No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / cselib.c
blob46132005aaadda30be963e2109ac28b68478d16a
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
46 static bool cselib_record_memory;
47 static int entry_and_rtx_equal_p (const void *, const void *);
48 static hashval_t get_value_hash (const void *);
49 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
50 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
51 static void unchain_one_value (cselib_val *);
52 static void unchain_one_elt_list (struct elt_list **);
53 static void unchain_one_elt_loc_list (struct elt_loc_list **);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table;
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value;
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs;
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values;
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
104 static struct elt_list **reg_values;
105 static unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
110 static unsigned int max_value_regs;
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in cselib_clear_table() for fast emptying. */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem;
121 /* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123 static int values_became_useless;
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val;
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
136 /* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
139 static inline struct elt_list *
140 new_elt_list (struct elt_list *next, cselib_val *elt)
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
144 el->next = next;
145 el->elt = elt;
146 return el;
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
152 static inline struct elt_loc_list *
153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
157 el->next = next;
158 el->loc = loc;
159 el->setting_insn = cselib_current_insn;
160 el->in_libcall = cselib_current_insn_in_libcall;
161 return el;
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
167 static inline void
168 unchain_one_elt_list (struct elt_list **pl)
170 struct elt_list *l = *pl;
172 *pl = l->next;
173 pool_free (elt_list_pool, l);
176 /* Likewise for elt_loc_lists. */
178 static void
179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
181 struct elt_loc_list *l = *pl;
183 *pl = l->next;
184 pool_free (elt_loc_list_pool, l);
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
190 static void
191 unchain_one_value (cselib_val *v)
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
196 pool_free (cselib_val_pool, v);
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
203 void
204 cselib_clear_table (void)
206 unsigned int i;
208 for (i = 0; i < n_used_regs; i++)
209 REG_VALUES (used_regs[i]) = 0;
211 max_value_regs = 0;
213 n_used_regs = 0;
215 htab_empty (hash_table);
217 n_useless_values = 0;
219 next_unknown_value = 0;
221 first_containing_mem = &dummy_val;
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
229 static int
230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
237 gcc_assert (GET_CODE (x) != CONST_INT
238 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
255 return 0;
258 /* The hash function for our hash table. The value is always computed with
259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
262 static hashval_t
263 get_value_hash (const void *entry)
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
275 references_value_p (rtx x, int only_useless)
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
295 return 0;
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
302 static int
303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
309 while (*p)
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
317 if (had_locs && v->locs == 0)
319 n_useless_values++;
320 values_became_useless = 1;
322 return 1;
325 /* If X is a value with no locations, remove it from the hashtable. */
327 static int
328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
330 cselib_val *v = (cselib_val *)*x;
332 if (v->locs == 0)
334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
340 return 1;
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
346 static void
347 remove_useless_values (void)
349 cselib_val **p, *v;
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
357 while (values_became_useless);
359 /* Second pass: actually remove the values. */
361 p = &first_containing_mem;
362 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363 if (v->locs)
365 *p = v;
366 p = &(*p)->next_containing_mem;
368 *p = &dummy_val;
370 htab_traverse (hash_table, discard_useless_values, 0);
372 gcc_assert (!n_useless_values);
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
380 enum machine_mode
381 cselib_reg_set_mode (rtx x)
383 if (!REG_P (x))
384 return GET_MODE (x);
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (rtx x, rtx y)
399 enum rtx_code code;
400 const char *fmt;
401 int i;
403 if (REG_P (x) || MEM_P (x))
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
407 if (e)
408 x = e->u.val_rtx;
411 if (REG_P (y) || MEM_P (y))
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
415 if (e)
416 y = e->u.val_rtx;
419 if (x == y)
420 return 1;
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
