No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / postreload.c
blob43a9fd407bbcfaa5f69e628fd5cc7efc7f150945
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
50 static int reload_cse_noop_set_p (rtx);
51 static void reload_cse_simplify (rtx, rtx);
52 static void reload_cse_regs_1 (rtx);
53 static int reload_cse_simplify_set (rtx, rtx);
54 static int reload_cse_simplify_operands (rtx, rtx);
56 static void reload_combine (void);
57 static void reload_combine_note_use (rtx *, rtx);
58 static void reload_combine_note_store (rtx, rtx, void *);
60 static void reload_cse_move2add (rtx);
61 static void move2add_note_store (rtx, rtx, void *);
63 /* Call cse / combine like post-reload optimization phases.
64 FIRST is the first instruction. */
65 void
66 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
68 reload_cse_regs_1 (first);
69 reload_combine ();
70 reload_cse_move2add (first);
71 if (flag_expensive_optimizations)
72 reload_cse_regs_1 (first);
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 /* Try to simplify INSN. */
86 static void
87 reload_cse_simplify (rtx insn, rtx testreg)
89 rtx body = PATTERN (insn);
91 if (GET_CODE (body) == SET)
93 int count = 0;
95 /* Simplify even if we may think it is a no-op.
96 We may think a memory load of a value smaller than WORD_SIZE
97 is redundant because we haven't taken into account possible
98 implicit extension. reload_cse_simplify_set() will bring
99 this out, so it's safer to simplify before we delete. */
100 count += reload_cse_simplify_set (body, insn);
102 if (!count && reload_cse_noop_set_p (body))
104 rtx value = SET_DEST (body);
105 if (REG_P (value)
106 && ! REG_FUNCTION_VALUE_P (value))
107 value = 0;
108 delete_insn_and_edges (insn);
109 return;
112 if (count > 0)
113 apply_change_group ();
114 else
115 reload_cse_simplify_operands (insn, testreg);
117 else if (GET_CODE (body) == PARALLEL)
119 int i;
120 int count = 0;
121 rtx value = NULL_RTX;
123 /* Registers mentioned in the clobber list for an asm cannot be reused
124 within the body of the asm. Invalidate those registers now so that
125 we don't try to substitute values for them. */
126 if (asm_noperands (body) >= 0)
128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
130 rtx part = XVECEXP (body, 0, i);
131 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
132 cselib_invalidate_rtx (XEXP (part, 0));
136 /* If every action in a PARALLEL is a noop, we can delete
137 the entire PARALLEL. */
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == SET)
143 if (! reload_cse_noop_set_p (part))
144 break;
145 if (REG_P (SET_DEST (part))
146 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
148 if (value)
149 break;
150 value = SET_DEST (part);
153 else if (GET_CODE (part) != CLOBBER)
154 break;
157 if (i < 0)
159 delete_insn_and_edges (insn);
160 /* We're done with this insn. */
161 return;
164 /* It's not a no-op, but we can try to simplify it. */
165 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
166 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
167 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
169 if (count > 0)
170 apply_change_group ();
171 else
172 reload_cse_simplify_operands (insn, testreg);
176 /* Do a very simple CSE pass over the hard registers.
178 This function detects no-op moves where we happened to assign two
179 different pseudo-registers to the same hard register, and then
180 copied one to the other. Reload will generate a useless
181 instruction copying a register to itself.
183 This function also detects cases where we load a value from memory
184 into two different registers, and (if memory is more expensive than
185 registers) changes it to simply copy the first register into the
186 second register.
188 Another optimization is performed that scans the operands of each
189 instruction to see whether the value is already available in a
190 hard register. It then replaces the operand with the hard register
191 if possible, much like an optional reload would. */
193 static void
194 reload_cse_regs_1 (rtx first)
196 rtx insn;
197 rtx testreg = gen_rtx_REG (VOIDmode, -1);
199 cselib_init (true);
200 init_alias_analysis ();
202 for (insn = first; insn; insn = NEXT_INSN (insn))
204 if (INSN_P (insn))
205 reload_cse_simplify (insn, testreg);
207 cselib_process_insn (insn);
210 /* Clean up. */
211 end_alias_analysis ();
212 cselib_finish ();
215 /* Try to simplify a single SET instruction. SET is the set pattern.
