) OF_MODE;
289 else
290 m32r_mode_class[i] = 0;
291 break;
292 case MODE_CC:
293 m32r_mode_class[i] = 1 << (int) C_MODE;
294 break;
295 default:
296 m32r_mode_class[i] = 0;
297 break;
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
303 if (GPR_P (i))
304 m32r_regno_reg_class[i] = GENERAL_REGS;
305 else if (i == ARG_POINTER_REGNUM)
306 m32r_regno_reg_class[i] = GENERAL_REGS;
307 else
308 m32r_regno_reg_class[i] = NO_REGS;
312 /* M32R specific attribute support.
314 interrupt - for interrupt functions
316 model - select code model used to access object
318 small: addresses use 24 bits, use bl to make calls
319 medium: addresses use 32 bits, use bl to make calls
320 large: addresses use 32 bits, use seth/add3/jl to make calls
322 Grep for MODEL in m32r.h for more info. */
324 static tree small_ident1;
325 static tree small_ident2;
326 static tree medium_ident1;
327 static tree medium_ident2;
328 static tree large_ident1;
329 static tree large_ident2;
331 static void
332 init_idents (void)
334 if (small_ident1 == 0)
336 small_ident1 = get_identifier ("small");
337 small_ident2 = get_identifier ("__small__");
338 medium_ident1 = get_identifier ("medium");
339 medium_ident2 = get_identifier ("__medium__");
340 large_ident1 = get_identifier ("large");
341 large_ident2 = get_identifier ("__large__");
345 const struct attribute_spec m32r_attribute_table[] =
347 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
348 { "interrupt", 0, 0, true, false, false, NULL },
349 { "model", 1, 1, true, false, false, m32r_handle_model_attribute },
350 { NULL, 0, 0, false, false, false, NULL }
354 /* Handle an "model" attribute; arguments as in
355 struct attribute_spec.handler. */
356 static tree
357 m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name,
358 tree args, int flags ATTRIBUTE_UNUSED,
359 bool *no_add_attrs)
361 tree arg;
363 init_idents ();
364 arg = TREE_VALUE (args);
366 if (arg != small_ident1
367 && arg != small_ident2
368 && arg != medium_ident1
369 && arg != medium_ident2
370 && arg != large_ident1
371 && arg != large_ident2)
373 warning (OPT_Wattributes, "invalid argument of %qs attribute",
374 IDENTIFIER_POINTER (name));
375 *no_add_attrs = true;
378 return NULL_TREE;
381 /* Encode section information of DECL, which is either a VAR_DECL,
382 FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
384 For the M32R we want to record:
386 - whether the object lives in .sdata/.sbss.
387 - what code model should be used to access the object
390 static void
391 m32r_encode_section_info (tree decl, rtx rtl, int first)
393 int extra_flags = 0;
394 tree model_attr;
395 enum m32r_model model;
397 default_encode_section_info (decl, rtl, first);
399 if (!DECL_P (decl))
400 return;
402 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
403 if (model_attr)
405 tree id;
407 init_idents ();
409 id = TREE_VALUE (TREE_VALUE (model_attr));
411 if (id == small_ident1 || id == small_ident2)
412 model = M32R_MODEL_SMALL;
413 else if (id == medium_ident1 || id == medium_ident2)
414 model = M32R_MODEL_MEDIUM;
415 else if (id == large_ident1 || id == large_ident2)
416 model = M32R_MODEL_LARGE;
417 else
418 gcc_unreachable (); /* shouldn't happen */
420 else
422 if (TARGET_MODEL_SMALL)
423 model = M32R_MODEL_SMALL;
424 else if (TARGET_MODEL_MEDIUM)
425 model = M32R_MODEL_MEDIUM;
426 else if (TARGET_MODEL_LARGE)
427 model = M32R_MODEL_LARGE;
428 else
429 gcc_unreachable (); /* shouldn't happen */
431 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
433 if (extra_flags)
434 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
437 /* Only mark the object as being small data area addressable if
438 it hasn't been explicitly marked with a code model.
440 The user can explicitly put an object in the small data area with the
441 section attribute. If the object is in sdata/sbss and marked with a
442 code model do both [put the object in .sdata and mark it as being
443 addressed with a specific code model - don't mark it as being addressed
444 with an SDA reloc though]. This is ok and might be useful at times. If
445 the object doesn't fit the linker will give an error. */
447 static bool
448 m32r_in_small_data_p (tree decl)
450 tree section;
452 if (TREE_CODE (decl) != VAR_DECL)
453 return false;
455 if (lookup_attribute ("model", DECL_ATTRIBUTES (decl)))
456 return false;
458 section = DECL_SECTION_NAME (decl);
459 if (section)
461 char *name = (char *) TREE_STRING_POINTER (section);
462 if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0)
463 return true;
465 else
467 if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE)
469 int size = int_size_in_bytes (TREE_TYPE (decl));
471 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
472 return true;
476 return false;
479 /* Do anything needed before RTL is emitted for each function. */
481 void
482 m32r_init_expanders (void)
484 /* ??? At one point there was code here. The function is left in
485 to make it easy to experiment. */
489 call_operand (rtx op, enum machine_mode mode)
491 if (GET_CODE (op) != MEM)
492 return 0;
493 op = XEXP (op, 0);
494 return call_address_operand (op, mode);
497 /* Return 1 if OP is a reference to an object in .sdata/.sbss. */
500 small_data_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
502 if (! TARGET_SDATA_USE)
503 return 0;
505 if (GET_CODE (op) == SYMBOL_REF)
506 return SYMBOL_REF_SMALL_P (op);
508 if (GET_CODE (op) == CONST
509 && GET_CODE (XEXP (op, 0)) == PLUS
510 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
511 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
512 && INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
513 return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0));
515 return 0;
518 /* Return 1 if OP is a symbol that can use 24 bit addressing. */
521 addr24_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
523 rtx sym;
525 if (flag_pic)
526 return 0;
528 if (GET_CODE (op) == LABEL_REF)
529 return TARGET_ADDR24;
531 if (GET_CODE (op) == SYMBOL_REF)
532 sym = op;
533 else if (GET_CODE (op) == CONST
534 && GET_CODE (XEXP (op, 0)) == PLUS
535 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
536 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
537 && UINT24_P (INTVAL (XEXP (XEXP (op, 0), 1))))
538 sym = XEXP (XEXP (op, 0), 0);
539 else
540 return 0;
542 if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL)
543 return 1;
545 if (TARGET_ADDR24
546 && (CONSTANT_POOL_ADDRESS_P (sym)
547 || LIT_NAME_P (XSTR (sym, 0))))
548 return 1;
550 return 0;
553 /* Return 1 if OP is a symbol that needs 32 bit addressing. */
556 addr32_operand (rtx op, enum machine_mode mode)
558 rtx sym;
560 if (GET_CODE (op) == LABEL_REF)
561 return TARGET_ADDR32;
563 if (GET_CODE (op) == SYMBOL_REF)
564 sym = op;
565 else if (GET_CODE (op) == CONST
566 && GET_CODE (XEXP (op, 0)) == PLUS
567 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
568 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
569 && ! flag_pic)
570 sym = XEXP (XEXP (op, 0), 0);
571 else
572 return 0;
574 return (! addr24_operand (sym, mode)
575 && ! small_data_operand (sym, mode));
578 /* Return 1 if OP is a function that can be called with the `bl' insn. */
581 call26_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
583 if (flag_pic)
584 return 1;
586 if (GET_CODE (op) == SYMBOL_REF)
587 return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE;
589 return TARGET_CALL26;
592 /* Return 1 if OP is a DImode const we want to handle inline.