425 if (GET_CODE (x) == VALUE)
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
430 for (l = e->locs; l; l = l->next)
432 rtx t = l->loc;
434 /* Avoid infinite recursion. */
435 if (REG_P (t) || MEM_P (t))
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
441 return 0;
444 if (GET_CODE (y) == VALUE)
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
449 for (l = e->locs; l; l = l->next)
451 rtx t = l->loc;
453 if (REG_P (t) || MEM_P (t))
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
459 return 0;
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
465 /* These won't be handled correctly by the code below. */
466 switch (GET_CODE (x))
468 case CONST_DOUBLE:
469 return 0;
471 case LABEL_REF:
472 return XEXP (x, 0) == XEXP (y, 0);
474 default:
475 break;
478 code = GET_CODE (x);
479 fmt = GET_RTX_FORMAT (code);
481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
483 int j;
485 switch (fmt[i])
487 case 'w':
488 if (XWINT (x, i) != XWINT (y, i))
489 return 0;
490 break;
492 case 'n':
493 case 'i':
494 if (XINT (x, i) != XINT (y, i))
495 return 0;
496 break;
498 case 'V':
499 case 'E':
500 /* Two vectors must have the same length. */
501 if (XVECLEN (x, i) != XVECLEN (y, i))
502 return 0;
504 /* And the corresponding elements must match. */
505 for (j = 0; j < XVECLEN (x, i); j++)
506 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
507 XVECEXP (y, i, j)))
508 return 0;
509 break;
511 case 'e':
512 if (i == 1
513 && targetm.commutative_p (x, UNKNOWN)
514 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
515 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
516 return 1;
517 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
518 return 0;
519 break;
521 case 'S':
522 case 's':
523 if (strcmp (XSTR (x, i), XSTR (y, i)))
524 return 0;
525 break;
527 case 'u':
528 /* These are just backpointers, so they don't matter. */
529 break;
531 case '0':
532 case 't':
533 break;
535 /* It is believed that rtx's at this level will never
536 contain anything but integers and other rtx's,
537 except for within LABEL_REFs and SYMBOL_REFs. */
538 default:
539 gcc_unreachable ();
542 return 1;
545 /* We need to pass down the mode of constants through the hash table
546 functions. For that purpose, wrap them in a CONST of the appropriate
547 mode. */
548 static rtx
549 wrap_constant (enum machine_mode mode, rtx x)
551 if (GET_CODE (x) != CONST_INT
552 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
553 return x;
554 gcc_assert (mode != VOIDmode);
555 return gen_rtx_CONST (mode, x);
558 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
559 For registers and memory locations, we look up their cselib_val structure
560 and return its VALUE element.
561 Possible reasons for return 0 are: the object is volatile, or we couldn't
562 find a register or memory location in the table and CREATE is zero. If
563 CREATE is nonzero, table elts are created for regs and mem.
564 N.B. this hash function returns the same hash value for RTXes that
565 differ only in the order of operands, thus it is suitable for comparisons
566 that take commutativity into account.
567 If we wanted to also support associative rules, we'd have to use a different
568 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
569 We used to have a MODE argument for hashing for CONST_INTs, but that
570 didn't make sense, since it caused spurious hash differences between
571 (set (reg:SI 1) (const_int))
572 (plus:SI (reg:SI 2) (reg:SI 1))
574 (plus:SI (reg:SI 2) (const_int))
575 If the mode is important in any context, it must be checked specifically
576 in a comparison anyway, since relying on hash differences is unsafe. */
578 static unsigned int
579 cselib_hash_rtx (rtx x, int create)
581 cselib_val *e;
582 int i, j;
583 enum rtx_code code;
584 const char *fmt;
585 unsigned int hash = 0;
587 code = GET_CODE (x);
588 hash += (unsigned) code + (unsigned) GET_MODE (x);
590 switch (code)
592 case MEM:
593 case REG:
594 e = cselib_lookup (x, GET_MODE (x), create);
595 if (! e)
596 return 0;
598 return e->value;
600 case CONST_INT:
601 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
602 return hash ? hash : (unsigned int) CONST_INT;
604 case CONST_DOUBLE:
605 /* This is like the general case, except that it only counts
606 the integers representing the constant. */
607 hash += (unsigned) code + (unsigned) GET_MODE (x);
608 if (GET_MODE (x) != VOIDmode)
609 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
610 else
611 hash += ((unsigned) CONST_DOUBLE_LOW (x)
612 + (unsigned) CONST_DOUBLE_HIGH (x));
613 return hash ? hash : (unsigned int) CONST_DOUBLE;
615 case CONST_VECTOR:
617 int units;
618 rtx elt;
620 units = CONST_VECTOR_NUNITS (x);
622 for (i = 0; i < units; ++i)
624 elt = CONST_VECTOR_ELT (x, i);
625 hash += cselib_hash_rtx (elt, 0);
628 return hash;
631 /* Assume there is only one rtx object for any given label. */
632 case LABEL_REF:
633 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
634 differences and differences between each stage's debugging dumps. */
635 hash += (((unsigned int) LABEL_REF << 7)
636 + CODE_LABEL_NUMBER (XEXP (x, 0)));
637 return hash ? hash : (unsigned int) LABEL_REF;
639 case SYMBOL_REF:
641 /* Don't hash on the symbol's address to avoid bootstrap differences.