216 INSN is the instruction it came from.
217 This function only handles one case: if we set a register to a value
218 which is not a register, we try to find that value in some other register
219 and change the set into a register copy. */
221 static int
222 reload_cse_simplify_set (rtx set, rtx insn)
224 int did_change = 0;
225 int dreg;
226 rtx src;
227 enum reg_class dclass;
228 int old_cost;
229 cselib_val *val;
230 struct elt_loc_list *l;
231 #ifdef LOAD_EXTEND_OP
232 enum rtx_code extend_op = UNKNOWN;
233 #endif
235 dreg = true_regnum (SET_DEST (set));
236 if (dreg < 0)
237 return 0;
239 src = SET_SRC (set);
240 if (side_effects_p (src) || true_regnum (src) >= 0)
241 return 0;
243 dclass = REGNO_REG_CLASS (dreg);
245 #ifdef LOAD_EXTEND_OP
246 /* When replacing a memory with a register, we need to honor assumptions
247 that combine made wrt the contents of sign bits. We'll do this by
248 generating an extend instruction instead of a reg->reg copy. Thus
249 the destination must be a register that we can widen. */
250 if (MEM_P (src)
251 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
252 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
253 && !REG_P (SET_DEST (set)))
254 return 0;
255 #endif
257 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
258 if (! val)
259 return 0;
261 /* If memory loads are cheaper than register copies, don't change them. */
262 if (MEM_P (src))
263 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
264 else if (REG_P (src))
265 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
266 REGNO_REG_CLASS (REGNO (src)), dclass);
267 else
268 old_cost = rtx_cost (src, SET);
270 for (l = val->locs; l; l = l->next)
272 rtx this_rtx = l->loc;
273 int this_cost;
275 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
277 #ifdef LOAD_EXTEND_OP
278 if (extend_op != UNKNOWN)
280 HOST_WIDE_INT this_val;
282 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
283 constants, such as SYMBOL_REF, cannot be extended. */
284 if (GET_CODE (this_rtx) != CONST_INT)
285 continue;
287 this_val = INTVAL (this_rtx);
288 switch (extend_op)
290 case ZERO_EXTEND:
291 this_val &= GET_MODE_MASK (GET_MODE (src));
292 break;
293 case SIGN_EXTEND:
294 /* ??? In theory we're already extended. */
295 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
296 break;
297 default:
298 gcc_unreachable ();
300 this_rtx = GEN_INT (this_val);
302 #endif
303 this_cost = rtx_cost (this_rtx, SET);
305 else if (REG_P (this_rtx))
307 #ifdef LOAD_EXTEND_OP
308 if (extend_op != UNKNOWN)
310 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
311 this_cost = rtx_cost (this_rtx, SET);
313 else
314 #endif
315 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
316 REGNO_REG_CLASS (REGNO (this_rtx)),
317 dclass);
319 else
320 continue;
322 /* If equal costs, prefer registers over anything else. That
323 tends to lead to smaller instructions on some machines. */
324 if (this_cost < old_cost
325 || (this_cost == old_cost
326 && REG_P (this_rtx)
327 && !REG_P (SET_SRC (set))))
329 #ifdef LOAD_EXTEND_OP
330 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
331 && extend_op != UNKNOWN
332 #ifdef CANNOT_CHANGE_MODE_CLASS
333 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
334 word_mode,
335 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
336 #endif
339 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
340 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
341 validate_change (insn, &SET_DEST (set), wide_dest, 1);
343 #endif
345 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
346 old_cost = this_cost, did_change = 1;
350 return did_change;
353 /* Try to replace operands in INSN with equivalent values that are already
354 in registers. This can be viewed as optional reloading.
