No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / v850 / v850.h
blobc43c802838a31a0f30c1996b0be5c624969195e6
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 #ifndef GCC_V850_H
24 #define GCC_V850_H
26 /* These are defined in svr4.h but we want to override them. */
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #undef STARTFILE_SPEC
31 #undef ASM_SPEC
33 #define TARGET_CPU_generic 1
34 #define TARGET_CPU_v850e 2
35 #define TARGET_CPU_v850e1 3
37 #ifndef TARGET_CPU_DEFAULT
38 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
39 #endif
41 #define MASK_DEFAULT MASK_V850
42 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
43 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
44 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
46 /* Choose which processor will be the default.
47 We must pass a -mv850xx option to the assembler if no explicit -mv* option
48 is given, because the assembler's processor default may not be correct. */
49 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
50 #undef MASK_DEFAULT
51 #define MASK_DEFAULT MASK_V850E
52 #undef SUBTARGET_ASM_SPEC
53 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
54 #undef SUBTARGET_CPP_SPEC
55 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
56 #undef TARGET_VERSION
57 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
58 #endif
60 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
61 #undef MASK_DEFAULT
62 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
63 #undef SUBTARGET_ASM_SPEC
64 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
65 #undef SUBTARGET_CPP_SPEC
66 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
67 #undef TARGET_VERSION
68 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
69 #endif
71 #define ASM_SPEC "%{mv*:-mv%*}"
72 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
74 #define EXTRA_SPECS \
75 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
76 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
78 /* Names to predefine in the preprocessor for this target machine. */
79 #define TARGET_CPU_CPP_BUILTINS() do { \
80 builtin_define( "__v851__" ); \
81 builtin_define( "__v850" ); \
82 builtin_assert( "machine=v850" ); \
83 builtin_assert( "cpu=v850" ); \
84 if (TARGET_EP) \
85 builtin_define ("__EP__"); \
86 } while(0)
88 #define MASK_CPU (MASK_V850 | MASK_V850E)
90 /* Information about the various small memory areas. */
91 struct small_memory_info {
92 const char *name;
93 long max;
94 long physical_max;
97 enum small_memory_type {
98 /* tiny data area, using EP as base register */
99 SMALL_MEMORY_TDA = 0,
100 /* small data area using dp as base register */
101 SMALL_MEMORY_SDA,
102 /* zero data area using r0 as base register */
103 SMALL_MEMORY_ZDA,
104 SMALL_MEMORY_max
107 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
109 /* Show we can debug even without a frame pointer. */
110 #define CAN_DEBUG_WITHOUT_FP
112 /* Some machines may desire to change what optimizations are
113 performed for various optimization levels. This macro, if
114 defined, is executed once just after the optimization level is
115 determined and before the remainder of the command options have
116 been parsed. Values set in this macro are used as the default
117 values for the other command line options.
119 LEVEL is the optimization level specified; 2 if `-O2' is
120 specified, 1 if `-O' is specified, and 0 if neither is specified.
122 SIZE is nonzero if `-Os' is specified, 0 otherwise.
124 You should not use this macro to change options that are not
125 machine-specific. These should uniformly selected by the same
126 optimization level on all supported machines. Use this macro to
127 enable machine-specific optimizations.
129 *Do not examine `write_symbols' in this macro!* The debugging
130 options are not supposed to alter the generated code. */
132 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
134 target_flags |= MASK_STRICT_ALIGN; \
135 if (LEVEL) \
136 /* Note - we no longer enable MASK_EP when optimizing. This is \
137 because of a hardware bug which stops the SLD and SST instructions\
138 from correctly detecting some hazards. If the user is sure that \
139 their hardware is fixed or that their program will not encounter \
140 the conditions that trigger the bug then they can enable -mep by \
141 hand. */ \
142 target_flags |= MASK_PROLOG_FUNCTION; \
146 /* Target machine storage layout */
148 /* Define this if most significant bit is lowest numbered
149 in instructions that operate on numbered bit-fields.
150 This is not true on the NEC V850. */
151 #define BITS_BIG_ENDIAN 0
153 /* Define this if most significant byte of a word is the lowest numbered. */
154 /* This is not true on the NEC V850. */
155 #define BYTES_BIG_ENDIAN 0
157 /* Define this if most significant word of a multiword number is lowest
158 numbered.
159 This is not true on the NEC V850. */
160 #define WORDS_BIG_ENDIAN 0
162 /* Width of a word, in units (bytes). */
163 #define UNITS_PER_WORD 4
165 /* Define this macro if it is advisable to hold scalars in registers
166 in a wider mode than that declared by the program. In such cases,
167 the value is constrained to be within the bounds of the declared
168 type, but kept valid in the wider mode. The signedness of the
169 extension may differ from that of the type.