642 Different hash values may cause expressions to be recorded in
643 different orders and thus different registers to be used in the
644 final assembler. This also avoids differences in the dump files
645 between various stages. */
646 unsigned int h = 0;
647 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
649 while (*p)
650 h += (h << 7) + *p++; /* ??? revisit */
652 hash += ((unsigned int) SYMBOL_REF << 7) + h;
653 return hash ? hash : (unsigned int) SYMBOL_REF;
656 case PRE_DEC:
657 case PRE_INC:
658 case POST_DEC:
659 case POST_INC:
660 case POST_MODIFY:
661 case PRE_MODIFY:
662 case PC:
663 case CC0:
664 case CALL:
665 case UNSPEC_VOLATILE:
666 return 0;
668 case ASM_OPERANDS:
669 if (MEM_VOLATILE_P (x))
670 return 0;
672 break;
674 default:
675 break;
678 i = GET_RTX_LENGTH (code) - 1;
679 fmt = GET_RTX_FORMAT (code);
680 for (; i >= 0; i--)
682 switch (fmt[i])
684 case 'e':
686 rtx tem = XEXP (x, i);
687 unsigned int tem_hash = cselib_hash_rtx (tem, create);
689 if (tem_hash == 0)
690 return 0;
692 hash += tem_hash;
694 break;
695 case 'E':
696 for (j = 0; j < XVECLEN (x, i); j++)
698 unsigned int tem_hash
699 = cselib_hash_rtx (XVECEXP (x, i, j), create);
701 if (tem_hash == 0)
702 return 0;
704 hash += tem_hash;
706 break;
708 case 's':
710 const unsigned char *p = (const unsigned char *) XSTR (x, i);
712 if (p)
713 while (*p)
714 hash += *p++;
715 break;
718 case 'i':
719 hash += XINT (x, i);
720 break;
722 case '0':
723 case 't':
724 /* unused */
725 break;
727 default:
728 gcc_unreachable ();
732 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
735 /* Create a new value structure for VALUE and initialize it. The mode of the
736 value is MODE. */
738 static inline cselib_val *
739 new_cselib_val (unsigned int value, enum machine_mode mode)
741 cselib_val *e = pool_alloc (cselib_val_pool);
743 gcc_assert (value);
745 e->value = value;
746 /* We use an alloc pool to allocate this RTL construct because it
747 accounts for about 8% of the overall memory usage. We know
748 precisely when we can have VALUE RTXen (when cselib is active)
749 so we don't need to put them in garbage collected memory.