356 For each non-register operand in the insn, see if any hard regs are
357 known to be equivalent to that operand. Record the alternatives which
358 can accept these hard registers. Among all alternatives, select the
359 ones which are better or equal to the one currently matching, where
360 "better" is in terms of '?' and '!' constraints. Among the remaining
361 alternatives, select the one which replaces most operands with
362 hard registers. */
364 static int
365 reload_cse_simplify_operands (rtx insn, rtx testreg)
367 int i, j;
369 /* For each operand, all registers that are equivalent to it. */
370 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
372 const char *constraints[MAX_RECOG_OPERANDS];
374 /* Vector recording how bad an alternative is. */
375 int *alternative_reject;
376 /* Vector recording how many registers can be introduced by choosing
377 this alternative. */
378 int *alternative_nregs;
379 /* Array of vectors recording, for each operand and each alternative,
380 which hard register to substitute, or -1 if the operand should be
381 left as it is. */
382 int *op_alt_regno[MAX_RECOG_OPERANDS];
383 /* Array of alternatives, sorted in order of decreasing desirability. */
384 int *alternative_order;
386 extract_insn (insn);
388 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
389 return 0;
391 /* Figure out which alternative currently matches. */
392 if (! constrain_operands (1))
393 fatal_insn_not_found (insn);
395 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
396 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
397 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
398 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
399 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401 /* For each operand, find out which regs are equivalent. */
402 for (i = 0; i < recog_data.n_operands; i++)
404 cselib_val *v;
405 struct elt_loc_list *l;
406 rtx op;
407 enum machine_mode mode;
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Likewise if we have a constant
413 and the insn pattern doesn't tell us the mode we need. */
414 if (LABEL_P (recog_data.operand[i])
415 || (CONSTANT_P (recog_data.operand[i])
416 && recog_data.operand_mode[i] == VOIDmode))
417 continue;
419 op = recog_data.operand[i];
420 mode = GET_MODE (op);
421 #ifdef LOAD_EXTEND_OP
422 if (MEM_P (op)
423 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
424 && LOAD_EXTEND_OP (mode) != UNKNOWN)
426 rtx set = single_set (insn);
428 /* We might have multiple sets, some of which do implicit
429 extension. Punt on this for now. */
430 if (! set)
431 continue;
432 /* If the destination is also a MEM or a STRICT_LOW_PART, no
433 extension applies.
434 Also, if there is an explicit extension, we don't have to
435 worry about an implicit one. */
436 else if (MEM_P (SET_DEST (set))
437 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
438 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
439 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
440 ; /* Continue ordinary processing. */
441 #ifdef CANNOT_CHANGE_MODE_CLASS
442 /* If the register cannot change mode to word_mode, it follows that
443 it cannot have been used in word_mode. */
444 else if (REG_P (SET_DEST (set))
445 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
446 word_mode,
447 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
448 ; /* Continue ordinary processing. */
449 #endif
450 /* If this is a straight load, make the extension explicit. */
451 else if (REG_P (SET_DEST (set))
452 && recog_data.n_operands == 2
453 && SET_SRC (set) == op
454 && SET_DEST (set) == recog_data.operand[1-i])
456 validate_change (insn, recog_data.operand_loc[i],
457 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
458 word_mode, op),
460 validate_change (insn, recog_data.operand_loc[1-i],
461 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
463 if (! apply_change_group ())
464 return 0;
465 return reload_cse_simplify_operands (insn, testreg);
467 else
468 /* ??? There might be arithmetic operations with memory that are
469 safe to optimize, but is it worth the trouble? */
470 continue;
472 #endif /* LOAD_EXTEND_OP */
473 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
474 if (! v)
475 continue;
477 for (l = v->locs; l; l = l->next)
478 if (REG_P (l->loc))
479 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
482 for (i = 0; i < recog_data.n_operands; i++)
484 enum machine_mode mode;
485 int regno;
486 const char *p;
488 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
489 for (j = 0; j < recog_data.n_alternatives; j++)
490 op_alt_regno[i][j] = -1;
492 p = constraints[i] = recog_data.constraints[i];
493 mode = recog_data.operand_mode[i];
495 /* Add the reject values for each alternative given by the constraints
496 for this operand. */
497 j = 0;
498 while (*p != '\0')
500 char c = *p++;
501 if (c == ',')
502 j++;
503 else if (c == '?')
504 alternative_reject[j] += 3;
505 else if (c == '!')
