No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / lambda-code.c
blob4047934c0c00b02da5e332ecb5690f6ce5889221
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
45 /* This loop nest code generation is based on non-singular matrix
46 math.
48 A little terminology and a general sketch of the algorithm. See "A singular
49 loop transformation framework based on non-singular matrices" by Wei Li and
50 Keshav Pingali for formal proofs that the various statements below are
51 correct.
53 A loop iteration space represents the points traversed by the loop. A point in the
54 iteration space can be represented by a vector of size <loop depth>. You can
55 therefore represent the iteration space as an integral combinations of a set
56 of basis vectors.
58 A loop iteration space is dense if every integer point between the loop
59 bounds is a point in the iteration space. Every loop with a step of 1
60 therefore has a dense iteration space.
62 for i = 1 to 3, step 1 is a dense iteration space.
64 A loop iteration space is sparse if it is not dense. That is, the iteration
65 space skips integer points that are within the loop bounds.
67 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
68 2 is skipped.
70 Dense source spaces are easy to transform, because they don't skip any
71 points to begin with. Thus we can compute the exact bounds of the target
72 space using min/max and floor/ceil.
74 For a dense source space, we take the transformation matrix, decompose it
75 into a lower triangular part (H) and a unimodular part (U).
76 We then compute the auxiliary space from the unimodular part (source loop
77 nest . U = auxiliary space) , which has two important properties:
78 1. It traverses the iterations in the same lexicographic order as the source
79 space.
80 2. It is a dense space when the source is a dense space (even if the target
81 space is going to be sparse).
83 Given the auxiliary space, we use the lower triangular part to compute the
84 bounds in the target space by simple matrix multiplication.
85 The gaps in the target space (IE the new loop step sizes) will be the
86 diagonals of the H matrix.
88 Sparse source spaces require another step, because you can't directly compute
89 the exact bounds of the auxiliary and target space from the sparse space.
90 Rather than try to come up with a separate algorithm to handle sparse source
91 spaces directly, we just find a legal transformation matrix that gives you
92 the sparse source space, from a dense space, and then transform the dense
93 space.
95 For a regular sparse space, you can represent the source space as an integer
96 lattice, and the base space of that lattice will always be dense. Thus, we
97 effectively use the lattice to figure out the transformation from the lattice
98 base space, to the sparse iteration space (IE what transform was applied to
99 the dense space to make it sparse). We then compose this transform with the
100 transformation matrix specified by the user (since our matrix transformations
101 are closed under composition, this is okay). We can then use the base space
102 (which is dense) plus the composed transformation matrix, to compute the rest
103 of the transform using the dense space algorithm above.
105 In other words, our sparse source space (B) is decomposed into a dense base
106 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
107 We then compute the composition of L and the user transformation matrix (T),
108 so that T is now a transform from A to the result, instead of from B to the
109 result.
110 IE A.(LT) = result instead of B.T = result
111 Since A is now a dense source space, we can use the dense source space
112 algorithm above to compute the result of applying transform (LT) to A.
114 Fourier-Motzkin elimination is used to compute the bounds of the base space
115 of the lattice. */
117 DEF_VEC_I(int);
118 DEF_VEC_ALLOC_I(int,heap);
120 static bool perfect_nestify (struct loops *,
121 struct loop *, VEC(tree,heap) *,
122 VEC(tree,heap) *, VEC(int,heap) *,
123 VEC(tree,heap) *);
124 /* Lattice stuff that is internal to the code generation algorithm. */
126 typedef struct
128 /* Lattice base matrix. */
129 lambda_matrix base;
130 /* Lattice dimension. */
131 int dimension;
132 /* Origin vector for the coefficients. */
133 lambda_vector origin;
134 /* Origin matrix for the invariants. */
135 lambda_matrix origin_invariants;
136 /* Number of invariants. */
137 int invariants;
138 } *lambda_lattice;
140 #define LATTICE_BASE(T) ((T)->base)
141 #define LATTICE_DIMENSION(T) ((T)->dimension)
142 #define LATTICE_ORIGIN(T) ((T)->origin)
143 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
144 #define LATTICE_INVARIANTS(T) ((T)->invariants)
146 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
147 int, int);
148 static lambda_lattice lambda_lattice_new (int, int);
149 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
151 static tree find_induction_var_from_exit_cond (struct loop *);
152 static bool can_convert_to_perfect_nest (struct loop *);
154 /* Create a new lambda body vector. */
156 lambda_body_vector
157 lambda_body_vector_new (int size)
159 lambda_body_vector ret;
161 ret = ggc_alloc (sizeof (*ret));
162 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
163 LBV_SIZE (ret) = size;
164 LBV_DENOMINATOR (ret) = 1;
165 return ret;
168 /* Compute the new coefficients for the vector based on the
169 *inverse* of the transformation matrix. */
171 lambda_body_vector
172 lambda_body_vector_compute_new (lambda_trans_matrix transform,
173 lambda_body_vector vect)
175 lambda_body_vector temp;
176 int depth;
178 /* Make sure the matrix is square. */
179 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
181 depth = LTM_ROWSIZE (transform);
183 temp = lambda_body_vector_new (depth);
184 LBV_DENOMINATOR (temp) =
185 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
186 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
187 LTM_MATRIX (transform), depth,
188 LBV_COEFFICIENTS (temp));
189 LBV_SIZE (temp) = LBV_SIZE (vect);
190 return temp;
193 /* Print out a lambda body vector. */
195 void
196 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
198 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
201 /* Return TRUE if two linear expressions are equal. */
203 static bool
204 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
205 int depth, int invariants)
207 int i;
209 if (lle1 == NULL || lle2 == NULL)
210 return false;
211 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
212 return false;
213 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
214 return false;
215 for (i = 0; i < depth; i++)
216 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
217 return false;
218 for (i = 0; i < invariants; i++)
219 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
220 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
221 return false;
222 return true;
225 /* Create a new linear expression with dimension DIM, and total number
226 of invariants INVARIANTS. */
228 lambda_linear_expression
229 lambda_linear_expression_new (int dim, int invariants)
231 lambda_linear_expression ret;
233 ret = ggc_alloc_cleared (sizeof (*ret));
235 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
236 LLE_CONSTANT (ret) = 0;
237 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
238 LLE_DENOMINATOR (ret) = 1;
239 LLE_NEXT (ret) = NULL;
241 return ret;
244 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
245 The starting letter used for variable names is START. */
247 static void
248 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
249 char start)
251 int i;
252 bool first = true;
253 for (i = 0; i < size; i++)
255 if (expr[i] != 0)
257 if (first)
259 if (expr[i] < 0)
260 fprintf (outfile, "-");
261 first = false;
263 else if (expr[i] > 0)
264 fprintf (outfile, " + ");
265 else
266 fprintf (outfile, " - ");
267 if (abs (expr[i]) == 1)
268 fprintf (outfile, "%c", start + i);
269 else
270 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
275 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
276 depth/number of coefficients is given by DEPTH, the number of invariants is
277 given by INVARIANTS, and the character to start variable names with is given
278 by START. */
280 void
281 print_lambda_linear_expression (FILE * outfile,
282 lambda_linear_expression expr,
283 int depth, int invariants, char start)
285 fprintf (outfile, "\tLinear expression: ");
286 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
287 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
288 fprintf (outfile, " invariants: ");
289 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
290 invariants, 'A');
291 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
294 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
295 coefficients is given by DEPTH, the number of invariants is
296 given by INVARIANTS, and the character to start variable names with is given
297 by START. */
299 void
300 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
301 int invariants, char start)
303 int step;
304 lambda_linear_expression expr;
306 gcc_assert (loop);
308 expr = LL_LINEAR_OFFSET (loop);
309 step = LL_STEP (loop);
310 fprintf (outfile, " step size = %d \n", step);
312 if (expr)
314 fprintf (outfile, " linear offset: \n");
315 print_lambda_linear_expression (outfile, expr, depth, invariants,
316 start);
319 fprintf (outfile, " lower bound: \n");
320 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
322 fprintf (outfile, " upper bound: \n");
323 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
324 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
327 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
328 number of invariants. */
330 lambda_loopnest
331 lambda_loopnest_new (int depth, int invariants)
333 lambda_loopnest ret;
334 ret = ggc_alloc (sizeof (*ret));
336 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
337 LN_DEPTH (ret) = depth;
338 LN_INVARIANTS (ret) = invariants;
340 return ret;
343 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
344 character to use for loop names is given by START. */
346 void
347 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
349 int i;
350 for (i = 0; i < LN_DEPTH (nest); i++)
352 fprintf (outfile, "Loop %c\n", start + i);
353 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
354 LN_INVARIANTS (nest), 'i');
355 fprintf (outfile, "\n");
359 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
360 of invariants. */
362 static lambda_lattice
363 lambda_lattice_new (int depth, int invariants)
365 lambda_lattice ret;
366 ret = ggc_alloc (sizeof (*ret));
367 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
368 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
369 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
370 LATTICE_DIMENSION (ret) = depth;
371 LATTICE_INVARIANTS (ret) = invariants;
372 return ret;
375 /* Compute the lattice base for NEST. The lattice base is essentially a
376 non-singular transform from a dense base space to a sparse iteration space.