593 This must match the code in the movdi pattern.
594 It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
597 easy_di_const (rtx op)
599 rtx high_rtx, low_rtx;
600 HOST_WIDE_INT high, low;
602 split_double (op, &high_rtx, &low_rtx);
603 high = INTVAL (high_rtx);
604 low = INTVAL (low_rtx);
605 /* Pick constants loadable with 2 16 bit `ldi' insns. */
606 if (high >= -128 && high <= 127
607 && low >= -128 && low <= 127)
608 return 1;
609 return 0;
612 /* Return 1 if OP is a DFmode const we want to handle inline.
613 This must match the code in the movdf pattern.
614 It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
617 easy_df_const (rtx op)
619 REAL_VALUE_TYPE r;
620 long l[2];
622 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
623 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
624 if (l[0] == 0 && l[1] == 0)
625 return 1;
626 if ((l[0] & 0xffff) == 0 && l[1] == 0)
627 return 1;
628 return 0;
631 /* Return 1 if OP is (mem (reg ...)).
632 This is used in insn length calcs. */
635 memreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
637 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
640 /* Return nonzero if TYPE must be passed by indirect reference. */
642 static bool
643 m32r_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
644 enum machine_mode mode, tree type,
645 bool named ATTRIBUTE_UNUSED)
647 int size;
649 if (type)
650 size = int_size_in_bytes (type);
651 else
652 size = GET_MODE_SIZE (mode);
654 return (size < 0 || size > 8);
657 /* Comparisons. */
659 /* X and Y are two things to compare using CODE. Emit the compare insn and
660 return the rtx for compare [arg0 of the if_then_else].
661 If need_compare is true then the comparison insn must be generated, rather
662 than being subsumed into the following branch instruction. */
665 gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare)
667 enum rtx_code compare_code;
668 enum rtx_code branch_code;
669 rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
670 int must_swap = 0;
672 switch (code)
674 case EQ: compare_code = EQ; branch_code = NE; break;
675 case NE: compare_code = EQ; branch_code = EQ; break;
676 case LT: compare_code = LT; branch_code = NE; break;
677 case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
678 case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
679 case GE: compare_code = LT; branch_code = EQ; break;
680 case LTU: compare_code = LTU; branch_code = NE; break;
681 case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
682 case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
683 case GEU: compare_code = LTU; branch_code = EQ; break;
685 default:
686 gcc_unreachable ();
689 if (need_compare)
691 switch (compare_code)
693 case EQ:
694 if (GET_CODE (y) == CONST_INT
695 && CMP_INT16_P (INTVAL (y)) /* Reg equal to small const. */
696 && y != const0_rtx)
698 rtx tmp = gen_reg_rtx (SImode);
700 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
701 x = tmp;
702 y = const0_rtx;
704 else if (CONSTANT_P (y)) /* Reg equal to const. */
706 rtx tmp = force_reg (GET_MODE (x), y);
707 y = tmp;
710 if (register_operand (y, SImode) /* Reg equal to reg. */
711 || y == const0_rtx) /* Reg equal to zero. */
713 emit_insn (gen_cmp_eqsi_insn (x, y));
715 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
717 break;
719 case LT:
720 if (register_operand (y, SImode)
721 || (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
723 rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */
725 switch (code)
727 case LT:
728 emit_insn (gen_cmp_ltsi_insn (x, y));
729 code = EQ;
730 break;
731 case LE:
732 if (y == const0_rtx)
733 tmp = const1_rtx;
734 else
735 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
736 emit_insn (gen_cmp_ltsi_insn (x, tmp));
737 code = EQ;
738 break;
739 case GT:
740 if (GET_CODE (y) == CONST_INT)
741 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
742 else
743 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
744 emit_insn (gen_cmp_ltsi_insn (x, tmp));
745 code = NE;
746 break;
747 case GE:
748 emit_insn (gen_cmp_ltsi_insn (x, y));
749 code = NE;
750 break;
751 default:
752 gcc_unreachable ();
755 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
757 break;
759 case LTU:
760 if (register_operand (y, SImode)
761 || (GET_CODE (y) == CONST_INT && CMP_INT16_P (INTVAL (y))))
763 rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */
765 switch (code)
767 case LTU:
768 emit_insn (gen_cmp_ltusi_insn (x, y));
769 code = EQ;
770 break;
771 case LEU:
772 if (y == const0_rtx)
773 tmp = const1_rtx;
774 else
775 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
776 emit_insn (gen_cmp_ltusi_insn (x, tmp));
777 code = EQ;
778 break;
779 case GTU:
780 if (GET_CODE (y) == CONST_INT)
781 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
782 else
783 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
784 emit_insn (gen_cmp_ltusi_insn (x, tmp));
785 code = NE;
786 break;
787 case GEU:
788 emit_insn (gen_cmp_ltusi_insn (x, y));
789 code = NE;
790 break;
791 default:
792 gcc_unreachable ();
795 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
797 break;
799 default:
800 gcc_unreachable ();
803 else
805 /* Reg/reg equal comparison. */
806 if (compare_code == EQ
807 && register_operand (y, SImode))
808 return gen_rtx_fmt_ee (code, CCmode, x, y);
810 /* Reg/zero signed comparison. */
811 if ((compare_code == EQ || compare_code == LT)
812 && y == const0_rtx)
813 return gen_rtx_fmt_ee (code, CCmode, x, y);
815 /* Reg/smallconst equal comparison. */
816 if (compare_code == EQ
817 && GET_CODE (y) == CONST_INT
818 && CMP_INT16_P (INTVAL (y)))
820 rtx tmp = gen_reg_rtx (SImode);
822 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
823 return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx);
826 /* Reg/const equal comparison. */
827 if (compare_code == EQ
828 && CONSTANT_P (y))
830 rtx tmp = force_reg (GET_MODE (x), y);
832 return gen_rtx_fmt_ee (code, CCmode, x, tmp);
836 if (CONSTANT_P (y))
838 if (must_swap)
839 y = force_reg (GET_MODE (x), y);
840 else
842 int ok_const = reg_or_int16_operand (y, GET_MODE (y));
844 if (! ok_const)
845 y = force_reg (GET_MODE (x), y);
849 switch (compare_code)
851 case EQ :
852 emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
853 break;
854 case LT :
855 emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
856 break;
857 case LTU :
858 emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
859 break;
861 default:
862 gcc_unreachable ();
865 return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
868 /* Split a 2 word move (DI or DF) into component parts. */
871 gen_split_move_double (rtx operands[])
873 enum machine_mode mode = GET_MODE (operands[0]);
874 rtx dest = operands[0];
875 rtx src = operands[1];
876 rtx val;
878 /* We might have (SUBREG (MEM)) here, so just get rid of the
879 subregs to make this code simpler. It is safe to call
880 alter_subreg any time after reload. */
881 if (GET_CODE (dest) == SUBREG)
882 alter_subreg (&dest);
883 if (GET_CODE (src) == SUBREG)
884 alter_subreg (&src);
886 start_sequence ();
887 if (GET_CODE (dest) == REG)
889 int dregno = REGNO (dest);
891 /* Reg = reg. */
892 if (GET_CODE (src) == REG)
894 int sregno = REGNO (src);
896 int reverse = (dregno == sregno + 1);
898 /* We normally copy the low-numbered register first. However, if
899 the first register operand 0 is the same as the second register of
900 operand 1, we must copy in the opposite order. */
901 emit_insn (gen_rtx_SET (VOIDmode,
902 operand_subword (dest, reverse, TRUE, mode),
903 operand_subword (src, reverse, TRUE, mode)));
905 emit_insn (gen_rtx_SET (VOIDmode,
906 operand_subword (dest, !reverse, TRUE, mode),
907 operand_subword (src, !reverse, TRUE, mode)));
910 /* Reg = constant. */
911 else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
913 rtx words[2];