171 Some simple experiments have shown that leaving UNSIGNEDP alone
172 generates the best overall code. */
174 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
175 if (GET_MODE_CLASS (MODE) == MODE_INT \
176 && GET_MODE_SIZE (MODE) < 4) \
177 { (MODE) = SImode; }
179 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
180 #define PARM_BOUNDARY 32
182 /* The stack goes in 32 bit lumps. */
183 #define STACK_BOUNDARY 32
185 /* Allocation boundary (in *bits*) for the code of a function.
186 16 is the minimum boundary; 32 would give better performance. */
187 #define FUNCTION_BOUNDARY 16
189 /* No data type wants to be aligned rounder than this. */
190 #define BIGGEST_ALIGNMENT 32
192 /* Alignment of field after `int : 0' in a structure. */
193 #define EMPTY_FIELD_BOUNDARY 32
195 /* No structure field wants to be aligned rounder than this. */
196 #define BIGGEST_FIELD_ALIGNMENT 32
198 /* Define this if move instructions will actually fail to work
199 when given unaligned data. */
200 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
202 /* Define this as 1 if `char' should by default be signed; else as 0.
204 On the NEC V850, loads do sign extension, so make this default. */
205 #define DEFAULT_SIGNED_CHAR 1
207 /* Standard register usage. */
209 /* Number of actual hardware registers.
210 The hardware registers are assigned numbers for the compiler
211 from 0 to just below FIRST_PSEUDO_REGISTER.
213 All registers that the compiler knows about must be given numbers,
214 even those that are not normally considered general registers. */
216 #define FIRST_PSEUDO_REGISTER 34
218 /* 1 for registers that have pervasive standard uses
219 and are not available for the register allocator. */
221 #define FIXED_REGISTERS \
222 { 1, 1, 0, 1, 1, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 0, 0, \
225 0, 0, 0, 0, 0, 0, 1, 0, \
226 1, 1}
228 /* 1 for registers not available across function calls.
229 These must include the FIXED_REGISTERS and also any
230 registers that can be used without being saved.
231 The latter must include the registers where values are returned
232 and the register where structure-value addresses are passed.
233 Aside from that, you can include as many other registers as you
234 like. */
236 #define CALL_USED_REGISTERS \
237 { 1, 1, 0, 1, 1, 1, 1, 1, \
238 1, 1, 1, 1, 1, 1, 1, 1, \
239 1, 1, 1, 1, 0, 0, 0, 0, \
240 0, 0, 0, 0, 0, 0, 1, 1, \
241 1, 1}
243 /* List the order in which to allocate registers. Each register must be
244 listed once, even those in FIXED_REGISTERS.
246 On the 850, we make the return registers first, then all of the volatile
247 registers, then the saved registers in reverse order to better save the
248 registers with an out of line function, and finally the fixed
249 registers. */
251 #define REG_ALLOC_ORDER \
253 10, 11, /* return registers */ \
254 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
255 6, 7, 8, 9, 31, /* argument registers */ \
256 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
257 21, 20, 2, \
258 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
261 /* If TARGET_APP_REGS is not defined then add r2 and r5 to
262 the pool of fixed registers. See PR 14505. */
263 #define CONDITIONAL_REGISTER_USAGE \
265 if (!TARGET_APP_REGS) \
267 fixed_regs[2] = 1; call_used_regs[2] = 1; \
268 fixed_regs[5] = 1; call_used_regs[5] = 1; \
272 /* Return number of consecutive hard regs needed starting at reg REGNO
273 to hold something of mode MODE.
275 This is ordinarily the length in words of a value of mode MODE
276 but can be less for certain modes in special long registers. */
278 #define HARD_REGNO_NREGS(REGNO, MODE) \
279 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
281 /* Value is 1 if hard register REGNO can hold a value of machine-mode
282 MODE. */
284 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
285 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
287 /* Value is 1 if it is a good idea to tie two pseudo registers
288 when one has mode MODE1 and one has mode MODE2.
289 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
290 for any hard reg, then this must be 0 for correct output. */
291 #define MODES_TIEABLE_P(MODE1, MODE2) \
292 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
295 /* Define the classes of registers for register constraints in the
296 machine description. Also define ranges of constants.
298 One of the classes must always be named ALL_REGS and include all hard regs.
299 If there is more than one class, another class must be named NO_REGS
300 and contain no registers.