750 ??? Why should a VALUE be an RTX in the first place? */
751 e->u.val_rtx = pool_alloc (value_pool);
752 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
753 PUT_CODE (e->u.val_rtx, VALUE);
754 PUT_MODE (e->u.val_rtx, mode);
755 CSELIB_VAL_PTR (e->u.val_rtx) = e;
756 e->addr_list = 0;
757 e->locs = 0;
758 e->next_containing_mem = 0;
759 return e;
762 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
763 contains the data at this address. X is a MEM that represents the
764 value. Update the two value structures to represent this situation. */
766 static void
767 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
769 struct elt_loc_list *l;
771 /* Avoid duplicates. */
772 for (l = mem_elt->locs; l; l = l->next)
773 if (MEM_P (l->loc)
774 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
775 return;
777 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
778 mem_elt->locs
779 = new_elt_loc_list (mem_elt->locs,
780 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
781 if (mem_elt->next_containing_mem == NULL)
783 mem_elt->next_containing_mem = first_containing_mem;
784 first_containing_mem = mem_elt;
788 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
789 If CREATE, make a new one if we haven't seen it before. */
791 static cselib_val *
792 cselib_lookup_mem (rtx x, int create)
794 enum machine_mode mode = GET_MODE (x);
795 void **slot;
796 cselib_val *addr;
797 cselib_val *mem_elt;
798 struct elt_list *l;
800 if (MEM_VOLATILE_P (x) || mode == BLKmode
801 || !cselib_record_memory
802 || (FLOAT_MODE_P (mode) && flag_float_store))
803 return 0;
805 /* Look up the value for the address. */
806 addr = cselib_lookup (XEXP (x, 0), mode, create);
807 if (! addr)
808 return 0;
810 /* Find a value that describes a value of our mode at that address. */
811 for (l = addr->addr_list; l; l = l->next)
812 if (GET_MODE (l->elt->u.val_rtx) == mode)
813 return l->elt;
815 if (! create)
816 return 0;
818 mem_elt = new_cselib_val (++next_unknown_value, mode);
819 add_mem_for_addr (addr, mem_elt, x);
820 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
821 mem_elt->value, INSERT);
822 *slot = mem_elt;
823 return mem_elt;
826 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
827 with VALUE expressions. This way, it becomes independent of changes
828 to registers and memory.
829 X isn't actually modified; if modifications are needed, new rtl is
830 allocated. However, the return value can share rtl with X. */
833 cselib_subst_to_values (rtx x)
835 enum rtx_code code = GET_CODE (x);
836 const char *fmt = GET_RTX_FORMAT (code);
837 cselib_val *e;
838 struct elt_list *l;
839 rtx copy = x;
840 int i;
842 switch (code)
844 case REG:
845 l = REG_VALUES (REGNO (x));
846 if (l && l->elt == NULL)
847 l = l->next;
848 for (; l; l = l->next)
849 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
850 return l->elt->u.val_rtx;
852 gcc_unreachable ();
854 case MEM:
855 e = cselib_lookup_mem (x, 0);
856 if (! e)
858 /* This happens for autoincrements. Assign a value that doesn't
859 match any other. */
860 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
862 return e->u.val_rtx;
864 case CONST_DOUBLE:
865 case CONST_VECTOR:
866 case CONST_INT:
867 return x;
869 case POST_INC:
870 case PRE_INC:
871 case POST_DEC:
872 case PRE_DEC:
873 case POST_MODIFY:
874 case PRE_MODIFY:
875 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
876 return e->u.val_rtx;
878 default:
879 break;
882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
884 if (fmt[i] == 'e')
886 rtx t = cselib_subst_to_values (XEXP (x, i));
888 if (t != XEXP (x, i) && x == copy)
889 copy = shallow_copy_rtx (x);
891 XEXP (copy, i) = t;
893 else if (fmt[i] == 'E')
895 int j, k;
897 for (j = 0; j < XVECLEN (x, i); j++)
899 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
901 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
903 if (x == copy)
904 copy = shallow_copy_rtx (x);
906 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
907 for (k = 0; k < j; k++)
908 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
911 XVECEXP (copy, i, j) = t;
916 return copy;
919 /* Look up the rtl expression X in our tables and return the value it has.