377 We use it so that we don't have to specially handle the case of a sparse
378 iteration space in other parts of the algorithm. As a result, this routine
379 only does something interesting (IE produce a matrix that isn't the
380 identity matrix) if NEST is a sparse space. */
382 static lambda_lattice
383 lambda_lattice_compute_base (lambda_loopnest nest)
385 lambda_lattice ret;
386 int depth, invariants;
387 lambda_matrix base;
389 int i, j, step;
390 lambda_loop loop;
391 lambda_linear_expression expression;
393 depth = LN_DEPTH (nest);
394 invariants = LN_INVARIANTS (nest);
396 ret = lambda_lattice_new (depth, invariants);
397 base = LATTICE_BASE (ret);
398 for (i = 0; i < depth; i++)
400 loop = LN_LOOPS (nest)[i];
401 gcc_assert (loop);
402 step = LL_STEP (loop);
403 /* If we have a step of 1, then the base is one, and the
404 origin and invariant coefficients are 0. */
405 if (step == 1)
407 for (j = 0; j < depth; j++)
408 base[i][j] = 0;
409 base[i][i] = 1;
410 LATTICE_ORIGIN (ret)[i] = 0;
411 for (j = 0; j < invariants; j++)
412 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
414 else
416 /* Otherwise, we need the lower bound expression (which must
417 be an affine function) to determine the base. */
418 expression = LL_LOWER_BOUND (loop);
419 gcc_assert (expression && !LLE_NEXT (expression)
420 && LLE_DENOMINATOR (expression) == 1);
422 /* The lower triangular portion of the base is going to be the
423 coefficient times the step */
424 for (j = 0; j < i; j++)
425 base[i][j] = LLE_COEFFICIENTS (expression)[j]
426 * LL_STEP (LN_LOOPS (nest)[j]);
427 base[i][i] = step;
428 for (j = i + 1; j < depth; j++)
429 base[i][j] = 0;
431 /* Origin for this loop is the constant of the lower bound
432 expression. */
433 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
435 /* Coefficient for the invariants are equal to the invariant
436 coefficients in the expression. */
437 for (j = 0; j < invariants; j++)
438 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
439 LLE_INVARIANT_COEFFICIENTS (expression)[j];
442 return ret;
445 /* Compute the greatest common denominator of two numbers (A and B) using
446 Euclid's algorithm. */
448 static int
449 gcd (int a, int b)
452 int x, y, z;
454 x = abs (a);
455 y = abs (b);
457 while (x > 0)
459 z = y % x;
460 y = x;
461 x = z;
464 return (y);
467 /* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
469 static int
470 gcd_vector (lambda_vector vector, int size)
472 int i;
473 int gcd1 = 0;
475 if (size > 0)
477 gcd1 = vector[0];
478 for (i = 1; i < size; i++)
479 gcd1 = gcd (gcd1, vector[i]);
481 return gcd1;
484 /* Compute the least common multiple of two numbers A and B . */
486 static int
487 lcm (int a, int b)
489 return (abs (a) * abs (b) / gcd (a, b));
492 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
493 auxiliary nest.
494 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
495 it is easy to calculate the answer and bounds.
496 A sketch of how it works:
497 Given a system of linear inequalities, ai * xj >= bk, you can always
498 rewrite the constraints so they are all of the form
499 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
500 in b1 ... bk, and some a in a1...ai)
501 You can then eliminate this x from the non-constant inequalities by
502 rewriting these as a <= b, x >= constant, and delete the x variable.
503 You can then repeat this for any remaining x variables, and then we have
504 an easy to use variable <= constant (or no variables at all) form that we
505 can construct our bounds from.
507 In our case, each time we eliminate, we construct part of the bound from
508 the ith variable, then delete the ith variable.
510 Remember the constant are in our vector a, our coefficient matrix is A,
511 and our invariant coefficient matrix is B.
513 SIZE is the size of the matrices being passed.
514 DEPTH is the loop nest depth.
515 INVARIANTS is the number of loop invariants.
516 A, B, and a are the coefficient matrix, invariant coefficient, and a
517 vector of constants, respectively. */
519 static lambda_loopnest
520 compute_nest_using_fourier_motzkin (int size,
521 int depth,
522 int invariants,
523 lambda_matrix A,
524 lambda_matrix B,
525 lambda_vector a)
528 int multiple, f1, f2;
529 int i, j, k;
530 lambda_linear_expression expression;
531 lambda_loop loop;
532 lambda_loopnest auxillary_nest;
533 lambda_matrix swapmatrix, A1, B1;
534 lambda_vector swapvector, a1;
535 int newsize;
537 A1 = lambda_matrix_new (128, depth);
538 B1 = lambda_matrix_new (128, invariants);
539 a1 = lambda_vector_new (128);
541 auxillary_nest = lambda_loopnest_new (depth, invariants);
543 for (i = depth - 1; i >= 0; i--)
545 loop = lambda_loop_new ();
546 LN_LOOPS (auxillary_nest)[i] = loop;
547 LL_STEP (loop) = 1;
549 for (j = 0; j < size; j++)
551 if (A[j][i] < 0)
553 /* Any linear expression in the matrix with a coefficient less
554 than 0 becomes part of the new lower bound. */
555 expression = lambda_linear_expression_new (depth, invariants);
557 for (k = 0; k < i; k++)
558 LLE_COEFFICIENTS (expression)[k] = A[j][k];
560 for (k = 0; k < invariants; k++)
561 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
563 LLE_DENOMINATOR (expression) = -1 * A[j][i];
564 LLE_CONSTANT (expression) = -1 * a[j];
566 /* Ignore if identical to the existing lower bound. */
567 if (!lle_equal (LL_LOWER_BOUND (loop),
568 expression, depth, invariants))
570 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
571 LL_LOWER_BOUND (loop) = expression;
575 else if (A[j][i] > 0)
577 /* Any linear expression with a coefficient greater than 0
578 becomes part of the new upper bound. */
579 expression = lambda_linear_expression_new (depth, invariants);
580 for (k = 0; k < i; k++)
581 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
583 for (k = 0; k < invariants; k++)
584 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
586 LLE_DENOMINATOR (expression) = A[j][i];
587 LLE_CONSTANT (expression) = a[j];
589 /* Ignore if identical to the existing upper bound. */
590 if (!lle_equal (LL_UPPER_BOUND (loop),
591 expression, depth, invariants))
593 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
594 LL_UPPER_BOUND (loop) = expression;
600 /* This portion creates a new system of linear inequalities by deleting
601 the i'th variable, reducing the system by one variable. */
602 newsize = 0;
603 for (j = 0; j < size; j++)
605 /* If the coefficient for the i'th variable is 0, then we can just
606 eliminate the variable straightaway. Otherwise, we have to
607 multiply through by the coefficients we are eliminating. */
608 if (A[j][i] == 0)
610 lambda_vector_copy (A[j], A1[newsize], depth);
611 lambda_vector_copy (B[j], B1[newsize], invariants);
612 a1[newsize] = a[j];
613 newsize++;
615 else if (A[j][i] > 0)
617 for (k = 0; k < size; k++)
619 if (A[k][i] < 0)
621 multiple = lcm (A[j][i], A[k][i]);
622 f1 = multiple / A[j][i];
623 f2 = -1 * multiple / A[k][i];
625 lambda_vector_add_mc (A[j], f1, A[k], f2,
626 A1[newsize], depth);
627 lambda_vector_add_mc (B[j], f1, B[k], f2,
628 B1[newsize], invariants);
629 a1[newsize] = f1 * a[j] + f2 * a[k];
630 newsize++;
636 swapmatrix = A;
637 A = A1;
638 A1 = swapmatrix;
640 swapmatrix = B;
641 B = B1;
642 B1 = swapmatrix;
644 swapvector = a;
645 a = a1;
646 a1 = swapvector;
648 size = newsize;
651 return auxillary_nest;
654 /* Compute the loop bounds for the auxiliary space NEST.
655 Input system used is Ax <= b. TRANS is the unimodular transformation.
656 Given the original nest, this function will
657 1. Convert the nest into matrix form, which consists of a matrix for the
658 coefficients, a matrix for the
659 invariant coefficients, and a vector for the constants.
660 2. Use the matrix form to calculate the lattice base for the nest (which is
661 a dense space)
662 3. Compose the dense space transform with the user specified transform, to
663 get a transform we can easily calculate transformed bounds for.
664 4. Multiply the composed transformation matrix times the matrix form of the
665 loop.
666 5. Transform the newly created matrix (from step 4) back into a loop nest
667 using fourier motzkin elimination to figure out the bounds. */
669 static lambda_loopnest
670 lambda_compute_auxillary_space (lambda_loopnest nest,
671 lambda_trans_matrix trans)
673 lambda_matrix A, B, A1, B1;
674 lambda_vector a, a1;
675 lambda_matrix invertedtrans;
676 int depth, invariants, size;
677 int i, j;
678 lambda_loop loop;
679 lambda_linear_expression expression;
680 lambda_lattice lattice;
682 depth = LN_DEPTH (nest);
683 invariants = LN_INVARIANTS (nest);
685 /* Unfortunately, we can't know the number of constraints we'll have
686 ahead of time, but this should be enough even in ridiculous loop nest
687 cases. We must not go over this limit. */
688 A = lambda_matrix_new (128, depth);
689 B = lambda_matrix_new (128, invariants);
690 a = lambda_vector_new (128);
692 A1 = lambda_matrix_new (128, depth);
693 B1 = lambda_matrix_new (128, invariants);
694 a1 = lambda_vector_new (128);
696 /* Store the bounds in the equation matrix A, constant vector a, and
697 invariant matrix B, so that we have Ax <= a + B.