302 The name GENERAL_REGS must be the name of a class (or an alias for
303 another name such as ALL_REGS). This is the class of registers
304 that is allowed by "g" or "r" in a register constraint.
305 Also, registers outside this class are allocated only when
306 instructions express preferences for them.
308 The classes must be numbered in nondecreasing order; that is,
309 a larger-numbered class must never be contained completely
310 in a smaller-numbered class.
312 For any two classes, it is very desirable that there be another
313 class that represents their union. */
315 enum reg_class
317 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
320 #define N_REG_CLASSES (int) LIM_REG_CLASSES
322 /* Give names of register classes as strings for dump file. */
324 #define REG_CLASS_NAMES \
325 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
327 /* Define which registers fit in which classes.
328 This is an initializer for a vector of HARD_REG_SET
329 of length N_REG_CLASSES. */
331 #define REG_CLASS_CONTENTS \
333 { 0x00000000 }, /* NO_REGS */ \
334 { 0xffffffff }, /* GENERAL_REGS */ \
335 { 0xffffffff }, /* ALL_REGS */ \
338 /* The same information, inverted:
339 Return the class number of the smallest class containing
340 reg number REGNO. This could be a conditional expression
341 or could index an array. */
343 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
345 /* The class value for index registers, and the one for base regs. */
347 #define INDEX_REG_CLASS NO_REGS
348 #define BASE_REG_CLASS GENERAL_REGS
350 /* Get reg_class from a letter such as appears in the machine description. */
352 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
354 /* Macros to check register numbers against specific register classes. */
356 /* These assume that REGNO is a hard or pseudo reg number.
357 They give nonzero only if REGNO is a hard reg of the suitable class
358 or a pseudo reg currently allocated to a suitable hard reg.
359 Since they use reg_renumber, they are safe only once reg_renumber
360 has been allocated, which happens in local-alloc.c. */
362 #define REGNO_OK_FOR_BASE_P(regno) \
363 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
365 #define REGNO_OK_FOR_INDEX_P(regno) 0
367 /* Given an rtx X being reloaded into a reg required to be
368 in class CLASS, return the class of reg to actually use.
369 In general this is just CLASS; but on some machines
370 in some cases it is preferable to use a more restrictive class. */
372 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
374 /* Return the maximum number of consecutive registers
375 needed to represent mode MODE in a register of class CLASS. */
377 #define CLASS_MAX_NREGS(CLASS, MODE) \
378 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
380 /* The letters I, J, K, L, M, N, O, P in a register constraint string
381 can be used to stand for particular ranges of immediate operands.
382 This macro defines what the ranges are.
383 C is the letter, and VALUE is a constant value.
384 Return 1 if VALUE is in the range specified by C. */
386 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
387 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
388 /* zero */
389 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
390 /* 5 bit signed immediate */
391 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
392 /* 16 bit signed immediate */
393 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
394 /* valid constant for movhi instruction. */
395 #define CONST_OK_FOR_L(VALUE) \
396 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
397 && CONST_OK_FOR_I ((VALUE & 0xffff)))
398 /* 16 bit unsigned immediate */
399 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
400 /* 5 bit unsigned immediate in shift instructions */
401 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
402 /* 9 bit signed immediate for word multiply instruction. */
403 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
405 #define CONST_OK_FOR_P(VALUE) 0
407 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
408 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
409 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
410 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
411 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
412 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
413 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
414 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
415 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
418 /* Similar, but for floating constants, and defining letters G and H.
419 Here VALUE is the CONST_DOUBLE rtx itself.
421 `G' is a zero of some form. */
423 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
424 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
425 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
426 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
427 && CONST_DOUBLE_LOW (VALUE) == 0 \
428 && CONST_DOUBLE_HIGH (VALUE) == 0))
430 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
432 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
433 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
434 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
435 : 0)
438 /* Stack layout; function entry, exit and calling. */
440 /* Define this if pushing a word on the stack
441 makes the stack pointer a smaller address. */
443 #define STACK_GROWS_DOWNWARD
445 /* Define this to nonzero if the nominal address of the stack frame
446 is at the high-address end of the local variables;
447 that is, each additional local variable allocated
448 goes at a more negative offset in the frame. */
450 #define FRAME_GROWS_DOWNWARD 1
452 /* Offset within stack frame to start allocating local variables at.
453 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
454 first local allocated. Otherwise, it is the offset to the BEGINNING
455 of the first local allocated. */
457 #define STARTING_FRAME_OFFSET 0
459 /* Offset of first parameter from the argument pointer register value. */
460 /* Is equal to the size of the saved fp + pc, even if an fp isn't
461 saved since the value is used before we know. */
463 #define FIRST_PARM_OFFSET(FNDECL) 0
465 /* Specify the registers used for certain standard purposes.
