No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / flow.c
blob53aea3ef0f3706e4d5cc0c60a19bff761039038a
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
143 #include "tree-pass.h"
144 #include "params.h"
146 #ifndef HAVE_epilogue
147 #define HAVE_epilogue 0
148 #endif
149 #ifndef HAVE_prologue
150 #define HAVE_prologue 0
151 #endif
152 #ifndef HAVE_sibcall_epilogue
153 #define HAVE_sibcall_epilogue 0
154 #endif
156 #ifndef EPILOGUE_USES
157 #define EPILOGUE_USES(REGNO) 0
158 #endif
159 #ifndef EH_USES
160 #define EH_USES(REGNO) 0
161 #endif
163 #ifdef HAVE_conditional_execution
164 #ifndef REVERSE_CONDEXEC_PREDICATES_P
165 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
166 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
167 #endif
168 #endif
170 /* This is the maximum number of times we process any given block if the
171 latest loop depth count is smaller than this number. Only used for the
172 failure strategy to avoid infinite loops in calculate_global_regs_live. */
173 #define MAX_LIVENESS_ROUNDS 20
175 /* Nonzero if the second flow pass has completed. */
176 int flow2_completed;
178 /* Maximum register number used in this function, plus one. */
180 int max_regno;
182 /* Indexed by n, giving various register information */
184 varray_type reg_n_info;
186 /* Regset of regs live when calls to `setjmp'-like functions happen. */
187 /* ??? Does this exist only for the setjmp-clobbered warning message? */
189 static regset regs_live_at_setjmp;
191 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
192 that have to go in the same hard reg.
193 The first two regs in the list are a pair, and the next two
194 are another pair, etc. */
195 rtx regs_may_share;
197 /* Set of registers that may be eliminable. These are handled specially
198 in updating regs_ever_live. */
200 static HARD_REG_SET elim_reg_set;
202 /* Holds information for tracking conditional register life information. */
203 struct reg_cond_life_info
205 /* A boolean expression of conditions under which a register is dead. */
206 rtx condition;
207 /* Conditions under which a register is dead at the basic block end. */
208 rtx orig_condition;
210 /* A boolean expression of conditions under which a register has been
211 stored into. */
212 rtx stores;
214 /* ??? Could store mask of bytes that are dead, so that we could finally
215 track lifetimes of multi-word registers accessed via subregs. */
218 /* For use in communicating between propagate_block and its subroutines.
219 Holds all information needed to compute life and def-use information. */
221 struct propagate_block_info
223 /* The basic block we're considering. */
224 basic_block bb;
226 /* Bit N is set if register N is conditionally or unconditionally live. */
227 regset reg_live;
229 /* Bit N is set if register N is set this insn. */
230 regset new_set;
232 /* Element N is the next insn that uses (hard or pseudo) register N
233 within the current basic block; or zero, if there is no such insn. */
234 rtx *reg_next_use;
236 /* Contains a list of all the MEMs we are tracking for dead store
237 elimination. */
238 rtx mem_set_list;
240 /* If non-null, record the set of registers set unconditionally in the
241 basic block. */
242 regset local_set;
244 /* If non-null, record the set of registers set conditionally in the
245 basic block. */
246 regset cond_local_set;
248 #ifdef HAVE_conditional_execution
249 /* Indexed by register number, holds a reg_cond_life_info for each
250 register that is not unconditionally live or dead. */
251 splay_tree reg_cond_dead;
253 /* Bit N is set if register N is in an expression in reg_cond_dead. */
254 regset reg_cond_reg;
255 #endif
257 /* The length of mem_set_list. */
258 int mem_set_list_len;
260 /* Nonzero if the value of CC0 is live. */
261 int cc0_live;
263 /* Flags controlling the set of information propagate_block collects. */
264 int flags;
265 /* Index of instruction being processed. */
266 int insn_num;
269 /* Number of dead insns removed. */
270 static int ndead;
272 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
273 where given register died. When the register is marked alive, we use the
274 information to compute amount of instructions life range cross.
275 (remember, we are walking backward). This can be computed as current
276 pbi->insn_num - reg_deaths[regno].
277 At the end of processing each basic block, the remaining live registers
278 are inspected and live ranges are increased same way so liverange of global
279 registers are computed correctly.
281 The array is maintained clear for dead registers, so it can be safely reused
282 for next basic block without expensive memset of the whole array after
283 reseting pbi->insn_num to 0. */
285 static int *reg_deaths;
287 /* Forward declarations */
288 static int verify_wide_reg_1 (rtx *, void *);
289 static void verify_wide_reg (int, basic_block);
290 static void verify_local_live_at_start (regset, basic_block);
291 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
292 static void notice_stack_pointer_modification (void);
293 static void mark_reg (rtx, void *);
294 static void mark_regs_live_at_end (regset);
295 static void calculate_global_regs_live (sbitmap, sbitmap, int);
296 static void propagate_block_delete_insn (rtx);
297 static rtx propagate_block_delete_libcall (rtx, rtx);
298 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
299 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
300 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
301 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
302 rtx, rtx, int);
303 static int find_regno_partial (rtx *, void *);
305 #ifdef HAVE_conditional_execution
306 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
307 static void free_reg_cond_life_info (splay_tree_value);
308 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
309 static void flush_reg_cond_reg (struct propagate_block_info *, int);
310 static rtx elim_reg_cond (rtx, unsigned int);
311 static rtx ior_reg_cond (rtx, rtx, int);
312 static rtx not_reg_cond (rtx);
313 static rtx and_reg_cond (rtx, rtx, int);
314 #endif
315 #ifdef AUTO_INC_DEC
316 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
317 rtx, rtx);
318 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
319 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
320 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
321 #endif
322 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
323 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
324 void debug_flow_info (void);
325 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
326 static int invalidate_mems_from_autoinc (rtx *, void *);
327 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
328 static void clear_log_links (sbitmap);
329 static int count_or_remove_death_notes_bb (basic_block, int);
330 static void allocate_bb_life_data (void);
332 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
333 note associated with the BLOCK. */
336 first_insn_after_basic_block_note (basic_block block)
338 rtx insn;
340 /* Get the first instruction in the block. */
341 insn = BB_HEAD (block);
343 if (insn == NULL_RTX)
344 return NULL_RTX;
345 if (LABEL_P (insn))
346 insn = NEXT_INSN (insn);
347 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
349 return NEXT_INSN (insn);
352 /* Perform data flow analysis for the whole control flow graph.
353 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
355 void
356 life_analysis (FILE *file, int flags)
358 #ifdef ELIMINABLE_REGS
359 int i;
360 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
361 #endif
363 /* Record which registers will be eliminated. We use this in
364 mark_used_regs. */
366 CLEAR_HARD_REG_SET (elim_reg_set);
368 #ifdef ELIMINABLE_REGS
369 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
370 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
371 #else
372 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
373 #endif
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 if (flags & PROP_REG_INFO)
378 init_subregs_of_mode ();
379 #endif
381 if (! optimize)
382 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
384 /* The post-reload life analysis have (on a global basis) the same
385 registers live as was computed by reload itself. elimination
386 Otherwise offsets and such may be incorrect.
388 Reload will make some registers as live even though they do not
389 appear in the rtl.
391 We don't want to create new auto-incs after reload, since they
392 are unlikely to be useful and can cause problems with shared
393 stack slots. */
394 if (reload_completed)
395 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
397 /* We want alias analysis information for local dead store elimination. */
398 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
399 init_alias_analysis ();
401 /* Always remove no-op moves. Do this before other processing so
402 that we don't have to keep re-scanning them. */
403 delete_noop_moves ();
405 /* Some targets can emit simpler epilogues if they know that sp was
406 not ever modified during the function. After reload, of course,
407 we've already emitted the epilogue so there's no sense searching. */
408 if (! reload_completed)
409 notice_stack_pointer_modification ();
411 /* Allocate and zero out data structures that will record the
412 data from lifetime analysis. */
413 allocate_reg_life_data ();
414 allocate_bb_life_data ();
416 /* Find the set of registers live on function exit. */
417 mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
419 /* "Update" life info from zero. It'd be nice to begin the
420 relaxation with just the exit and noreturn blocks, but that set
421 is not immediately handy. */
423 if (flags & PROP_REG_INFO)
425 memset (regs_ever_live, 0, sizeof (regs_ever_live));
426 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
428 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
429 if (reg_deaths)
431 free (reg_deaths);
432 reg_deaths = NULL;
435 /* Clean up. */
436 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
437 end_alias_analysis ();
439 if (file)
440 dump_flow_info (file);
442 /* Removing dead insns should have made jumptables really dead. */
443 delete_dead_jumptables ();
446 /* A subroutine of verify_wide_reg, called through for_each_rtx.
447 Search for REGNO. If found, return 2 if it is not wider than
448 word_mode. */
450 static int
451 verify_wide_reg_1 (rtx *px, void *pregno)
453 rtx x = *px;
454 unsigned int regno = *(int *) pregno;
456 if (REG_P (x) && REGNO (x) == regno)
458 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
459 return 2;
460 return 1;
462 return 0;
465 /* A subroutine of verify_local_live_at_start. Search through insns
466 of BB looking for register REGNO. */
468 static void
469 verify_wide_reg (int regno, basic_block bb)
471 rtx head = BB_HEAD (bb), end = BB_END (bb);
473 while (1)
475 if (INSN_P (head))
477 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
478 if (r == 1)
479 return;
480 if (r == 2)
481 break;
483 if (head == end)
484 break;
485 head = NEXT_INSN (head);
487 if (dump_file)
489 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
490 dump_bb (bb, dump_file, 0);
492 fatal_error ("internal consistency failure");
495 /* A subroutine of update_life_info. Verify that there are no untoward
496 changes in live_at_start during a local update. */
498 static void
499 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
501 if (reload_completed)
503 /* After reload, there are no pseudos, nor subregs of multi-word
504 registers. The regsets should exactly match. */
505 if (! REG_SET_EQUAL_P (new_live_at_start,
506 bb->il.rtl->global_live_at_start))
508 if (dump_file)
510 fprintf (dump_file,
511 "live_at_start mismatch in bb %d, aborting\nNew:\n",
512 bb->index);
513 debug_bitmap_file (dump_file, new_live_at_start);
514 fputs ("Old:\n", dump_file);
515 dump_bb (bb, dump_file, 0);
517 fatal_error ("internal consistency failure");
520 else
522 unsigned i;
523 reg_set_iterator rsi;
525 /* Find the set of changed registers. */
526 XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
528 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
530 /* No registers should die. */
531 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
533 if (dump_file)
535 fprintf (dump_file,
536 "Register %d died unexpectedly.\n", i);
537 dump_bb (bb, dump_file, 0);
539 fatal_error ("internal consistency failure");
541 /* Verify that the now-live register is wider than word_mode. */
542 verify_wide_reg (i, bb);
547 /* Updates life information starting with the basic blocks set in BLOCKS.
548 If BLOCKS is null, consider it to be the universal set.
550 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
551 we are only expecting local modifications to basic blocks. If we find
552 extra registers live at the beginning of a block, then we either killed
553 useful data, or we have a broken split that wants data not provided.
554 If we find registers removed from live_at_start, that means we have
555 a broken peephole that is killing a register it shouldn't.
557 ??? This is not true in one situation -- when a pre-reload splitter
558 generates subregs of a multi-word pseudo, current life analysis will
559 lose the kill. So we _can_ have a pseudo go live. How irritating.
561 It is also not true when a peephole decides that it doesn't need one
562 or more of the inputs.
564 Including PROP_REG_INFO does not properly refresh regs_ever_live
565 unless the caller resets it to zero. */
568 update_life_info (sbitmap blocks, enum update_life_extent extent,
569 int prop_flags)
571 regset tmp;
572 unsigned i = 0;
573 int stabilized_prop_flags = prop_flags;
574 basic_block bb;
576 tmp = ALLOC_REG_SET (&reg_obstack);
577 ndead = 0;
579 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
580 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
582 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
583 ? TV_LIFE_UPDATE : TV_LIFE);
585 /* Changes to the CFG are only allowed when
586 doing a global update for the entire CFG. */
587 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
588 || (extent != UPDATE_LIFE_LOCAL && !blocks));
590 /* For a global update, we go through the relaxation process again. */
591 if (extent != UPDATE_LIFE_LOCAL)
593 for ( ; ; )
595 int changed = 0;
597 calculate_global_regs_live (blocks, blocks,
598 prop_flags & (PROP_SCAN_DEAD_CODE
599 | PROP_SCAN_DEAD_STORES
600 | PROP_ALLOW_CFG_CHANGES));
602 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
603 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 break;
606 /* Removing dead code may allow the CFG to be simplified which
607 in turn may allow for further dead code detection / removal. */
608 FOR_EACH_BB_REVERSE (bb)
610 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
611 changed |= propagate_block (bb, tmp, NULL, NULL,
612 prop_flags & (PROP_SCAN_DEAD_CODE
613 | PROP_SCAN_DEAD_STORES
614 | PROP_KILL_DEAD_CODE));
617 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
618 subsequent propagate_block calls, since removing or acting as
619 removing dead code can affect global register liveness, which
620 is supposed to be finalized for this call after this loop. */
621 stabilized_prop_flags
622 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
623 | PROP_KILL_DEAD_CODE);
625 if (! changed)
626 break;
628 /* We repeat regardless of what cleanup_cfg says. If there were
629 instructions deleted above, that might have been only a
630 partial improvement (see PARAM_MAX_FLOW_MEMORY_LOCATIONS usage).
631 Further improvement may be possible. */
632 cleanup_cfg (CLEANUP_EXPENSIVE);
634 /* Zap the life information from the last round. If we don't
635 do this, we can wind up with registers that no longer appear
636 in the code being marked live at entry. */
637 FOR_EACH_BB (bb)
639 CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
640 CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
644 /* If asked, remove notes from the blocks we'll update. */
645 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
646 count_or_remove_death_notes (blocks, 1);
649 /* Clear log links in case we are asked to (re)compute them. */
650 if (prop_flags & PROP_LOG_LINKS)
651 clear_log_links (blocks);
653 if (blocks)
655 sbitmap_iterator sbi;
657 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
659 bb = BASIC_BLOCK (i);
661 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
662 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
664 if (extent == UPDATE_LIFE_LOCAL)
665 verify_local_live_at_start (tmp, bb);
668 else
670 FOR_EACH_BB_REVERSE (bb)
672 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
674 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
676 if (extent == UPDATE_LIFE_LOCAL)
677 verify_local_live_at_start (tmp, bb);
681 FREE_REG_SET (tmp);
683 if (prop_flags & PROP_REG_INFO)
685 reg_set_iterator rsi;
687 /* The only pseudos that are live at the beginning of the function
688 are those that were not set anywhere in the function. local-alloc
689 doesn't know how to handle these correctly, so mark them as not
690 local to any one basic block. */
691 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
692 FIRST_PSEUDO_REGISTER, i, rsi)
693 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
695 /* We have a problem with any pseudoreg that lives across the setjmp.
696 ANSI says that if a user variable does not change in value between
697 the setjmp and the longjmp, then the longjmp preserves it. This
698 includes longjmp from a place where the pseudo appears dead.
699 (In principle, the value still exists if it is in scope.)
700 If the pseudo goes in a hard reg, some other value may occupy
701 that hard reg where this pseudo is dead, thus clobbering the pseudo.