914 split_double (src, &words[0], &words[1]);
915 emit_insn (gen_rtx_SET (VOIDmode,
916 operand_subword (dest, 0, TRUE, mode),
917 words[0]));
919 emit_insn (gen_rtx_SET (VOIDmode,
920 operand_subword (dest, 1, TRUE, mode),
921 words[1]));
924 /* Reg = mem. */
925 else if (GET_CODE (src) == MEM)
927 /* If the high-address word is used in the address, we must load it
928 last. Otherwise, load it first. */
929 int reverse
930 = (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
932 /* We used to optimize loads from single registers as
934 ld r1,r3+; ld r2,r3
936 if r3 were not used subsequently. However, the REG_NOTES aren't
937 propagated correctly by the reload phase, and it can cause bad
938 code to be generated. We could still try:
940 ld r1,r3+; ld r2,r3; addi r3,-4
942 which saves 2 bytes and doesn't force longword alignment. */
943 emit_insn (gen_rtx_SET (VOIDmode,
944 operand_subword (dest, reverse, TRUE, mode),
945 adjust_address (src, SImode,
946 reverse * UNITS_PER_WORD)));
948 emit_insn (gen_rtx_SET (VOIDmode,
949 operand_subword (dest, !reverse, TRUE, mode),
950 adjust_address (src, SImode,
951 !reverse * UNITS_PER_WORD)));
953 else
954 gcc_unreachable ();
957 /* Mem = reg. */
958 /* We used to optimize loads from single registers as
960 st r1,r3; st r2,+r3
962 if r3 were not used subsequently. However, the REG_NOTES aren't
963 propagated correctly by the reload phase, and it can cause bad
964 code to be generated. We could still try:
966 st r1,r3; st r2,+r3; addi r3,-4
968 which saves 2 bytes and doesn't force longword alignment. */
969 else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
971 emit_insn (gen_rtx_SET (VOIDmode,
972 adjust_address (dest, SImode, 0),
973 operand_subword (src, 0, TRUE, mode)));
975 emit_insn (gen_rtx_SET (VOIDmode,
976 adjust_address (dest, SImode, UNITS_PER_WORD),
977 operand_subword (src, 1, TRUE, mode)));
980 else
981 gcc_unreachable ();
983 val = get_insns ();
984 end_sequence ();
985 return val;
989 static int
990 m32r_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
991 tree type, bool named ATTRIBUTE_UNUSED)
993 int words;
994 unsigned int size =
995 (((mode == BLKmode && type)
996 ? (unsigned int) int_size_in_bytes (type)
997 : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
998 / UNITS_PER_WORD;
1000 if (*cum >= M32R_MAX_PARM_REGS)
1001 words = 0;
1002 else if (*cum + size > M32R_MAX_PARM_REGS)
1003 words = (*cum + size) - M32R_MAX_PARM_REGS;
1004 else
1005 words = 0;
1007 return words * UNITS_PER_WORD;
1010 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1012 static bool
1013 m32r_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
1015 return m32r_pass_by_reference (NULL, TYPE_MODE (type), type, false);
1018 /* Do any needed setup for a variadic function. For the M32R, we must
1019 create a register parameter block, and then copy any anonymous arguments
1020 in registers to memory.
1022 CUM has not been updated for the last named argument which has type TYPE
1023 and mode MODE, and we rely on this fact. */
1025 static void
1026 m32r_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1027 tree type, int *pretend_size, int no_rtl)
1029 int first_anon_arg;
1031 if (no_rtl)
1032 return;
1034 /* All BLKmode values are passed by reference. */
1035 gcc_assert (mode != BLKmode);
1037 first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
1038 + ROUND_ADVANCE_ARG (mode, type));
1040 if (first_anon_arg < M32R_MAX_PARM_REGS)
1042 /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
1043 int first_reg_offset = first_anon_arg;
1044 /* Size in words to "pretend" allocate. */
1045 int size = M32R_MAX_PARM_REGS - first_reg_offset;
1046 rtx regblock;
1048 regblock = gen_rtx_MEM (BLKmode,
1049 plus_constant (arg_pointer_rtx,
1050 FIRST_PARM_OFFSET (0)));
1051 set_mem_alias_set (regblock, get_varargs_alias_set ());
1052 move_block_from_reg (first_reg_offset, regblock, size);
1054 *pretend_size = (size * UNITS_PER_WORD);
1059 /* Return true if INSN is real instruction bearing insn. */
1061 static int
1062 m32r_is_insn (rtx insn)
1064 return (INSN_P (insn)
1065 && GET_CODE (PATTERN (insn)) != USE
1066 && GET_CODE (PATTERN (insn)) != CLOBBER
1067 && GET_CODE (PATTERN (insn)) != ADDR_VEC);
1070 /* Increase the priority of long instructions so that the
1071 short instructions are scheduled ahead of the long ones. */
1073 static int
1074 m32r_adjust_priority (rtx insn, int priority)
1076 if (m32r_is_insn (insn)
1077 && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
1078 priority <<= 3;
1080 return priority;
1084 /* Indicate how many instructions can be issued at the same time.
1085 This is sort of a lie. The m32r can issue only 1 long insn at
1086 once, but it can issue 2 short insns. The default therefore is
1087 set at 2, but this can be overridden by the command line option
1088 -missue-rate=1. */
1090 static int
1091 m32r_issue_rate (void)
1093 return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
1096 /* Cost functions. */
1098 static bool
1099 m32r_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int *total)
1101 switch (code)
1103 /* Small integers are as cheap as registers. 4 byte values can be
1104 fetched as immediate constants - let's give that the cost of an
1105 extra insn. */
1106 case CONST_INT:
1107 if (INT16_P (INTVAL (x)))
1109 *total = 0;
1110 return true;
1112 /* FALLTHRU */
1114 case CONST:
1115 case LABEL_REF:
1116 case SYMBOL_REF:
1117 *total = COSTS_N_INSNS (1);
1118 return true;
1120 case CONST_DOUBLE:
1122 rtx high, low;
1124 split_double (x, &high, &low);
1125 *total = COSTS_N_INSNS (!INT16_P (INTVAL (high))
1126 + !INT16_P (INTVAL (low)));
1127 return true;
1130 case MULT:
1131 *total = COSTS_N_INSNS (3);
1132 return true;
1134 case DIV:
1135 case UDIV:
1136 case MOD:
1137 case UMOD:
1138 *total = COSTS_N_INSNS (10);
1139 return true;
1141 default:
1142 return false;
1146 /* Type of function DECL.
1148 The result is cached. To reset the cache at the end of a function,
1149 call with DECL = NULL_TREE. */
1151 enum m32r_function_type
1152 m32r_compute_function_type (tree decl)
1154 /* Cached value. */
1155 static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
1156 /* Last function we were called for. */
1157 static tree last_fn = NULL_TREE;
1159 /* Resetting the cached value? */
1160 if (decl == NULL_TREE)
1162 fn_type = M32R_FUNCTION_UNKNOWN;
1163 last_fn = NULL_TREE;
1164 return fn_type;
1167 if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
1168 return fn_type;
1170 /* Compute function type. */
1171 fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
1172 ? M32R_FUNCTION_INTERRUPT
1173 : M32R_FUNCTION_NORMAL);
1175 last_fn = decl;
1176 return fn_type;
1178 \f/* Function prologue/epilogue handlers. */
1180 /* M32R stack frames look like:
1182 Before call After call
1183 +-----------------------+ +-----------------------+
1184 | | | |
1185 high | local variables, | | local variables, |
1186 mem | reg save area, etc. | | reg save area, etc. |
1187 | | | |
1188 +-----------------------+ +-----------------------+
1189 | | | |
1190 | arguments on stack. | | arguments on stack. |
1191 | | | |
1192 SP+0->+-----------------------+ +-----------------------+
1193 | reg parm save area, |
1194 | only created for |
1195 | variable argument |
1196 | functions |
1197 +-----------------------+
1198 | previous frame ptr |
1199 +-----------------------+
1200 | |
1201 | register save area |
1202 | |
1203 +-----------------------+
1204 | return address |
1205 +-----------------------+
1206 | |
1207 | local variables |
1208 | |
1209 +-----------------------+
1210 | |
1211 | alloca allocations |
1212 | |
1213 +-----------------------+
1214 | |
1215 low | arguments on stack |
1216 memory | |
1217 SP+0->+-----------------------+
1219 Notes:
1220 1) The "reg parm save area" does not exist for non variable argument fns.