466 The values of these macros are register numbers. */
468 /* Register to use for pushing function arguments. */
469 #define STACK_POINTER_REGNUM 3
471 /* Base register for access to local variables of the function. */
472 #define FRAME_POINTER_REGNUM 32
474 /* Register containing return address from latest function call. */
475 #define LINK_POINTER_REGNUM 31
477 /* On some machines the offset between the frame pointer and starting
478 offset of the automatic variables is not known until after register
479 allocation has been done (for example, because the saved registers
480 are between these two locations). On those machines, define
481 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
482 be used internally until the offset is known, and define
483 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
484 used for the frame pointer.
486 You should define this macro only in the very rare circumstances
487 when it is not possible to calculate the offset between the frame
488 pointer and the automatic variables until after register
489 allocation has been completed. When this macro is defined, you
490 must also indicate in your definition of `ELIMINABLE_REGS' how to
491 eliminate `FRAME_POINTER_REGNUM' into either
492 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
494 Do not define this macro if it would be the same as
495 `FRAME_POINTER_REGNUM'. */
496 #undef HARD_FRAME_POINTER_REGNUM
497 #define HARD_FRAME_POINTER_REGNUM 29
499 /* Base register for access to arguments of the function. */
500 #define ARG_POINTER_REGNUM 33
502 /* Register in which static-chain is passed to a function. */
503 #define STATIC_CHAIN_REGNUM 20
505 /* Value should be nonzero if functions must have frame pointers.
506 Zero means the frame pointer need not be set up (and parms
507 may be accessed via the stack pointer) in functions that seem suitable.
508 This is computed in `reload', in reload1.c. */
509 #define FRAME_POINTER_REQUIRED 0
511 /* If defined, this macro specifies a table of register pairs used to
512 eliminate unneeded registers that point into the stack frame. If
513 it is not defined, the only elimination attempted by the compiler
514 is to replace references to the frame pointer with references to
515 the stack pointer.
517 The definition of this macro is a list of structure
518 initializations, each of which specifies an original and
519 replacement register.
521 On some machines, the position of the argument pointer is not
522 known until the compilation is completed. In such a case, a
523 separate hard register must be used for the argument pointer.
524 This register can be eliminated by replacing it with either the
525 frame pointer or the argument pointer, depending on whether or not
526 the frame pointer has been eliminated.
528 In this case, you might specify:
529 #define ELIMINABLE_REGS \
530 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
531 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
532 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
534 Note that the elimination of the argument pointer with the stack
535 pointer is specified first since that is the preferred elimination. */
537 #define ELIMINABLE_REGS \
538 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
539 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
540 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
541 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
543 /* A C expression that returns nonzero if the compiler is allowed to
544 try to replace register number FROM-REG with register number
545 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
546 defined, and will usually be the constant 1, since most of the
547 cases preventing register elimination are things that the compiler
548 already knows about. */
550 #define CAN_ELIMINATE(FROM, TO) \
551 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
553 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
554 specifies the initial difference between the specified pair of
555 registers. This macro must be defined if `ELIMINABLE_REGS' is
556 defined. */
558 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
560 if ((FROM) == FRAME_POINTER_REGNUM) \
561 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
562 else if ((FROM) == ARG_POINTER_REGNUM) \
563 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
564 else \
565 gcc_unreachable (); \
568 /* Keep the stack pointer constant throughout the function. */
569 #define ACCUMULATE_OUTGOING_ARGS 1
571 /* Value is the number of bytes of arguments automatically
572 popped when returning from a subroutine call.
573 FUNDECL is the declaration node of the function (as a tree),
574 FUNTYPE is the data type of the function (as a tree),
575 or for a library call it is an identifier node for the subroutine name.
576 SIZE is the number of bytes of arguments passed on the stack. */
578 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
580 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
582 /* Define a data type for recording info about an argument list
583 during the scan of that argument list. This data type should
584 hold all necessary information about the function itself
585 and about the args processed so far, enough to enable macros
586 such as FUNCTION_ARG to determine where the next arg should go. */
588 #define CUMULATIVE_ARGS struct cum_arg
589 struct cum_arg { int nbytes; int anonymous_args; };
591 /* Define where to put the arguments to a function.
592 Value is zero to push the argument on the stack,
593 or a hard register in which to store the argument.
595 MODE is the argument's machine mode.
596 TYPE is the data type of the argument (as a tree).
597 This is null for libcalls where that information may
598 not be available.
599 CUM is a variable of type CUMULATIVE_ARGS which gives info about
600 the preceding args and about the function being called.