702 Conclusion: such a pseudo must not go in a hard reg. */
703 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
704 FIRST_PSEUDO_REGISTER, i, rsi)
706 if (regno_reg_rtx[i] != 0)
708 REG_LIVE_LENGTH (i) = -1;
709 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
713 if (reg_deaths)
715 free (reg_deaths);
716 reg_deaths = NULL;
718 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
719 ? TV_LIFE_UPDATE : TV_LIFE);
720 if (ndead && dump_file)
721 fprintf (dump_file, "deleted %i dead insns\n", ndead);
722 return ndead;
725 /* Update life information in all blocks where BB_DIRTY is set. */
728 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
730 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
731 int n = 0;
732 basic_block bb;
733 int retval = 0;
735 sbitmap_zero (update_life_blocks);
736 FOR_EACH_BB (bb)
738 if (bb->flags & BB_DIRTY)
740 SET_BIT (update_life_blocks, bb->index);
741 n++;
745 if (n)
746 retval = update_life_info (update_life_blocks, extent, prop_flags);
748 sbitmap_free (update_life_blocks);
749 return retval;
752 /* Free the variables allocated by find_basic_blocks. */
754 void
755 free_basic_block_vars (void)
757 if (basic_block_info)
759 clear_edges ();
760 basic_block_info = NULL;
762 n_basic_blocks = 0;
763 last_basic_block = 0;
764 n_edges = 0;
766 label_to_block_map = NULL;
768 ENTRY_BLOCK_PTR->aux = NULL;
769 ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
770 EXIT_BLOCK_PTR->aux = NULL;
771 EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
774 /* Delete any insns that copy a register to itself. */
777 delete_noop_moves (void)
779 rtx insn, next;
780 basic_block bb;
781 int nnoops = 0;
783 FOR_EACH_BB (bb)
785 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
787 next = NEXT_INSN (insn);
788 if (INSN_P (insn) && noop_move_p (insn))
790 rtx note;
792 /* If we're about to remove the first insn of a libcall
793 then move the libcall note to the next real insn and
794 update the retval note. */
795 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
796 && XEXP (note, 0) != insn)
798 rtx new_libcall_insn = next_real_insn (insn);
799 rtx retval_note = find_reg_note (XEXP (note, 0),
800 REG_RETVAL, NULL_RTX);
801 REG_NOTES (new_libcall_insn)
802 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
803 REG_NOTES (new_libcall_insn));
804 XEXP (retval_note, 0) = new_libcall_insn;
807 delete_insn_and_edges (insn);
808 nnoops++;
812 if (nnoops && dump_file)
813 fprintf (dump_file, "deleted %i noop moves", nnoops);
814 return nnoops;
817 /* Delete any jump tables never referenced. We can't delete them at the
818 time of removing tablejump insn as they are referenced by the preceding
819 insns computing the destination, so we delay deleting and garbagecollect
820 them once life information is computed. */
821 void
822 delete_dead_jumptables (void)
824 basic_block bb;
826 /* A dead jump table does not belong to any basic block. Scan insns
827 between two adjacent basic blocks. */
828 FOR_EACH_BB (bb)
830 rtx insn, next;
832 for (insn = NEXT_INSN (BB_END (bb));
833 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
834 insn = next)
836 next = NEXT_INSN (insn);
837 if (LABEL_P (insn)
838 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
839 && JUMP_P (next)
840 && (GET_CODE (PATTERN (next)) == ADDR_VEC
841 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
843 rtx label = insn, jump = next;
845 if (dump_file)
846 fprintf (dump_file, "Dead jumptable %i removed\n",
847 INSN_UID (insn));
849 next = NEXT_INSN (next);
850 delete_insn (jump);
851 delete_insn (label);
857 /* Determine if the stack pointer is constant over the life of the function.
858 Only useful before prologues have been emitted. */
860 static void
861 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
862 void *data ATTRIBUTE_UNUSED)
864 if (x == stack_pointer_rtx
865 /* The stack pointer is only modified indirectly as the result
866 of a push until later in flow. See the comments in rtl.texi
867 regarding Embedded Side-Effects on Addresses. */
868 || (MEM_P (x)
869 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
870 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
871 current_function_sp_is_unchanging = 0;
874 static void
875 notice_stack_pointer_modification (void)
877 basic_block bb;
878 rtx insn;
880 /* Assume that the stack pointer is unchanging if alloca hasn't
881 been used. */
882 current_function_sp_is_unchanging = !current_function_calls_alloca;
883 if (! current_function_sp_is_unchanging)
884 return;
886 FOR_EACH_BB (bb)
887 FOR_BB_INSNS (bb, insn)
889 if (INSN_P (insn))
891 /* Check if insn modifies the stack pointer. */
892 note_stores (PATTERN (insn),
893 notice_stack_pointer_modification_1,
894 NULL);
895 if (! current_function_sp_is_unchanging)
896 return;
901 /* Mark a register in SET. Hard registers in large modes get all
902 of their component registers set as well. */
904 static void
905 mark_reg (rtx reg, void *xset)
907 regset set = (regset) xset;
908 int regno = REGNO (reg);
910 gcc_assert (GET_MODE (reg) != BLKmode);
912 SET_REGNO_REG_SET (set, regno);
913 if (regno < FIRST_PSEUDO_REGISTER)
915 int n = hard_regno_nregs[regno][GET_MODE (reg)];
916 while (--n > 0)
917 SET_REGNO_REG_SET (set, regno + n);
921 /* Mark those regs which are needed at the end of the function as live
922 at the end of the last basic block. */
924 static void
925 mark_regs_live_at_end (regset set)
927 unsigned int i;
929 /* If exiting needs the right stack value, consider the stack pointer
930 live at the end of the function. */
931 if ((HAVE_epilogue && epilogue_completed)
932 || ! EXIT_IGNORE_STACK
933 || (! FRAME_POINTER_REQUIRED
934 && ! current_function_calls_alloca
935 && flag_omit_frame_pointer)
936 || current_function_sp_is_unchanging)
938 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
941 /* Mark the frame pointer if needed at the end of the function. If
942 we end up eliminating it, it will be removed from the live list
943 of each basic block by reload. */
945 if (! reload_completed || frame_pointer_needed)
947 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
948 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
949 /* If they are different, also mark the hard frame pointer as live. */
950 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
951 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
952 #endif
955 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
956 /* Many architectures have a GP register even without flag_pic.
957 Assume the pic register is not in use, or will be handled by
958 other means, if it is not fixed. */
959 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
960 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
961 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
962 #endif
964 /* Mark all global registers, and all registers used by the epilogue
965 as being live at the end of the function since they may be
966 referenced by our caller. */
967 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
968 if (global_regs[i] || EPILOGUE_USES (i))
969 SET_REGNO_REG_SET (set, i);
971 if (HAVE_epilogue && epilogue_completed)
973 /* Mark all call-saved registers that we actually used. */
974 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
975 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
976 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
977 SET_REGNO_REG_SET (set, i);
980 #ifdef EH_RETURN_DATA_REGNO
981 /* Mark the registers that will contain data for the handler. */
982 if (reload_completed && current_function_calls_eh_return)
983 for (i = 0; ; ++i)
985 unsigned regno = EH_RETURN_DATA_REGNO(i);
986 if (regno == INVALID_REGNUM)
987 break;
988 SET_REGNO_REG_SET (set, regno);
990 #endif
991 #ifdef EH_RETURN_STACKADJ_RTX
992 if ((! HAVE_epilogue || ! epilogue_completed)
993 && current_function_calls_eh_return)
995 rtx tmp = EH_RETURN_STACKADJ_RTX;
996 if (tmp && REG_P (tmp))
997 mark_reg (tmp, set);
999 #endif
1000 #ifdef EH_RETURN_HANDLER_RTX
1001 if ((! HAVE_epilogue || ! epilogue_completed)
1002 && current_function_calls_eh_return)
1004 rtx tmp = EH_RETURN_HANDLER_RTX;
1005 if (tmp && REG_P (tmp))
1006 mark_reg (tmp, set);
1008 #endif
1010 /* Mark function return value. */
1011 diddle_return_value (mark_reg, set);
1014 /* Propagate global life info around the graph of basic blocks. Begin
1015 considering blocks with their corresponding bit set in BLOCKS_IN.
1016 If BLOCKS_IN is null, consider it the universal set.
1018 BLOCKS_OUT is set for every block that was changed. */
1020 static void
1021 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1023 basic_block *queue, *qhead, *qtail, *qend, bb;
1024 regset tmp, new_live_at_end, invalidated_by_call;
1025 regset registers_made_dead;
1026 bool failure_strategy_required = false;
1027 int *block_accesses;
1029 /* The registers that are modified within this in block. */
1030 regset *local_sets;
1032 /* The registers that are conditionally modified within this block.
1033 In other words, regs that are set only as part of a COND_EXEC. */
1034 regset *cond_local_sets;
1036 unsigned int i;
1038 /* Some passes used to forget clear aux field of basic block causing
1039 sick behavior here. */
1040 #ifdef ENABLE_CHECKING
1041 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1042 gcc_assert (!bb->aux);
1043 #endif
1045 tmp = ALLOC_REG_SET (&reg_obstack);
1046 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1047 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1048 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1050 /* Inconveniently, this is only readily available in hard reg set form. */
1051 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1052 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1053 SET_REGNO_REG_SET (invalidated_by_call, i);
1055 /* Allocate space for the sets of local properties. */
1056 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1057 sizeof (regset));
1058 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1059 sizeof (regset));
1061 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1062 because the `head == tail' style test for an empty queue doesn't
1063 work with a full queue. */
1064 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1065 qtail = queue;
1066 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1068 /* Queue the blocks set in the initial mask. Do this in reverse block
1069 number order so that we are more likely for the first round to do
1070 useful work. We use AUX non-null to flag that the block is queued. */
1071 if (blocks_in)
1073 FOR_EACH_BB (bb)
1074 if (TEST_BIT (blocks_in, bb->index))
1076 *--qhead = bb;
1077 bb->aux = bb;
1080 else
1082 FOR_EACH_BB (bb)
1084 *--qhead = bb;
1085 bb->aux = bb;
1089 block_accesses = xcalloc (last_basic_block, sizeof (int));
1091 /* We clean aux when we remove the initially-enqueued bbs, but we
1092 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1093 unconditionally. */
1094 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1096 if (blocks_out)
1097 sbitmap_zero (blocks_out);
1099 /* We work through the queue until there are no more blocks. What
1100 is live at the end of this block is precisely the union of what
1101 is live at the beginning of all its successors. So, we set its
1102 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1103 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1104 this block by walking through the instructions in this block in
1105 reverse order and updating as we go. If that changed
1106 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1107 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1109 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1110 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1111 must either be live at the end of the block, or used within the
1112 block. In the latter case, it will certainly never disappear
1113 from GLOBAL_LIVE_AT_START. In the former case, the register
1114 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1115 for one of the successor blocks. By induction, that cannot
1116 occur.
1118 ??? This reasoning doesn't work if we start from non-empty initial
1119 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1120 1) Updating may not terminate (endless oscillation).
1121 2) Even if it does (and it usually does), the resulting information
1122 may be inaccurate. Consider for example the following case:
1124 a = ...;
1125 while (...) {...} -- 'a' not mentioned at all
1126 ... = a;
1128 If the use of 'a' is deleted between two calculations of liveness
1129 information and the initial sets are not cleared, the information
1130 about a's liveness will get stuck inside the loop and the set will
1131 appear not to be dead.
1133 We do not attempt to solve 2) -- the information is conservatively
1134 correct (i.e. we never claim that something live is dead) and the
1135 amount of optimization opportunities missed due to this problem is
1136 not significant.
1138 1) is more serious. In order to fix it, we monitor the number of times
1139 each block is processed. Once one of the blocks has been processed more
1140 times than the maximum number of rounds, we use the following strategy:
1141 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1142 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1143 add the blocks with changed sets into the queue. Thus we are guaranteed
1144 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1145 in which case the original reasoning above is valid), but in general we
1146 only fix up a few offending registers.
1148 The maximum number of rounds for computing liveness is the largest of
1149 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1151 while (qhead != qtail)
1153 int rescan, changed;
1154 basic_block bb;
1155 edge e;
1156 edge_iterator ei;
1158 bb = *qhead++;
1159 if (qhead == qend)
1160 qhead = queue;
1161 bb->aux = NULL;
1163 /* Should we start using the failure strategy? */
1164 if (bb != ENTRY_BLOCK_PTR)
1166 int max_liveness_rounds =
1167 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1169 block_accesses[bb->index]++;
1170 if (block_accesses[bb->index] > max_liveness_rounds)
1171 failure_strategy_required = true;
1174 /* Begin by propagating live_at_start from the successor blocks. */
1175 CLEAR_REG_SET (new_live_at_end);
1177 if (EDGE_COUNT (bb->succs) > 0)
1178 FOR_EACH_EDGE (e, ei, bb->succs)
1180 basic_block sb = e->dest;
1182 /* Call-clobbered registers die across exception and
1183 call edges. */
1184 /* ??? Abnormal call edges ignored for the moment, as this gets
1185 confused by sibling call edges, which crashes reg-stack. */
1186 if (e->flags & EDGE_EH)
1187 bitmap_ior_and_compl_into (new_live_at_end,
1188 sb->il.rtl->global_live_at_start,
1189 invalidated_by_call);
1190 else
1191 IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
1193 /* If a target saves one register in another (instead of on
1194 the stack) the save register will need to be live for EH. */
1195 if (e->flags & EDGE_EH)
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (EH_USES (i))
1198 SET_REGNO_REG_SET (new_live_at_end, i);
1200 else
1202 /* This might be a noreturn function that throws. And
1203 even if it isn't, getting the unwind info right helps
1204 debugging. */
1205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1206 if (EH_USES (i))
1207 SET_REGNO_REG_SET (new_live_at_end, i);
1210 /* The all-important stack pointer must always be live. */
1211 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1213 /* Before reload, there are a few registers that must be forced
1214 live everywhere -- which might not already be the case for
1215 blocks within infinite loops. */
1216 if (! reload_completed)
1218 /* Any reference to any pseudo before reload is a potential
1219 reference of the frame pointer. */
1220 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1222 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1223 /* Pseudos with argument area equivalences may require
1224 reloading via the argument pointer. */
1225 if (fixed_regs[ARG_POINTER_REGNUM])
1226 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1227 #endif
1229 /* Any constant, or pseudo with constant equivalences, may
1230 require reloading from memory using the pic register. */
1231 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1232 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1233 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1236 if (bb == ENTRY_BLOCK_PTR)
1238 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1239 continue;
1242 /* On our first pass through this block, we'll go ahead and continue.
1243 Recognize first pass by checking if local_set is NULL for this
1244 basic block. On subsequent passes, we get to skip out early if
1245 live_at_end wouldn't have changed. */
1247 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1249 local_sets[bb->index - (INVALID_BLOCK + 1)]
1250 = ALLOC_REG_SET (&reg_obstack);
1251 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1252 = ALLOC_REG_SET (&reg_obstack);
1253 rescan = 1;
1255 else
1257 /* If any bits were removed from live_at_end, we'll have to
1258 rescan the block. This wouldn't be necessary if we had
1259 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1260 local_live is really dependent on live_at_end. */
1261 rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
1262 new_live_at_end);
1264 if (!rescan)
1266 regset cond_local_set;
1268 /* If any of the registers in the new live_at_end set are
1269 conditionally set in this basic block, we must rescan.