698 This requires a little equation rearranging so that everything is on the
699 correct side of the inequality. */
700 size = 0;
701 for (i = 0; i < depth; i++)
703 loop = LN_LOOPS (nest)[i];
705 /* First we do the lower bound. */
706 if (LL_STEP (loop) > 0)
707 expression = LL_LOWER_BOUND (loop);
708 else
709 expression = LL_UPPER_BOUND (loop);
711 for (; expression != NULL; expression = LLE_NEXT (expression))
713 /* Fill in the coefficient. */
714 for (j = 0; j < i; j++)
715 A[size][j] = LLE_COEFFICIENTS (expression)[j];
717 /* And the invariant coefficient. */
718 for (j = 0; j < invariants; j++)
719 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
721 /* And the constant. */
722 a[size] = LLE_CONSTANT (expression);
724 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
725 constants and single variables on */
726 A[size][i] = -1 * LLE_DENOMINATOR (expression);
727 a[size] *= -1;
728 for (j = 0; j < invariants; j++)
729 B[size][j] *= -1;
731 size++;
732 /* Need to increase matrix sizes above. */
733 gcc_assert (size <= 127);
737 /* Then do the exact same thing for the upper bounds. */
738 if (LL_STEP (loop) > 0)
739 expression = LL_UPPER_BOUND (loop);
740 else
741 expression = LL_LOWER_BOUND (loop);
743 for (; expression != NULL; expression = LLE_NEXT (expression))
745 /* Fill in the coefficient. */
746 for (j = 0; j < i; j++)
747 A[size][j] = LLE_COEFFICIENTS (expression)[j];
749 /* And the invariant coefficient. */
750 for (j = 0; j < invariants; j++)
751 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
753 /* And the constant. */
754 a[size] = LLE_CONSTANT (expression);
756 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
757 for (j = 0; j < i; j++)
758 A[size][j] *= -1;
759 A[size][i] = LLE_DENOMINATOR (expression);
760 size++;
761 /* Need to increase matrix sizes above. */
762 gcc_assert (size <= 127);
767 /* Compute the lattice base x = base * y + origin, where y is the
768 base space. */
769 lattice = lambda_lattice_compute_base (nest);
771 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
773 /* A1 = A * L */
774 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
776 /* a1 = a - A * origin constant. */
777 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
778 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
780 /* B1 = B - A * origin invariant. */
781 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
782 invariants);
783 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
785 /* Now compute the auxiliary space bounds by first inverting U, multiplying
786 it by A1, then performing fourier motzkin. */
788 invertedtrans = lambda_matrix_new (depth, depth);
790 /* Compute the inverse of U. */
791 lambda_matrix_inverse (LTM_MATRIX (trans),
792 invertedtrans, depth);
794 /* A = A1 inv(U). */
795 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
797 return compute_nest_using_fourier_motzkin (size, depth, invariants,
798 A, B1, a1);
801 /* Compute the loop bounds for the target space, using the bounds of
802 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
803 The target space loop bounds are computed by multiplying the triangular
804 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
805 the loop steps (positive or negative) is then used to swap the bounds if
806 the loop counts downwards.
807 Return the target loopnest. */
809 static lambda_loopnest
810 lambda_compute_target_space (lambda_loopnest auxillary_nest,
811 lambda_trans_matrix H, lambda_vector stepsigns)
813 lambda_matrix inverse, H1;
814 int determinant, i, j;
815 int gcd1, gcd2;
816 int factor;
818 lambda_loopnest target_nest;
819 int depth, invariants;
820 lambda_matrix target;
822 lambda_loop auxillary_loop, target_loop;
823 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
825 depth = LN_DEPTH (auxillary_nest);
826 invariants = LN_INVARIANTS (auxillary_nest);
828 inverse = lambda_matrix_new (depth, depth);
829 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
831 /* H1 is H excluding its diagonal. */
832 H1 = lambda_matrix_new (depth, depth);
833 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
835 for (i = 0; i < depth; i++)
836 H1[i][i] = 0;
838 /* Computes the linear offsets of the loop bounds. */
839 target = lambda_matrix_new (depth, depth);
840 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
842 target_nest = lambda_loopnest_new (depth, invariants);
844 for (i = 0; i < depth; i++)
847 /* Get a new loop structure. */
848 target_loop = lambda_loop_new ();
849 LN_LOOPS (target_nest)[i] = target_loop;
851 /* Computes the gcd of the coefficients of the linear part. */
852 gcd1 = gcd_vector (target[i], i);
854 /* Include the denominator in the GCD. */
855 gcd1 = gcd (gcd1, determinant);
857 /* Now divide through by the gcd. */
858 for (j = 0; j < i; j++)
859 target[i][j] = target[i][j] / gcd1;
861 expression = lambda_linear_expression_new (depth, invariants);
862 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
863 LLE_DENOMINATOR (expression) = determinant / gcd1;
864 LLE_CONSTANT (expression) = 0;
865 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
866 invariants);
867 LL_LINEAR_OFFSET (target_loop) = expression;
870 /* For each loop, compute the new bounds from H. */
871 for (i = 0; i < depth; i++)
873 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
874 target_loop = LN_LOOPS (target_nest)[i];
875 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
876 factor = LTM_MATRIX (H)[i][i];
878 /* First we do the lower bound. */
879 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
881 for (; auxillary_expr != NULL;
882 auxillary_expr = LLE_NEXT (auxillary_expr))
884 target_expr = lambda_linear_expression_new (depth, invariants);
885 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
886 depth, inverse, depth,
887 LLE_COEFFICIENTS (target_expr));
888 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
889 LLE_COEFFICIENTS (target_expr), depth,
890 factor);
892 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
893 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
894 LLE_INVARIANT_COEFFICIENTS (target_expr),
895 invariants);
896 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
897 LLE_INVARIANT_COEFFICIENTS (target_expr),
898 invariants, factor);
899 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
901 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
903 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
904 * determinant;
905 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
906 (target_expr),
907 LLE_INVARIANT_COEFFICIENTS
908 (target_expr), invariants,
909 determinant);
910 LLE_DENOMINATOR (target_expr) =
911 LLE_DENOMINATOR (target_expr) * determinant;
913 /* Find the gcd and divide by it here, rather than doing it
914 at the tree level. */
915 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
916 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
917 invariants);
918 gcd1 = gcd (gcd1, gcd2);
919 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
920 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
921 for (j = 0; j < depth; j++)
922 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
923 for (j = 0; j < invariants; j++)
924 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
925 LLE_CONSTANT (target_expr) /= gcd1;
926 LLE_DENOMINATOR (target_expr) /= gcd1;
927 /* Ignore if identical to existing bound. */
928 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
929 invariants))
931 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
932 LL_LOWER_BOUND (target_loop) = target_expr;
935 /* Now do the upper bound. */
936 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
938 for (; auxillary_expr != NULL;
939 auxillary_expr = LLE_NEXT (auxillary_expr))
941 target_expr = lambda_linear_expression_new (depth, invariants);
942 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
943 depth, inverse, depth,
944 LLE_COEFFICIENTS (target_expr));
945 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
946 LLE_COEFFICIENTS (target_expr), depth,
947 factor);
948 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
949 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
950 LLE_INVARIANT_COEFFICIENTS (target_expr),
951 invariants);
952 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
953 LLE_INVARIANT_COEFFICIENTS (target_expr),
954 invariants, factor);
955 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
957 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
959 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
960 * determinant;
961 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
962 (target_expr),
963 LLE_INVARIANT_COEFFICIENTS
964 (target_expr), invariants,
965 determinant);
966 LLE_DENOMINATOR (target_expr) =
967 LLE_DENOMINATOR (target_expr) * determinant;
969 /* Find the gcd and divide by it here, instead of at the
970 tree level. */
971 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
972 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
973 invariants);
974 gcd1 = gcd (gcd1, gcd2);
975 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
976 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
977 for (j = 0; j < depth; j++)
978 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
979 for (j = 0; j < invariants; j++)
980 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
981 LLE_CONSTANT (target_expr) /= gcd1;
982 LLE_DENOMINATOR (target_expr) /= gcd1;
983 /* Ignore if equal to existing bound. */
984 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
985 invariants))
987 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
988 LL_UPPER_BOUND (target_loop) = target_expr;
992 for (i = 0; i < depth; i++)
994 target_loop = LN_LOOPS (target_nest)[i];
995 /* If necessary, exchange the upper and lower bounds and negate
996 the step size. */
997 if (stepsigns[i] < 0)
999 LL_STEP (target_loop) *= -1;
1000 tmp_expr = LL_LOWER_BOUND (target_loop);
1001 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
1002 LL_UPPER_BOUND (target_loop) = tmp_expr;
1005 return target_nest;
1008 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
1009 result. */
1011 static lambda_vector
1012 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
1014 lambda_matrix matrix, H;
1015 int size;
1016 lambda_vector newsteps;
1017 int i, j, factor, minimum_column;
1018 int temp;
1020 matrix = LTM_MATRIX (trans);
1021 size = LTM_ROWSIZE (trans);
1022 H = lambda_matrix_new (size, size);
1024 newsteps = lambda_vector_new (size);
1025 lambda_vector_copy (stepsigns, newsteps, size);
1027 lambda_matrix_copy (matrix, H, size, size);
1029 for (j = 0; j < size; j++)
1031 lambda_vector row;
1032 row = H[j];
1033 for (i = j; i < size; i++)
1034 if (row[i] < 0)
1035 lambda_matrix_col_negate (H, size, i);
1036 while (lambda_vector_first_nz (row, size, j + 1) < size)
1038 minimum_column = lambda_vector_min_nz (row, size, j);
1039 lambda_matrix_col_exchange (H, size, j, minimum_column);
1041 temp = newsteps[j];
1042 newsteps[j] = newsteps[minimum_column];
1043 newsteps[minimum_column] = temp;
1045 for (i = j + 1; i < size; i++)
1047 factor = row[i] / row[j];
1048 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1052 return newsteps;
1055 /* Transform NEST according to TRANS, and return the new loopnest.
