No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / lambda.h
bloba07800011d45ddef0c82e1b32368fcfe44ba430e
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
25 #include "vec.h"
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
30 integers. */
31 typedef int *lambda_vector;
33 DEF_VEC_P(lambda_vector);
34 DEF_VEC_ALLOC_P(lambda_vector,heap);
36 /* An integer matrix. A matrix consists of m vectors of length n (IE
37 all vectors are the same length). */
38 typedef lambda_vector *lambda_matrix;
40 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
41 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
42 represents the denominator for every element in the matrix. */
43 typedef struct
45 lambda_matrix matrix;
46 int rowsize;
47 int colsize;
48 int denominator;
49 } *lambda_trans_matrix;
50 #define LTM_MATRIX(T) ((T)->matrix)
51 #define LTM_ROWSIZE(T) ((T)->rowsize)
52 #define LTM_COLSIZE(T) ((T)->colsize)
53 #define LTM_DENOMINATOR(T) ((T)->denominator)
55 /* A vector representing a statement in the body of a loop.
56 The COEFFICIENTS vector contains a coefficient for each induction variable
57 in the loop nest containing the statement.
58 The DENOMINATOR represents the denominator for each coefficient in the
59 COEFFICIENT vector.
61 This structure is used during code generation in order to rewrite the old
62 induction variable uses in a statement in terms of the newly created
63 induction variables. */
64 typedef struct
66 lambda_vector coefficients;
67 int size;
68 int denominator;
69 } *lambda_body_vector;
70 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
71 #define LBV_SIZE(T) ((T)->size)
72 #define LBV_DENOMINATOR(T) ((T)->denominator)
74 /* Piecewise linear expression.
75 This structure represents a linear expression with terms for the invariants
76 and induction variables of a loop.
77 COEFFICIENTS is a vector of coefficients for the induction variables, one
78 per loop in the loop nest.
79 CONSTANT is the constant portion of the linear expression
80 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
81 one per invariant.
82 DENOMINATOR is the denominator for all of the coefficients and constants in
83 the expression.
84 The linear expressions can be linked together using the NEXT field, in
85 order to represent MAX or MIN of a group of linear expressions. */
86 typedef struct lambda_linear_expression_s
88 lambda_vector coefficients;
89 int constant;
90 lambda_vector invariant_coefficients;
91 int denominator;
92 struct lambda_linear_expression_s *next;
93 } *lambda_linear_expression;
95 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
96 #define LLE_CONSTANT(T) ((T)->constant)
97 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
98 #define LLE_DENOMINATOR(T) ((T)->denominator)
99 #define LLE_NEXT(T) ((T)->next)
101 lambda_linear_expression lambda_linear_expression_new (int, int);
102 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
103 int, char);
105 /* Loop structure. Our loop structure consists of a constant representing the
106 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
107 of the loop, a set of linear expressions representing the UPPER_BOUND of
108 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
109 the loop. The linear offset is a set of linear expressions that are
110 applied to *both* the lower bound, and the upper bound. */
111 typedef struct lambda_loop_s
113 lambda_linear_expression lower_bound;
114 lambda_linear_expression upper_bound;
115 lambda_linear_expression linear_offset;
116 int step;
117 } *lambda_loop;
119 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
120 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
121 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
122 #define LL_STEP(T) ((T)->step)
124 /* Loop nest structure.
125 The loop nest structure consists of a set of loop structures (defined
126 above) in LOOPS, along with an integer representing the DEPTH of the loop,
127 and an integer representing the number of INVARIANTS in the loop. Both of
128 these integers are used to size the associated coefficient vectors in the
129 linear expression structures. */
130 typedef struct
132 lambda_loop *loops;
133 int depth;
134 int invariants;
135 } *lambda_loopnest;
137 #define LN_LOOPS(T) ((T)->loops)
138 #define LN_DEPTH(T) ((T)->depth)
139 #define LN_INVARIANTS(T) ((T)->invariants)
141 lambda_loopnest lambda_loopnest_new (int, int);
142 lambda_loopnest lambda_loopnest_transform (lambda_loopnest, lambda_trans_matrix);
143 struct loop;
144 struct loops;
145 bool perfect_nest_p (struct loop *);
146 bool lambda_transform_legal_p (lambda_trans_matrix, int, varray_type);
147 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
149 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
151 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
153 lambda_matrix lambda_matrix_new (int, int);
155 void lambda_matrix_id (lambda_matrix, int);
156 bool lambda_matrix_id_p (lambda_matrix, int);
157 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
158 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
159 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
160 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
161 int);
162 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
163 lambda_matrix, int, int);
164 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
165 int, int, int);
166 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
167 void lambda_matrix_row_exchange (lambda_matrix, int, int);
168 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
169 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
170 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
171 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
172 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
173 void lambda_matrix_col_negate (lambda_matrix, int, int);
174 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
175 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