506 alternative_reject[j] += 300;
509 /* We won't change operands which are already registers. We
510 also don't want to modify output operands. */
511 regno = true_regnum (recog_data.operand[i]);
512 if (regno >= 0
513 || constraints[i][0] == '='
514 || constraints[i][0] == '+')
515 continue;
517 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
519 int class = (int) NO_REGS;
521 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
522 continue;
524 REGNO (testreg) = regno;
525 PUT_MODE (testreg, mode);
527 /* We found a register equal to this operand. Now look for all
528 alternatives that can accept this register and have not been
529 assigned a register they can use yet. */
530 j = 0;
531 p = constraints[i];
532 for (;;)
534 char c = *p;
536 switch (c)
538 case '=': case '+': case '?':
539 case '#': case '&': case '!':
540 case '*': case '%':
541 case '0': case '1': case '2': case '3': case '4':
542 case '5': case '6': case '7': case '8': case '9':
543 case 'm': case '<': case '>': case 'V': case 'o':
544 case 'E': case 'F': case 'G': case 'H':
545 case 's': case 'i': case 'n':
546 case 'I': case 'J': case 'K': case 'L':
547 case 'M': case 'N': case 'O': case 'P':
548 case 'p': case 'X':
549 /* These don't say anything we care about. */
550 break;
552 case 'g': case 'r':
553 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
554 break;
556 default:
557 class
558 = (reg_class_subunion
559 [(int) class]
560 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
561 break;
563 case ',': case '\0':
564 /* See if REGNO fits this alternative, and set it up as the
565 replacement register if we don't have one for this
566 alternative yet and the operand being replaced is not
567 a cheap CONST_INT. */
568 if (op_alt_regno[i][j] == -1
569 && reg_fits_class_p (testreg, class, 0, mode)
570 && (GET_CODE (recog_data.operand[i]) != CONST_INT
571 || (rtx_cost (recog_data.operand[i], SET)
572 > rtx_cost (testreg, SET))))
574 alternative_nregs[j]++;
575 op_alt_regno[i][j] = regno;
577 j++;
578 class = (int) NO_REGS;
579 break;
581 p += CONSTRAINT_LEN (c, p);
583 if (c == '\0')
584 break;
589 /* Record all alternatives which are better or equal to the currently
590 matching one in the alternative_order array. */
591 for (i = j = 0; i < recog_data.n_alternatives; i++)
592 if (alternative_reject[i] <= alternative_reject[which_alternative])
593 alternative_order[j++] = i;
594 recog_data.n_alternatives = j;
596 /* Sort it. Given a small number of alternatives, a dumb algorithm
597 won't hurt too much. */
598 for (i = 0; i < recog_data.n_alternatives - 1; i++)
600 int best = i;
601 int best_reject = alternative_reject[alternative_order[i]];
602 int best_nregs = alternative_nregs[alternative_order[i]];
603 int tmp;
605 for (j = i + 1; j < recog_data.n_alternatives; j++)
607 int this_reject = alternative_reject[alternative_order[j]];
608 int this_nregs = alternative_nregs[alternative_order[j]];
610 if (this_reject < best_reject
611 || (this_reject == best_reject && this_nregs > best_nregs))
613 best = j;
614 best_reject = this_reject;
615 best_nregs = this_nregs;
619 tmp = alternative_order[best];
620 alternative_order[best] = alternative_order[i];
621 alternative_order[i] = tmp;
624 /* Substitute the operands as determined by op_alt_regno for the best
625 alternative. */
626 j = alternative_order[0];
628 for (i = 0; i < recog_data.n_operands; i++)
630 enum machine_mode mode = recog_data.operand_mode[i];
631 if (op_alt_regno[i][j] == -1)
632 continue;
634 validate_change (insn, recog_data.operand_loc[i],
635 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
638 for (i = recog_data.n_dups - 1; i >= 0; i--)
640 int op = recog_data.dup_num[i];
641 enum machine_mode mode = recog_data.operand_mode[op];
643 if (op_alt_regno[op][j] == -1)
644 continue;
646 validate_change (insn, recog_data.dup_loc[i],
647 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
650 return apply_change_group ();
653 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
654 addressing now.
655 This code might also be useful when reload gave up on reg+reg addressing
656 because of clashes between the return register and INDEX_REG_CLASS. */
658 /* The maximum number of uses of a register we can keep track of to
659 replace them with reg+reg addressing. */
660 #define RELOAD_COMBINE_MAX_USES 6
662 /* INSN is the insn where a register has ben used, and USEP points to the
663 location of the register within the rtl. */
664 struct reg_use { rtx insn, *usep; };
666 /* If the register is used in some unknown fashion, USE_INDEX is negative.
667 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
668 indicates where it becomes live again.
669 Otherwise, USE_INDEX is the index of the last encountered use of the
670 register (which is first among these we have seen since we scan backwards),
671 OFFSET contains the constant offset that is added to the register in
672 all encountered uses, and USE_RUID indicates the first encountered, i.e.
673 last, of these uses.