601 NAMED is nonzero if this argument is a named parameter
602 (otherwise it is an extra parameter matching an ellipsis). */
604 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
605 function_arg (&CUM, MODE, TYPE, NAMED)
607 /* Initialize a variable CUM of type CUMULATIVE_ARGS
608 for a call to a function whose data type is FNTYPE.
609 For a library call, FNTYPE is 0. */
611 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
612 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
614 /* Update the data in CUM to advance over an argument
615 of mode MODE and data type TYPE.
616 (TYPE is null for libcalls where that information may not be available.) */
618 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
619 ((CUM).nbytes += ((MODE) != BLKmode \
620 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
621 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
623 /* When a parameter is passed in a register, stack space is still
624 allocated for it. */
625 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
627 /* Define this if the above stack space is to be considered part of the
628 space allocated by the caller. */
629 #define OUTGOING_REG_PARM_STACK_SPACE
631 /* 1 if N is a possible register number for function argument passing. */
633 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
635 /* Define how to find the value returned by a function.
636 VALTYPE is the data type of the value (as a tree).
637 If the precise function being called is known, FUNC is its FUNCTION_DECL;
638 otherwise, FUNC is 0. */
640 #define FUNCTION_VALUE(VALTYPE, FUNC) \
641 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
643 /* Define how to find the value returned by a library function
644 assuming the value has mode MODE. */
646 #define LIBCALL_VALUE(MODE) \
647 gen_rtx_REG (MODE, 10)
649 /* 1 if N is a possible register number for a function value. */
651 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
653 #define DEFAULT_PCC_STRUCT_RETURN 0
655 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
656 the stack pointer does not matter. The value is tested only in
657 functions that have frame pointers.
658 No definition is equivalent to always zero. */
660 #define EXIT_IGNORE_STACK 1
662 /* Define this macro as a C expression that is nonzero for registers
663 used by the epilogue or the `return' pattern. */
665 #define EPILOGUE_USES(REGNO) \
666 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
668 /* Output assembler code to FILE to increment profiler label # LABELNO
669 for profiling a function entry. */
671 #define FUNCTION_PROFILER(FILE, LABELNO) ;
673 #define TRAMPOLINE_TEMPLATE(FILE) \
674 do { \
675 fprintf (FILE, "\tjarl .+4,r12\n"); \
676 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
677 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
678 fprintf (FILE, "\tjmp [r12]\n"); \
679 fprintf (FILE, "\tnop\n"); \
680 fprintf (FILE, "\t.long 0\n"); \
681 fprintf (FILE, "\t.long 0\n"); \
682 } while (0)
684 /* Length in units of the trampoline for entering a nested function. */
686 #define TRAMPOLINE_SIZE 24
688 /* Emit RTL insns to initialize the variable parts of a trampoline.
689 FNADDR is an RTX for the address of the function's pure code.
690 CXT is an RTX for the static chain value for the function. */
692 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
694 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
695 (CXT)); \
696 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
697 (FNADDR)); \
700 /* Addressing modes, and classification of registers for them. */
703 /* 1 if X is an rtx for a constant that is a valid address. */
705 /* ??? This seems too exclusive. May get better code by accepting more
706 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
708 #define CONSTANT_ADDRESS_P(X) \
709 (GET_CODE (X) == CONST_INT \
710 && CONST_OK_FOR_K (INTVAL (X)))
712 /* Maximum number of registers that can appear in a valid memory address. */
714 #define MAX_REGS_PER_ADDRESS 1
716 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
717 and check its validity for a certain class.
718 We have two alternate definitions for each of them.
719 The usual definition accepts all pseudo regs; the other rejects
720 them unless they have been allocated suitable hard regs.
721 The symbol REG_OK_STRICT causes the latter definition to be used.
723 Most source files want to accept pseudo regs in the hope that
724 they will get allocated to the class that the insn wants them to be in.
725 Source files for reload pass need to be strict.
726 After reload, it makes no difference, since pseudo regs have
727 been eliminated by then. */
729 #ifndef REG_OK_STRICT
731 /* Nonzero if X is a hard reg that can be used as an index
732 or if it is a pseudo reg. */
733 #define REG_OK_FOR_INDEX_P(X) 0
734 /* Nonzero if X is a hard reg that can be used as a base reg
735 or if it is a pseudo reg. */
736 #define REG_OK_FOR_BASE_P(X) 1
737 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
738 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
739 #define STRICT 0
741 #else
743 /* Nonzero if X is a hard reg that can be used as an index. */
744 #define REG_OK_FOR_INDEX_P(X) 0
745 /* Nonzero if X is a hard reg that can be used as a base reg. */
746 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
747 #define STRICT 1
749 #endif
751 /* A C expression that defines the optional machine-dependent
752 constraint letters that can be used to segregate specific types of
753 operands, usually memory references, for the target machine.