1221 2) The "reg parm save area" can be eliminated completely if we saved regs
1222 containing anonymous args separately but that complicates things too
1223 much (so it's not done).
1224 3) The return address is saved after the register save area so as to have as
1225 many insns as possible between the restoration of `lr' and the `jmp lr'. */
1227 /* Structure to be filled in by m32r_compute_frame_size with register
1228 save masks, and offsets for the current function. */
1229 struct m32r_frame_info
1231 unsigned int total_size; /* # bytes that the entire frame takes up. */
1232 unsigned int extra_size; /* # bytes of extra stuff. */
1233 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
1234 unsigned int args_size; /* # bytes that outgoing arguments take up. */
1235 unsigned int reg_size; /* # bytes needed to store regs. */
1236 unsigned int var_size; /* # bytes that variables take up. */
1237 unsigned int gmask; /* Mask of saved gp registers. */
1238 unsigned int save_fp; /* Nonzero if fp must be saved. */
1239 unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */
1240 int initialized; /* Nonzero if frame size already calculated. */
1243 /* Current frame information calculated by m32r_compute_frame_size. */
1244 static struct m32r_frame_info current_frame_info;
1246 /* Zero structure to initialize current_frame_info. */
1247 static struct m32r_frame_info zero_frame_info;
1249 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1250 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1252 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1253 The return address and frame pointer are treated separately.
1254 Don't consider them here. */
1255 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1256 ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
1257 && (regs_ever_live[regno] && (!call_really_used_regs[regno] || interrupt_p)))
1259 #define MUST_SAVE_FRAME_POINTER (regs_ever_live[FRAME_POINTER_REGNUM])
1260 #define MUST_SAVE_RETURN_ADDR (regs_ever_live[RETURN_ADDR_REGNUM] || current_function_profile)
1262 #define SHORT_INSN_SIZE 2 /* Size of small instructions. */
1263 #define LONG_INSN_SIZE 4 /* Size of long instructions. */
1265 /* Return the bytes needed to compute the frame pointer from the current
1266 stack pointer.
1268 SIZE is the size needed for local variables. */
1270 unsigned int
1271 m32r_compute_frame_size (int size) /* # of var. bytes allocated. */
1273 int regno;
1274 unsigned int total_size, var_size, args_size, pretend_size, extra_size;
1275 unsigned int reg_size, frame_size;
1276 unsigned int gmask;
1277 enum m32r_function_type fn_type;
1278 int interrupt_p;
1279 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
1280 | current_function_profile);
1282 var_size = M32R_STACK_ALIGN (size);
1283 args_size = M32R_STACK_ALIGN (current_function_outgoing_args_size);
1284 pretend_size = current_function_pretend_args_size;
1285 extra_size = FIRST_PARM_OFFSET (0);
1286 total_size = extra_size + pretend_size + args_size + var_size;
1287 reg_size = 0;
1288 gmask = 0;
1290 /* See if this is an interrupt handler. Call used registers must be saved
1291 for them too. */
1292 fn_type = m32r_compute_function_type (current_function_decl);
1293 interrupt_p = M32R_INTERRUPT_P (fn_type);
1295 /* Calculate space needed for registers. */
1296 for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
1298 if (MUST_SAVE_REGISTER (regno, interrupt_p)
1299 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
1301 reg_size += UNITS_PER_WORD;
1302 gmask |= 1 << regno;
1306 current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
1307 current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used;
1309 reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
1310 * UNITS_PER_WORD);
1311 total_size += reg_size;
1313 /* ??? Not sure this is necessary, and I don't think the epilogue
1314 handler will do the right thing if this changes total_size. */
1315 total_size = M32R_STACK_ALIGN (total_size);
1317 frame_size = total_size - (pretend_size + reg_size);
1319 /* Save computed information. */
1320 current_frame_info.total_size = total_size;
1321 current_frame_info.extra_size = extra_size;
1322 current_frame_info.pretend_size = pretend_size;
1323 current_frame_info.var_size = var_size;
1324 current_frame_info.args_size = args_size;
1325 current_frame_info.reg_size = reg_size;
1326 current_frame_info.gmask = gmask;
1327 current_frame_info.initialized = reload_completed;
1329 /* Ok, we're done. */
1330 return total_size;
1333 /* The table we use to reference PIC data. */
1334 static rtx global_offset_table;
1336 static void
1337 m32r_reload_lr (rtx sp, int size)
1339 rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
1341 if (size == 0)
1342 emit_insn (gen_movsi (lr, gen_rtx_MEM (Pmode, sp)));
1343 else if (size < 32768)
1344 emit_insn (gen_movsi (lr, gen_rtx_MEM (Pmode,
1345 gen_rtx_PLUS (Pmode, sp,
1346 GEN_INT (size)))));
1347 else
1349 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1351 emit_insn (gen_movsi (tmp, GEN_INT (size)));
1352 emit_insn (gen_addsi3 (tmp, tmp, sp));
1353 emit_insn (gen_movsi (lr, gen_rtx_MEM (Pmode, tmp)));
1356 emit_insn (gen_rtx_USE (VOIDmode, lr));
1359 void
1360 m32r_load_pic_register (void)
1362 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
1363 emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
1364 GEN_INT (TARGET_MODEL_SMALL)));
1366 /* Need to emit this whether or not we obey regdecls,
1367 since setjmp/longjmp can cause life info to screw up. */
1368 emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
1371 /* Expand the m32r prologue as a series of insns. */
1373 void
1374 m32r_expand_prologue (void)
1376 int regno;
1377 int frame_size;
1378 unsigned int gmask;
1379 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
1380 | current_function_profile);
1382 if (! current_frame_info.initialized)
1383 m32r_compute_frame_size (get_frame_size ());
1385 gmask = current_frame_info.gmask;
1387 /* These cases shouldn't happen. Catch them now. */
1388 gcc_assert (current_frame_info.total_size || !gmask);
1390 /* Allocate space for register arguments if this is a variadic function. */
1391 if (current_frame_info.pretend_size != 0)
1393 /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
1394 the wrong result on a 64-bit host. */
1395 HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
1396 emit_insn (gen_addsi3 (stack_pointer_rtx,
1397 stack_pointer_rtx,
1398 GEN_INT (-pretend_size)));
1401 /* Save any registers we need to and set up fp. */
1402 if (current_frame_info.save_fp)
1403 emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
1405 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1407 /* Save any needed call-saved regs (and call-used if this is an
1408 interrupt handler). */
1409 for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
1411 if ((gmask & (1 << regno)) != 0)
1412 emit_insn (gen_movsi_push (stack_pointer_rtx,
1413 gen_rtx_REG (Pmode, regno)));
1416 if (current_frame_info.save_lr)
1417 emit_insn (gen_movsi_push (stack_pointer_rtx,
1418 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1420 /* Allocate the stack frame. */
1421 frame_size = (current_frame_info.total_size
1422 - (current_frame_info.pretend_size
1423 + current_frame_info.reg_size));
1425 if (frame_size == 0)
1426 ; /* Nothing to do. */
1427 else if (frame_size <= 32768)
1428 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1429 GEN_INT (-frame_size)));
1430 else
1432 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1434 emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
1435 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
1438 if (frame_pointer_needed)
1439 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
1441 if (current_function_profile)
1442 /* Push lr for mcount (form_pc, x). */
1443 emit_insn (gen_movsi_push (stack_pointer_rtx,
1444 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1446 if (pic_reg_used)
1448 m32r_load_pic_register ();
1449 m32r_reload_lr (stack_pointer_rtx,
1450 (current_function_profile ? 0 : frame_size));
1453 if (current_function_profile && !pic_reg_used)
1454 emit_insn (gen_blockage ());
1458 /* Set up the stack and frame pointer (if desired) for the function.