1056 This involves
1057 1. Computing a lattice base for the transformation
1058 2. Composing the dense base with the specified transformation (TRANS)
1059 3. Decomposing the combined transformation into a lower triangular portion,
1060 and a unimodular portion.
1061 4. Computing the auxiliary nest using the unimodular portion.
1062 5. Computing the target nest using the auxiliary nest and the lower
1063 triangular portion. */
1065 lambda_loopnest
1066 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1068 lambda_loopnest auxillary_nest, target_nest;
1070 int depth, invariants;
1071 int i, j;
1072 lambda_lattice lattice;
1073 lambda_trans_matrix trans1, H, U;
1074 lambda_loop loop;
1075 lambda_linear_expression expression;
1076 lambda_vector origin;
1077 lambda_matrix origin_invariants;
1078 lambda_vector stepsigns;
1079 int f;
1081 depth = LN_DEPTH (nest);
1082 invariants = LN_INVARIANTS (nest);
1084 /* Keep track of the signs of the loop steps. */
1085 stepsigns = lambda_vector_new (depth);
1086 for (i = 0; i < depth; i++)
1088 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1089 stepsigns[i] = 1;
1090 else
1091 stepsigns[i] = -1;
1094 /* Compute the lattice base. */
1095 lattice = lambda_lattice_compute_base (nest);
1096 trans1 = lambda_trans_matrix_new (depth, depth);
1098 /* Multiply the transformation matrix by the lattice base. */
1100 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1101 LTM_MATRIX (trans1), depth, depth, depth);
1103 /* Compute the Hermite normal form for the new transformation matrix. */
1104 H = lambda_trans_matrix_new (depth, depth);
1105 U = lambda_trans_matrix_new (depth, depth);
1106 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1107 LTM_MATRIX (U));
1109 /* Compute the auxiliary loop nest's space from the unimodular
1110 portion. */
1111 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1113 /* Compute the loop step signs from the old step signs and the
1114 transformation matrix. */
1115 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1117 /* Compute the target loop nest space from the auxiliary nest and
1118 the lower triangular matrix H. */
1119 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1120 origin = lambda_vector_new (depth);
1121 origin_invariants = lambda_matrix_new (depth, invariants);
1122 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1123 LATTICE_ORIGIN (lattice), origin);
1124 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1125 origin_invariants, depth, depth, invariants);
1127 for (i = 0; i < depth; i++)
1129 loop = LN_LOOPS (target_nest)[i];
1130 expression = LL_LINEAR_OFFSET (loop);
1131 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1132 f = 1;
1133 else
1134 f = LLE_DENOMINATOR (expression);
1136 LLE_CONSTANT (expression) += f * origin[i];
1138 for (j = 0; j < invariants; j++)
1139 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1140 f * origin_invariants[i][j];
1143 return target_nest;
1147 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1148 return the new expression. DEPTH is the depth of the loopnest.
1149 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1150 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1151 is the amount we have to add/subtract from the expression because of the
1152 type of comparison it is used in. */
1154 static lambda_linear_expression
1155 gcc_tree_to_linear_expression (int depth, tree expr,
1156 VEC(tree,heap) *outerinductionvars,
1157 VEC(tree,heap) *invariants, int extra)
1159 lambda_linear_expression lle = NULL;
1160 switch (TREE_CODE (expr))
1162 case INTEGER_CST:
1164 lle = lambda_linear_expression_new (depth, 2 * depth);
1165 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1166 if (extra != 0)
1167 LLE_CONSTANT (lle) += extra;
1169 LLE_DENOMINATOR (lle) = 1;
1171 break;
1172 case SSA_NAME:
1174 tree iv, invar;
1175 size_t i;
1176 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1177 if (iv != NULL)
1179 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1181 lle = lambda_linear_expression_new (depth, 2 * depth);
1182 LLE_COEFFICIENTS (lle)[i] = 1;
1183 if (extra != 0)
1184 LLE_CONSTANT (lle) = extra;
1186 LLE_DENOMINATOR (lle) = 1;
1189 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1190 if (invar != NULL)
1192 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1194 lle = lambda_linear_expression_new (depth, 2 * depth);
1195 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1196 if (extra != 0)
1197 LLE_CONSTANT (lle) = extra;
1198 LLE_DENOMINATOR (lle) = 1;
1202 break;
1203 default:
1204 return NULL;
1207 return lle;
1210 /* Return the depth of the loopnest NEST */
1212 static int
1213 depth_of_nest (struct loop *nest)
1215 size_t depth = 0;
1216 while (nest)
1218 depth++;
1219 nest = nest->inner;
1221 return depth;
1225 /* Return true if OP is invariant in LOOP and all outer loops. */
1227 static bool
1228 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1230 if (is_gimple_min_invariant (op))
1231 return true;
1232 if (loop->depth == 0)
1233 return true;
1234 if (!expr_invariant_in_loop_p (loop, op))
1235 return false;
1236 if (loop->outer
1237 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1238 return false;
1239 return true;
1242 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1243 or NULL if it could not be converted.
1244 DEPTH is the depth of the loop.
1245 INVARIANTS is a pointer to the array of loop invariants.
1246 The induction variable for this loop should be stored in the parameter
1247 OURINDUCTIONVAR.
1248 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1250 static lambda_loop
1251 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1252 VEC(tree,heap) ** invariants,
1253 tree * ourinductionvar,
1254 VEC(tree,heap) * outerinductionvars,
1255 VEC(tree,heap) ** lboundvars,
1256 VEC(tree,heap) ** uboundvars,
1257 VEC(int,heap) ** steps)
1259 tree phi;
1260 tree exit_cond;
1261 tree access_fn, inductionvar;
1262 tree step;
1263 lambda_loop lloop = NULL;
1264 lambda_linear_expression lbound, ubound;
1265 tree test;
1266 int stepint;
1267 int extra = 0;
1268 tree lboundvar, uboundvar, uboundresult;
1270 /* Find out induction var and exit condition. */
1271 inductionvar = find_induction_var_from_exit_cond (loop);
1272 exit_cond = get_loop_exit_condition (loop);
1274 if (inductionvar == NULL || exit_cond == NULL)
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1277 fprintf (dump_file,
1278 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1279 return NULL;
1282 test = TREE_OPERAND (exit_cond, 0);
1284 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 fprintf (dump_file,
1289 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1291 return NULL;
1294 phi = SSA_NAME_DEF_STMT (inductionvar);
1295 if (TREE_CODE (phi) != PHI_NODE)
1297 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1298 if (!phi)
1301 if (dump_file && (dump_flags & TDF_DETAILS))
1302 fprintf (dump_file,
1303 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1305 return NULL;
1308 phi = SSA_NAME_DEF_STMT (phi);
1309 if (TREE_CODE (phi) != PHI_NODE)
1312 if (dump_file && (dump_flags & TDF_DETAILS))
1313 fprintf (dump_file,
1314 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1315 return NULL;
1320 /* The induction variable name/version we want to put in the array is the
1321 result of the induction variable phi node. */
1322 *ourinductionvar = PHI_RESULT (phi);
1323 access_fn = instantiate_parameters
1324 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1325 if (access_fn == chrec_dont_know)
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 fprintf (dump_file,
1329 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1331 return NULL;
1334 step = evolution_part_in_loop_num (access_fn, loop->num);
1335 if (!step || step == chrec_dont_know)
1337 if (dump_file && (dump_flags & TDF_DETAILS))
1338 fprintf (dump_file,
1339 "Unable to convert loop: Cannot determine step of loop.\n");
1341 return NULL;
1343 if (TREE_CODE (step) != INTEGER_CST)
1346 if (dump_file && (dump_flags & TDF_DETAILS))
1347 fprintf (dump_file,
1348 "Unable to convert loop: Step of loop is not integer.\n");
1349 return NULL;
1352 stepint = TREE_INT_CST_LOW (step);
1354 /* Only want phis for induction vars, which will have two
1355 arguments. */
1356 if (PHI_NUM_ARGS (phi) != 2)
1358 if (dump_file && (dump_flags & TDF_DETAILS))
1359 fprintf (dump_file,
1360 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1361 return NULL;
1364 /* Another induction variable check. One argument's source should be
1365 in the loop, one outside the loop. */
1366 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1367 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 fprintf (dump_file,
1372 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1374 return NULL;
1377 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1379 lboundvar = PHI_ARG_DEF (phi, 1);
1380 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1381 outerinductionvars, *invariants,
1384 else
1386 lboundvar = PHI_ARG_DEF (phi, 0);
1387 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1388 outerinductionvars, *invariants,
1392 if (!lbound)
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 fprintf (dump_file,
1397 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1399 return NULL;
1401 /* One part of the test may be a loop invariant tree. */
1402 VEC_reserve (tree, heap, *invariants, 1);
1403 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1404 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1405 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1406 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1407 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1408 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1410 /* The non-induction variable part of the test is the upper bound variable.
1412 if (TREE_OPERAND (test, 0) == inductionvar)
1413 uboundvar = TREE_OPERAND (test, 1);
1414 else
1415 uboundvar = TREE_OPERAND (test, 0);
1418 /* We only size the vectors assuming we have, at max, 2 times as many
1419 invariants as we do loops (one for each bound).