176 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
177 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
178 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
179 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
180 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
181 lambda_vector);
182 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
184 lambda_trans_matrix lambda_trans_matrix_new (int, int);
185 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
186 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
187 int lambda_trans_matrix_rank (lambda_trans_matrix);
188 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
189 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
190 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
191 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
192 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
193 lambda_vector);
194 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
196 lambda_body_vector lambda_body_vector_new (int);
197 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
198 lambda_body_vector);
199 void print_lambda_body_vector (FILE *, lambda_body_vector);
200 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loops *,
201 struct loop *,
202 VEC(tree,heap) **,
203 VEC(tree,heap) **);
204 void lambda_loopnest_to_gcc_loopnest (struct loop *,
205 VEC(tree,heap) *, VEC(tree,heap) *,
206 lambda_loopnest, lambda_trans_matrix);
209 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
210 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
211 static inline void lambda_vector_add (lambda_vector, lambda_vector,
212 lambda_vector, int);
213 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
214 lambda_vector, int);
215 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
216 static inline bool lambda_vector_zerop (lambda_vector, int);
217 static inline void lambda_vector_clear (lambda_vector, int);
218 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
219 static inline int lambda_vector_min_nz (lambda_vector, int, int);
220 static inline int lambda_vector_first_nz (lambda_vector, int, int);
221 static inline void print_lambda_vector (FILE *, lambda_vector, int);
223 /* Allocate a new vector of given SIZE. */
225 static inline lambda_vector
226 lambda_vector_new (int size)
228 return ggc_alloc_cleared (size * sizeof(int));
233 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
234 and store the result in VEC2. */
236 static inline void
237 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
238 int size, int const1)
240 int i;
242 if (const1 == 0)
243 lambda_vector_clear (vec2, size);
244 else
245 for (i = 0; i < size; i++)
246 vec2[i] = const1 * vec1[i];
249 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
251 static inline void
252 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
253 int size)
255 lambda_vector_mult_const (vec1, vec2, size, -1);
258 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
260 static inline void
261 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
262 lambda_vector vec3, int size)
264 int i;
265 for (i = 0; i < size; i++)
266 vec3[i] = vec1[i] + vec2[i];
269 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
271 static inline void
272 lambda_vector_add_mc (lambda_vector vec1, int const1,
273 lambda_vector vec2, int const2,
274 lambda_vector vec3, int size)
276 int i;
277 for (i = 0; i < size; i++)
278 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
281 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
283 static inline void
284 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
285 int size)
287 memcpy (vec2, vec1, size * sizeof (*vec1));
290 /* Return true if vector VEC1 of length SIZE is the zero vector. */
292 static inline bool
293 lambda_vector_zerop (lambda_vector vec1, int size)
295 int i;
296 for (i = 0; i < size; i++)
297 if (vec1[i] != 0)
298 return false;
299 return true;
302 /* Clear out vector VEC1 of length SIZE. */
304 static inline void
305 lambda_vector_clear (lambda_vector vec1, int size)
307 memset (vec1, 0, size * sizeof (*vec1));
310 /* Return true if two vectors are equal. */
312 static inline bool
313 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
315 int i;
316 for (i = 0; i < size; i++)
317 if (vec1[i] != vec2[i])
318 return false;
319 return true;
322 /* Return the minimum nonzero element in vector VEC1 between START and N.
323 We must have START <= N. */
325 static inline int
326 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
328 int j;
329 int min = -1;
331 gcc_assert (start <= n);
332 for (j = start; j < n; j++)
334 if (vec1[j])
335 if (min < 0 || vec1[j] < vec1[min])
336 min = j;
338 gcc_assert (min >= 0);
340 return min;
343 /* Return the first nonzero element of vector VEC1 between START and N.
344 We must have START <= N. Returns N if VEC1 is the zero vector. */
346 static inline int
347 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
349 int j = start;
350 while (j < n && vec1[j] == 0)
351 j++;
352 return j;
356 /* Multiply a vector by a matrix. */
358 static inline void
359 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
360 int n, lambda_vector dest)
362 int i, j;
363 lambda_vector_clear (dest, n);
364 for (i = 0; i < n; i++)
365 for (j = 0; j < m; j++)
366 dest[i] += mat[j][i] * vect[j];
370 /* Print out a vector VEC of length N to OUTFILE. */
372 static inline void
373 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
375 int i;
377 for (i = 0; i < n; i++)
378 fprintf (outfile, "%3d ", vector[i]);
379 fprintf (outfile, "\n");
382 /* Returns true when the vector V is lexicographically positive, in
383 other words, when the first nonzero element is positive. */
385 static inline bool
386 lambda_vector_lexico_pos (lambda_vector v,
387 unsigned n)
389 unsigned i;
390 for (i = 0; i < n; i++)
392 if (v[i] == 0)
393 continue;
394 if (v[i] < 0)
395 return false;
396 if (v[i] > 0)
397 return true;
399 return true;
402 #endif /* LAMBDA_H */