1270 This is because conditional lifetimes at the end of the
1271 block do not just take the live_at_end set into
1272 account, but also the liveness at the start of each
1273 successor block. We can miss changes in those sets if
1274 we only compare the new live_at_end against the
1275 previous one. */
1276 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1277 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1280 if (!rescan)
1282 regset local_set;
1284 /* Find the set of changed bits. Take this opportunity
1285 to notice that this set is empty and early out. */
1286 bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
1287 if (bitmap_empty_p (tmp))
1288 continue;
1290 /* If any of the changed bits overlap with local_sets[bb],
1291 we'll have to rescan the block. */
1292 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1293 rescan = bitmap_intersect_p (tmp, local_set);
1297 /* Let our caller know that BB changed enough to require its
1298 death notes updated. */
1299 if (blocks_out)
1300 SET_BIT (blocks_out, bb->index);
1302 if (! rescan)
1304 /* Add to live_at_start the set of all registers in
1305 new_live_at_end that aren't in the old live_at_end. */
1307 changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
1308 new_live_at_end,
1309 bb->il.rtl->global_live_at_end);
1310 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1311 if (! changed)
1312 continue;
1314 else
1316 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1318 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1319 into live_at_start. */
1320 propagate_block (bb, new_live_at_end,
1321 local_sets[bb->index - (INVALID_BLOCK + 1)],
1322 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1323 flags);
1325 /* If live_at start didn't change, no need to go farther. */
1326 if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
1327 new_live_at_end))
1328 continue;
1330 if (failure_strategy_required)
1332 /* Get the list of registers that were removed from the
1333 bb->global_live_at_start set. */
1334 bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
1335 new_live_at_end);
1336 if (!bitmap_empty_p (tmp))
1338 bool pbb_changed;
1339 basic_block pbb;
1341 /* It should not happen that one of registers we have
1342 removed last time is disappears again before any other
1343 register does. */
1344 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1345 gcc_assert (pbb_changed);
1347 /* Now remove the registers from all sets. */
1348 FOR_EACH_BB (pbb)
1350 pbb_changed = false;
1352 pbb_changed
1353 |= bitmap_and_compl_into
1354 (pbb->il.rtl->global_live_at_start,
1355 registers_made_dead);
1356 pbb_changed
1357 |= bitmap_and_compl_into
1358 (pbb->il.rtl->global_live_at_end,
1359 registers_made_dead);
1360 if (!pbb_changed)
1361 continue;
1363 /* Note the (possible) change. */
1364 if (blocks_out)
1365 SET_BIT (blocks_out, pbb->index);
1367 /* Makes sure to really rescan the block. */
1368 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1370 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1371 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1372 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1375 /* Add it to the queue. */
1376 if (pbb->aux == NULL)
1378 *qtail++ = pbb;
1379 if (qtail == qend)
1380 qtail = queue;
1381 pbb->aux = pbb;
1384 continue;
1386 } /* end of failure_strategy_required */
1388 COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
1391 /* Queue all predecessors of BB so that we may re-examine
1392 their live_at_end. */
1393 FOR_EACH_EDGE (e, ei, bb->preds)
1395 basic_block pb = e->src;
1396 if (pb->aux == NULL)
1398 *qtail++ = pb;
1399 if (qtail == qend)
1400 qtail = queue;
1401 pb->aux = pb;
1406 FREE_REG_SET (tmp);
1407 FREE_REG_SET (new_live_at_end);
1408 FREE_REG_SET (invalidated_by_call);
1409 FREE_REG_SET (registers_made_dead);
1411 if (blocks_out)
1413 sbitmap_iterator sbi;
1415 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
1417 basic_block bb = BASIC_BLOCK (i);
1418 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1419 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 else
1424 FOR_EACH_BB (bb)
1426 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1427 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1431 free (block_accesses);
1432 free (queue);
1433 free (cond_local_sets);
1434 free (local_sets);
1438 /* This structure is used to pass parameters to and from the
1439 the function find_regno_partial(). It is used to pass in the
1440 register number we are looking, as well as to return any rtx
1441 we find. */
1443 typedef struct {
1444 unsigned regno_to_find;
1445 rtx retval;
1446 } find_regno_partial_param;
1449 /* Find the rtx for the reg numbers specified in 'data' if it is
1450 part of an expression which only uses part of the register. Return
1451 it in the structure passed in. */
1452 static int
1453 find_regno_partial (rtx *ptr, void *data)
1455 find_regno_partial_param *param = (find_regno_partial_param *)data;
1456 unsigned reg = param->regno_to_find;
1457 param->retval = NULL_RTX;
1459 if (*ptr == NULL_RTX)
1460 return 0;
1462 switch (GET_CODE (*ptr))
1464 case ZERO_EXTRACT:
1465 case SIGN_EXTRACT:
1466 case STRICT_LOW_PART:
1467 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1469 param->retval = XEXP (*ptr, 0);
1470 return 1;
1472 break;
1474 case SUBREG:
1475 if (REG_P (SUBREG_REG (*ptr))
1476 && REGNO (SUBREG_REG (*ptr)) == reg)
1478 param->retval = SUBREG_REG (*ptr);
1479 return 1;
1481 break;
1483 default:
1484 break;
1487 return 0;
1490 /* Process all immediate successors of the entry block looking for pseudo
1491 registers which are live on entry. Find all of those whose first
1492 instance is a partial register reference of some kind, and initialize
1493 them to 0 after the entry block. This will prevent bit sets within
1494 registers whose value is unknown, and may contain some kind of sticky
1495 bits we don't want. */
1498 initialize_uninitialized_subregs (void)
1500 rtx insn;
1501 edge e;
1502 unsigned reg, did_something = 0;
1503 find_regno_partial_param param;
1504 edge_iterator ei;
1506 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1508 basic_block bb = e->dest;
1509 regset map = bb->il.rtl->global_live_at_start;
1510 reg_set_iterator rsi;
1512 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1514 int uid = REGNO_FIRST_UID (reg);
1515 rtx i;
1517 /* Find an insn which mentions the register we are looking for.
1518 Its preferable to have an instance of the register's rtl since
1519 there may be various flags set which we need to duplicate.
1520 If we can't find it, its probably an automatic whose initial
1521 value doesn't matter, or hopefully something we don't care about. */
1522 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1524 if (i != NULL_RTX)
1526 /* Found the insn, now get the REG rtx, if we can. */
1527 param.regno_to_find = reg;
1528 for_each_rtx (&i, find_regno_partial, &param);
1529 if (param.retval != NULL_RTX)
1531 start_sequence ();
1532 emit_move_insn (param.retval,
1533 CONST0_RTX (GET_MODE (param.retval)));
1534 insn = get_insns ();
1535 end_sequence ();
1536 insert_insn_on_edge (insn, e);
1537 did_something = 1;
1543 if (did_something)
1544 commit_edge_insertions ();
1545 return did_something;
1549 /* Subroutines of life analysis. */
1551 /* Allocate the permanent data structures that represent the results
1552 of life analysis. */
1554 static void
1555 allocate_bb_life_data (void)
1557 basic_block bb;
1559 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1561 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1562 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1565 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1568 void
1569 allocate_reg_life_data (void)
1571 int i;
1573 max_regno = max_reg_num ();
1574 gcc_assert (!reg_deaths);
1575 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1577 /* Recalculate the register space, in case it has grown. Old style
1578 vector oriented regsets would set regset_{size,bytes} here also. */
1579 allocate_reg_info (max_regno, FALSE, FALSE);
1581 /* Reset all the data we'll collect in propagate_block and its
1582 subroutines. */
1583 for (i = 0; i < max_regno; i++)
1585 REG_N_SETS (i) = 0;
1586 REG_N_REFS (i) = 0;
1587 REG_N_DEATHS (i) = 0;
1588 REG_N_CALLS_CROSSED (i) = 0;
1589 REG_N_THROWING_CALLS_CROSSED (i) = 0;
1590 REG_LIVE_LENGTH (i) = 0;
1591 REG_FREQ (i) = 0;
1592 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1596 /* Delete dead instructions for propagate_block. */
1598 static void
1599 propagate_block_delete_insn (rtx insn)
1601 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1603 /* If the insn referred to a label, and that label was attached to
1604 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1605 pretty much mandatory to delete it, because the ADDR_VEC may be
1606 referencing labels that no longer exist.
1608 INSN may reference a deleted label, particularly when a jump
1609 table has been optimized into a direct jump. There's no
1610 real good way to fix up the reference to the deleted label
1611 when the label is deleted, so we just allow it here. */
1613 if (inote && LABEL_P (inote))
1615 rtx label = XEXP (inote, 0);
1616 rtx next;
1618 /* The label may be forced if it has been put in the constant
1619 pool. If that is the only use we must discard the table
1620 jump following it, but not the label itself. */
1621 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1622 && (next = next_nonnote_insn (label)) != NULL
1623 && JUMP_P (next)
1624 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1625 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1627 rtx pat = PATTERN (next);
1628 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1629 int len = XVECLEN (pat, diff_vec_p);
1630 int i;
1632 for (i = 0; i < len; i++)
1633 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1635 delete_insn_and_edges (next);
1636 ndead++;
1640 delete_insn_and_edges (insn);
1641 ndead++;
1644 /* Delete dead libcalls for propagate_block. Return the insn
1645 before the libcall. */
1647 static rtx
1648 propagate_block_delete_libcall (rtx insn, rtx note)
1650 rtx first = XEXP (note, 0);
1651 rtx before = PREV_INSN (first);
1653 delete_insn_chain_and_edges (first, insn);
1654 ndead++;
1655 return before;
1658 /* Update the life-status of regs for one insn. Return the previous insn. */
1661 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1663 rtx prev = PREV_INSN (insn);
1664 int flags = pbi->flags;
1665 int insn_is_dead = 0;
1666 int libcall_is_dead = 0;
1667 rtx note;
1668 unsigned i;
1670 if (! INSN_P (insn))
1671 return prev;
1673 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1674 if (flags & PROP_SCAN_DEAD_CODE)
1676 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1677 libcall_is_dead = (insn_is_dead && note != 0
1678 && libcall_dead_p (pbi, note, insn));
1681 /* If an instruction consists of just dead store(s) on final pass,
1682 delete it. */
1683 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1685 /* If we're trying to delete a prologue or epilogue instruction
1686 that isn't flagged as possibly being dead, something is wrong.
1687 But if we are keeping the stack pointer depressed, we might well
1688 be deleting insns that are used to compute the amount to update
1689 it by, so they are fine. */
1690 if (reload_completed
1691 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1692 && (TYPE_RETURNS_STACK_DEPRESSED
1693 (TREE_TYPE (current_function_decl))))
1694 && (((HAVE_epilogue || HAVE_prologue)
1695 && prologue_epilogue_contains (insn))
1696 || (HAVE_sibcall_epilogue
1697 && sibcall_epilogue_contains (insn)))
1698 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1699 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1701 /* Record sets. Do this even for dead instructions, since they
1702 would have killed the values if they hadn't been deleted. To
1703 be consistent, we also have to emit a clobber when we delete
1704 an insn that clobbers a live register. */
1705 pbi->flags |= PROP_DEAD_INSN;
1706 mark_set_regs (pbi, PATTERN (insn), insn);
1707 pbi->flags &= ~PROP_DEAD_INSN;
1709 /* CC0 is now known to be dead. Either this insn used it,
1710 in which case it doesn't anymore, or clobbered it,
1711 so the next insn can't use it. */
1712 pbi->cc0_live = 0;
1714 if (libcall_is_dead)
1715 prev = propagate_block_delete_libcall (insn, note);
1716 else
1719 /* If INSN contains a RETVAL note and is dead, but the libcall
1720 as a whole is not dead, then we want to remove INSN, but
1721 not the whole libcall sequence.
1723 However, we need to also remove the dangling REG_LIBCALL
1724 note so that we do not have mis-matched LIBCALL/RETVAL
1725 notes. In theory we could find a new location for the
1726 REG_RETVAL note, but it hardly seems worth the effort.
1728 NOTE at this point will be the RETVAL note if it exists. */
1729 if (note)
1731 rtx libcall_note;
1733 libcall_note
1734 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1735 remove_note (XEXP (note, 0), libcall_note);
1738 /* Similarly if INSN contains a LIBCALL note, remove the
1739 dangling REG_RETVAL note. */
1740 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1741 if (note)
1743 rtx retval_note;
1745 retval_note
1746 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1747 remove_note (XEXP (note, 0), retval_note);
1750 /* Now delete INSN. */
1751 propagate_block_delete_insn (insn);
1754 return prev;
1757 /* See if this is an increment or decrement that can be merged into
1758 a following memory address. */
1759 #ifdef AUTO_INC_DEC
1761 rtx x = single_set (insn);
1763 /* Does this instruction increment or decrement a register? */
1764 if ((flags & PROP_AUTOINC)
1765 && x != 0
1766 && REG_P (SET_DEST (x))
1767 && (GET_CODE (SET_SRC (x)) == PLUS
1768 || GET_CODE (SET_SRC (x)) == MINUS)
1769 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1770 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1771 /* Ok, look for a following memory ref we can combine with.
1772 If one is found, change the memory ref to a PRE_INC
1773 or PRE_DEC, cancel this insn, and return 1.
1774 Return 0 if nothing has been done. */
1775 && try_pre_increment_1 (pbi, insn))
1776 return prev;
1778 #endif /* AUTO_INC_DEC */
1780 CLEAR_REG_SET (pbi->new_set);
1782 /* If this is not the final pass, and this insn is copying the value of
1783 a library call and it's dead, don't scan the insns that perform the
1784 library call, so that the call's arguments are not marked live. */
1785 if (libcall_is_dead)
1787 /* Record the death of the dest reg. */
1788 mark_set_regs (pbi, PATTERN (insn), insn);
1790 insn = XEXP (note, 0);
1791 return PREV_INSN (insn);
1793 else if (GET_CODE (PATTERN (insn)) == SET
1794 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1795 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1796 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1797 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1799 /* We have an insn to pop a constant amount off the stack.
1800 (Such insns use PLUS regardless of the direction of the stack,
1801 and any insn to adjust the stack by a constant is always a pop
1802 or part of a push.)