1420 This is just an arbitrary number, but it has to be matched against the
1421 code below. */
1422 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1425 /* We might have some leftover. */
1426 if (TREE_CODE (test) == LT_EXPR)
1427 extra = -1 * stepint;
1428 else if (TREE_CODE (test) == NE_EXPR)
1429 extra = -1 * stepint;
1430 else if (TREE_CODE (test) == GT_EXPR)
1431 extra = -1 * stepint;
1432 else if (TREE_CODE (test) == EQ_EXPR)
1433 extra = 1 * stepint;
1435 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1436 outerinductionvars,
1437 *invariants, extra);
1438 uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1439 build_int_cst (TREE_TYPE (uboundvar), extra));
1440 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1441 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1442 VEC_safe_push (int, heap, *steps, stepint);
1443 if (!ubound)
1445 if (dump_file && (dump_flags & TDF_DETAILS))
1446 fprintf (dump_file,
1447 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1448 return NULL;
1451 lloop = lambda_loop_new ();
1452 LL_STEP (lloop) = stepint;
1453 LL_LOWER_BOUND (lloop) = lbound;
1454 LL_UPPER_BOUND (lloop) = ubound;
1455 return lloop;
1458 /* Given a LOOP, find the induction variable it is testing against in the exit
1459 condition. Return the induction variable if found, NULL otherwise. */
1461 static tree
1462 find_induction_var_from_exit_cond (struct loop *loop)
1464 tree expr = get_loop_exit_condition (loop);
1465 tree ivarop;
1466 tree test;
1467 if (expr == NULL_TREE)
1468 return NULL_TREE;
1469 if (TREE_CODE (expr) != COND_EXPR)
1470 return NULL_TREE;
1471 test = TREE_OPERAND (expr, 0);
1472 if (!COMPARISON_CLASS_P (test))
1473 return NULL_TREE;
1475 /* Find the side that is invariant in this loop. The ivar must be the other
1476 side. */
1478 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1479 ivarop = TREE_OPERAND (test, 1);
1480 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1481 ivarop = TREE_OPERAND (test, 0);
1482 else
1483 return NULL_TREE;
1485 if (TREE_CODE (ivarop) != SSA_NAME)
1486 return NULL_TREE;
1487 return ivarop;
1490 DEF_VEC_P(lambda_loop);
1491 DEF_VEC_ALLOC_P(lambda_loop,heap);
1493 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1494 Return the new loop nest.
1495 INDUCTIONVARS is a pointer to an array of induction variables for the
1496 loopnest that will be filled in during this process.
1497 INVARIANTS is a pointer to an array of invariants that will be filled in
1498 during this process. */
1500 lambda_loopnest
1501 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1502 struct loop *loop_nest,
1503 VEC(tree,heap) **inductionvars,
1504 VEC(tree,heap) **invariants)
1506 lambda_loopnest ret = NULL;
1507 struct loop *temp = loop_nest;
1508 int depth = depth_of_nest (loop_nest);
1509 size_t i;
1510 VEC(lambda_loop,heap) *loops = NULL;
1511 VEC(tree,heap) *uboundvars = NULL;
1512 VEC(tree,heap) *lboundvars = NULL;
1513 VEC(int,heap) *steps = NULL;
1514 lambda_loop newloop;
1515 tree inductionvar = NULL;
1516 bool perfect_nest = perfect_nest_p (loop_nest);
1518 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1519 goto fail;
1521 while (temp)
1523 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1524 &inductionvar, *inductionvars,
1525 &lboundvars, &uboundvars,
1526 &steps);
1527 if (!newloop)
1528 goto fail;
1530 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1531 VEC_safe_push (lambda_loop, heap, loops, newloop);
1532 temp = temp->inner;
1535 if (!perfect_nest)
1537 if (!perfect_nestify (currloops, loop_nest,
1538 lboundvars, uboundvars, steps, *inductionvars))
1540 if (dump_file)
1541 fprintf (dump_file,
1542 "Not a perfect loop nest and couldn't convert to one.\n");
1543 goto fail;
1545 else if (dump_file)
1546 fprintf (dump_file,
1547 "Successfully converted loop nest to perfect loop nest.\n");
1550 ret = lambda_loopnest_new (depth, 2 * depth);
1552 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1553 LN_LOOPS (ret)[i] = newloop;
1555 fail:
1556 VEC_free (lambda_loop, heap, loops);
1557 VEC_free (tree, heap, uboundvars);
1558 VEC_free (tree, heap, lboundvars);
1559 VEC_free (int, heap, steps);
1561 return ret;
1564 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1565 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1566 inserted for us are stored. INDUCTION_VARS is the array of induction
1567 variables for the loop this LBV is from. TYPE is the tree type to use for
1568 the variables and trees involved. */
1570 static tree
1571 lbv_to_gcc_expression (lambda_body_vector lbv,
1572 tree type, VEC(tree,heap) *induction_vars,
1573 tree *stmts_to_insert)
1575 tree stmts, stmt, resvar, name;
1576 tree iv;
1577 size_t i;
1578 tree_stmt_iterator tsi;
1580 /* Create a statement list and a linear expression temporary. */
1581 stmts = alloc_stmt_list ();
1582 resvar = create_tmp_var (type, "lbvtmp");
1583 add_referenced_tmp_var (resvar);
1585 /* Start at 0. */
1586 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1587 name = make_ssa_name (resvar, stmt);
1588 TREE_OPERAND (stmt, 0) = name;
1589 tsi = tsi_last (stmts);
1590 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1592 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1594 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1596 tree newname;
1597 tree coeffmult;
1599 /* newname = coefficient * induction_variable */
1600 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1601 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1602 fold_build2 (MULT_EXPR, type, iv, coeffmult));
1604 newname = make_ssa_name (resvar, stmt);
1605 TREE_OPERAND (stmt, 0) = newname;
1606 fold_stmt (&stmt);
1607 tsi = tsi_last (stmts);
1608 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1610 /* name = name + newname */
1611 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1612 build (PLUS_EXPR, type, name, newname));
1613 name = make_ssa_name (resvar, stmt);
1614 TREE_OPERAND (stmt, 0) = name;
1615 fold_stmt (&stmt);
1616 tsi = tsi_last (stmts);
1617 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1622 /* Handle any denominator that occurs. */
1623 if (LBV_DENOMINATOR (lbv) != 1)
1625 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1626 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1627 build (CEIL_DIV_EXPR, type, name, denominator));
1628 name = make_ssa_name (resvar, stmt);
1629 TREE_OPERAND (stmt, 0) = name;
1630 fold_stmt (&stmt);
1631 tsi = tsi_last (stmts);
1632 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1634 *stmts_to_insert = stmts;
1635 return name;
1638 /* Convert a linear expression from coefficient and constant form to a
1639 gcc tree.
1640 Return the tree that represents the final value of the expression.
1641 LLE is the linear expression to convert.
1642 OFFSET is the linear offset to apply to the expression.
1643 TYPE is the tree type to use for the variables and math.
1644 INDUCTION_VARS is a vector of induction variables for the loops.
1645 INVARIANTS is a vector of the loop nest invariants.
1646 WRAP specifies what tree code to wrap the results in, if there is more than
1647 one (it is either MAX_EXPR, or MIN_EXPR).
1648 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1649 statements that need to be inserted for the linear expression. */
1651 static tree
1652 lle_to_gcc_expression (lambda_linear_expression lle,
1653 lambda_linear_expression offset,
1654 tree type,
1655 VEC(tree,heap) *induction_vars,
1656 VEC(tree,heap) *invariants,
1657 enum tree_code wrap, tree *stmts_to_insert)
1659 tree stmts, stmt, resvar, name;
1660 size_t i;
1661 tree_stmt_iterator tsi;
1662 tree iv, invar;
1663 VEC(tree,heap) *results = NULL;
1665 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1666 name = NULL_TREE;
1667 /* Create a statement list and a linear expression temporary. */
1668 stmts = alloc_stmt_list ();
1669 resvar = create_tmp_var (type, "lletmp");
1670 add_referenced_tmp_var (resvar);
1672 /* Build up the linear expressions, and put the variable representing the
1673 result in the results array. */
1674 for (; lle != NULL; lle = LLE_NEXT (lle))
1676 /* Start at name = 0. */
1677 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1678 name = make_ssa_name (resvar, stmt);
1679 TREE_OPERAND (stmt, 0) = name;
1680 fold_stmt (&stmt);
1681 tsi = tsi_last (stmts);
1682 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1684 /* First do the induction variables.
1685 at the end, name = name + all the induction variables added
1686 together. */
1687 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1689 if (LLE_COEFFICIENTS (lle)[i] != 0)
1691 tree newname;
1692 tree mult;
1693 tree coeff;
1695 /* mult = induction variable * coefficient. */
1696 if (LLE_COEFFICIENTS (lle)[i] == 1)
1698 mult = VEC_index (tree, induction_vars, i);
1700 else
1702 coeff = build_int_cst (type,
1703 LLE_COEFFICIENTS (lle)[i]);
1704 mult = fold_build2 (MULT_EXPR, type, iv, coeff);
1707 /* newname = mult */
1708 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1709 newname = make_ssa_name (resvar, stmt);
1710 TREE_OPERAND (stmt, 0) = newname;
1711 fold_stmt (&stmt);
1712 tsi = tsi_last (stmts);
1713 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1715 /* name = name + newname */
1716 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1717 build (PLUS_EXPR, type, name, newname));
1718 name = make_ssa_name (resvar, stmt);
1719 TREE_OPERAND (stmt, 0) = name;
1720 fold_stmt (&stmt);
1721 tsi = tsi_last (stmts);
1722 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1726 /* Handle our invariants.