1459 Note, if this is changed, you need to mirror the changes in
1460 m32r_compute_frame_size which calculates the prolog size. */
1462 static void
1463 m32r_output_function_prologue (FILE * file, HOST_WIDE_INT size)
1465 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1467 /* If this is an interrupt handler, mark it as such. */
1468 if (M32R_INTERRUPT_P (fn_type))
1469 fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START);
1471 if (! current_frame_info.initialized)
1472 m32r_compute_frame_size (size);
1474 /* This is only for the human reader. */
1475 fprintf (file,
1476 "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
1477 ASM_COMMENT_START,
1478 current_frame_info.var_size,
1479 current_frame_info.reg_size / 4,
1480 current_frame_info.args_size,
1481 current_frame_info.extra_size);
1484 /* Do any necessary cleanup after a function to restore stack, frame,
1485 and regs. */
1487 static void
1488 m32r_output_function_epilogue (FILE * file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1490 int regno;
1491 int noepilogue = FALSE;
1492 int total_size;
1493 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1495 /* This is only for the human reader. */
1496 fprintf (file, "\t%s EPILOGUE\n", ASM_COMMENT_START);
1498 gcc_assert (current_frame_info.initialized);
1499 total_size = current_frame_info.total_size;
1501 if (total_size == 0)
1503 rtx insn = get_last_insn ();
1505 /* If the last insn was a BARRIER, we don't have to write any code
1506 because a jump (aka return) was put there. */
1507 if (GET_CODE (insn) == NOTE)
1508 insn = prev_nonnote_insn (insn);
1509 if (insn && GET_CODE (insn) == BARRIER)
1510 noepilogue = TRUE;
1513 if (!noepilogue)
1515 unsigned int var_size = current_frame_info.var_size;
1516 unsigned int args_size = current_frame_info.args_size;
1517 unsigned int gmask = current_frame_info.gmask;
1518 int can_trust_sp_p = !current_function_calls_alloca;
1519 const char * sp_str = reg_names[STACK_POINTER_REGNUM];
1520 const char * fp_str = reg_names[FRAME_POINTER_REGNUM];
1522 /* The first thing to do is point the sp at the bottom of the register
1523 save area. */
1524 if (can_trust_sp_p)
1526 unsigned int reg_offset = var_size + args_size;
1527 if (reg_offset == 0)
1528 ; /* Nothing to do. */
1529 else if (reg_offset < 128)
1530 fprintf (file, "\taddi %s,%s%d\n",
1531 sp_str, IMMEDIATE_PREFIX, reg_offset);
1532 else if (reg_offset < 32768)
1533 fprintf (file, "\tadd3 %s,%s,%s%d\n",
1534 sp_str, sp_str, IMMEDIATE_PREFIX, reg_offset);
1535 else if (reg_offset < (1 << 24))
1536 fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
1537 reg_names[PROLOGUE_TMP_REGNUM],
1538 IMMEDIATE_PREFIX, reg_offset,
1539 sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
1540 else
1541 fprintf (file, "\tseth %s,%s%d\n\tor3 %s,%s,%s%d\n\tadd %s,%s\n",
1542 reg_names[PROLOGUE_TMP_REGNUM],
1543 IMMEDIATE_PREFIX, reg_offset >> 16,
1544 reg_names[PROLOGUE_TMP_REGNUM],
1545 reg_names[PROLOGUE_TMP_REGNUM],
1546 IMMEDIATE_PREFIX, reg_offset & 0xffff,
1547 sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
1549 else if (frame_pointer_needed)
1551 unsigned int reg_offset = var_size + args_size;
1553 if (reg_offset == 0)
1554 fprintf (file, "\tmv %s,%s\n", sp_str, fp_str);
1555 else if (reg_offset < 32768)
1556 fprintf (file, "\tadd3 %s,%s,%s%d\n",
1557 sp_str, fp_str, IMMEDIATE_PREFIX, reg_offset);
1558 else if (reg_offset < (1 << 24))
1559 fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
1560 reg_names[PROLOGUE_TMP_REGNUM],
1561 IMMEDIATE_PREFIX, reg_offset,
1562 sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
1563 else
1564 fprintf (file, "\tseth %s,%s%d\n\tor3 %s,%s,%s%d\n\tadd %s,%s\n",
1565 reg_names[PROLOGUE_TMP_REGNUM],
1566 IMMEDIATE_PREFIX, reg_offset >> 16,
1567 reg_names[PROLOGUE_TMP_REGNUM],
1568 reg_names[PROLOGUE_TMP_REGNUM],
1569 IMMEDIATE_PREFIX, reg_offset & 0xffff,
1570 sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
1572 else
1573 gcc_unreachable ();
1575 if (current_frame_info.save_lr)
1576 fprintf (file, "\tpop %s\n", reg_names[RETURN_ADDR_REGNUM]);
1578 /* Restore any saved registers, in reverse order of course. */
1579 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1580 for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
1582 if ((gmask & (1L << regno)) != 0)
1583 fprintf (file, "\tpop %s\n", reg_names[regno]);
1586 if (current_frame_info.save_fp)
1587 fprintf (file, "\tpop %s\n", fp_str);
1589 /* Remove varargs area if present. */
1590 if (current_frame_info.pretend_size != 0)
1591 fprintf (file, "\taddi %s,%s%d\n",
1592 sp_str, IMMEDIATE_PREFIX, current_frame_info.pretend_size);
1594 /* Emit the return instruction. */
1595 if (M32R_INTERRUPT_P (fn_type))
1596 fprintf (file, "\trte\n");
1597 else
1598 fprintf (file, "\tjmp %s\n", reg_names[RETURN_ADDR_REGNUM]);
1601 /* Reset state info for each function. */
1602 current_frame_info = zero_frame_info;
1603 m32r_compute_function_type (NULL_TREE);
1606 /* Return nonzero if this function is known to have a null or 1 instruction
1607 epilogue. */
1610 direct_return (void)
1612 if (!reload_completed)
1613 return FALSE;
1615 if (! current_frame_info.initialized)
1616 m32r_compute_frame_size (get_frame_size ());
1618 return current_frame_info.total_size == 0;
1622 /* PIC. */
1625 m32r_legitimate_pic_operand_p (rtx x)
1627 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1628 return 0;
1630 if (GET_CODE (x) == CONST
1631 && GET_CODE (XEXP (x, 0)) == PLUS
1632 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1633 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
1634 && (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
1635 return 0;
1637 return 1;
1641 m32r_legitimize_pic_address (rtx orig, rtx reg)
1643 #ifdef DEBUG_PIC
1644 printf("m32r_legitimize_pic_address()\n");
1645 #endif
1647 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1649 rtx pic_ref, address;
1650 rtx insn;
1651 int subregs = 0;
1653 if (reg == 0)
1655 gcc_assert (!reload_in_progress && !reload_completed);
1656 reg = gen_reg_rtx (Pmode);
1658 subregs = 1;
1661 if (subregs)
1662 address = gen_reg_rtx (Pmode);
1663 else
1664 address = reg;
1666 current_function_uses_pic_offset_table = 1;
1668 if (GET_CODE (orig) == LABEL_REF
1669 || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
1671 emit_insn (gen_gotoff_load_addr (reg, orig));
1672 emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
1673 return reg;
1676 emit_insn (gen_pic_load_addr (address, orig));
1678 emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx));
1679 pic_ref = gen_const_mem (Pmode, address);
1680 insn = emit_move_insn (reg, pic_ref);
1681 #if 0
1682 /* Put a REG_EQUAL note on this insn, so that it can be optimized
1683 by loop. */
1684 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
1685 REG_NOTES (insn));
1686 #endif
1687 return reg;
1689 else if (GET_CODE (orig) == CONST)
1691 rtx base, offset;
1693 if (GET_CODE (XEXP (orig, 0)) == PLUS
1694 && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx)
1695 return orig;
1697 if (reg == 0)
1699 gcc_assert (!reload_in_progress && !reload_completed);
1700 reg = gen_reg_rtx (Pmode);
1703 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1705 base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
1706 if (base == reg)
1707 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX);
1708 else
1709 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg);
1711 else
1712 return orig;
1714 if (GET_CODE (offset) == CONST_INT)
1716 if (INT16_P (INTVAL (offset)))
1717 return plus_constant (base, INTVAL (offset));
1718 else
1720 gcc_assert (! reload_in_progress && ! reload_completed);
1721 offset = force_reg (Pmode, offset);
1725 return gen_rtx_PLUS (Pmode, base, offset);
1728 return orig;
1731 /* Nested function support. */
1733 /* Emit RTL insns to initialize the variable parts of a trampoline.