754 Normally this macro will not be defined. If it is required for a
755 particular target machine, it should return 1 if VALUE corresponds
756 to the operand type represented by the constraint letter C. If C
757 is not defined as an extra constraint, the value returned should
758 be 0 regardless of VALUE.
760 For example, on the ROMP, load instructions cannot have their
761 output in r0 if the memory reference contains a symbolic address.
762 Constraint letter `Q' is defined as representing a memory address
763 that does *not* contain a symbolic address. An alternative is
764 specified with a `Q' constraint on the input and `r' on the
765 output. The next alternative specifies `m' on the input and a
766 register class that does not include r0 on the output. */
768 #define EXTRA_CONSTRAINT(OP, C) \
769 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
770 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
771 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
772 && !SYMBOL_REF_ZDA_P (OP)) \
773 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
774 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
775 && SYMBOL_REF_ZDA_P (OP)) \
776 || (GET_CODE (OP) == CONST \
777 && GET_CODE (XEXP (OP, 0)) == PLUS \
778 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
779 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
780 : 0)
782 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
783 that is a valid memory address for an instruction.
784 The MODE argument is the machine mode for the MEM expression
785 that wants to use this address.
787 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
788 except for CONSTANT_ADDRESS_P which is actually
789 machine-independent. */
791 /* Accept either REG or SUBREG where a register is valid. */
793 #define RTX_OK_FOR_BASE_P(X) \
794 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
795 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
796 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
798 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
799 do { \
800 if (RTX_OK_FOR_BASE_P (X)) \
801 goto ADDR; \
802 if (CONSTANT_ADDRESS_P (X) \
803 && (MODE == QImode || INTVAL (X) % 2 == 0) \
804 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
805 goto ADDR; \
806 if (GET_CODE (X) == LO_SUM \
807 && REG_P (XEXP (X, 0)) \
808 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
809 && CONSTANT_P (XEXP (X, 1)) \
810 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
811 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
812 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
813 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
814 goto ADDR; \
815 if (special_symbolref_operand (X, MODE) \
816 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
817 goto ADDR; \
818 if (GET_CODE (X) == PLUS \
819 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
820 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
821 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
822 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
823 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
824 goto ADDR; \
825 } while (0)
828 /* Go to LABEL if ADDR (a legitimate address expression)
829 has an effect that depends on the machine mode it is used for. */
831 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
833 /* Nonzero if the constant value X is a legitimate general operand.
834 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
836 #define LEGITIMATE_CONSTANT_P(X) \
837 (GET_CODE (X) == CONST_DOUBLE \
838 || !(GET_CODE (X) == CONST \
839 && GET_CODE (XEXP (X, 0)) == PLUS \
840 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
841 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
842 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
844 /* Tell final.c how to eliminate redundant test instructions. */
846 /* Here we define machine-dependent flags and fields in cc_status
847 (see `conditions.h'). No extra ones are needed for the VAX. */
849 /* Store in cc_status the expressions
850 that the condition codes will describe
851 after execution of an instruction whose pattern is EXP.