1727 At the end, we have name = name + result of adding all multiplied
1728 invariants. */
1729 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1731 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1733 tree newname;
1734 tree mult;
1735 tree coeff;
1736 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1737 /* mult = invariant * coefficient */
1738 if (invcoeff == 1)
1740 mult = invar;
1742 else
1744 coeff = build_int_cst (type, invcoeff);
1745 mult = fold_build2 (MULT_EXPR, type, invar, coeff);
1748 /* newname = mult */
1749 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1750 newname = make_ssa_name (resvar, stmt);
1751 TREE_OPERAND (stmt, 0) = newname;
1752 fold_stmt (&stmt);
1753 tsi = tsi_last (stmts);
1754 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1756 /* name = name + newname */
1757 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1758 build (PLUS_EXPR, type, name, newname));
1759 name = make_ssa_name (resvar, stmt);
1760 TREE_OPERAND (stmt, 0) = name;
1761 fold_stmt (&stmt);
1762 tsi = tsi_last (stmts);
1763 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1767 /* Now handle the constant.
1768 name = name + constant. */
1769 if (LLE_CONSTANT (lle) != 0)
1771 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1772 build (PLUS_EXPR, type, name,
1773 build_int_cst (type, LLE_CONSTANT (lle))));
1774 name = make_ssa_name (resvar, stmt);
1775 TREE_OPERAND (stmt, 0) = name;
1776 fold_stmt (&stmt);
1777 tsi = tsi_last (stmts);
1778 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1781 /* Now handle the offset.
1782 name = name + linear offset. */
1783 if (LLE_CONSTANT (offset) != 0)
1785 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1786 build (PLUS_EXPR, type, name,
1787 build_int_cst (type, LLE_CONSTANT (offset))));
1788 name = make_ssa_name (resvar, stmt);
1789 TREE_OPERAND (stmt, 0) = name;
1790 fold_stmt (&stmt);
1791 tsi = tsi_last (stmts);
1792 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1795 /* Handle any denominator that occurs. */
1796 if (LLE_DENOMINATOR (lle) != 1)
1798 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1799 stmt = build (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1800 type, name, stmt);
1801 stmt = build (MODIFY_EXPR, void_type_node, resvar, stmt);
1803 /* name = {ceil, floor}(name/denominator) */
1804 name = make_ssa_name (resvar, stmt);
1805 TREE_OPERAND (stmt, 0) = name;
1806 tsi = tsi_last (stmts);
1807 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1809 VEC_safe_push (tree, heap, results, name);
1812 /* Again, out of laziness, we don't handle this case yet. It's not
1813 hard, it just hasn't occurred. */
1814 gcc_assert (VEC_length (tree, results) <= 2);
1816 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1817 if (VEC_length (tree, results) > 1)
1819 tree op1 = VEC_index (tree, results, 0);
1820 tree op2 = VEC_index (tree, results, 1);
1821 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1822 build (wrap, type, op1, op2));
1823 name = make_ssa_name (resvar, stmt);
1824 TREE_OPERAND (stmt, 0) = name;
1825 tsi = tsi_last (stmts);
1826 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1829 VEC_free (tree, heap, results);
1831 *stmts_to_insert = stmts;
1832 return name;
1835 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1836 it, back into gcc code. This changes the
1837 loops, their induction variables, and their bodies, so that they
1838 match the transformed loopnest.
1839 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1840 loopnest.
1841 OLD_IVS is a vector of induction variables from the old loopnest.
1842 INVARIANTS is a vector of loop invariants from the old loopnest.
1843 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1844 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1845 NEW_LOOPNEST. */
1847 void
1848 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1849 VEC(tree,heap) *old_ivs,
1850 VEC(tree,heap) *invariants,
1851 lambda_loopnest new_loopnest,
1852 lambda_trans_matrix transform)
1854 struct loop *temp;
1855 size_t i = 0;
1856 size_t depth = 0;
1857 VEC(tree,heap) *new_ivs = NULL;
1858 tree oldiv;
1860 block_stmt_iterator bsi;
1862 if (dump_file)
1864 transform = lambda_trans_matrix_inverse (transform);
1865 fprintf (dump_file, "Inverse of transformation matrix:\n");
1866 print_lambda_trans_matrix (dump_file, transform);
1868 depth = depth_of_nest (old_loopnest);
1869 temp = old_loopnest;
1871 while (temp)
1873 lambda_loop newloop;
1874 basic_block bb;
1875 edge exit;
1876 tree ivvar, ivvarinced, exitcond, stmts;
1877 enum tree_code testtype;
1878 tree newupperbound, newlowerbound;
1879 lambda_linear_expression offset;
1880 tree type;
1881 bool insert_after;
1882 tree inc_stmt;
1884 oldiv = VEC_index (tree, old_ivs, i);
1885 type = TREE_TYPE (oldiv);
1887 /* First, build the new induction variable temporary */
1889 ivvar = create_tmp_var (type, "lnivtmp");
1890 add_referenced_tmp_var (ivvar);
1892 VEC_safe_push (tree, heap, new_ivs, ivvar);
1894 newloop = LN_LOOPS (new_loopnest)[i];
1896 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1897 cases for now. */
1898 offset = LL_LINEAR_OFFSET (newloop);
1900 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1901 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1903 /* Now build the new lower bounds, and insert the statements
1904 necessary to generate it on the loop preheader. */
1905 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1906 LL_LINEAR_OFFSET (newloop),
1907 type,
1908 new_ivs,
1909 invariants, MAX_EXPR, &stmts);
1910 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1911 bsi_commit_edge_inserts ();
1912 /* Build the new upper bound and insert its statements in the
1913 basic block of the exit condition */
1914 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1915 LL_LINEAR_OFFSET (newloop),
1916 type,
1917 new_ivs,
1918 invariants, MIN_EXPR, &stmts);
1919 exit = temp->single_exit;
1920 exitcond = get_loop_exit_condition (temp);
1921 bb = bb_for_stmt (exitcond);
1922 bsi = bsi_start (bb);
1923 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1925 /* Create the new iv. */
1927 standard_iv_increment_position (temp, &bsi, &insert_after);
1928 create_iv (newlowerbound,
1929 build_int_cst (type, LL_STEP (newloop)),
1930 ivvar, temp, &bsi, insert_after, &ivvar,
1931 NULL);
1933 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1934 dominate the block containing the exit condition.
1935 So we simply create our own incremented iv to use in the new exit
1936 test, and let redundancy elimination sort it out. */
1937 inc_stmt = build (PLUS_EXPR, type,
1938 ivvar, build_int_cst (type, LL_STEP (newloop)));
1939 inc_stmt = build (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1940 inc_stmt);
1941 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1942 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1943 bsi = bsi_for_stmt (exitcond);
1944 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1946 /* Replace the exit condition with the new upper bound
1947 comparison. */
1949 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1951 /* We want to build a conditional where true means exit the loop, and
1952 false means continue the loop.
1953 So swap the testtype if this isn't the way things are.*/
1955 if (exit->flags & EDGE_FALSE_VALUE)
1956 testtype = swap_tree_comparison (testtype);
1958 COND_EXPR_COND (exitcond) = build (testtype,
1959 boolean_type_node,
1960 newupperbound, ivvarinced);
1961 update_stmt (exitcond);
1962 VEC_replace (tree, new_ivs, i, ivvar);
1964 i++;
1965 temp = temp->inner;
1968 /* Rewrite uses of the old ivs so that they are now specified in terms of
1969 the new ivs. */
1971 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1973 imm_use_iterator imm_iter;
1974 use_operand_p imm_use;
1975 tree oldiv_def;
1976 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1978 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1979 oldiv_def = PHI_RESULT (oldiv_stmt);
1980 else
1981 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1982 gcc_assert (oldiv_def != NULL_TREE);
1984 FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
1986 tree stmt = USE_STMT (imm_use);
1987 use_operand_p use_p;
1988 ssa_op_iter iter;
1989 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1990 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1992 if (USE_FROM_PTR (use_p) == oldiv)
1994 tree newiv, stmts;
1995 lambda_body_vector lbv, newlbv;
1996 /* Compute the new expression for the induction
1997 variable. */
1998 depth = VEC_length (tree, new_ivs);
1999 lbv = lambda_body_vector_new (depth);
2000 LBV_COEFFICIENTS (lbv)[i] = 1;
2002 newlbv = lambda_body_vector_compute_new (transform, lbv);
2004 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
2005 new_ivs, &stmts);
2006 bsi = bsi_for_stmt (stmt);
2007 /* Insert the statements to build that
2008 expression. */
2009 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
2010 propagate_value (use_p, newiv);
2011 update_stmt (stmt);
2017 VEC_free (tree, heap, new_ivs);
2020 /* Return TRUE if this is not interesting statement from the perspective of
2021 determining if we have a perfect loop nest. */
2023 static bool
2024 not_interesting_stmt (tree stmt)
2026 /* Note that COND_EXPR's aren't interesting because if they were exiting the
2027 loop, we would have already failed the number of exits tests. */
2028 if (TREE_CODE (stmt) == LABEL_EXPR
2029 || TREE_CODE (stmt) == GOTO_EXPR
2030 || TREE_CODE (stmt) == COND_EXPR)
2031 return true;
2032 return false;
2035 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
2037 static bool
2038 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
2040 int i;
2041 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2042 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
2043 if (PHI_ARG_DEF (phi, i) == def)
2044 return true;
2045 return false;
2048 /* Return TRUE if STMT is a use of PHI_RESULT. */
2050 static bool
2051 stmt_uses_phi_result (tree stmt, tree phi_result)
2053 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2055 /* This is conservatively true, because we only want SIMPLE bumpers
2056 of the form x +- constant for our pass. */
2057 return (use == phi_result);
2060 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2061 in-loop-edge in a phi node, and the operand it uses is the result of that
2062 phi node.