1734 FNADDR is an RTX for the address of the function's pure code.
1735 CXT is an RTX for the static chain value for the function. */
1737 void
1738 m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED,
1739 rtx fnaddr ATTRIBUTE_UNUSED,
1740 rtx cxt ATTRIBUTE_UNUSED)
1744 static void
1745 m32r_file_start (void)
1747 default_file_start ();
1749 if (flag_verbose_asm)
1750 fprintf (asm_out_file,
1751 "%s M32R/D special options: -G " HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1752 ASM_COMMENT_START, g_switch_value);
1754 if (TARGET_LITTLE_ENDIAN)
1755 fprintf (asm_out_file, "\t.little\n");
1758 /* Print operand X (an rtx) in assembler syntax to file FILE.
1759 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1760 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1762 void
1763 m32r_print_operand (FILE * file, rtx x, int code)
1765 rtx addr;
1767 switch (code)
1769 /* The 's' and 'p' codes are used by output_block_move() to
1770 indicate post-increment 's'tores and 'p're-increment loads. */
1771 case 's':
1772 if (GET_CODE (x) == REG)
1773 fprintf (file, "@+%s", reg_names [REGNO (x)]);
1774 else
1775 output_operand_lossage ("invalid operand to %%s code");
1776 return;
1778 case 'p':
1779 if (GET_CODE (x) == REG)
1780 fprintf (file, "@%s+", reg_names [REGNO (x)]);
1781 else
1782 output_operand_lossage ("invalid operand to %%p code");
1783 return;
1785 case 'R' :
1786 /* Write second word of DImode or DFmode reference,
1787 register or memory. */
1788 if (GET_CODE (x) == REG)
1789 fputs (reg_names[REGNO (x)+1], file);
1790 else if (GET_CODE (x) == MEM)
1792 fprintf (file, "@(");
1793 /* Handle possible auto-increment. Since it is pre-increment and
1794 we have already done it, we can just use an offset of four. */
1795 /* ??? This is taken from rs6000.c I think. I don't think it is
1796 currently necessary, but keep it around. */
1797 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1798 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1799 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
1800 else
1801 output_address (plus_constant (XEXP (x, 0), 4));
1802 fputc (')', file);
1804 else
1805 output_operand_lossage ("invalid operand to %%R code");
1806 return;
1808 case 'H' : /* High word. */
1809 case 'L' : /* Low word. */
1810 if (GET_CODE (x) == REG)
1812 /* L = least significant word, H = most significant word. */
1813 if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
1814 fputs (reg_names[REGNO (x)], file);
1815 else
1816 fputs (reg_names[REGNO (x)+1], file);
1818 else if (GET_CODE (x) == CONST_INT
1819 || GET_CODE (x) == CONST_DOUBLE)
1821 rtx first, second;
1823 split_double (x, &first, &second);
1824 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1825 code == 'L' ? INTVAL (first) : INTVAL (second));
1827 else
1828 output_operand_lossage ("invalid operand to %%H/%%L code");
1829 return;
1831 case 'A' :
1833 char str[30];
1835 if (GET_CODE (x) != CONST_DOUBLE
1836 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
1837 fatal_insn ("bad insn for 'A'", x);
1839 real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
1840 fprintf (file, "%s", str);
1841 return;
1844 case 'B' : /* Bottom half. */
1845 case 'T' : /* Top half. */
1846 /* Output the argument to a `seth' insn (sets the Top half-word).
1847 For constants output arguments to a seth/or3 pair to set Top and
1848 Bottom halves. For symbols output arguments to a seth/add3 pair to
1849 set Top and Bottom halves. The difference exists because for
1850 constants seth/or3 is more readable but for symbols we need to use
1851 the same scheme as `ld' and `st' insns (16 bit addend is signed). */
1852 switch (GET_CODE (x))
1854 case CONST_INT :
1855 case CONST_DOUBLE :
1857 rtx first, second;
1859 split_double (x, &first, &second);
1860 x = WORDS_BIG_ENDIAN ? second : first;
1861 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1862 (code == 'B'
1863 ? INTVAL (x) & 0xffff
1864 : (INTVAL (x) >> 16) & 0xffff));
1866 return;
1867 case CONST :
1868 case SYMBOL_REF :
1869 if (code == 'B'
1870 && small_data_operand (x, VOIDmode))
1872 fputs ("sda(", file);
1873 output_addr_const (file, x);
1874 fputc (')', file);
1875 return;
1877 /* fall through */
1878 case LABEL_REF :
1879 fputs (code == 'T' ? "shigh(" : "low(", file);
1880 output_addr_const (file, x);
1881 fputc (')', file);
1882 return;
1883 default :
1884 output_operand_lossage ("invalid operand to %%T/%%B code");
1885 return;
1887 break;
1889 case 'U' :
1890 /* ??? wip */
1891 /* Output a load/store with update indicator if appropriate. */
1892 if (GET_CODE (x) == MEM)
1894 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1895 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1896 fputs (".a", file);
1898 else
1899 output_operand_lossage ("invalid operand to %%U code");
1900 return;
1902 case 'N' :
1903 /* Print a constant value negated. */
1904 if (GET_CODE (x) == CONST_INT)
1905 output_addr_const (file, GEN_INT (- INTVAL (x)));
1906 else
1907 output_operand_lossage ("invalid operand to %%N code");
1908 return;
1910 case 'X' :
1911 /* Print a const_int in hex. Used in comments. */
1912 if (GET_CODE (x) == CONST_INT)
1913 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
1914 return;
1916 case '#' :
1917 fputs (IMMEDIATE_PREFIX, file);
1918 return;
1920 case 0 :
1921 /* Do nothing special. */
1922 break;
1924 default :
1925 /* Unknown flag. */
1926 output_operand_lossage ("invalid operand output code");
1929 switch (GET_CODE (x))
1931 case REG :
1932 fputs (reg_names[REGNO (x)], file);
1933 break;
1935 case MEM :
1936 addr = XEXP (x, 0);
1937 if (GET_CODE (addr) == PRE_INC)
1939 if (GET_CODE (XEXP (addr, 0)) != REG)
1940 fatal_insn ("pre-increment address is not a register", x);
1942 fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
1944 else if (GET_CODE (addr) == PRE_DEC)
1946 if (GET_CODE (XEXP (addr, 0)) != REG)
1947 fatal_insn ("pre-decrement address is not a register", x);
1949 fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
1951 else if (GET_CODE (addr) == POST_INC)
1953 if (GET_CODE (XEXP (addr, 0)) != REG)
1954 fatal_insn ("post-increment address is not a register", x);
1956 fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
1958 else
1960 fputs ("@(", file);
1961 output_address (XEXP (x, 0));
1962 fputc (')', file);
1964 break;