920 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
921 we create a new one if possible, using mode MODE if X doesn't have a mode
922 (i.e. because it's a constant). */
924 cselib_val *
925 cselib_lookup (rtx x, enum machine_mode mode, int create)
927 void **slot;
928 cselib_val *e;
929 unsigned int hashval;
931 if (GET_MODE (x) != VOIDmode)
932 mode = GET_MODE (x);
934 if (GET_CODE (x) == VALUE)
935 return CSELIB_VAL_PTR (x);
937 if (REG_P (x))
939 struct elt_list *l;
940 unsigned int i = REGNO (x);
942 l = REG_VALUES (i);
943 if (l && l->elt == NULL)
944 l = l->next;
945 for (; l; l = l->next)
946 if (mode == GET_MODE (l->elt->u.val_rtx))
947 return l->elt;
949 if (! create)
950 return 0;
952 if (i < FIRST_PSEUDO_REGISTER)
954 unsigned int n = hard_regno_nregs[i][mode];
956 if (n > max_value_regs)
957 max_value_regs = n;
960 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
961 e->locs = new_elt_loc_list (e->locs, x);
962 if (REG_VALUES (i) == 0)
964 /* Maintain the invariant that the first entry of
965 REG_VALUES, if present, must be the value used to set the
966 register, or NULL. */
967 used_regs[n_used_regs++] = i;
968 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
970 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
971 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
972 *slot = e;
973 return e;
976 if (MEM_P (x))
977 return cselib_lookup_mem (x, create);
979 hashval = cselib_hash_rtx (x, create);
980 /* Can't even create if hashing is not possible. */
981 if (! hashval)
982 return 0;
984 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
985 hashval, create ? INSERT : NO_INSERT);
986 if (slot == 0)
987 return 0;
989 e = (cselib_val *) *slot;
990 if (e)
991 return e;
993 e = new_cselib_val (hashval, mode);
995 /* We have to fill the slot before calling cselib_subst_to_values:
996 the hash table is inconsistent until we do so, and
997 cselib_subst_to_values will need to do lookups. */
998 *slot = (void *) e;
999 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1000 return e;
1003 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1004 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1005 is used to determine how many hard registers are being changed. If MODE
1006 is VOIDmode, then only REGNO is being changed; this is used when
1007 invalidating call clobbered registers across a call. */
1009 static void
1010 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1012 unsigned int endregno;
1013 unsigned int i;
1015 /* If we see pseudos after reload, something is _wrong_. */
1016 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1017 || reg_renumber[regno] < 0);
1019 /* Determine the range of registers that must be invalidated. For
1020 pseudos, only REGNO is affected. For hard regs, we must take MODE
1021 into account, and we must also invalidate lower register numbers
1022 if they contain values that overlap REGNO. */
1023 if (regno < FIRST_PSEUDO_REGISTER)
1025 gcc_assert (mode != VOIDmode);
1027 if (regno < max_value_regs)
1028 i = 0;
1029 else
1030 i = regno - max_value_regs;
1032 endregno = regno + hard_regno_nregs[regno][mode];
1034 else
1036 i = regno;
1037 endregno = regno + 1;
1040 for (; i < endregno; i++)
1042 struct elt_list **l = &REG_VALUES (i);
1044 /* Go through all known values for this reg; if it overlaps the range
1045 we're invalidating, remove the value. */
1046 while (*l)
1048 cselib_val *v = (*l)->elt;
1049 struct elt_loc_list **p;
1050 unsigned int this_last = i;
1052 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1053 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1055 if (this_last < regno || v == NULL)
1057 l = &(*l)->next;
1058 continue;
1061 /* We have an overlap. */
1062 if (*l == REG_VALUES (i))
1064 /* Maintain the invariant that the first entry of
1065 REG_VALUES, if present, must be the value used to set
1066 the register, or NULL. This is also nice because
1067 then we won't push the same regno onto user_regs
1068 multiple times. */