2063 I.E. i_29 = i_3 + 1
2064 i_3 = PHI (0, i_29); */
2066 static bool
2067 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2069 tree use;
2070 tree def;
2071 imm_use_iterator iter;
2072 use_operand_p use_p;
2074 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2075 if (!def)
2076 return false;
2078 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2080 use = USE_STMT (use_p);
2081 if (TREE_CODE (use) == PHI_NODE)
2083 if (phi_loop_edge_uses_def (loop, use, def))
2084 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2085 return true;
2088 return false;
2092 /* Return true if LOOP is a perfect loop nest.
2093 Perfect loop nests are those loop nests where all code occurs in the
2094 innermost loop body.
2095 If S is a program statement, then
2097 i.e.
2098 DO I = 1, 20
2100 DO J = 1, 20
2102 END DO
2103 END DO
2104 is not a perfect loop nest because of S1.
2106 DO I = 1, 20
2107 DO J = 1, 20
2110 END DO
2111 END DO
2112 is a perfect loop nest.
2114 Since we don't have high level loops anymore, we basically have to walk our
2115 statements and ignore those that are there because the loop needs them (IE
2116 the induction variable increment, and jump back to the top of the loop). */
2118 bool
2119 perfect_nest_p (struct loop *loop)
2121 basic_block *bbs;
2122 size_t i;
2123 tree exit_cond;
2125 if (!loop->inner)
2126 return true;
2127 bbs = get_loop_body (loop);
2128 exit_cond = get_loop_exit_condition (loop);
2129 for (i = 0; i < loop->num_nodes; i++)
2131 if (bbs[i]->loop_father == loop)
2133 block_stmt_iterator bsi;
2134 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2136 tree stmt = bsi_stmt (bsi);
2137 if (stmt == exit_cond
2138 || not_interesting_stmt (stmt)
2139 || stmt_is_bumper_for_loop (loop, stmt))
2140 continue;
2141 free (bbs);
2142 return false;
2146 free (bbs);
2147 /* See if the inner loops are perfectly nested as well. */
2148 if (loop->inner)
2149 return perfect_nest_p (loop->inner);
2150 return true;
2153 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2154 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2155 avoid creating duplicate temporaries and FIRSTBSI is statement
2156 iterator where new temporaries should be inserted at the beginning
2157 of body basic block. */
2159 static void
2160 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2161 int xstep, tree y, tree yinit,
2162 htab_t replacements,
2163 block_stmt_iterator *firstbsi)
2165 ssa_op_iter iter;
2166 use_operand_p use_p;
2168 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2170 tree use = USE_FROM_PTR (use_p);
2171 tree step = NULL_TREE;
2172 tree scev, init, val, var, setstmt;
2173 struct tree_map *h, in;
2174 void **loc;
2176 /* Replace uses of X with Y right away. */
2177 if (use == x)
2179 SET_USE (use_p, y);
2180 continue;
2183 scev = instantiate_parameters (loop,
2184 analyze_scalar_evolution (loop, use));
2186 if (scev == NULL || scev == chrec_dont_know)
2187 continue;
2189 step = evolution_part_in_loop_num (scev, loop->num);
2190 if (step == NULL
2191 || step == chrec_dont_know
2192 || TREE_CODE (step) != INTEGER_CST
2193 || int_cst_value (step) != xstep)
2194 continue;
2196 /* Use REPLACEMENTS hash table to cache already created
2197 temporaries. */
2198 in.hash = htab_hash_pointer (use);
2199 in.from = use;
2200 h = htab_find_with_hash (replacements, &in, in.hash);
2201 if (h != NULL)
2203 SET_USE (use_p, h->to);
2204 continue;
2207 /* USE which has the same step as X should be replaced
2208 with a temporary set to Y + YINIT - INIT. */
2209 init = initial_condition_in_loop_num (scev, loop->num);
2210 gcc_assert (init != NULL && init != chrec_dont_know);
2211 if (TREE_TYPE (use) == TREE_TYPE (y))
2213 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2214 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2215 if (val == y)
2217 /* If X has the same type as USE, the same step
2218 and same initial value, it can be replaced by Y. */
2219 SET_USE (use_p, y);
2220 continue;
2223 else
2225 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2226 val = fold_convert (TREE_TYPE (use), val);
2227 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2230 /* Create a temporary variable and insert it at the beginning
2231 of the loop body basic block, right after the PHI node
2232 which sets Y. */
2233 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2234 add_referenced_tmp_var (var);
2235 val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
2236 setstmt = build2 (MODIFY_EXPR, void_type_node, var, val);
2237 var = make_ssa_name (var, setstmt);
2238 TREE_OPERAND (setstmt, 0) = var;
2239 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2240 update_stmt (setstmt);
2241 SET_USE (use_p, var);
2242 h = ggc_alloc (sizeof (struct tree_map));
2243 h->hash = in.hash;
2244 h->from = use;
2245 h->to = var;
2246 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2247 gcc_assert ((*(struct tree_map **)loc) == NULL);
2248 *(struct tree_map **) loc = h;
2252 /* Return true if STMT is an exit PHI for LOOP */
2254 static bool
2255 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2258 if (TREE_CODE (stmt) != PHI_NODE
2259 || PHI_NUM_ARGS (stmt) != 1
2260 || bb_for_stmt (stmt) != loop->single_exit->dest)
2261 return false;
2263 return true;
2266 /* Return true if STMT can be put back into INNER, a loop by moving it to the
2267 beginning of that loop. */
2269 static bool
2270 can_put_in_inner_loop (struct loop *inner, tree stmt)
2272 imm_use_iterator imm_iter;
2273 use_operand_p use_p;
2274 basic_block use_bb = NULL;
2276 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
2277 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2278 || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
2279 return false;
2281 /* We require that the basic block of all uses be the same, or the use be an
2282 exit phi. */
2283 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2285 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2287 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2289 if (!flow_bb_inside_loop_p (inner, immbb))
2290 return false;
2291 if (use_bb == NULL)
2292 use_bb = immbb;
2293 else if (immbb != use_bb)
2294 return false;
2297 return true;
2301 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2303 static bool
2304 can_put_after_inner_loop (struct loop *loop, tree stmt)
2306 imm_use_iterator imm_iter;
2307 use_operand_p use_p;
2309 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2310 return false;
2312 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2314 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2316 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2318 if (!dominated_by_p (CDI_DOMINATORS,
2319 immbb,
2320 loop->inner->header)
2321 && !can_put_in_inner_loop (loop->inner, stmt))
2322 return false;
2325 return true;
2328 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2329 perfect one. At the moment, we only handle imperfect nests of
2330 depth 2, where all of the statements occur after the inner loop. */
2332 static bool
2333 can_convert_to_perfect_nest (struct loop *loop)
2335 basic_block *bbs;
2336 tree exit_condition, phi;
2337 size_t i;
2338 block_stmt_iterator bsi;
2339 basic_block exitdest;
2341 /* Can't handle triply nested+ loops yet. */
2342 if (!loop->inner || loop->inner->inner)
2343 return false;
2345 bbs = get_loop_body (loop);
2346 exit_condition = get_loop_exit_condition (loop);
2347 for (i = 0; i < loop->num_nodes; i++)
2349 if (bbs[i]->loop_father == loop)
2351 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2353 tree stmt = bsi_stmt (bsi);
2355 if (stmt == exit_condition
2356 || not_interesting_stmt (stmt)
2357 || stmt_is_bumper_for_loop (loop, stmt))
2358 continue;
2360 /* If this is a simple operation like a cast that is invariant
2361 in the inner loop, only used there, and we can place it
2362 there, then it's not going to hurt us.
2363 This means that we will propagate casts and other cheap
2364 invariant operations *back*
2365 into the inner loop if we can interchange the loop, on the
2366 theory that we are going to gain a lot more by interchanging
2367 the loop than we are by leaving some invariant code there for
2368 some other pass to clean up. */
2369 if (TREE_CODE (stmt) == MODIFY_EXPR)
2371 use_operand_p use_a, use_b;
2372 imm_use_iterator imm_iter;
2373 ssa_op_iter op_iter, op_iter1;
2374 tree op0 = TREE_OPERAND (stmt, 0);
2375 tree scev = instantiate_parameters
2376 (loop, analyze_scalar_evolution (loop, op0));
2378 /* If the IV is simple, it can be duplicated. */
2379 if (!automatically_generated_chrec_p (scev))
2381 tree step = evolution_part_in_loop_num (scev, loop->num);
2382 if (step && step != chrec_dont_know
2383 && TREE_CODE (step) == INTEGER_CST)
2384 continue;
2387 /* The statement should not define a variable used
2388 in the inner loop. */
2389 if (TREE_CODE (op0) == SSA_NAME)
2390 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2391 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2392 == loop->inner)
2393 goto fail;
2395 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2397 tree node, op = USE_FROM_PTR (use_a);
2399 /* The variables should not be used in both loops. */
2400 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2401 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2402 == loop->inner)
2403 goto fail;
2405 /* The statement should not use the value of a
2406 scalar that was modified in the loop. */
2407 node = SSA_NAME_DEF_STMT (op);
2408 if (TREE_CODE (node) == PHI_NODE)
2409 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2411 tree arg = USE_FROM_PTR (use_b);
2413 if (TREE_CODE (arg) == SSA_NAME)
2415 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2417 if (bb_for_stmt (arg_stmt)->loop_father
2418 == loop->inner)
2419 goto fail;
2424 if (can_put_in_inner_loop (loop->inner, stmt)
2425 || can_put_after_inner_loop (loop, stmt))
2426 continue;
2429 /* Otherwise, if the bb of a statement we care about isn't
2430 dominated by the header of the inner loop, then we can't
2431 handle this case right now. This test ensures that the
2432 statement comes completely *after* the inner loop. */
2433 if (!dominated_by_p (CDI_DOMINATORS,
2434 bb_for_stmt (stmt),
2435 loop->inner->header))
2436 goto fail;
2441 /* We also need to make sure the loop exit only has simple copy phis in it,
2442 otherwise we don't know how to transform it into a perfect nest right
2443 now. */
2444 exitdest = loop->single_exit->dest;
2446 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2447 if (PHI_NUM_ARGS (phi) != 1)
2448 goto fail;
2450 free (bbs);
2451 return true;
2453 fail:
2454 free (bbs);
2455 return false;
2458 /* Transform the loop nest into a perfect nest, if possible.