1966 case CONST_DOUBLE :
1967 /* We handle SFmode constants here as output_addr_const doesn't. */
1968 if (GET_MODE (x) == SFmode)
1970 REAL_VALUE_TYPE d;
1971 long l;
1973 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
1974 REAL_VALUE_TO_TARGET_SINGLE (d, l);
1975 fprintf (file, "0x%08lx", l);
1976 break;
1979 /* Fall through. Let output_addr_const deal with it. */
1981 default :
1982 output_addr_const (file, x);
1983 break;
1987 /* Print a memory address as an operand to reference that memory location. */
1989 void
1990 m32r_print_operand_address (FILE * file, rtx addr)
1992 rtx base;
1993 rtx index = 0;
1994 int offset = 0;
1996 switch (GET_CODE (addr))
1998 case REG :
1999 fputs (reg_names[REGNO (addr)], file);
2000 break;
2002 case PLUS :
2003 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
2004 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
2005 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2006 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
2007 else
2008 base = XEXP (addr, 0), index = XEXP (addr, 1);
2009 if (GET_CODE (base) == REG)
2011 /* Print the offset first (if present) to conform to the manual. */
2012 if (index == 0)
2014 if (offset != 0)
2015 fprintf (file, "%d,", offset);
2016 fputs (reg_names[REGNO (base)], file);
2018 /* The chip doesn't support this, but left in for generality. */
2019 else if (GET_CODE (index) == REG)
2020 fprintf (file, "%s,%s",
2021 reg_names[REGNO (base)], reg_names[REGNO (index)]);
2022 /* Not sure this can happen, but leave in for now. */
2023 else if (GET_CODE (index) == SYMBOL_REF)
2025 output_addr_const (file, index);
2026 fputc (',', file);
2027 fputs (reg_names[REGNO (base)], file);
2029 else
2030 fatal_insn ("bad address", addr);
2032 else if (GET_CODE (base) == LO_SUM)
2034 gcc_assert (!index && GET_CODE (XEXP (base, 0)) == REG);
2035 if (small_data_operand (XEXP (base, 1), VOIDmode))
2036 fputs ("sda(", file);
2037 else
2038 fputs ("low(", file);
2039 output_addr_const (file, plus_constant (XEXP (base, 1), offset));
2040 fputs ("),", file);
2041 fputs (reg_names[REGNO (XEXP (base, 0))], file);
2043 else
2044 fatal_insn ("bad address", addr);
2045 break;
2047 case LO_SUM :
2048 if (GET_CODE (XEXP (addr, 0)) != REG)
2049 fatal_insn ("lo_sum not of register", addr);
2050 if (small_data_operand (XEXP (addr, 1), VOIDmode))
2051 fputs ("sda(", file);
2052 else
2053 fputs ("low(", file);
2054 output_addr_const (file, XEXP (addr, 1));
2055 fputs ("),", file);
2056 fputs (reg_names[REGNO (XEXP (addr, 0))], file);
2057 break;
2059 case PRE_INC : /* Assume SImode. */
2060 fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
2061 break;
2063 case PRE_DEC : /* Assume SImode. */
2064 fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
2065 break;
2067 case POST_INC : /* Assume SImode. */
2068 fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
2069 break;
2071 default :
2072 output_addr_const (file, addr);
2073 break;
2077 /* Return true if the operands are the constants 0 and 1. */
2080 zero_and_one (rtx operand1, rtx operand2)
2082 return
2083 GET_CODE (operand1) == CONST_INT
2084 && GET_CODE (operand2) == CONST_INT
2085 && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
2086 ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
2089 /* Generate the correct assembler code to handle the conditional loading of a
2090 value into a register. It is known that the operands satisfy the
2091 conditional_move_operand() function above. The destination is operand[0].
2092 The condition is operand [1]. The 'true' value is operand [2] and the
2093 'false' value is operand [3]. */
2095 char *
2096 emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED)
2098 static char buffer [100];
2099 const char * dest = reg_names [REGNO (operands [0])];
2101 buffer [0] = 0;
2103 /* Destination must be a register. */
2104 gcc_assert (GET_CODE (operands [0]) == REG);
2105 gcc_assert (conditional_move_operand (operands [2], SImode));
2106 gcc_assert (conditional_move_operand (operands [3], SImode));
2108 /* Check to see if the test is reversed. */
2109 if (GET_CODE (operands [1]) == NE)
2111 rtx tmp = operands [2];
2112 operands [2] = operands [3];
2113 operands [3] = tmp;
2116 sprintf (buffer, "mvfc %s, cbr", dest);
2118 /* If the true value was '0' then we need to invert the results of the move. */
2119 if (INTVAL (operands [2]) == 0)
2120 sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
2121 dest, dest);
2123 return buffer;
2126 /* Returns true if the registers contained in the two
2127 rtl expressions are different. */
2130 m32r_not_same_reg (rtx a, rtx b)
2132 int reg_a = -1;
2133 int reg_b = -2;
2135 while (GET_CODE (a) == SUBREG)
2136 a = SUBREG_REG (a);
2138 if (GET_CODE (a) == REG)
2139 reg_a = REGNO (a);
2141 while (GET_CODE (b) == SUBREG)
2142 b = SUBREG_REG (b);
2144 if (GET_CODE (b) == REG)
2145 reg_b = REGNO (b);
2147 return reg_a != reg_b;
2152 m32r_function_symbol (const char *name)
2154 int extra_flags = 0;
2155 enum m32r_model model;
2156 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
2158 if (TARGET_MODEL_SMALL)
2159 model = M32R_MODEL_SMALL;
2160 else if (TARGET_MODEL_MEDIUM)
2161 model = M32R_MODEL_MEDIUM;
2162 else if (TARGET_MODEL_LARGE)
2163 model = M32R_MODEL_LARGE;
2164 else
2165 gcc_unreachable (); /* Shouldn't happen. */
2166 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
2168 if (extra_flags)
2169 SYMBOL_REF_FLAGS (sym) |= extra_flags;
2171 return sym;
2174 /* Use a library function to move some bytes. */
2176 static void
2177 block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx)
2179 /* We want to pass the size as Pmode, which will normally be SImode
2180 but will be DImode if we are using 64 bit longs and pointers. */
2181 if (GET_MODE (bytes_rtx) != VOIDmode
2182 && GET_MODE (bytes_rtx) != Pmode)
2183 bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
2185 emit_library_call (m32r_function_symbol ("memcpy"), 0,
2186 VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
2187 convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
2188 TYPE_UNSIGNED (sizetype)),
2189 TYPE_MODE (sizetype));
2192 /* Expand string/block move operations.
2194 operands[0] is the pointer to the destination.
2195 operands[1] is the pointer to the source.
2196 operands[2] is the number of bytes to move.
2197 operands[3] is the alignment.