1803 These insns, if not dead stores, have no effect on life, though
1804 they do have an effect on the memory stores we are tracking. */
1805 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1806 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1807 concludes that the stack pointer is not modified. */
1808 mark_set_regs (pbi, PATTERN (insn), insn);
1810 else
1812 /* Any regs live at the time of a call instruction must not go
1813 in a register clobbered by calls. Find all regs now live and
1814 record this for them. */
1816 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1818 reg_set_iterator rsi;
1819 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1820 REG_N_CALLS_CROSSED (i)++;
1821 if (can_throw_internal (insn))
1822 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1823 REG_N_THROWING_CALLS_CROSSED (i)++;
1826 /* Record sets. Do this even for dead instructions, since they
1827 would have killed the values if they hadn't been deleted. */
1828 mark_set_regs (pbi, PATTERN (insn), insn);
1830 if (CALL_P (insn))
1832 regset live_at_end;
1833 bool sibcall_p;
1834 rtx note, cond;
1835 int i;
1837 cond = NULL_RTX;
1838 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1839 cond = COND_EXEC_TEST (PATTERN (insn));
1841 /* Non-constant calls clobber memory, constant calls do not
1842 clobber memory, though they may clobber outgoing arguments
1843 on the stack. */
1844 if (! CONST_OR_PURE_CALL_P (insn))
1846 free_EXPR_LIST_list (&pbi->mem_set_list);
1847 pbi->mem_set_list_len = 0;
1849 else
1850 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1852 /* There may be extra registers to be clobbered. */
1853 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1854 note;
1855 note = XEXP (note, 1))
1856 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1857 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1858 cond, insn, pbi->flags);
1860 /* Calls change all call-used and global registers; sibcalls do not
1861 clobber anything that must be preserved at end-of-function,
1862 except for return values. */
1864 sibcall_p = SIBLING_CALL_P (insn);
1865 live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
1866 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1867 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1868 && ! (sibcall_p
1869 && REGNO_REG_SET_P (live_at_end, i)
1870 && ! refers_to_regno_p (i, i+1,
1871 current_function_return_rtx,
1872 (rtx *) 0)))
1874 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1875 /* We do not want REG_UNUSED notes for these registers. */
1876 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1877 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1881 /* If an insn doesn't use CC0, it becomes dead since we assume
1882 that every insn clobbers it. So show it dead here;
1883 mark_used_regs will set it live if it is referenced. */
1884 pbi->cc0_live = 0;
1886 /* Record uses. */
1887 if (! insn_is_dead)
1888 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1890 /* Sometimes we may have inserted something before INSN (such as a move)
1891 when we make an auto-inc. So ensure we will scan those insns. */
1892 #ifdef AUTO_INC_DEC
1893 prev = PREV_INSN (insn);
1894 #endif
1896 if (! insn_is_dead && CALL_P (insn))
1898 int i;
1899 rtx note, cond;
1901 cond = NULL_RTX;
1902 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1903 cond = COND_EXEC_TEST (PATTERN (insn));
1905 /* Calls use their arguments, and may clobber memory which
1906 address involves some register. */
1907 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1908 note;
1909 note = XEXP (note, 1))
1910 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1911 of which mark_used_regs knows how to handle. */
1912 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1914 /* The stack ptr is used (honorarily) by a CALL insn. */
1915 if ((flags & PROP_REG_INFO)
1916 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1917 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1918 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1920 /* Calls may also reference any of the global registers,
1921 so they are made live. */
1922 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1923 if (global_regs[i])
1924 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1928 pbi->insn_num++;
1930 return prev;
1933 /* Initialize a propagate_block_info struct for public consumption.
1934 Note that the structure itself is opaque to this file, but that
1935 the user can use the regsets provided here. */
1937 struct propagate_block_info *
1938 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1939 regset cond_local_set, int flags)
1941 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1943 pbi->bb = bb;
1944 pbi->reg_live = live;
1945 pbi->mem_set_list = NULL_RTX;
1946 pbi->mem_set_list_len = 0;
1947 pbi->local_set = local_set;
1948 pbi->cond_local_set = cond_local_set;
1949 pbi->cc0_live = 0;
1950 pbi->flags = flags;
1951 pbi->insn_num = 0;
1953 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1954 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1955 else
1956 pbi->reg_next_use = NULL;
1958 pbi->new_set = BITMAP_ALLOC (NULL);
1960 #ifdef HAVE_conditional_execution
1961 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1962 free_reg_cond_life_info);
1963 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1965 /* If this block ends in a conditional branch, for each register
1966 live from one side of the branch and not the other, record the
1967 register as conditionally dead. */
1968 if (JUMP_P (BB_END (bb))
1969 && any_condjump_p (BB_END (bb)))
1971 regset diff = ALLOC_REG_SET (&reg_obstack);
1972 basic_block bb_true, bb_false;
1973 unsigned i;
1975 /* Identify the successor blocks. */
1976 bb_true = EDGE_SUCC (bb, 0)->dest;
1977 if (!single_succ_p (bb))
1979 bb_false = EDGE_SUCC (bb, 1)->dest;
1981 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1983 basic_block t = bb_false;
1984 bb_false = bb_true;
1985 bb_true = t;
1987 else
1988 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1990 else
1992 /* This can happen with a conditional jump to the next insn. */
1993 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1995 /* Simplest way to do nothing. */
1996 bb_false = bb_true;
1999 /* Compute which register lead different lives in the successors. */
2000 bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
2001 bb_false->il.rtl->global_live_at_start);
2003 if (!bitmap_empty_p (diff))
2005 /* Extract the condition from the branch. */
2006 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
2007 rtx cond_true = XEXP (set_src, 0);
2008 rtx reg = XEXP (cond_true, 0);
2009 enum rtx_code inv_cond;
2011 if (GET_CODE (reg) == SUBREG)
2012 reg = SUBREG_REG (reg);
2014 /* We can only track conditional lifetimes if the condition is
2015 in the form of a reversible comparison of a register against
2016 zero. If the condition is more complex than that, then it is
2017 safe not to record any information. */
2018 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2019 if (inv_cond != UNKNOWN
2020 && REG_P (reg)
2021 && XEXP (cond_true, 1) == const0_rtx)
2023 rtx cond_false
2024 = gen_rtx_fmt_ee (inv_cond,
2025 GET_MODE (cond_true), XEXP (cond_true, 0),
2026 XEXP (cond_true, 1));
2027 reg_set_iterator rsi;
2029 if (GET_CODE (XEXP (set_src, 1)) == PC)
2031 rtx t = cond_false;
2032 cond_false = cond_true;
2033 cond_true = t;
2036 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2038 /* For each such register, mark it conditionally dead. */
2039 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2041 struct reg_cond_life_info *rcli;
2042 rtx cond;
2044 rcli = xmalloc (sizeof (*rcli));
2046 if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
2048 cond = cond_false;
2049 else
2050 cond = cond_true;
2051 rcli->condition = cond;
2052 rcli->stores = const0_rtx;
2053 rcli->orig_condition = cond;
2055 splay_tree_insert (pbi->reg_cond_dead, i,
2056 (splay_tree_value) rcli);
2061 FREE_REG_SET (diff);
2063 #endif
2065 /* If this block has no successors, any stores to the frame that aren't
2066 used later in the block are dead. So make a pass over the block
2067 recording any such that are made and show them dead at the end. We do
2068 a very conservative and simple job here. */
2069 if (optimize
2070 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2071 && (TYPE_RETURNS_STACK_DEPRESSED
2072 (TREE_TYPE (current_function_decl))))
2073 && (flags & PROP_SCAN_DEAD_STORES)
2074 && (EDGE_COUNT (bb->succs) == 0
2075 || (single_succ_p (bb)
2076 && single_succ (bb) == EXIT_BLOCK_PTR
2077 && ! current_function_calls_eh_return)))
2079 rtx insn, set;
2080 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2081 if (NONJUMP_INSN_P (insn)
2082 && (set = single_set (insn))
2083 && MEM_P (SET_DEST (set)))
2085 rtx mem = SET_DEST (set);
2086 rtx canon_mem = canon_rtx (mem);
2088 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2089 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2090 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2091 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2092 add_to_mem_set_list (pbi, canon_mem);
2096 return pbi;
2099 /* Release a propagate_block_info struct. */
2101 void
2102 free_propagate_block_info (struct propagate_block_info *pbi)
2104 free_EXPR_LIST_list (&pbi->mem_set_list);
2106 BITMAP_FREE (pbi->new_set);
2108 #ifdef HAVE_conditional_execution
2109 splay_tree_delete (pbi->reg_cond_dead);
2110 BITMAP_FREE (pbi->reg_cond_reg);
2111 #endif
2113 if (pbi->flags & PROP_REG_INFO)
2115 int num = pbi->insn_num;
2116 unsigned i;
2117 reg_set_iterator rsi;
2119 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2121 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2122 reg_deaths[i] = 0;
2125 if (pbi->reg_next_use)
2126 free (pbi->reg_next_use);
2128 free (pbi);
2131 /* Compute the registers live at the beginning of a basic block BB from
2132 those live at the end.
2134 When called, REG_LIVE contains those live at the end. On return, it
2135 contains those live at the beginning.
2137 LOCAL_SET, if non-null, will be set with all registers killed
2138 unconditionally by this basic block.
2139 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2140 killed conditionally by this basic block. If there is any unconditional
2141 set of a register, then the corresponding bit will be set in LOCAL_SET
2142 and cleared in COND_LOCAL_SET.
2143 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2144 case, the resulting set will be equal to the union of the two sets that
2145 would otherwise be computed.
2147 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2150 propagate_block (basic_block bb, regset live, regset local_set,
2151 regset cond_local_set, int flags)
2153 struct propagate_block_info *pbi;
2154 rtx insn, prev;
2155 int changed;
2157 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2159 if (flags & PROP_REG_INFO)
2161 unsigned i;
2162 reg_set_iterator rsi;
2164 /* Process the regs live at the end of the block.
2165 Mark them as not local to any one basic block. */
2166 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2167 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2170 /* Scan the block an insn at a time from end to beginning. */
2172 changed = 0;
2173 for (insn = BB_END (bb); ; insn = prev)
2175 /* If this is a call to `setjmp' et al, warn if any
2176 non-volatile datum is live. */
2177 if ((flags & PROP_REG_INFO)
2178 && CALL_P (insn)
2179 && find_reg_note (insn, REG_SETJMP, NULL))
2180 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2182 prev = propagate_one_insn (pbi, insn);
2183 if (!prev)
2184 changed |= insn != get_insns ();
2185 else
2186 changed |= NEXT_INSN (prev) != insn;
2188 if (insn == BB_HEAD (bb))
2189 break;
2192 free_propagate_block_info (pbi);
2194 return changed;
2197 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2198 (SET expressions whose destinations are registers dead after the insn).
2199 NEEDED is the regset that says which regs are alive after the insn.
2201 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2203 If X is the entire body of an insn, NOTES contains the reg notes
2204 pertaining to the insn. */
2206 static int
2207 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2208 rtx notes ATTRIBUTE_UNUSED)
2210 enum rtx_code code = GET_CODE (x);
2212 /* Don't eliminate insns that may trap. */
2213 if (flag_non_call_exceptions && may_trap_p (x))
2214 return 0;
2216 #ifdef AUTO_INC_DEC
2217 /* As flow is invoked after combine, we must take existing AUTO_INC
2218 expressions into account. */
2219 for (; notes; notes = XEXP (notes, 1))
2221 if (REG_NOTE_KIND (notes) == REG_INC)
2223 int regno = REGNO (XEXP (notes, 0));
2225 /* Don't delete insns to set global regs. */
2226 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2227 || REGNO_REG_SET_P (pbi->reg_live, regno))
2228 return 0;
2231 #endif
2233 /* If setting something that's a reg or part of one,
2234 see if that register's altered value will be live. */
2236 if (code == SET)
2238 rtx r = SET_DEST (x);
2240 #ifdef HAVE_cc0
2241 if (GET_CODE (r) == CC0)
2242 return ! pbi->cc0_live;
2243 #endif
2245 /* A SET that is a subroutine call cannot be dead. */
2246 if (GET_CODE (SET_SRC (x)) == CALL)
2248 if (! call_ok)
2249 return 0;
2252 /* Don't eliminate loads from volatile memory or volatile asms. */
2253 else if (volatile_refs_p (SET_SRC (x)))
2254 return 0;
2256 if (MEM_P (r))
2258 rtx temp, canon_r;
2260 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2261 return 0;
2263 canon_r = canon_rtx (r);
2265 /* Walk the set of memory locations we are currently tracking
2266 and see if one is an identical match to this memory location.
2267 If so, this memory write is dead (remember, we're walking
2268 backwards from the end of the block to the start). Since
2269 rtx_equal_p does not check the alias set or flags, we also
2270 must have the potential for them to conflict (anti_dependence). */
2271 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2272 if (anti_dependence (r, XEXP (temp, 0)))
2274 rtx mem = XEXP (temp, 0);
2276 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2277 && (GET_MODE_SIZE (GET_MODE (canon_r))
2278 <= GET_MODE_SIZE (GET_MODE (mem))))
2279 return 1;
2281 #ifdef AUTO_INC_DEC
2282 /* Check if memory reference matches an auto increment. Only
2283 post increment/decrement or modify are valid. */
2284 if (GET_MODE (mem) == GET_MODE (r)
2285 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2286 || GET_CODE (XEXP (mem, 0)) == POST_INC
2287 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2288 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2289 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2290 return 1;
2291 #endif
2294 else
2296 while (GET_CODE (r) == SUBREG
2297 || GET_CODE (r) == STRICT_LOW_PART
2298 || GET_CODE (r) == ZERO_EXTRACT)
2299 r = XEXP (r, 0);
2301 if (REG_P (r))
2303 int regno = REGNO (r);
2305 /* Obvious. */
2306 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2307 return 0;
2309 /* If this is a hard register, verify that subsequent
2310 words are not needed. */
2311 if (regno < FIRST_PSEUDO_REGISTER)
2313 int n = hard_regno_nregs[regno][GET_MODE (r)];
2315 while (--n > 0)
2316 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2317 return 0;
2320 /* Don't delete insns to set global regs. */
2321 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2322 return 0;
2324 /* Make sure insns to set the stack pointer aren't deleted. */
2325 if (regno == STACK_POINTER_REGNUM)
2326 return 0;
2328 /* ??? These bits might be redundant with the force live bits
2329 in calculate_global_regs_live. We would delete from
2330 sequential sets; whether this actually affects real code
2331 for anything but the stack pointer I don't know. */
2332 /* Make sure insns to set the frame pointer aren't deleted. */
2333 if (regno == FRAME_POINTER_REGNUM
2334 && (! reload_completed || frame_pointer_needed))
2335 return 0;
2336 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2337 if (regno == HARD_FRAME_POINTER_REGNUM
2338 && (! reload_completed || frame_pointer_needed))
2339 return 0;
2340 #endif
2342 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2343 /* Make sure insns to set arg pointer are never deleted
2344 (if the arg pointer isn't fixed, there will be a USE
2345 for it, so we can treat it normally). */
2346 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2347 return 0;
2348 #endif
2350 /* Otherwise, the set is dead. */
2351 return 1;
2356 /* If performing several activities, insn is dead if each activity
2357 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2358 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2359 worth keeping. */
2360 else if (code == PARALLEL)
2362 int i = XVECLEN (x, 0);
2364 for (i--; i >= 0; i--)
2365 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2366 && GET_CODE (XVECEXP (x, 0, i)) != USE
2367 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2368 return 0;
2370 return 1;
2373 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2374 is not necessarily true for hard registers until after reload. */
2375 else if (code == CLOBBER)
2377 if (REG_P (XEXP (x, 0))
2378 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2379 || reload_completed)
2380 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2381 return 1;
2384 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2385 Instances where it is still used are either (1) temporary and the USE
2386 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2387 or (3) hiding bugs elsewhere that are not properly representing data
2388 flow. */
2390 return 0;
2393 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2394 return 1 if the entire library call is dead.
2395 This is true if INSN copies a register (hard or pseudo)
2396 and if the hard return reg of the call insn is dead.
2397 (The caller should have tested the destination of the SET inside
2398 INSN already for death.)
2400 If this insn doesn't just copy a register, then we don't
2401 have an ordinary libcall. In that case, cse could not have
2402 managed to substitute the source for the dest later on,
2403 so we can assume the libcall is dead.