852 Do not alter them if the instruction would not alter the cc's. */
854 #define CC_OVERFLOW_UNUSABLE 0x200
855 #define CC_NO_CARRY CC_NO_OVERFLOW
856 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
858 /* Nonzero if access to memory by bytes or half words is no faster
859 than accessing full words. */
860 #define SLOW_BYTE_ACCESS 1
862 /* According expr.c, a value of around 6 should minimize code size, and
863 for the V850 series, that's our primary concern. */
864 #define MOVE_RATIO 6
866 /* Indirect calls are expensive, never turn a direct call
867 into an indirect call. */
868 #define NO_FUNCTION_CSE
870 /* The four different data regions on the v850. */
871 typedef enum
873 DATA_AREA_NORMAL,
874 DATA_AREA_SDA,
875 DATA_AREA_TDA,
876 DATA_AREA_ZDA
877 } v850_data_area;
879 /* A list of names for sections other than the standard two, which are
880 `in_text' and `in_data'. You need not define this macro on a
881 system with no other sections (that GCC needs to use). */
882 #undef EXTRA_SECTIONS
883 #define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
884 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
886 /* One or more functions to be defined in `varasm.c'. These
887 functions should do jobs analogous to those of `text_section' and
888 `data_section', for your additional sections. Do not define this
889 macro if you do not define `EXTRA_SECTIONS'. */
890 #undef EXTRA_SECTION_FUNCTIONS
892 /* This could be done a lot more cleanly using ANSI C.... */
893 #define EXTRA_SECTION_FUNCTIONS \
894 void \
895 sdata_section () \
897 if (in_section != in_sdata) \
899 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
900 in_section = in_sdata; \
904 void \
905 rosdata_section () \
907 if (in_section != in_rosdata) \
909 fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
910 in_section = in_sdata; \
914 void \
915 sbss_section () \
917 if (in_section != in_sbss) \
919 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
920 in_section = in_sbss; \
924 void \
925 tdata_section () \
927 if (in_section != in_tdata) \
929 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
930 in_section = in_tdata; \
934 void \
935 zdata_section () \
937 if (in_section != in_zdata) \
939 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
940 in_section = in_zdata; \
944 void \
945 rozdata_section () \
947 if (in_section != in_rozdata) \
949 fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
950 in_section = in_rozdata; \
954 void \
955 zbss_section () \
957 if (in_section != in_zbss) \
959 fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
960 in_section = in_zbss; \
964 #define TEXT_SECTION_ASM_OP "\t.section .text"
965 #define DATA_SECTION_ASM_OP "\t.section .data"
966 #define BSS_SECTION_ASM_OP "\t.section .bss"
967 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
968 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
969 #define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
970 #define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
971 #define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
972 #define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
973 #define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
975 #define SCOMMON_ASM_OP "\t.scomm\t"
976 #define ZCOMMON_ASM_OP "\t.zcomm\t"
977 #define TCOMMON_ASM_OP "\t.tcomm\t"
979 #define ASM_COMMENT_START "#"
981 /* Output to assembler file text saying following lines
982 may contain character constants, extra white space, comments, etc. */
984 #define ASM_APP_ON "#APP\n"
986 /* Output to assembler file text saying following lines
987 no longer contain unusual constructs. */
989 #define ASM_APP_OFF "#NO_APP\n"
991 #undef USER_LABEL_PREFIX
992 #define USER_LABEL_PREFIX "_"
994 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
995 if (! v850_output_addr_const_extra (FILE, X)) \
996 goto FAIL
998 /* This says how to output the assembler to define a global
999 uninitialized but not common symbol. */
1001 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1002 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1004 #undef ASM_OUTPUT_ALIGNED_BSS
1005 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1006 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1008 /* This says how to output the assembler to define a global
1009 uninitialized, common symbol. */
1010 #undef ASM_OUTPUT_ALIGNED_COMMON
1011 #undef ASM_OUTPUT_COMMON
1012 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1013 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1015 /* This says how to output the assembler to define a local
1016 uninitialized symbol. */
1017 #undef ASM_OUTPUT_ALIGNED_LOCAL
1018 #undef ASM_OUTPUT_LOCAL
1019 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1020 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1022 /* Globalizing directive for a label. */
1023 #define GLOBAL_ASM_OP "\t.global "
1025 #define ASM_PN_FORMAT "%s___%lu"
1027 /* This is how we tell the assembler that two symbols have the same value. */
1029 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1030 do { assemble_name(FILE, NAME1); \
1031 fputs(" = ", FILE); \
1032 assemble_name(FILE, NAME2); \
1033 fputc('\n', FILE); } while (0)
1036 /* How to refer to registers in assembler output.
1037 This sequence is indexed by compiler's hard-register-number (see above). */
1039 #define REGISTER_NAMES \
1040 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1041 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1042 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1043 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1044 ".fp", ".ap"}
1046 #define ADDITIONAL_REGISTER_NAMES \
1047 { { "zero", 0 }, \
1048 { "hp", 2 }, \
1049 { "r3", 3 }, \
1050 { "r4", 4 }, \
1051 { "tp", 5 }, \
1052 { "fp", 29 }, \
1053 { "r30", 30 }, \
1054 { "lp", 31} }
1056 /* Print an instruction operand X on file FILE.
1057 look in v850.c for details */
1059 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1061 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1062 ((CODE) == '.')
1064 /* Print a memory operand whose address is X, on file FILE.