2459 LOOPS is the current struct loops *
2460 LOOP is the loop nest to transform into a perfect nest
2461 LBOUNDS are the lower bounds for the loops to transform
2462 UBOUNDS are the upper bounds for the loops to transform
2463 STEPS is the STEPS for the loops to transform.
2464 LOOPIVS is the induction variables for the loops to transform.
2466 Basically, for the case of
2468 FOR (i = 0; i < 50; i++)
2470 FOR (j =0; j < 50; j++)
2472 <whatever>
2474 <some code>
2477 This function will transform it into a perfect loop nest by splitting the
2478 outer loop into two loops, like so:
2480 FOR (i = 0; i < 50; i++)
2482 FOR (j = 0; j < 50; j++)
2484 <whatever>
2488 FOR (i = 0; i < 50; i ++)
2490 <some code>
2493 Return FALSE if we can't make this loop into a perfect nest. */
2495 static bool
2496 perfect_nestify (struct loops *loops,
2497 struct loop *loop,
2498 VEC(tree,heap) *lbounds,
2499 VEC(tree,heap) *ubounds,
2500 VEC(int,heap) *steps,
2501 VEC(tree,heap) *loopivs)
2503 basic_block *bbs;
2504 tree exit_condition;
2505 tree then_label, else_label, cond_stmt;
2506 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2507 int i;
2508 block_stmt_iterator bsi, firstbsi;
2509 bool insert_after;
2510 edge e;
2511 struct loop *newloop;
2512 tree phi;
2513 tree uboundvar;
2514 tree stmt;
2515 tree oldivvar, ivvar, ivvarinced;
2516 VEC(tree,heap) *phis = NULL;
2517 htab_t replacements = NULL;
2519 /* Create the new loop. */
2520 olddest = loop->single_exit->dest;
2521 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2522 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2524 /* Push the exit phi nodes that we are moving. */
2525 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2527 VEC_reserve (tree, heap, phis, 2);
2528 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2529 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2531 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2533 /* Remove the exit phis from the old basic block. Make sure to set
2534 PHI_RESULT to null so it doesn't get released. */
2535 while (phi_nodes (olddest) != NULL)
2537 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2538 remove_phi_node (phi_nodes (olddest), NULL);
2541 /* and add them back to the new basic block. */
2542 while (VEC_length (tree, phis) != 0)
2544 tree def;
2545 tree phiname;
2546 def = VEC_pop (tree, phis);
2547 phiname = VEC_pop (tree, phis);
2548 phi = create_phi_node (phiname, preheaderbb);
2549 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2551 flush_pending_stmts (e);
2552 VEC_free (tree, heap, phis);
2554 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2555 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2556 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2557 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2558 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2559 cond_stmt = build (COND_EXPR, void_type_node,
2560 build (NE_EXPR, boolean_type_node,
2561 integer_one_node,
2562 integer_zero_node),
2563 then_label, else_label);
2564 bsi = bsi_start (bodybb);
2565 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2566 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2567 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2568 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2570 /* Update the loop structures. */
2571 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2572 newloop->header = headerbb;
2573 newloop->latch = latchbb;
2574 newloop->single_exit = e;
2575 add_bb_to_loop (latchbb, newloop);
2576 add_bb_to_loop (bodybb, newloop);
2577 add_bb_to_loop (headerbb, newloop);
2578 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2579 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2580 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2581 loop->single_exit->src);
2582 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2583 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2584 /* Create the new iv. */
2585 oldivvar = VEC_index (tree, loopivs, 0);
2586 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2587 add_referenced_tmp_var (ivvar);
2588 standard_iv_increment_position (newloop, &bsi, &insert_after);
2589 create_iv (VEC_index (tree, lbounds, 0),
2590 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2591 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2593 /* Create the new upper bound. This may be not just a variable, so we copy
2594 it to one just in case. */
2596 exit_condition = get_loop_exit_condition (newloop);
2597 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2598 add_referenced_tmp_var (uboundvar);
2599 stmt = build (MODIFY_EXPR, void_type_node, uboundvar,
2600 VEC_index (tree, ubounds, 0));
2601 uboundvar = make_ssa_name (uboundvar, stmt);
2602 TREE_OPERAND (stmt, 0) = uboundvar;
2604 if (insert_after)
2605 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2606 else
2607 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2608 update_stmt (stmt);
2609 COND_EXPR_COND (exit_condition) = build (GE_EXPR,
2610 boolean_type_node,
2611 uboundvar,
2612 ivvarinced);
2613 update_stmt (exit_condition);
2614 replacements = htab_create_ggc (20, tree_map_hash,
2615 tree_map_eq, NULL);
2616 bbs = get_loop_body_in_dom_order (loop);
2617 /* Now move the statements, and replace the induction variable in the moved
2618 statements with the correct loop induction variable. */
2619 oldivvar = VEC_index (tree, loopivs, 0);
2620 firstbsi = bsi_start (bodybb);
2621 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2623 block_stmt_iterator tobsi = bsi_last (bodybb);
2624 if (bbs[i]->loop_father == loop)
2626 /* If this is true, we are *before* the inner loop.
2627 If this isn't true, we are *after* it.
2629 The only time can_convert_to_perfect_nest returns true when we
2630 have statements before the inner loop is if they can be moved
2631 into the inner loop.
2633 The only time can_convert_to_perfect_nest returns true when we
2634 have statements after the inner loop is if they can be moved into
2635 the new split loop. */
2637 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2639 block_stmt_iterator header_bsi
2640 = bsi_after_labels (loop->inner->header);
2642 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2644 tree stmt = bsi_stmt (bsi);
2646 if (stmt == exit_condition
2647 || not_interesting_stmt (stmt)
2648 || stmt_is_bumper_for_loop (loop, stmt))
2650 bsi_next (&bsi);
2651 continue;
2654 bsi_move_before (&bsi, &header_bsi);
2657 else
2659 /* Note that the bsi only needs to be explicitly incremented
2660 when we don't move something, since it is automatically
2661 incremented when we do. */
2662 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2664 ssa_op_iter i;
2665 tree n, stmt = bsi_stmt (bsi);
2667 if (stmt == exit_condition
2668 || not_interesting_stmt (stmt)
2669 || stmt_is_bumper_for_loop (loop, stmt))
2671 bsi_next (&bsi);
2672 continue;
2675 replace_uses_equiv_to_x_with_y
2676 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2677 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2679 bsi_move_before (&bsi, &tobsi);
2681 /* If the statement has any virtual operands, they may
2682 need to be rewired because the original loop may
2683 still reference them. */
2684 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2685 mark_sym_for_renaming (SSA_NAME_VAR (n));
2692 free (bbs);
2693 htab_delete (replacements);
2694 return perfect_nest_p (loop);
2697 /* Return true if TRANS is a legal transformation matrix that respects
2698 the dependence vectors in DISTS and DIRS. The conservative answer
2699 is false.
2701 "Wolfe proves that a unimodular transformation represented by the
2702 matrix T is legal when applied to a loop nest with a set of
2703 lexicographically non-negative distance vectors RDG if and only if
2704 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2705 i.e.: if and only if it transforms the lexicographically positive
2706 distance vectors to lexicographically positive vectors. Note that
2707 a unimodular matrix must transform the zero vector (and only it) to
2708 the zero vector." S.Muchnick. */
2710 bool
2711 lambda_transform_legal_p (lambda_trans_matrix trans,
2712 int nb_loops,
2713 varray_type dependence_relations)
2715 unsigned int i, j;
2716 lambda_vector distres;
2717 struct data_dependence_relation *ddr;
2719 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2720 && LTM_ROWSIZE (trans) == nb_loops);
2722 /* When there is an unknown relation in the dependence_relations, we
2723 know that it is no worth looking at this loop nest: give up. */
2724 ddr = (struct data_dependence_relation *)
2725 VARRAY_GENERIC_PTR (dependence_relations, 0);
2726 if (ddr == NULL)
2727 return true;
2728 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2729 return false;
2731 distres = lambda_vector_new (nb_loops);
2733 /* For each distance vector in the dependence graph. */
2734 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
2736 ddr = (struct data_dependence_relation *)
2737 VARRAY_GENERIC_PTR (dependence_relations, i);
2739 /* Don't care about relations for which we know that there is no
2740 dependence, nor about read-read (aka. output-dependences):
2741 these data accesses can happen in any order. */
2742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2743 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2744 continue;
2746 /* Conservatively answer: "this transformation is not valid". */
2747 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2748 return false;
2750 /* If the dependence could not be captured by a distance vector,
2751 conservatively answer that the transform is not valid. */
2752 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2753 return false;
2755 /* Compute trans.dist_vect */
2756 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2758 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2759 DDR_DIST_VECT (ddr, j), distres);
2761 if (!lambda_vector_lexico_pos (distres, nb_loops))
2762 return false;
2765 return true;