2405 PBI is the block info giving pseudoregs live before this insn.
2406 NOTE is the REG_RETVAL note of the insn. */
2408 static int
2409 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2411 rtx x = single_set (insn);
2413 if (x)
2415 rtx r = SET_SRC (x);
2417 if (REG_P (r) || GET_CODE (r) == SUBREG)
2419 rtx call = XEXP (note, 0);
2420 rtx call_pat;
2421 int i;
2423 /* Find the call insn. */
2424 while (call != insn && !CALL_P (call))
2425 call = NEXT_INSN (call);
2427 /* If there is none, do nothing special,
2428 since ordinary death handling can understand these insns. */
2429 if (call == insn)
2430 return 0;
2432 /* See if the hard reg holding the value is dead.
2433 If this is a PARALLEL, find the call within it. */
2434 call_pat = PATTERN (call);
2435 if (GET_CODE (call_pat) == PARALLEL)
2437 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2438 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2439 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2440 break;
2442 /* This may be a library call that is returning a value
2443 via invisible pointer. Do nothing special, since
2444 ordinary death handling can understand these insns. */
2445 if (i < 0)
2446 return 0;
2448 call_pat = XVECEXP (call_pat, 0, i);
2451 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2452 return 0;
2454 while ((insn = PREV_INSN (insn)) != call)
2456 if (! INSN_P (insn))
2457 continue;
2458 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2459 return 0;
2461 return 1;
2464 return 0;
2467 /* 1 if register REGNO was alive at a place where `setjmp' was called
2468 and was set more than once or is an argument.
2469 Such regs may be clobbered by `longjmp'. */
2472 regno_clobbered_at_setjmp (int regno)
2474 if (n_basic_blocks == 0)
2475 return 0;
2477 return ((REG_N_SETS (regno) > 1
2478 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2479 regno))
2480 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2483 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2484 maximal list size; look for overlaps in mode and select the largest. */
2485 static void
2486 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2488 rtx i;
2490 /* We don't know how large a BLKmode store is, so we must not
2491 take them into consideration. */
2492 if (GET_MODE (mem) == BLKmode)
2493 return;
2495 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2497 rtx e = XEXP (i, 0);
2498 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2500 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2502 #ifdef AUTO_INC_DEC
2503 /* If we must store a copy of the mem, we can just modify
2504 the mode of the stored copy. */
2505 if (pbi->flags & PROP_AUTOINC)
2506 PUT_MODE (e, GET_MODE (mem));
2507 else
2508 #endif
2509 XEXP (i, 0) = mem;
2511 return;
2515 if (pbi->mem_set_list_len < PARAM_VALUE (PARAM_MAX_FLOW_MEMORY_LOCATIONS))
2517 #ifdef AUTO_INC_DEC
2518 /* Store a copy of mem, otherwise the address may be
2519 scrogged by find_auto_inc. */
2520 if (pbi->flags & PROP_AUTOINC)
2521 mem = shallow_copy_rtx (mem);
2522 #endif
2523 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2524 pbi->mem_set_list_len++;
2528 /* INSN references memory, possibly using autoincrement addressing modes.
2529 Find any entries on the mem_set_list that need to be invalidated due
2530 to an address change. */
2532 static int
2533 invalidate_mems_from_autoinc (rtx *px, void *data)
2535 rtx x = *px;
2536 struct propagate_block_info *pbi = data;
2538 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2540 invalidate_mems_from_set (pbi, XEXP (x, 0));
2541 return -1;
2544 return 0;
2547 /* EXP is a REG or MEM. Remove any dependent entries from
2548 pbi->mem_set_list. */
2550 static void
2551 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2553 rtx temp = pbi->mem_set_list;
2554 rtx prev = NULL_RTX;
2555 rtx next;
2557 while (temp)
2559 next = XEXP (temp, 1);
2560 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2561 /* When we get an EXP that is a mem here, we want to check if EXP
2562 overlaps the *address* of any of the mems in the list (i.e. not
2563 whether the mems actually overlap; that's done elsewhere). */
2564 || (MEM_P (exp)
2565 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2567 /* Splice this entry out of the list. */
2568 if (prev)
2569 XEXP (prev, 1) = next;
2570 else
2571 pbi->mem_set_list = next;
2572 free_EXPR_LIST_node (temp);
2573 pbi->mem_set_list_len--;
2575 else
2576 prev = temp;
2577 temp = next;
2581 /* Process the registers that are set within X. Their bits are set to
2582 1 in the regset DEAD, because they are dead prior to this insn.
2584 If INSN is nonzero, it is the insn being processed.
2586 FLAGS is the set of operations to perform. */
2588 static void
2589 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2591 rtx cond = NULL_RTX;
2592 rtx link;
2593 enum rtx_code code;
2594 int flags = pbi->flags;
2596 if (insn)
2597 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2599 if (REG_NOTE_KIND (link) == REG_INC)
2600 mark_set_1 (pbi, SET, XEXP (link, 0),
2601 (GET_CODE (x) == COND_EXEC
2602 ? COND_EXEC_TEST (x) : NULL_RTX),
2603 insn, flags);
2605 retry:
2606 switch (code = GET_CODE (x))
2608 case SET:
2609 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2610 flags |= PROP_ASM_SCAN;
2611 /* Fall through */
2612 case CLOBBER:
2613 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2614 return;
2616 case COND_EXEC:
2617 cond = COND_EXEC_TEST (x);
2618 x = COND_EXEC_CODE (x);
2619 goto retry;
2621 case PARALLEL:
2623 int i;
2625 /* We must scan forwards. If we have an asm, we need to set
2626 the PROP_ASM_SCAN flag before scanning the clobbers. */
2627 for (i = 0; i < XVECLEN (x, 0); i++)
2629 rtx sub = XVECEXP (x, 0, i);
2630 switch (code = GET_CODE (sub))
2632 case COND_EXEC:
2633 gcc_assert (!cond);
2635 cond = COND_EXEC_TEST (sub);
2636 sub = COND_EXEC_CODE (sub);
2637 if (GET_CODE (sub) == SET)
2638 goto mark_set;
2639 if (GET_CODE (sub) == CLOBBER)
2640 goto mark_clob;
2641 break;
2643 case SET:
2644 mark_set:
2645 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2646 flags |= PROP_ASM_SCAN;
2647 /* Fall through */
2648 case CLOBBER:
2649 mark_clob:
2650 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2651 break;
2653 case ASM_OPERANDS:
2654 flags |= PROP_ASM_SCAN;
2655 break;
2657 default:
2658 break;
2661 break;
2664 default:
2665 break;
2669 /* Process a single set, which appears in INSN. REG (which may not
2670 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2671 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2672 If the set is conditional (because it appear in a COND_EXEC), COND
2673 will be the condition. */
2675 static void
2676 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2678 int regno_first = -1, regno_last = -1;
2679 unsigned long not_dead = 0;
2680 int i;
2682 /* Modifying just one hardware register of a multi-reg value or just a
2683 byte field of a register does not mean the value from before this insn
2684 is now dead. Of course, if it was dead after it's unused now. */
2686 switch (GET_CODE (reg))
2688 case PARALLEL:
2689 /* Some targets place small structures in registers for return values of
2690 functions. We have to detect this case specially here to get correct
2691 flow information. */
2692 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2693 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2694 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2695 flags);
2696 return;
2698 case SIGN_EXTRACT:
2699 /* SIGN_EXTRACT cannot be an lvalue. */
2700 gcc_unreachable ();
2702 case ZERO_EXTRACT:
2703 case STRICT_LOW_PART:
2704 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2706 reg = XEXP (reg, 0);
2707 while (GET_CODE (reg) == SUBREG
2708 || GET_CODE (reg) == ZERO_EXTRACT
2709 || GET_CODE (reg) == STRICT_LOW_PART);
2710 if (MEM_P (reg))
2711 break;
2712 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2713 /* Fall through. */
2715 case REG:
2716 regno_last = regno_first = REGNO (reg);
2717 if (regno_first < FIRST_PSEUDO_REGISTER)
2718 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2719 break;
2721 case SUBREG:
2722 if (REG_P (SUBREG_REG (reg)))
2724 enum machine_mode outer_mode = GET_MODE (reg);
2725 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2727 /* Identify the range of registers affected. This is moderately
2728 tricky for hard registers. See alter_subreg. */
2730 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2731 if (regno_first < FIRST_PSEUDO_REGISTER)
2733 regno_first += subreg_regno_offset (regno_first, inner_mode,
2734 SUBREG_BYTE (reg),
2735 outer_mode);
2736 regno_last = (regno_first
2737 + hard_regno_nregs[regno_first][outer_mode] - 1);
2739 /* Since we've just adjusted the register number ranges, make
2740 sure REG matches. Otherwise some_was_live will be clear
2741 when it shouldn't have been, and we'll create incorrect
2742 REG_UNUSED notes. */
2743 reg = gen_rtx_REG (outer_mode, regno_first);
2745 else
2747 /* If the number of words in the subreg is less than the number
2748 of words in the full register, we have a well-defined partial
2749 set. Otherwise the high bits are undefined.
2751 This is only really applicable to pseudos, since we just took
2752 care of multi-word hard registers. */
2753 if (((GET_MODE_SIZE (outer_mode)
2754 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2755 < ((GET_MODE_SIZE (inner_mode)
2756 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2757 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2758 regno_first);
2760 reg = SUBREG_REG (reg);
2763 else
2764 reg = SUBREG_REG (reg);
2765 break;
2767 default:
2768 break;
2771 /* If this set is a MEM, then it kills any aliased writes and any
2772 other MEMs which use it.
2773 If this set is a REG, then it kills any MEMs which use the reg. */
2774 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2776 if (REG_P (reg) || MEM_P (reg))
2777 invalidate_mems_from_set (pbi, reg);
2779 /* If the memory reference had embedded side effects (autoincrement
2780 address modes) then we may need to kill some entries on the
2781 memory set list. */
2782 if (insn && MEM_P (reg))
2783 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2785 if (MEM_P (reg) && ! side_effects_p (reg)
2786 /* ??? With more effort we could track conditional memory life. */
2787 && ! cond)
2788 add_to_mem_set_list (pbi, canon_rtx (reg));
2791 if (REG_P (reg)
2792 && ! (regno_first == FRAME_POINTER_REGNUM
2793 && (! reload_completed || frame_pointer_needed))
2794 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2795 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2796 && (! reload_completed || frame_pointer_needed))
2797 #endif
2798 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2799 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2800 #endif
2803 int some_was_live = 0, some_was_dead = 0;
2805 for (i = regno_first; i <= regno_last; ++i)
2807 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2808 if (pbi->local_set)
2810 /* Order of the set operation matters here since both
2811 sets may be the same. */
2812 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2813 if (cond != NULL_RTX
2814 && ! REGNO_REG_SET_P (pbi->local_set, i))
2815 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2816 else
2817 SET_REGNO_REG_SET (pbi->local_set, i);
2819 if (code != CLOBBER || needed_regno)
2820 SET_REGNO_REG_SET (pbi->new_set, i);
2822 some_was_live |= needed_regno;
2823 some_was_dead |= ! needed_regno;
2826 #ifdef HAVE_conditional_execution
2827 /* Consider conditional death in deciding that the register needs
2828 a death note. */
2829 if (some_was_live && ! not_dead
2830 /* The stack pointer is never dead. Well, not strictly true,
2831 but it's very difficult to tell from here. Hopefully
2832 combine_stack_adjustments will fix up the most egregious
2833 errors. */
2834 && regno_first != STACK_POINTER_REGNUM)
2836 for (i = regno_first; i <= regno_last; ++i)
2837 if (! mark_regno_cond_dead (pbi, i, cond))
2838 not_dead |= ((unsigned long) 1) << (i - regno_first);
2840 #endif
2842 /* Additional data to record if this is the final pass. */
2843 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2844 | PROP_DEATH_NOTES | PROP_AUTOINC))
2846 rtx y;
2847 int blocknum = pbi->bb->index;
2849 y = NULL_RTX;
2850 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2852 y = pbi->reg_next_use[regno_first];
2854 /* The next use is no longer next, since a store intervenes. */
2855 for (i = regno_first; i <= regno_last; ++i)
2856 pbi->reg_next_use[i] = 0;
2859 if (flags & PROP_REG_INFO)
2861 for (i = regno_first; i <= regno_last; ++i)
2863 /* Count (weighted) references, stores, etc. This counts a
2864 register twice if it is modified, but that is correct. */
2865 REG_N_SETS (i) += 1;
2866 REG_N_REFS (i) += 1;
2867 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2869 /* The insns where a reg is live are normally counted
2870 elsewhere, but we want the count to include the insn
2871 where the reg is set, and the normal counting mechanism
2872 would not count it. */
2873 REG_LIVE_LENGTH (i) += 1;
2876 /* If this is a hard reg, record this function uses the reg. */
2877 if (regno_first < FIRST_PSEUDO_REGISTER)
2879 for (i = regno_first; i <= regno_last; i++)
2880 regs_ever_live[i] = 1;
2881 if (flags & PROP_ASM_SCAN)
2882 for (i = regno_first; i <= regno_last; i++)
2883 regs_asm_clobbered[i] = 1;
2885 else
2887 /* Keep track of which basic blocks each reg appears in. */
2888 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2889 REG_BASIC_BLOCK (regno_first) = blocknum;
2890 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2891 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2895 if (! some_was_dead)
2897 if (flags & PROP_LOG_LINKS)
2899 /* Make a logical link from the next following insn
2900 that uses this register, back to this insn.
2901 The following insns have already been processed.
2903 We don't build a LOG_LINK for hard registers containing
2904 in ASM_OPERANDs. If these registers get replaced,
2905 we might wind up changing the semantics of the insn,
2906 even if reload can make what appear to be valid
2907 assignments later.
2909 We don't build a LOG_LINK for global registers to
2910 or from a function call. We don't want to let
2911 combine think that it knows what is going on with
2912 global registers. */
2913 if (y && (BLOCK_NUM (y) == blocknum)
2914 && (regno_first >= FIRST_PSEUDO_REGISTER
2915 || (asm_noperands (PATTERN (y)) < 0
2916 && ! ((CALL_P (insn)
2917 || CALL_P (y))
2918 && global_regs[regno_first]))))
2919 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2922 else if (not_dead)
2924 else if (! some_was_live)
2926 if (flags & PROP_REG_INFO)
2927 REG_N_DEATHS (regno_first) += 1;
2929 if (flags & PROP_DEATH_NOTES)
2931 /* Note that dead stores have already been deleted
2932 when possible. If we get here, we have found a
2933 dead store that cannot be eliminated (because the
2934 same insn does something useful). Indicate this
2935 by marking the reg being set as dying here. */
2936 REG_NOTES (insn)
2937 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2940 else
2942 if (flags & PROP_DEATH_NOTES)
2944 /* This is a case where we have a multi-word hard register
2945 and some, but not all, of the words of the register are
2946 needed in subsequent insns. Write REG_UNUSED notes
2947 for those parts that were not needed. This case should
2948 be rare. */
2950 for (i = regno_first; i <= regno_last; ++i)
2951 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2952 REG_NOTES (insn)
2953 = alloc_EXPR_LIST (REG_UNUSED,
2954 regno_reg_rtx[i],
2955 REG_NOTES (insn));
2960 /* Mark the register as being dead. */
2961 if (some_was_live
2962 /* The stack pointer is never dead. Well, not strictly true,
2963 but it's very difficult to tell from here. Hopefully
2964 combine_stack_adjustments will fix up the most egregious
2965 errors. */
2966 && regno_first != STACK_POINTER_REGNUM)
2968 for (i = regno_first; i <= regno_last; ++i)
2969 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2971 if ((pbi->flags & PROP_REG_INFO)
2972 && REGNO_REG_SET_P (pbi->reg_live, i))
2974 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2975 reg_deaths[i] = 0;
2977 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2979 if (flags & PROP_DEAD_INSN)
2980 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
2983 else if (REG_P (reg))
2985 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2986 pbi->reg_next_use[regno_first] = 0;
2988 if ((flags & PROP_REG_INFO) != 0
2989 && (flags & PROP_ASM_SCAN) != 0
2990 && regno_first < FIRST_PSEUDO_REGISTER)
2992 for (i = regno_first; i <= regno_last; i++)
2993 regs_asm_clobbered[i] = 1;
2997 /* If this is the last pass and this is a SCRATCH, show it will be dying
2998 here and count it. */
2999 else if (GET_CODE (reg) == SCRATCH)
3001 if (flags & PROP_DEATH_NOTES)
3002 REG_NOTES (insn)
3003 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
3007 #ifdef HAVE_conditional_execution
3008 /* Mark REGNO conditionally dead.