2199 Returns 1 upon success, 0 otherwise. */
2202 m32r_expand_block_move (rtx operands[])
2204 rtx orig_dst = operands[0];
2205 rtx orig_src = operands[1];
2206 rtx bytes_rtx = operands[2];
2207 rtx align_rtx = operands[3];
2208 int constp = GET_CODE (bytes_rtx) == CONST_INT;
2209 HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
2210 int align = INTVAL (align_rtx);
2211 int leftover;
2212 rtx src_reg;
2213 rtx dst_reg;
2215 if (constp && bytes <= 0)
2216 return 1;
2218 /* Move the address into scratch registers. */
2219 dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
2220 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2222 if (align > UNITS_PER_WORD)
2223 align = UNITS_PER_WORD;
2225 /* If we prefer size over speed, always use a function call.
2226 If we do not know the size, use a function call.
2227 If the blocks are not word aligned, use a function call. */
2228 if (optimize_size || ! constp || align != UNITS_PER_WORD)
2230 block_move_call (dst_reg, src_reg, bytes_rtx);
2231 return 0;
2234 leftover = bytes % MAX_MOVE_BYTES;
2235 bytes -= leftover;
2237 /* If necessary, generate a loop to handle the bulk of the copy. */
2238 if (bytes)
2240 rtx label = NULL_RTX;
2241 rtx final_src = NULL_RTX;
2242 rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
2243 rtx rounded_total = GEN_INT (bytes);
2244 rtx new_dst_reg = gen_reg_rtx (SImode);
2245 rtx new_src_reg = gen_reg_rtx (SImode);
2247 /* If we are going to have to perform this loop more than
2248 once, then generate a label and compute the address the
2249 source register will contain upon completion of the final
2250 iteration. */
2251 if (bytes > MAX_MOVE_BYTES)
2253 final_src = gen_reg_rtx (Pmode);
2255 if (INT16_P(bytes))
2256 emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
2257 else
2259 emit_insn (gen_movsi (final_src, rounded_total));
2260 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2263 label = gen_label_rtx ();
2264 emit_label (label);
2267 /* It is known that output_block_move() will update src_reg to point
2268 to the word after the end of the source block, and dst_reg to point
2269 to the last word of the destination block, provided that the block
2270 is MAX_MOVE_BYTES long. */
2271 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, at_a_time,
2272 new_dst_reg, new_src_reg));
2273 emit_move_insn (dst_reg, new_dst_reg);
2274 emit_move_insn (src_reg, new_src_reg);
2275 emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
2277 if (bytes > MAX_MOVE_BYTES)
2279 emit_insn (gen_cmpsi (src_reg, final_src));
2280 emit_jump_insn (gen_bne (label));
2284 if (leftover)
2285 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, GEN_INT (leftover),
2286 gen_reg_rtx (SImode),
2287 gen_reg_rtx (SImode)));
2288 return 1;
2292 /* Emit load/stores for a small constant word aligned block_move.
2294 operands[0] is the memory address of the destination.
2295 operands[1] is the memory address of the source.
2296 operands[2] is the number of bytes to move.
2297 operands[3] is a temp register.
2298 operands[4] is a temp register. */
2300 void
2301 m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
2303 HOST_WIDE_INT bytes = INTVAL (operands[2]);
2304 int first_time;
2305 int got_extra = 0;
2307 gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES);
2309 /* We do not have a post-increment store available, so the first set of
2310 stores are done without any increment, then the remaining ones can use
2311 the pre-increment addressing mode.
2313 Note: expand_block_move() also relies upon this behavior when building
2314 loops to copy large blocks. */
2315 first_time = 1;
2317 while (bytes > 0)
2319 if (bytes >= 8)
2321 if (first_time)
2323 output_asm_insn ("ld\t%5, %p1", operands);
2324 output_asm_insn ("ld\t%6, %p1", operands);
2325 output_asm_insn ("st\t%5, @%0", operands);
2326 output_asm_insn ("st\t%6, %s0", operands);
2328 else
2330 output_asm_insn ("ld\t%5, %p1", operands);
2331 output_asm_insn ("ld\t%6, %p1", operands);
2332 output_asm_insn ("st\t%5, %s0", operands);
2333 output_asm_insn ("st\t%6, %s0", operands);
2336 bytes -= 8;
2338 else if (bytes >= 4)
2340 if (bytes > 4)
2341 got_extra = 1;
2343 output_asm_insn ("ld\t%5, %p1", operands);
2345 if (got_extra)
2346 output_asm_insn ("ld\t%6, %p1", operands);
2348 if (first_time)
2349 output_asm_insn ("st\t%5, @%0", operands);
2350 else
2351 output_asm_insn ("st\t%5, %s0", operands);
2353 bytes -= 4;
2355 else
2357 /* Get the entire next word, even though we do not want all of it.
2358 The saves us from doing several smaller loads, and we assume that
2359 we cannot cause a page fault when at least part of the word is in
2360 valid memory [since we don't get called if things aren't properly
2361 aligned]. */
2362 int dst_offset = first_time ? 0 : 4;
2363 /* The amount of increment we have to make to the
2364 destination pointer. */
2365 int dst_inc_amount = dst_offset + bytes - 4;
2366 /* The same for the source pointer. */
2367 int src_inc_amount = bytes;
2368 int last_shift;
2369 rtx my_operands[3];
2371 /* If got_extra is true then we have already loaded
2372 the next word as part of loading and storing the previous word. */
2373 if (! got_extra)
2374 output_asm_insn ("ld\t%6, @%1", operands);
2376 if (bytes >= 2)
2378 bytes -= 2;
2380 output_asm_insn ("sra3\t%5, %6, #16", operands);
2381 my_operands[0] = operands[5];
2382 my_operands[1] = GEN_INT (dst_offset);
2383 my_operands[2] = operands[0];
2384 output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
2386 /* If there is a byte left to store then increment the
2387 destination address and shift the contents of the source
2388 register down by 8 bits. We could not do the address
2389 increment in the store half word instruction, because it does
2390 not have an auto increment mode. */
2391 if (bytes > 0) /* assert (bytes == 1) */
2393 dst_offset += 2;
2394 last_shift = 8;
2397 else
2398 last_shift = 24;
2400 if (bytes > 0)
2402 my_operands[0] = operands[6];
2403 my_operands[1] = GEN_INT (last_shift);
2404 output_asm_insn ("srai\t%0, #%1", my_operands);
2405 my_operands[0] = operands[6];
2406 my_operands[1] = GEN_INT (dst_offset);
2407 my_operands[2] = operands[0];
2408 output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
2411 /* Update the destination pointer if needed. We have to do
2412 this so that the patterns matches what we output in this
2413 function. */
2414 if (dst_inc_amount
2415 && !find_reg_note (insn, REG_UNUSED, operands[0]))
2417 my_operands[0] = operands[0];
2418 my_operands[1] = GEN_INT (dst_inc_amount);
2419 output_asm_insn ("addi\t%0, #%1", my_operands);
2422 /* Update the source pointer if needed. We have to do this
2423 so that the patterns matches what we output in this
2424 function. */
2425 if (src_inc_amount
2426 && !find_reg_note (insn, REG_UNUSED, operands[1]))
2428 my_operands[0] = operands[1];
2429 my_operands[1] = GEN_INT (src_inc_amount);
2430 output_asm_insn ("addi\t%0, #%1", my_operands);
2433 bytes = 0;
2436 first_time = 0;
2440 /* Return true if using NEW_REG in place of OLD_REG is ok. */
2443 m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
2444 unsigned int new_reg)
2446 /* Interrupt routines can't clobber any register that isn't already used. */
2447 if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl))
2448 && !regs_ever_live[new_reg])
2449 return 0;
2451 /* We currently emit epilogues as text, not rtl, so the liveness
2452 of the return address register isn't visible. */
2453 if (current_function_is_leaf && new_reg == RETURN_ADDR_REGNUM)
2454 return 0;
2456 return 1;
2460 m32r_return_addr (int count)
2462 if (count != 0)
2463 return const0_rtx;
2465 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);