1069 (*l)->elt = NULL;
1070 l = &(*l)->next;
1072 else
1073 unchain_one_elt_list (l);
1075 /* Now, we clear the mapping from value to reg. It must exist, so
1076 this code will crash intentionally if it doesn't. */
1077 for (p = &v->locs; ; p = &(*p)->next)
1079 rtx x = (*p)->loc;
1081 if (REG_P (x) && REGNO (x) == i)
1083 unchain_one_elt_loc_list (p);
1084 break;
1087 if (v->locs == 0)
1088 n_useless_values++;
1093 /* Return 1 if X has a value that can vary even between two
1094 executions of the program. 0 means X can be compared reliably
1095 against certain constants or near-constants. */
1097 static int
1098 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1100 /* We actually don't need to verify very hard. This is because
1101 if X has actually changed, we invalidate the memory anyway,
1102 so assume that all common memory addresses are
1103 invariant. */
1104 return 0;
1107 /* Invalidate any locations in the table which are changed because of a
1108 store to MEM_RTX. If this is called because of a non-const call
1109 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1111 static void
1112 cselib_invalidate_mem (rtx mem_rtx)
1114 cselib_val **vp, *v, *next;
1115 int num_mems = 0;
1116 rtx mem_addr;
1118 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1119 mem_rtx = canon_rtx (mem_rtx);
1121 vp = &first_containing_mem;
1122 for (v = *vp; v != &dummy_val; v = next)
1124 bool has_mem = false;
1125 struct elt_loc_list **p = &v->locs;
1126 int had_locs = v->locs != 0;
1128 while (*p)
1130 rtx x = (*p)->loc;
1131 cselib_val *addr;
1132 struct elt_list **mem_chain;
1134 /* MEMs may occur in locations only at the top level; below
1135 that every MEM or REG is substituted by its VALUE. */
1136 if (!MEM_P (x))
1138 p = &(*p)->next;
1139 continue;
1141 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1142 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1143 x, cselib_rtx_varies_p))
1145 has_mem = true;
1146 num_mems++;
1147 p = &(*p)->next;
1148 continue;
1151 /* This one overlaps. */
1152 /* We must have a mapping from this MEM's address to the
1153 value (E). Remove that, too. */
1154 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1155 mem_chain = &addr->addr_list;
1156 for (;;)
1158 if ((*mem_chain)->elt == v)
1160 unchain_one_elt_list (mem_chain);
1161 break;
1164 mem_chain = &(*mem_chain)->next;
1167 unchain_one_elt_loc_list (p);
1170 if (had_locs && v->locs == 0)
1171 n_useless_values++;
1173 next = v->next_containing_mem;
1174 if (has_mem)
1176 *vp = v;
1177 vp = &(*vp)->next_containing_mem;
1179 else
1180 v->next_containing_mem = NULL;
1182 *vp = &dummy_val;
1185 /* Invalidate DEST, which is being assigned to or clobbered. */
1187 void
1188 cselib_invalidate_rtx (rtx dest)
1190 while (GET_CODE (dest) == SUBREG
1191 || GET_CODE (dest) == ZERO_EXTRACT
1192 || GET_CODE (dest) == STRICT_LOW_PART)
1193 dest = XEXP (dest, 0);
1195 if (REG_P (dest))
1196 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1197 else if (MEM_P (dest))
1198 cselib_invalidate_mem (dest);
1200 /* Some machines don't define AUTO_INC_DEC, but they still use push
1201 instructions. We need to catch that case here in order to
1202 invalidate the stack pointer correctly. Note that invalidating
1203 the stack pointer is different from invalidating DEST. */
1204 if (push_operand (dest, GET_MODE (dest)))
1205 cselib_invalidate_rtx (stack_pointer_rtx);
1208 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1210 static void
1211 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1212 void *data ATTRIBUTE_UNUSED)
1214 cselib_invalidate_rtx (dest);
1217 /* Record the result of a SET instruction. DEST is being set; the source
1218 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1219 describes its address. */
1221 static void
1222 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1224 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1226 if (src_elt == 0 || side_effects_p (dest))
1227 return;
1229 if (dreg >= 0)