3009 Return true if the register is now unconditionally dead. */
3011 static int
3012 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3014 /* If this is a store to a predicate register, the value of the
3015 predicate is changing, we don't know that the predicate as seen
3016 before is the same as that seen after. Flush all dependent
3017 conditions from reg_cond_dead. This will make all such
3018 conditionally live registers unconditionally live. */
3019 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3020 flush_reg_cond_reg (pbi, regno);
3022 /* If this is an unconditional store, remove any conditional
3023 life that may have existed. */
3024 if (cond == NULL_RTX)
3025 splay_tree_remove (pbi->reg_cond_dead, regno);
3026 else
3028 splay_tree_node node;
3029 struct reg_cond_life_info *rcli;
3030 rtx ncond;
3032 /* Otherwise this is a conditional set. Record that fact.
3033 It may have been conditionally used, or there may be a
3034 subsequent set with a complementary condition. */
3036 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3037 if (node == NULL)
3039 /* The register was unconditionally live previously.
3040 Record the current condition as the condition under
3041 which it is dead. */
3042 rcli = xmalloc (sizeof (*rcli));
3043 rcli->condition = cond;
3044 rcli->stores = cond;
3045 rcli->orig_condition = const0_rtx;
3046 splay_tree_insert (pbi->reg_cond_dead, regno,
3047 (splay_tree_value) rcli);
3049 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3051 /* Not unconditionally dead. */
3052 return 0;
3054 else
3056 /* The register was conditionally live previously.
3057 Add the new condition to the old. */
3058 rcli = (struct reg_cond_life_info *) node->value;
3059 ncond = rcli->condition;
3060 ncond = ior_reg_cond (ncond, cond, 1);
3061 if (rcli->stores == const0_rtx)
3062 rcli->stores = cond;
3063 else if (rcli->stores != const1_rtx)
3064 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3066 /* If the register is now unconditionally dead, remove the entry
3067 in the splay_tree. A register is unconditionally dead if the
3068 dead condition ncond is true. A register is also unconditionally
3069 dead if the sum of all conditional stores is an unconditional
3070 store (stores is true), and the dead condition is identically the
3071 same as the original dead condition initialized at the end of
3072 the block. This is a pointer compare, not an rtx_equal_p
3073 compare. */
3074 if (ncond == const1_rtx
3075 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3076 splay_tree_remove (pbi->reg_cond_dead, regno);
3077 else
3079 rcli->condition = ncond;
3081 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3083 /* Not unconditionally dead. */
3084 return 0;
3089 return 1;
3092 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3094 static void
3095 free_reg_cond_life_info (splay_tree_value value)
3097 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3098 free (rcli);
3101 /* Helper function for flush_reg_cond_reg. */
3103 static int
3104 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3106 struct reg_cond_life_info *rcli;
3107 int *xdata = (int *) data;
3108 unsigned int regno = xdata[0];
3110 /* Don't need to search if last flushed value was farther on in
3111 the in-order traversal. */
3112 if (xdata[1] >= (int) node->key)
3113 return 0;
3115 /* Splice out portions of the expression that refer to regno. */
3116 rcli = (struct reg_cond_life_info *) node->value;
3117 rcli->condition = elim_reg_cond (rcli->condition, regno);
3118 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3119 rcli->stores = elim_reg_cond (rcli->stores, regno);
3121 /* If the entire condition is now false, signal the node to be removed. */
3122 if (rcli->condition == const0_rtx)
3124 xdata[1] = node->key;
3125 return -1;
3127 else
3128 gcc_assert (rcli->condition != const1_rtx);
3130 return 0;
3133 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3135 static void
3136 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3138 int pair[2];
3140 pair[0] = regno;
3141 pair[1] = -1;
3142 while (splay_tree_foreach (pbi->reg_cond_dead,
3143 flush_reg_cond_reg_1, pair) == -1)
3144 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3146 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3149 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3150 For ior/and, the ADD flag determines whether we want to add the new
3151 condition X to the old one unconditionally. If it is zero, we will
3152 only return a new expression if X allows us to simplify part of
3153 OLD, otherwise we return NULL to the caller.
3154 If ADD is nonzero, we will return a new condition in all cases. The
3155 toplevel caller of one of these functions should always pass 1 for
3156 ADD. */
3158 static rtx
3159 ior_reg_cond (rtx old, rtx x, int add)
3161 rtx op0, op1;
3163 if (COMPARISON_P (old))
3165 if (COMPARISON_P (x)
3166 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3167 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3168 return const1_rtx;
3169 if (GET_CODE (x) == GET_CODE (old)
3170 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3171 return old;
3172 if (! add)
3173 return NULL;
3174 return gen_rtx_IOR (0, old, x);
3177 switch (GET_CODE (old))
3179 case IOR:
3180 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3181 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3182 if (op0 != NULL || op1 != NULL)
3184 if (op0 == const0_rtx)
3185 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3186 if (op1 == const0_rtx)
3187 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3188 if (op0 == const1_rtx || op1 == const1_rtx)
3189 return const1_rtx;
3190 if (op0 == NULL)
3191 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3192 else if (rtx_equal_p (x, op0))
3193 /* (x | A) | x ~ (x | A). */
3194 return old;
3195 if (op1 == NULL)
3196 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3197 else if (rtx_equal_p (x, op1))
3198 /* (A | x) | x ~ (A | x). */
3199 return old;
3200 return gen_rtx_IOR (0, op0, op1);
3202 if (! add)
3203 return NULL;
3204 return gen_rtx_IOR (0, old, x);
3206 case AND:
3207 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3208 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3209 if (op0 != NULL || op1 != NULL)
3211 if (op0 == const1_rtx)
3212 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3213 if (op1 == const1_rtx)
3214 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3215 if (op0 == const0_rtx || op1 == const0_rtx)
3216 return const0_rtx;
3217 if (op0 == NULL)
3218 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3219 else if (rtx_equal_p (x, op0))
3220 /* (x & A) | x ~ x. */
3221 return op0;
3222 if (op1 == NULL)
3223 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3224 else if (rtx_equal_p (x, op1))
3225 /* (A & x) | x ~ x. */
3226 return op1;
3227 return gen_rtx_AND (0, op0, op1);
3229 if (! add)
3230 return NULL;
3231 return gen_rtx_IOR (0, old, x);
3233 case NOT:
3234 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3235 if (op0 != NULL)
3236 return not_reg_cond (op0);
3237 if (! add)
3238 return NULL;
3239 return gen_rtx_IOR (0, old, x);
3241 default:
3242 gcc_unreachable ();
3246 static rtx
3247 not_reg_cond (rtx x)
3249 if (x == const0_rtx)
3250 return const1_rtx;
3251 else if (x == const1_rtx)
3252 return const0_rtx;
3253 if (GET_CODE (x) == NOT)
3254 return XEXP (x, 0);
3255 if (COMPARISON_P (x)
3256 && REG_P (XEXP (x, 0)))
3258 gcc_assert (XEXP (x, 1) == const0_rtx);
3260 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3261 VOIDmode, XEXP (x, 0), const0_rtx);
3263 return gen_rtx_NOT (0, x);
3266 static rtx
3267 and_reg_cond (rtx old, rtx x, int add)
3269 rtx op0, op1;
3271 if (COMPARISON_P (old))
3273 if (COMPARISON_P (x)
3274 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3275 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3276 return const0_rtx;
3277 if (GET_CODE (x) == GET_CODE (old)
3278 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3279 return old;
3280 if (! add)
3281 return NULL;
3282 return gen_rtx_AND (0, old, x);
3285 switch (GET_CODE (old))
3287 case IOR:
3288 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3289 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3290 if (op0 != NULL || op1 != NULL)
3292 if (op0 == const0_rtx)
3293 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3294 if (op1 == const0_rtx)
3295 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3296 if (op0 == const1_rtx || op1 == const1_rtx)
3297 return const1_rtx;
3298 if (op0 == NULL)
3299 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3300 else if (rtx_equal_p (x, op0))
3301 /* (x | A) & x ~ x. */
3302 return op0;
3303 if (op1 == NULL)
3304 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3305 else if (rtx_equal_p (x, op1))
3306 /* (A | x) & x ~ x. */
3307 return op1;
3308 return gen_rtx_IOR (0, op0, op1);
3310 if (! add)
3311 return NULL;
3312 return gen_rtx_AND (0, old, x);
3314 case AND:
3315 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3316 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3317 if (op0 != NULL || op1 != NULL)
3319 if (op0 == const1_rtx)
3320 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3321 if (op1 == const1_rtx)
3322 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3323 if (op0 == const0_rtx || op1 == const0_rtx)
3324 return const0_rtx;
3325 if (op0 == NULL)
3326 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3327 else if (rtx_equal_p (x, op0))
3328 /* (x & A) & x ~ (x & A). */
3329 return old;
3330 if (op1 == NULL)
3331 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3332 else if (rtx_equal_p (x, op1))
3333 /* (A & x) & x ~ (A & x). */
3334 return old;
3335 return gen_rtx_AND (0, op0, op1);
3337 if (! add)
3338 return NULL;
3339 return gen_rtx_AND (0, old, x);
3341 case NOT:
3342 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3343 if (op0 != NULL)
3344 return not_reg_cond (op0);
3345 if (! add)
3346 return NULL;
3347 return gen_rtx_AND (0, old, x);
3349 default:
3350 gcc_unreachable ();
3354 /* Given a condition X, remove references to reg REGNO and return the
3355 new condition. The removal will be done so that all conditions
3356 involving REGNO are considered to evaluate to false. This function
3357 is used when the value of REGNO changes. */
3359 static rtx
3360 elim_reg_cond (rtx x, unsigned int regno)
3362 rtx op0, op1;
3364 if (COMPARISON_P (x))
3366 if (REGNO (XEXP (x, 0)) == regno)
3367 return const0_rtx;
3368 return x;
3371 switch (GET_CODE (x))
3373 case AND:
3374 op0 = elim_reg_cond (XEXP (x, 0), regno);
3375 op1 = elim_reg_cond (XEXP (x, 1), regno);
3376 if (op0 == const0_rtx || op1 == const0_rtx)
3377 return const0_rtx;
3378 if (op0 == const1_rtx)
3379 return op1;
3380 if (op1 == const1_rtx)
3381 return op0;
3382 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3383 return x;
3384 return gen_rtx_AND (0, op0, op1);
3386 case IOR:
3387 op0 = elim_reg_cond (XEXP (x, 0), regno);
3388 op1 = elim_reg_cond (XEXP (x, 1), regno);
3389 if (op0 == const1_rtx || op1 == const1_rtx)
3390 return const1_rtx;
3391 if (op0 == const0_rtx)
3392 return op1;
3393 if (op1 == const0_rtx)
3394 return op0;
3395 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3396 return x;
3397 return gen_rtx_IOR (0, op0, op1);
3399 case NOT:
3400 op0 = elim_reg_cond (XEXP (x, 0), regno);
3401 if (op0 == const0_rtx)
3402 return const1_rtx;
3403 if (op0 == const1_rtx)
3404 return const0_rtx;
3405 if (op0 != XEXP (x, 0))
3406 return not_reg_cond (op0);
3407 return x;
3409 default:
3410 gcc_unreachable ();
3413 #endif /* HAVE_conditional_execution */
3415 #ifdef AUTO_INC_DEC
3417 /* Try to substitute the auto-inc expression INC as the address inside
3418 MEM which occurs in INSN. Currently, the address of MEM is an expression
3419 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3420 that has a single set whose source is a PLUS of INCR_REG and something
3421 else. */
3423 static void
3424 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3425 rtx mem, rtx incr, rtx incr_reg)
3427 int regno = REGNO (incr_reg);
3428 rtx set = single_set (incr);
3429 rtx q = SET_DEST (set);
3430 rtx y = SET_SRC (set);
3431 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3432 int changed;
3434 /* Make sure this reg appears only once in this insn. */
3435 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3436 return;
3438 if (dead_or_set_p (incr, incr_reg)
3439 /* Mustn't autoinc an eliminable register. */
3440 && (regno >= FIRST_PSEUDO_REGISTER
3441 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3443 /* This is the simple case. Try to make the auto-inc. If
3444 we can't, we are done. Otherwise, we will do any
3445 needed updates below. */
3446 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3447 return;
3449 else if (REG_P (q)
3450 /* PREV_INSN used here to check the semi-open interval
3451 [insn,incr). */
3452 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3453 /* We must also check for sets of q as q may be
3454 a call clobbered hard register and there may
3455 be a call between PREV_INSN (insn) and incr. */
3456 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3458 /* We have *p followed sometime later by q = p+size.
3459 Both p and q must be live afterward,
3460 and q is not used between INSN and its assignment.
3461 Change it to q = p, ...*q..., q = q+size.
3462 Then fall into the usual case. */
3463 rtx insns, temp;
3465 start_sequence ();
3466 emit_move_insn (q, incr_reg);
3467 insns = get_insns ();
3468 end_sequence ();
3470 /* If we can't make the auto-inc, or can't make the
3471 replacement into Y, exit. There's no point in making
3472 the change below if we can't do the auto-inc and doing
3473 so is not correct in the pre-inc case. */
3475 XEXP (inc, 0) = q;
3476 validate_change (insn, &XEXP (mem, 0), inc, 1);
3477 validate_change (incr, &XEXP (y, opnum), q, 1);
3478 if (! apply_change_group ())
3479 return;
3481 /* We now know we'll be doing this change, so emit the
3482 new insn(s) and do the updates. */
3483 emit_insn_before (insns, insn);
3485 if (BB_HEAD (pbi->bb) == insn)
3486 BB_HEAD (pbi->bb) = insns;
3488 /* INCR will become a NOTE and INSN won't contain a
3489 use of INCR_REG. If a use of INCR_REG was just placed in
3490 the insn before INSN, make that the next use.