1065 This uses a function in output-vax.c. */
1067 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1069 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1070 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1072 /* This is how to output an element of a case-vector that is absolute. */
1074 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1075 fprintf (FILE, "\t%s .L%d\n", \
1076 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1078 /* This is how to output an element of a case-vector that is relative. */
1080 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1081 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
1082 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1083 (! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
1084 VALUE, REL, \
1085 (! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
1087 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1088 if ((LOG) != 0) \
1089 fprintf (FILE, "\t.align %d\n", (LOG))
1091 /* We don't have to worry about dbx compatibility for the v850. */
1092 #define DEFAULT_GDB_EXTENSIONS 1
1094 /* Use stabs debugging info by default. */
1095 #undef PREFERRED_DEBUGGING_TYPE
1096 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1098 /* Specify the machine mode that this machine uses
1099 for the index in the tablejump instruction. */
1100 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1102 /* Define as C expression which evaluates to nonzero if the tablejump
1103 instruction expects the table to contain offsets from the address of the
1104 table.
1105 Do not define this if the table should contain absolute addresses. */
1106 #define CASE_VECTOR_PC_RELATIVE 1
1108 /* The switch instruction requires that the jump table immediately follow
1109 it. */
1110 #define JUMP_TABLES_IN_TEXT_SECTION 1
1112 /* svr4.h defines this assuming that 4 byte alignment is required. */
1113 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1114 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1115 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1117 #define WORD_REGISTER_OPERATIONS
1119 /* Byte and short loads sign extend the value to a word. */
1120 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1122 /* This flag, if defined, says the same insns that convert to a signed fixnum
1123 also convert validly to an unsigned one. */
1124 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1126 /* Max number of bytes we can move from memory to memory
1127 in one reasonably fast instruction. */
1128 #define MOVE_MAX 4
1130 /* Define if shifts truncate the shift count
1131 which implies one can omit a sign-extension or zero-extension
1132 of a shift count. */
1133 #define SHIFT_COUNT_TRUNCATED 1
1135 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1136 is done just by pretending it is already truncated. */
1137 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1139 /* Specify the machine mode that pointers have.
1140 After generation of rtl, the compiler makes no further distinction
1141 between pointers and any other objects of this machine mode. */
1142 #define Pmode SImode
1144 /* A function address in a call instruction
1145 is a byte address (for indexing purposes)
1146 so give the MEM rtx a byte's mode. */
1147 #define FUNCTION_MODE QImode
1149 /* Tell compiler we want to support GHS pragmas */
1150 #define REGISTER_TARGET_PRAGMAS() do { \
1151 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1152 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1153 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1154 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1155 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1156 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1157 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1158 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
1159 } while (0)
1161 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1162 can appear in the "ghs section" pragma. These names are used to index
1163 into the GHS_default_section_names[] and GHS_current_section_names[]
1164 that are defined in v850.c, and so the ordering of each must remain
1165 consistent.
1167 These arrays give the default and current names for each kind of
1168 section defined by the GHS pragmas. The current names can be changed
1169 by the "ghs section" pragma. If the current names are null, use
1170 the default names. Note that the two arrays have different types.
1172 For the *normal* section kinds (like .data, .text, etc.) we do not
1173 want to explicitly force the name of these sections, but would rather
1174 let the linker (or at least the back end) choose the name of the
1175 section, UNLESS the user has force a specific name for these section
1176 kinds. To accomplish this set the name in ghs_default_section_names
1177 to null. */
1179 enum GHS_section_kind
1181 GHS_SECTION_KIND_DEFAULT,
1183 GHS_SECTION_KIND_TEXT,
1184 GHS_SECTION_KIND_DATA,
1185 GHS_SECTION_KIND_RODATA,
1186 GHS_SECTION_KIND_BSS,
1187 GHS_SECTION_KIND_SDATA,
1188 GHS_SECTION_KIND_ROSDATA,
1189 GHS_SECTION_KIND_TDATA,
1190 GHS_SECTION_KIND_ZDATA,
1191 GHS_SECTION_KIND_ROZDATA,
1193 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1196 /* The following code is for handling pragmas supported by the
1197 v850 compiler produced by Green Hills Software. This is at
1198 the specific request of a customer. */
1200 typedef struct data_area_stack_element
1202 struct data_area_stack_element * prev;
1203 v850_data_area data_area; /* Current default data area. */
1204 } data_area_stack_element;
1206 /* Track the current data area set by the
1207 data area pragma (which can be nested). */
1208 extern data_area_stack_element * data_area_stack;
1210 /* Names of the various data areas used on the v850. */
1211 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1212 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1214 /* The assembler op to start the file. */
1216 #define FILE_ASM_OP "\t.file\n"
1218 /* Enable the register move pass to improve code. */
1219 #define ENABLE_REGMOVE_PASS
1222 /* Implement ZDA, TDA, and SDA */
1224 #define EP_REGNUM 30 /* ep register number */
1226 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1227 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1228 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1229 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1230 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1231 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1233 #endif /* ! GCC_V850_H */