1231 if (dreg < FIRST_PSEUDO_REGISTER)
1233 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1235 if (n > max_value_regs)
1236 max_value_regs = n;
1239 if (REG_VALUES (dreg) == 0)
1241 used_regs[n_used_regs++] = dreg;
1242 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1244 else
1246 /* The register should have been invalidated. */
1247 gcc_assert (REG_VALUES (dreg)->elt == 0);
1248 REG_VALUES (dreg)->elt = src_elt;
1251 if (src_elt->locs == 0)
1252 n_useless_values--;
1253 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1255 else if (MEM_P (dest) && dest_addr_elt != 0
1256 && cselib_record_memory)
1258 if (src_elt->locs == 0)
1259 n_useless_values--;
1260 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1264 /* Describe a single set that is part of an insn. */
1265 struct set
1267 rtx src;
1268 rtx dest;
1269 cselib_val *src_elt;
1270 cselib_val *dest_addr_elt;
1273 /* There is no good way to determine how many elements there can be
1274 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1275 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1277 /* Record the effects of any sets in INSN. */
1278 static void
1279 cselib_record_sets (rtx insn)
1281 int n_sets = 0;
1282 int i;
1283 struct set sets[MAX_SETS];
1284 rtx body = PATTERN (insn);
1285 rtx cond = 0;
1287 body = PATTERN (insn);
1288 if (GET_CODE (body) == COND_EXEC)
1290 cond = COND_EXEC_TEST (body);
1291 body = COND_EXEC_CODE (body);
1294 /* Find all sets. */
1295 if (GET_CODE (body) == SET)
1297 sets[0].src = SET_SRC (body);
1298 sets[0].dest = SET_DEST (body);
1299 n_sets = 1;
1301 else if (GET_CODE (body) == PARALLEL)
1303 /* Look through the PARALLEL and record the values being
1304 set, if possible. Also handle any CLOBBERs. */
1305 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1307 rtx x = XVECEXP (body, 0, i);
1309 if (GET_CODE (x) == SET)
1311 sets[n_sets].src = SET_SRC (x);
1312 sets[n_sets].dest = SET_DEST (x);
1313 n_sets++;
1318 /* Look up the values that are read. Do this before invalidating the
1319 locations that are written. */
1320 for (i = 0; i < n_sets; i++)
1322 rtx dest = sets[i].dest;
1324 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1325 the low part after invalidating any knowledge about larger modes. */
1326 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1327 sets[i].dest = dest = XEXP (dest, 0);
1329 /* We don't know how to record anything but REG or MEM. */
1330 if (REG_P (dest)
1331 || (MEM_P (dest) && cselib_record_memory))
1333 rtx src = sets[i].src;
1334 if (cond)
1335 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1336 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1337 if (MEM_P (dest))
1338 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1339 else
1340 sets[i].dest_addr_elt = 0;
1344 /* Invalidate all locations written by this insn. Note that the elts we
1345 looked up in the previous loop aren't affected, just some of their
1346 locations may go away. */
1347 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1349 /* If this is an asm, look for duplicate sets. This can happen when the
1350 user uses the same value as an output multiple times. This is valid
1351 if the outputs are not actually used thereafter. Treat this case as
1352 if the value isn't actually set. We do this by smashing the destination
1353 to pc_rtx, so that we won't record the value later. */
1354 if (n_sets >= 2 && asm_noperands (body) >= 0)
1356 for (i = 0; i < n_sets; i++)
1358 rtx dest = sets[i].dest;
1359 if (REG_P (dest) || MEM_P (dest))
1361 int j;
1362 for (j = i + 1; j < n_sets; j++)
1363 if (rtx_equal_p (dest, sets[j].dest))
1365 sets[i].dest = pc_rtx;
1366 sets[j].dest = pc_rtx;
1372 /* Now enter the equivalences in our tables. */
1373 for (i = 0; i < n_sets; i++)
1375 rtx dest = sets[i].dest;
1376 if (REG_P (dest)
1377 || (MEM_P (dest) && cselib_record_memory))
1378 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1382 /* Record the effects of INSN. */
1384 void
1385 cselib_process_insn (rtx insn)