3491 Otherwise, invalidate it. */
3492 if (NONJUMP_INSN_P (PREV_INSN (insn))
3493 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3494 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3495 pbi->reg_next_use[regno] = PREV_INSN (insn);
3496 else
3497 pbi->reg_next_use[regno] = 0;
3499 incr_reg = q;
3500 regno = REGNO (q);
3502 if ((pbi->flags & PROP_REG_INFO)
3503 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3504 reg_deaths[regno] = pbi->insn_num;
3506 /* REGNO is now used in INCR which is below INSN, but
3507 it previously wasn't live here. If we don't mark
3508 it as live, we'll put a REG_DEAD note for it
3509 on this insn, which is incorrect. */
3510 SET_REGNO_REG_SET (pbi->reg_live, regno);
3512 /* If there are any calls between INSN and INCR, show
3513 that REGNO now crosses them. */
3514 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3515 if (CALL_P (temp))
3517 REG_N_CALLS_CROSSED (regno)++;
3518 if (can_throw_internal (temp))
3519 REG_N_THROWING_CALLS_CROSSED (regno)++;
3522 /* Invalidate alias info for Q since we just changed its value. */
3523 clear_reg_alias_info (q);
3525 else
3526 return;
3528 /* If we haven't returned, it means we were able to make the
3529 auto-inc, so update the status. First, record that this insn
3530 has an implicit side effect. */
3532 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3534 /* Modify the old increment-insn to simply copy
3535 the already-incremented value of our register. */
3536 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3537 gcc_assert (changed);
3539 /* If that makes it a no-op (copying the register into itself) delete
3540 it so it won't appear to be a "use" and a "set" of this
3541 register. */
3542 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3544 /* If the original source was dead, it's dead now. */
3545 rtx note;
3547 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3549 remove_note (incr, note);
3550 if (XEXP (note, 0) != incr_reg)
3552 unsigned int regno = REGNO (XEXP (note, 0));
3554 if ((pbi->flags & PROP_REG_INFO)
3555 && REGNO_REG_SET_P (pbi->reg_live, regno))
3557 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3558 reg_deaths[regno] = 0;
3560 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3564 SET_INSN_DELETED (incr);
3567 if (regno >= FIRST_PSEUDO_REGISTER)
3569 /* Count an extra reference to the reg. When a reg is
3570 incremented, spilling it is worse, so we want to make
3571 that less likely. */
3572 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3574 /* Count the increment as a setting of the register,
3575 even though it isn't a SET in rtl. */
3576 REG_N_SETS (regno)++;
3580 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3581 reference. */
3583 static void
3584 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3586 rtx addr = XEXP (x, 0);
3587 HOST_WIDE_INT offset = 0;
3588 rtx set, y, incr, inc_val;
3589 int regno;
3590 int size = GET_MODE_SIZE (GET_MODE (x));
3592 if (JUMP_P (insn))
3593 return;
3595 /* Here we detect use of an index register which might be good for
3596 postincrement, postdecrement, preincrement, or predecrement. */
3598 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3599 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3601 if (!REG_P (addr))
3602 return;
3604 regno = REGNO (addr);
3606 /* Is the next use an increment that might make auto-increment? */
3607 incr = pbi->reg_next_use[regno];
3608 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3609 return;
3610 set = single_set (incr);
3611 if (set == 0 || GET_CODE (set) != SET)
3612 return;
3613 y = SET_SRC (set);
3615 if (GET_CODE (y) != PLUS)
3616 return;
3618 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3619 inc_val = XEXP (y, 1);
3620 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3621 inc_val = XEXP (y, 0);
3622 else
3623 return;
3625 if (GET_CODE (inc_val) == CONST_INT)
3627 if (HAVE_POST_INCREMENT
3628 && (INTVAL (inc_val) == size && offset == 0))
3629 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3630 incr, addr);
3631 else if (HAVE_POST_DECREMENT
3632 && (INTVAL (inc_val) == -size && offset == 0))
3633 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3634 incr, addr);
3635 else if (HAVE_PRE_INCREMENT
3636 && (INTVAL (inc_val) == size && offset == size))
3637 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3638 incr, addr);
3639 else if (HAVE_PRE_DECREMENT
3640 && (INTVAL (inc_val) == -size && offset == -size))
3641 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3642 incr, addr);
3643 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3644 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3645 gen_rtx_PLUS (Pmode,
3646 addr,
3647 inc_val)),
3648 insn, x, incr, addr);
3649 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3650 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3651 gen_rtx_PLUS (Pmode,
3652 addr,
3653 inc_val)),
3654 insn, x, incr, addr);
3656 else if (REG_P (inc_val)
3657 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3658 NEXT_INSN (incr)))
3661 if (HAVE_POST_MODIFY_REG && offset == 0)
3662 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3663 gen_rtx_PLUS (Pmode,
3664 addr,
3665 inc_val)),
3666 insn, x, incr, addr);
3670 #endif /* AUTO_INC_DEC */
3672 static void
3673 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3674 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3676 unsigned int regno_first, regno_last, i;
3677 int some_was_live, some_was_dead, some_not_set;
3679 regno_last = regno_first = REGNO (reg);
3680 if (regno_first < FIRST_PSEUDO_REGISTER)
3681 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3683 /* Find out if any of this register is live after this instruction. */
3684 some_was_live = some_was_dead = 0;
3685 for (i = regno_first; i <= regno_last; ++i)
3687 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3688 some_was_live |= needed_regno;
3689 some_was_dead |= ! needed_regno;
3692 /* Find out if any of the register was set this insn. */
3693 some_not_set = 0;
3694 for (i = regno_first; i <= regno_last; ++i)
3695 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3697 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3699 /* Record where each reg is used, so when the reg is set we know
3700 the next insn that uses it. */
3701 pbi->reg_next_use[regno_first] = insn;
3704 if (pbi->flags & PROP_REG_INFO)
3706 if (regno_first < FIRST_PSEUDO_REGISTER)
3708 /* If this is a register we are going to try to eliminate,
3709 don't mark it live here. If we are successful in
3710 eliminating it, it need not be live unless it is used for
3711 pseudos, in which case it will have been set live when it
3712 was allocated to the pseudos. If the register will not
3713 be eliminated, reload will set it live at that point.
3715 Otherwise, record that this function uses this register. */
3716 /* ??? The PPC backend tries to "eliminate" on the pic
3717 register to itself. This should be fixed. In the mean
3718 time, hack around it. */
3720 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3721 && (regno_first == FRAME_POINTER_REGNUM
3722 || regno_first == ARG_POINTER_REGNUM)))
3723 for (i = regno_first; i <= regno_last; ++i)
3724 regs_ever_live[i] = 1;
3726 else
3728 /* Keep track of which basic block each reg appears in. */
3730 int blocknum = pbi->bb->index;
3731 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3732 REG_BASIC_BLOCK (regno_first) = blocknum;
3733 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3734 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3736 /* Count (weighted) number of uses of each reg. */
3737 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3738 REG_N_REFS (regno_first)++;
3740 for (i = regno_first; i <= regno_last; ++i)
3741 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3743 gcc_assert (!reg_deaths[i]);
3744 reg_deaths[i] = pbi->insn_num;
3748 /* Record and count the insns in which a reg dies. If it is used in
3749 this insn and was dead below the insn then it dies in this insn.
3750 If it was set in this insn, we do not make a REG_DEAD note;
3751 likewise if we already made such a note. */
3752 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3753 && some_was_dead
3754 && some_not_set)
3756 /* Check for the case where the register dying partially
3757 overlaps the register set by this insn. */
3758 if (regno_first != regno_last)
3759 for (i = regno_first; i <= regno_last; ++i)
3760 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3762 /* If none of the words in X is needed, make a REG_DEAD note.
3763 Otherwise, we must make partial REG_DEAD notes. */
3764 if (! some_was_live)
3766 if ((pbi->flags & PROP_DEATH_NOTES)
3767 && ! find_regno_note (insn, REG_DEAD, regno_first))
3768 REG_NOTES (insn)
3769 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3771 if (pbi->flags & PROP_REG_INFO)
3772 REG_N_DEATHS (regno_first)++;
3774 else
3776 /* Don't make a REG_DEAD note for a part of a register
3777 that is set in the insn. */
3778 for (i = regno_first; i <= regno_last; ++i)
3779 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3780 && ! dead_or_set_regno_p (insn, i))
3781 REG_NOTES (insn)
3782 = alloc_EXPR_LIST (REG_DEAD,
3783 regno_reg_rtx[i],
3784 REG_NOTES (insn));
3788 /* Mark the register as being live. */
3789 for (i = regno_first; i <= regno_last; ++i)
3791 #ifdef HAVE_conditional_execution
3792 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3793 #endif
3795 SET_REGNO_REG_SET (pbi->reg_live, i);
3797 #ifdef HAVE_conditional_execution
3798 /* If this is a conditional use, record that fact. If it is later
3799 conditionally set, we'll know to kill the register. */
3800 if (cond != NULL_RTX)
3802 splay_tree_node node;
3803 struct reg_cond_life_info *rcli;
3804 rtx ncond;
3806 if (this_was_live)
3808 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3809 if (node == NULL)
3811 /* The register was unconditionally live previously.
3812 No need to do anything. */
3814 else
3816 /* The register was conditionally live previously.
3817 Subtract the new life cond from the old death cond. */
3818 rcli = (struct reg_cond_life_info *) node->value;
3819 ncond = rcli->condition;
3820 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3822 /* If the register is now unconditionally live,
3823 remove the entry in the splay_tree. */
3824 if (ncond == const0_rtx)
3825 splay_tree_remove (pbi->reg_cond_dead, i);
3826 else
3828 rcli->condition = ncond;
3829 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3830 REGNO (XEXP (cond, 0)));
3834 else
3836 /* The register was not previously live at all. Record
3837 the condition under which it is still dead. */
3838 rcli = xmalloc (sizeof (*rcli));
3839 rcli->condition = not_reg_cond (cond);
3840 rcli->stores = const0_rtx;
3841 rcli->orig_condition = const0_rtx;
3842 splay_tree_insert (pbi->reg_cond_dead, i,
3843 (splay_tree_value) rcli);
3845 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3848 else if (this_was_live)
3850 /* The register may have been conditionally live previously, but
3851 is now unconditionally live. Remove it from the conditionally
3852 dead list, so that a conditional set won't cause us to think
3853 it dead. */
3854 splay_tree_remove (pbi->reg_cond_dead, i);
3856 #endif
3860 /* Scan expression X for registers which have to be marked used in PBI.
3861 X is considered to be the SET_DEST rtx of SET. TRUE is returned if
3862 X could be handled by this function. */
3864 static bool
3865 mark_used_dest_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3867 int regno;
3868 bool mark_dest = false;
3869 rtx dest = x;
3871 /* On some platforms calls return values spread over several
3872 locations. These locations are wrapped in a EXPR_LIST rtx
3873 together with a CONST_INT offset. */
3874 if (GET_CODE (x) == EXPR_LIST
3875 && GET_CODE (XEXP (x, 1)) == CONST_INT)
3876 x = XEXP (x, 0);
3878 if (x == NULL_RTX)
3879 return false;
3881 /* If storing into MEM, don't show it as being used. But do
3882 show the address as being used. */
3883 if (MEM_P (x))
3885 #ifdef AUTO_INC_DEC
3886 if (pbi->flags & PROP_AUTOINC)
3887 find_auto_inc (pbi, x, insn);
3888 #endif
3889 mark_used_regs (pbi, XEXP (x, 0), cond, insn);
3890 return true;
3893 /* Storing in STRICT_LOW_PART is like storing in a reg
3894 in that this SET might be dead, so ignore it in TESTREG.
3895 but in some other ways it is like using the reg.
3897 Storing in a SUBREG or a bit field is like storing the entire
3898 register in that if the register's value is not used
3899 then this SET is not needed. */
3900 while (GET_CODE (x) == STRICT_LOW_PART
3901 || GET_CODE (x) == ZERO_EXTRACT
3902 || GET_CODE (x) == SUBREG)
3904 #ifdef CANNOT_CHANGE_MODE_CLASS
3905 if ((pbi->flags & PROP_REG_INFO) && GET_CODE (x) == SUBREG)
3906 record_subregs_of_mode (x);
3907 #endif
3909 /* Modifying a single register in an alternate mode
3910 does not use any of the old value. But these other
3911 ways of storing in a register do use the old value. */
3912 if (GET_CODE (x) == SUBREG
3913 && !((REG_BYTES (SUBREG_REG (x))
3914 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3915 > (REG_BYTES (x)
3916 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3918 else
3919 mark_dest = true;
3921 x = XEXP (x, 0);
3924 /* If this is a store into a register or group of registers,
3925 recursively scan the value being stored. */
3926 if (REG_P (x)
3927 && (regno = REGNO (x),
3928 !(regno == FRAME_POINTER_REGNUM
3929 && (!reload_completed || frame_pointer_needed)))
3930 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3931 && !(regno == HARD_FRAME_POINTER_REGNUM
3932 && (!reload_completed || frame_pointer_needed))
3933 #endif
3934 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3935 && !(regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3936 #endif
3939 if (mark_dest)
3940 mark_used_regs (pbi, dest, cond, insn);
3941 return true;
3943 return false;
3946 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3947 This is done assuming the registers needed from X are those that
3948 have 1-bits in PBI->REG_LIVE.
3950 INSN is the containing instruction. If INSN is dead, this function
3951 is not called. */
3953 static void
3954 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3956 RTX_CODE code;
3957 int flags = pbi->flags;
3959 retry:
3960 if (!x)
3961 return;
3962 code = GET_CODE (x);
3963 switch (code)
3965 case LABEL_REF:
3966 case SYMBOL_REF:
3967 case CONST_INT:
3968 case CONST:
3969 case CONST_DOUBLE:
3970 case CONST_VECTOR:
3971 case PC:
3972 case ADDR_VEC:
3973 case ADDR_DIFF_VEC:
3974 return;
3976 #ifdef HAVE_cc0
3977 case CC0:
3978 pbi->cc0_live = 1;
3979 return;
3980 #endif
3982 case CLOBBER:
3983 /* If we are clobbering a MEM, mark any registers inside the address
3984 as being used. */
3985 if (MEM_P (XEXP (x, 0)))
3986 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3987 return;
3989 case MEM:
3990 /* Don't bother watching stores to mems if this is not the
3991 final pass. We'll not be deleting dead stores this round. */
3992 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3994 /* Invalidate the data for the last MEM stored, but only if MEM is
3995 something that can be stored into. */
3996 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3997 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3998 /* Needn't clear the memory set list. */
4000 else
4002 rtx temp = pbi->mem_set_list;
4003 rtx prev = NULL_RTX;
4004 rtx next;
4006 while (temp)
4008 next = XEXP (temp, 1);
4009 if (anti_dependence (XEXP (temp, 0), x))
4011 /* Splice temp out of the list. */
4012 if (prev)
4013 XEXP (prev, 1) = next;
4014 else
4015 pbi->mem_set_list = next;
4016 free_EXPR_LIST_node (temp);
4017 pbi->mem_set_list_len--;
4019 else
4020 prev = temp;
4021 temp = next;
4025 /* If the memory reference had embedded side effects (autoincrement
4026 address modes. Then we may need to kill some entries on the
4027 memory set list. */
4028 if (insn)
4029 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
4032 #ifdef AUTO_INC_DEC
4033 if (flags & PROP_AUTOINC)
4034 find_auto_inc (pbi, x, insn);
4035 #endif
4036 break;
4038 case SUBREG:
4039 #ifdef CANNOT_CHANGE_MODE_CLASS
4040 if (flags & PROP_REG_INFO)
4041 record_subregs_of_mode (x);
4042 #endif
4044 /* While we're here, optimize this case. */
4045 x = SUBREG_REG (x);
4046 if (!REG_P (x))
4047 goto retry;
4048 /* Fall through. */
4050 case REG:
4051 /* See a register other than being set => mark it as needed. */
4052 mark_used_reg (pbi, x, cond, insn);
4053 return;
4055 case SET:
4057 rtx dest = SET_DEST (x);
4058 int i;
4059 bool ret = false;
4061 if (GET_CODE (dest) == PARALLEL)
4062 for (i = 0; i < XVECLEN (dest, 0); i++)
4063 ret |= mark_used_dest_regs (pbi, XVECEXP (dest, 0, i), cond, insn);
4064 else
4065 ret = mark_used_dest_regs (pbi, dest, cond, insn);
4067 if (ret)
4069 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4070 return;
4073 break;
4075 case ASM_OPERANDS:
4076 case UNSPEC_VOLATILE:
4077 case TRAP_IF:
4078 case ASM_INPUT:
4080 /* Traditional and volatile asm instructions must be considered to use
4081 and clobber all hard registers, all pseudo-registers and all of
4082 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4084 Consider for instance a volatile asm that changes the fpu rounding
4085 mode. An insn should not be moved across this even if it only uses
4086 pseudo-regs because it might give an incorrectly rounded result.