674 STORE_RUID is always meaningful if we only want to use a value in a
675 register in a different place: it denotes the next insn in the insn
676 stream (i.e. the last encountered) that sets or clobbers the register. */
677 static struct
679 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
680 int use_index;
681 rtx offset;
682 int store_ruid;
683 int use_ruid;
684 } reg_state[FIRST_PSEUDO_REGISTER];
686 /* Reverse linear uid. This is increased in reload_combine while scanning
687 the instructions from last to first. It is used to set last_label_ruid
688 and the store_ruid / use_ruid fields in reg_state. */
689 static int reload_combine_ruid;
691 #define LABEL_LIVE(LABEL) \
692 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
694 static void
695 reload_combine (void)
697 rtx insn, set;
698 int first_index_reg = -1;
699 int last_index_reg = 0;
700 int i;
701 basic_block bb;
702 unsigned int r;
703 int last_label_ruid;
704 int min_labelno, n_labels;
705 HARD_REG_SET ever_live_at_start, *label_live;
707 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
708 reload has already used it where appropriate, so there is no use in
709 trying to generate it now. */
710 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
711 return;
713 /* To avoid wasting too much time later searching for an index register,
714 determine the minimum and maximum index register numbers. */
715 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
716 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
718 if (first_index_reg == -1)
719 first_index_reg = r;
721 last_index_reg = r;
724 /* If no index register is available, we can quit now. */
725 if (first_index_reg == -1)
726 return;
728 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
729 information is a bit fuzzy immediately after reload, but it's
730 still good enough to determine which registers are live at a jump
731 destination. */
732 min_labelno = get_first_label_num ();
733 n_labels = max_label_num () - min_labelno;
734 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
735 CLEAR_HARD_REG_SET (ever_live_at_start);
737 FOR_EACH_BB_REVERSE (bb)
739 insn = BB_HEAD (bb);
740 if (LABEL_P (insn))
742 HARD_REG_SET live;
744 REG_SET_TO_HARD_REG_SET (live,
745 bb->il.rtl->global_live_at_start);
746 compute_use_by_pseudos (&live,
747 bb->il.rtl->global_live_at_start);
748 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
749 IOR_HARD_REG_SET (ever_live_at_start, live);
753 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
754 last_label_ruid = reload_combine_ruid = 0;
755 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
757 reg_state[r].store_ruid = reload_combine_ruid;
758 if (fixed_regs[r])
759 reg_state[r].use_index = -1;
760 else
761 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
764 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
766 rtx note;
768 /* We cannot do our optimization across labels. Invalidating all the use
769 information we have would be costly, so we just note where the label
770 is and then later disable any optimization that would cross it. */
771 if (LABEL_P (insn))
772 last_label_ruid = reload_combine_ruid;
773 else if (BARRIER_P (insn))
774 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
775 if (! fixed_regs[r])
776 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
778 if (! INSN_P (insn))
779 continue;
781 reload_combine_ruid++;
783 /* Look for (set (REGX) (CONST_INT))
784 (set (REGX) (PLUS (REGX) (REGY)))
786 ... (MEM (REGX)) ...
787 and convert it to
788 (set (REGZ) (CONST_INT))
790 ... (MEM (PLUS (REGZ) (REGY)))... .
792 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
793 and that we know all uses of REGX before it dies.
794 Also, explicitly check that REGX != REGY; our life information
795 does not yet show whether REGY changes in this insn. */
796 set = single_set (insn);
797 if (set != NULL_RTX
798 && REG_P (SET_DEST (set))
799 && (hard_regno_nregs[REGNO (SET_DEST (set))]
800 [GET_MODE (SET_DEST (set))]
801 == 1)
802 && GET_CODE (SET_SRC (set)) == PLUS
803 && REG_P (XEXP (SET_SRC (set), 1))
804 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
805 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
806 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
808 rtx reg = SET_DEST (set);
809 rtx plus = SET_SRC (set);
810 rtx base = XEXP (plus, 1);
811 rtx prev = prev_nonnote_insn (insn);
812 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
813 unsigned int regno = REGNO (reg);
814 rtx const_reg = NULL_RTX;
815 rtx reg_sum = NULL_RTX;
817 /* Now, we need an index register.
818 We'll set index_reg to this index register, const_reg to the
819 register that is to be loaded with the constant
820 (denoted as REGZ in the substitution illustration above),
821 and reg_sum to the register-register that we want to use to
822 substitute uses of REG (typically in MEMs) with.