1387 int i;
1388 rtx x;
1390 if (find_reg_note (insn, REG_LIBCALL, NULL))
1391 cselib_current_insn_in_libcall = true;
1392 cselib_current_insn = insn;
1394 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1395 if (LABEL_P (insn)
1396 || (CALL_P (insn)
1397 && find_reg_note (insn, REG_SETJMP, NULL))
1398 || (NONJUMP_INSN_P (insn)
1399 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1400 && MEM_VOLATILE_P (PATTERN (insn))))
1402 if (find_reg_note (insn, REG_RETVAL, NULL))
1403 cselib_current_insn_in_libcall = false;
1404 cselib_clear_table ();
1405 return;
1408 if (! INSN_P (insn))
1410 if (find_reg_note (insn, REG_RETVAL, NULL))
1411 cselib_current_insn_in_libcall = false;
1412 cselib_current_insn = 0;
1413 return;
1416 /* If this is a call instruction, forget anything stored in a
1417 call clobbered register, or, if this is not a const call, in
1418 memory. */
1419 if (CALL_P (insn))
1421 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1422 if (call_used_regs[i]
1423 || (REG_VALUES (i) && REG_VALUES (i)->elt
1424 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1425 GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
1426 cselib_invalidate_regno (i, reg_raw_mode[i]);
1428 if (! CONST_OR_PURE_CALL_P (insn))
1429 cselib_invalidate_mem (callmem);
1432 cselib_record_sets (insn);
1434 #ifdef AUTO_INC_DEC
1435 /* Clobber any registers which appear in REG_INC notes. We
1436 could keep track of the changes to their values, but it is
1437 unlikely to help. */
1438 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1439 if (REG_NOTE_KIND (x) == REG_INC)
1440 cselib_invalidate_rtx (XEXP (x, 0));
1441 #endif
1443 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1444 after we have processed the insn. */
1445 if (CALL_P (insn))
1446 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1447 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1448 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1450 if (find_reg_note (insn, REG_RETVAL, NULL))
1451 cselib_current_insn_in_libcall = false;
1452 cselib_current_insn = 0;
1454 if (n_useless_values > MAX_USELESS_VALUES)
1455 remove_useless_values ();
1458 /* Initialize cselib for one pass. The caller must also call
1459 init_alias_analysis. */
1461 void
1462 cselib_init (bool record_memory)
1464 elt_list_pool = create_alloc_pool ("elt_list",
1465 sizeof (struct elt_list), 10);
1466 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1467 sizeof (struct elt_loc_list), 10);
1468 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1469 sizeof (cselib_val), 10);
1470 value_pool = create_alloc_pool ("value",
1471 RTX_SIZE (VALUE), 100);
1472 cselib_record_memory = record_memory;
1473 /* This is only created once. */
1474 if (! callmem)
1475 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1477 cselib_nregs = max_reg_num ();
1479 /* We preserve reg_values to allow expensive clearing of the whole thing.
1480 Reallocate it however if it happens to be too large. */
1481 if (!reg_values || reg_values_size < cselib_nregs
1482 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1484 if (reg_values)
1485 free (reg_values);
1486 /* Some space for newly emit instructions so we don't end up
1487 reallocating in between passes. */
1488 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1489 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1491 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1492 n_used_regs = 0;
1493 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1494 cselib_current_insn_in_libcall = false;
1497 /* Called when the current user is done with cselib. */
1499 void
1500 cselib_finish (void)
1502 free_alloc_pool (elt_list_pool);
1503 free_alloc_pool (elt_loc_list_pool);
1504 free_alloc_pool (cselib_val_pool);
1505 free_alloc_pool (value_pool);
1506 cselib_clear_table ();
1507 htab_delete (hash_table);
1508 free (used_regs);
1509 used_regs = 0;
1510 hash_table = 0;
1511 n_useless_values = 0;
1512 next_unknown_value = 0;
1515 #include "gt-cselib.h"