4088 ?!? Unfortunately, marking all hard registers as live causes massive
4089 problems for the register allocator and marking all pseudos as live
4090 creates mountains of uninitialized variable warnings.
4092 So for now, just clear the memory set list and mark any regs
4093 we can find in ASM_OPERANDS as used. */
4094 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4096 free_EXPR_LIST_list (&pbi->mem_set_list);
4097 pbi->mem_set_list_len = 0;
4100 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4101 We can not just fall through here since then we would be confused
4102 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4103 traditional asms unlike their normal usage. */
4104 if (code == ASM_OPERANDS)
4106 int j;
4108 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4109 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4111 break;
4114 case COND_EXEC:
4115 gcc_assert (!cond);
4117 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4119 cond = COND_EXEC_TEST (x);
4120 x = COND_EXEC_CODE (x);
4121 goto retry;
4123 default:
4124 break;
4127 /* Recursively scan the operands of this expression. */
4130 const char * const fmt = GET_RTX_FORMAT (code);
4131 int i;
4133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4135 if (fmt[i] == 'e')
4137 /* Tail recursive case: save a function call level. */
4138 if (i == 0)
4140 x = XEXP (x, 0);
4141 goto retry;
4143 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4145 else if (fmt[i] == 'E')
4147 int j;
4148 for (j = 0; j < XVECLEN (x, i); j++)
4149 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4155 #ifdef AUTO_INC_DEC
4157 static int
4158 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4160 /* Find the next use of this reg. If in same basic block,
4161 make it do pre-increment or pre-decrement if appropriate. */
4162 rtx x = single_set (insn);
4163 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4164 * INTVAL (XEXP (SET_SRC (x), 1)));
4165 int regno = REGNO (SET_DEST (x));
4166 rtx y = pbi->reg_next_use[regno];
4167 if (y != 0
4168 && SET_DEST (x) != stack_pointer_rtx
4169 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4170 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4171 mode would be better. */
4172 && ! dead_or_set_p (y, SET_DEST (x))
4173 && try_pre_increment (y, SET_DEST (x), amount))
4175 /* We have found a suitable auto-increment and already changed
4176 insn Y to do it. So flush this increment instruction. */
4177 propagate_block_delete_insn (insn);
4179 /* Count a reference to this reg for the increment insn we are
4180 deleting. When a reg is incremented, spilling it is worse,
4181 so we want to make that less likely. */
4182 if (regno >= FIRST_PSEUDO_REGISTER)
4184 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4185 REG_N_SETS (regno)++;
4188 /* Flush any remembered memories depending on the value of
4189 the incremented register. */
4190 invalidate_mems_from_set (pbi, SET_DEST (x));
4192 return 1;
4194 return 0;
4197 /* Try to change INSN so that it does pre-increment or pre-decrement
4198 addressing on register REG in order to add AMOUNT to REG.
4199 AMOUNT is negative for pre-decrement.
4200 Returns 1 if the change could be made.
4201 This checks all about the validity of the result of modifying INSN. */
4203 static int
4204 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4206 rtx use;
4208 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4209 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4210 int pre_ok = 0;
4211 /* Nonzero if we can try to make a post-increment or post-decrement.
4212 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4213 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4214 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4215 int post_ok = 0;
4217 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4218 int do_post = 0;
4220 /* From the sign of increment, see which possibilities are conceivable
4221 on this target machine. */
4222 if (HAVE_PRE_INCREMENT && amount > 0)
4223 pre_ok = 1;
4224 if (HAVE_POST_INCREMENT && amount > 0)
4225 post_ok = 1;
4227 if (HAVE_PRE_DECREMENT && amount < 0)
4228 pre_ok = 1;
4229 if (HAVE_POST_DECREMENT && amount < 0)
4230 post_ok = 1;
4232 if (! (pre_ok || post_ok))
4233 return 0;
4235 /* It is not safe to add a side effect to a jump insn
4236 because if the incremented register is spilled and must be reloaded
4237 there would be no way to store the incremented value back in memory. */
4239 if (JUMP_P (insn))
4240 return 0;
4242 use = 0;
4243 if (pre_ok)
4244 use = find_use_as_address (PATTERN (insn), reg, 0);
4245 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4247 use = find_use_as_address (PATTERN (insn), reg, -amount);
4248 do_post = 1;
4251 if (use == 0 || use == (rtx) (size_t) 1)
4252 return 0;
4254 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4255 return 0;
4257 /* See if this combination of instruction and addressing mode exists. */
4258 if (! validate_change (insn, &XEXP (use, 0),
4259 gen_rtx_fmt_e (amount > 0
4260 ? (do_post ? POST_INC : PRE_INC)
4261 : (do_post ? POST_DEC : PRE_DEC),
4262 Pmode, reg), 0))
4263 return 0;
4265 /* Record that this insn now has an implicit side effect on X. */
4266 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4267 return 1;
4270 #endif /* AUTO_INC_DEC */
4272 /* Find the place in the rtx X where REG is used as a memory address.
4273 Return the MEM rtx that so uses it.
4274 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4275 (plus REG (const_int PLUSCONST)).
4277 If such an address does not appear, return 0.
4278 If REG appears more than once, or is used other than in such an address,
4279 return (rtx) 1. */
4282 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4284 enum rtx_code code = GET_CODE (x);
4285 const char * const fmt = GET_RTX_FORMAT (code);
4286 int i;
4287 rtx value = 0;
4288 rtx tem;
4290 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4291 return x;
4293 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4294 && XEXP (XEXP (x, 0), 0) == reg
4295 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4296 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4297 return x;
4299 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4301 /* If REG occurs inside a MEM used in a bit-field reference,
4302 that is unacceptable. */
4303 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4304 return (rtx) (size_t) 1;
4307 if (x == reg)
4308 return (rtx) (size_t) 1;
4310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4312 if (fmt[i] == 'e')
4314 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4315 if (value == 0)
4316 value = tem;
4317 else if (tem != 0)
4318 return (rtx) (size_t) 1;
4320 else if (fmt[i] == 'E')
4322 int j;
4323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4325 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4326 if (value == 0)
4327 value = tem;
4328 else if (tem != 0)
4329 return (rtx) (size_t) 1;
4334 return value;
4337 /* Write information about registers and basic blocks into FILE.
4338 This is part of making a debugging dump. */
4340 void
4341 dump_regset (regset r, FILE *outf)
4343 unsigned i;
4344 reg_set_iterator rsi;
4346 if (r == NULL)
4348 fputs (" (nil)", outf);
4349 return;
4352 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4354 fprintf (outf, " %d", i);
4355 if (i < FIRST_PSEUDO_REGISTER)
4356 fprintf (outf, " [%s]",
4357 reg_names[i]);
4361 /* Print a human-readable representation of R on the standard error
4362 stream. This function is designed to be used from within the
4363 debugger. */
4365 void
4366 debug_regset (regset r)
4368 dump_regset (r, stderr);
4369 putc ('\n', stderr);
4372 /* Recompute register set/reference counts immediately prior to register
4373 allocation.
4375 This avoids problems with set/reference counts changing to/from values
4376 which have special meanings to the register allocators.
4378 Additionally, the reference counts are the primary component used by the
4379 register allocators to prioritize pseudos for allocation to hard regs.
4380 More accurate reference counts generally lead to better register allocation.
4382 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4383 possibly other information which is used by the register allocators. */
4385 void
4386 recompute_reg_usage (void)
4388 allocate_reg_life_data ();
4389 /* distribute_notes in combiner fails to convert some of the
4390 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4391 in sched1 to die. To solve this update the DEATH_NOTES
4392 here. */
4393 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4395 if (dump_file)
4396 dump_flow_info (dump_file);
4399 struct tree_opt_pass pass_recompute_reg_usage =
4401 "life2", /* name */
4402 NULL, /* gate */
4403 recompute_reg_usage, /* execute */
4404 NULL, /* sub */
4405 NULL, /* next */
4406 0, /* static_pass_number */
4407 0, /* tv_id */
4408 0, /* properties_required */
4409 0, /* properties_provided */
4410 0, /* properties_destroyed */
4411 0, /* todo_flags_start */
4412 TODO_dump_func, /* todo_flags_finish */
4413 'f' /* letter */
4416 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4417 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4418 of the number of registers that died. */
4421 count_or_remove_death_notes (sbitmap blocks, int kill)
4423 int count = 0;
4424 unsigned int i = 0;
4425 basic_block bb;
4427 /* This used to be a loop over all the blocks with a membership test
4428 inside the loop. That can be amazingly expensive on a large CFG
4429 when only a small number of bits are set in BLOCKs (for example,
4430 the calls from the scheduler typically have very few bits set).
4432 For extra credit, someone should convert BLOCKS to a bitmap rather
4433 than an sbitmap. */
4434 if (blocks)
4436 sbitmap_iterator sbi;
4438 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4440 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4443 else
4445 FOR_EACH_BB (bb)
4447 count += count_or_remove_death_notes_bb (bb, kill);
4451 return count;
4454 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4455 block BB. Returns a count of the number of registers that died. */
4457 static int
4458 count_or_remove_death_notes_bb (basic_block bb, int kill)
4460 int count = 0;
4461 rtx insn;
4463 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4465 if (INSN_P (insn))
4467 rtx *pprev = &REG_NOTES (insn);
4468 rtx link = *pprev;
4470 while (link)
4472 switch (REG_NOTE_KIND (link))
4474 case REG_DEAD:
4475 if (REG_P (XEXP (link, 0)))
4477 rtx reg = XEXP (link, 0);
4478 int n;
4480 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4481 n = 1;
4482 else
4483 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4484 count += n;
4487 /* Fall through. */
4489 case REG_UNUSED:
4490 if (kill)
4492 rtx next = XEXP (link, 1);
4493 free_EXPR_LIST_node (link);
4494 *pprev = link = next;
4495 break;
4497 /* Fall through. */
4499 default:
4500 pprev = &XEXP (link, 1);
4501 link = *pprev;
4502 break;
4507 if (insn == BB_END (bb))
4508 break;
4511 return count;
4514 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4515 if blocks is NULL. */
4517 static void
4518 clear_log_links (sbitmap blocks)
4520 rtx insn;
4522 if (!blocks)
4524 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4525 if (INSN_P (insn))
4526 free_INSN_LIST_list (&LOG_LINKS (insn));
4528 else
4530 unsigned int i = 0;
4531 sbitmap_iterator sbi;
4533 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4535 basic_block bb = BASIC_BLOCK (i);
4537 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4538 insn = NEXT_INSN (insn))
4539 if (INSN_P (insn))
4540 free_INSN_LIST_list (&LOG_LINKS (insn));
4545 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4546 correspond to the hard registers, if any, set in that map. This
4547 could be done far more efficiently by having all sorts of special-cases
4548 with moving single words, but probably isn't worth the trouble. */
4550 void
4551 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4553 unsigned i;
4554 bitmap_iterator bi;
4556 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4558 if (i >= FIRST_PSEUDO_REGISTER)
4559 return;
4560 SET_HARD_REG_BIT (*to, i);
4565 static bool
4566 gate_remove_death_notes (void)
4568 return flag_profile_values;
4571 static void
4572 rest_of_handle_remove_death_notes (void)
4574 count_or_remove_death_notes (NULL, 1);
4577 struct tree_opt_pass pass_remove_death_notes =
4579 "ednotes", /* name */
4580 gate_remove_death_notes, /* gate */
4581 rest_of_handle_remove_death_notes, /* execute */
4582 NULL, /* sub */
4583 NULL, /* next */
4584 0, /* static_pass_number */
4585 0, /* tv_id */
4586 0, /* properties_required */
4587 0, /* properties_provided */
4588 0, /* properties_destroyed */
4589 0, /* todo_flags_start */
4590 0, /* todo_flags_finish */
4591 0 /* letter */
4594 /* Perform life analysis. */
4595 static void
4596 rest_of_handle_life (void)
4598 regclass_init ();
4600 life_analysis (dump_file, PROP_FINAL);
4601 if (optimize)
4602 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
4603 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
4605 if (extra_warnings)
4607 setjmp_vars_warning (DECL_INITIAL (current_function_decl));
4608 setjmp_args_warning ();
4611 if (optimize)
4613 if (initialize_uninitialized_subregs ())
4615 /* Insns were inserted, and possibly pseudos created, so
4616 things might look a bit different. */
4617 allocate_reg_life_data ();
4618 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
4619 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
4623 no_new_pseudos = 1;
4626 struct tree_opt_pass pass_life =
4628 "life1", /* name */
4629 NULL, /* gate */
4630 rest_of_handle_life, /* execute */
4631 NULL, /* sub */
4632 NULL, /* next */
4633 0, /* static_pass_number */
4634 TV_FLOW, /* tv_id */
4635 0, /* properties_required */
4636 0, /* properties_provided */
4637 0, /* properties_destroyed */
4638 TODO_verify_flow, /* todo_flags_start */
4639 TODO_dump_func |
4640 TODO_ggc_collect, /* todo_flags_finish */
4641 'f' /* letter */
4644 static void
4645 rest_of_handle_flow2 (void)
4647 /* If optimizing, then go ahead and split insns now. */
4648 #ifndef STACK_REGS
4649 if (optimize > 0)
4650 #endif
4651 split_all_insns (0);
4653 if (flag_branch_target_load_optimize)
4654 branch_target_load_optimize (epilogue_completed);
4656 if (optimize)
4657 cleanup_cfg (CLEANUP_EXPENSIVE);
4659 /* On some machines, the prologue and epilogue code, or parts thereof,
4660 can be represented as RTL. Doing so lets us schedule insns between
4661 it and the rest of the code and also allows delayed branch
4662 scheduling to operate in the epilogue. */
4663 thread_prologue_and_epilogue_insns (get_insns ());
4664 epilogue_completed = 1;
4665 flow2_completed = 1;
4668 struct tree_opt_pass pass_flow2 =
4670 "flow2", /* name */
4671 NULL, /* gate */
4672 rest_of_handle_flow2, /* execute */
4673 NULL, /* sub */
4674 NULL, /* next */
4675 0, /* static_pass_number */
4676 TV_FLOW2, /* tv_id */
4677 0, /* properties_required */
4678 0, /* properties_provided */
4679 0, /* properties_destroyed */
4680 TODO_verify_flow, /* todo_flags_start */
4681 TODO_dump_func |
4682 TODO_ggc_collect, /* todo_flags_finish */
4683 'w' /* letter */