823 First check REG and BASE for being index registers;
824 we can use them even if they are not dead. */
825 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
826 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
827 REGNO (base)))
829 const_reg = reg;
830 reg_sum = plus;
832 else
834 /* Otherwise, look for a free index register. Since we have
835 checked above that neither REG nor BASE are index registers,
836 if we find anything at all, it will be different from these
837 two registers. */
838 for (i = first_index_reg; i <= last_index_reg; i++)
840 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
842 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
843 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
844 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
846 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
848 const_reg = index_reg;
849 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
850 break;
855 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
856 (REGY), i.e. BASE, is not clobbered before the last use we'll
857 create. */
858 if (prev_set != 0
859 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
860 && rtx_equal_p (SET_DEST (prev_set), reg)
861 && reg_state[regno].use_index >= 0
862 && (reg_state[REGNO (base)].store_ruid
863 <= reg_state[regno].use_ruid)
864 && reg_sum != 0)
866 int i;
868 /* Change destination register and, if necessary, the
869 constant value in PREV, the constant loading instruction. */
870 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
871 if (reg_state[regno].offset != const0_rtx)
872 validate_change (prev,
873 &SET_SRC (prev_set),
874 GEN_INT (INTVAL (SET_SRC (prev_set))
875 + INTVAL (reg_state[regno].offset)),
878 /* Now for every use of REG that we have recorded, replace REG
879 with REG_SUM. */
880 for (i = reg_state[regno].use_index;
881 i < RELOAD_COMBINE_MAX_USES; i++)
882 validate_change (reg_state[regno].reg_use[i].insn,
883 reg_state[regno].reg_use[i].usep,
884 /* Each change must have its own
885 replacement. */
886 copy_rtx (reg_sum), 1);
888 if (apply_change_group ())
890 rtx *np;
892 /* Delete the reg-reg addition. */
893 delete_insn (insn);
895 if (reg_state[regno].offset != const0_rtx)
896 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
897 are now invalid. */
898 for (np = &REG_NOTES (prev); *np;)
900 if (REG_NOTE_KIND (*np) == REG_EQUAL
901 || REG_NOTE_KIND (*np) == REG_EQUIV)
902 *np = XEXP (*np, 1);
903 else
904 np = &XEXP (*np, 1);
907 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
908 reg_state[REGNO (const_reg)].store_ruid
909 = reload_combine_ruid;
910 continue;
915 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
917 if (CALL_P (insn))
919 rtx link;
921 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
922 if (call_used_regs[r])
924 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
925 reg_state[r].store_ruid = reload_combine_ruid;
928 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
929 link = XEXP (link, 1))
931 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
932 if (REG_P (usage_rtx))
934 unsigned int i;
935 unsigned int start_reg = REGNO (usage_rtx);
936 unsigned int num_regs =
937 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
938 unsigned int end_reg = start_reg + num_regs - 1;
939 for (i = start_reg; i <= end_reg; i++)
940 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
942 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
943 reg_state[i].store_ruid = reload_combine_ruid;
945 else
946 reg_state[i].use_index = -1;
951 else if (JUMP_P (insn)
952 && GET_CODE (PATTERN (insn)) != RETURN)
954 /* Non-spill registers might be used at the call destination in
955 some unknown fashion, so we have to mark the unknown use. */
956 HARD_REG_SET *live;
958 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
959 && JUMP_LABEL (insn))
960 live = &LABEL_LIVE (JUMP_LABEL (insn));
961 else
962 live = &ever_live_at_start;
964 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
965 if (TEST_HARD_REG_BIT (*live, i))
966 reg_state[i].use_index = -1;
969 reload_combine_note_use (&PATTERN (insn), insn);
970 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
972 if (REG_NOTE_KIND (note) == REG_INC
973 && REG_P (XEXP (note, 0)))
975 int regno = REGNO (XEXP (note, 0));
977 reg_state[regno].store_ruid = reload_combine_ruid;
978 reg_state[regno].use_index = -1;
983 free (label_live);
986 /* Check if DST is a register or a subreg of a register; if it is,
987 update reg_state[regno].store_ruid and reg_state[regno].use_index
988 accordingly. Called via note_stores from reload_combine. */
990 static void
991 reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
993 int regno = 0;
994 int i;
995 enum machine_mode mode = GET_MODE (dst);
997 if (GET_CODE (dst) == SUBREG)
999 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1000 GET_MODE (SUBREG_REG (dst)),
1001 SUBREG_BYTE (dst),
1002 GET_MODE (dst));
1003 dst = SUBREG_REG (dst);
1005 if (!REG_P (dst))
1006 return;
1007 regno += REGNO (dst);
1009 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1010 careful with registers / register parts that are not full words.
1011 Similarly for ZERO_EXTRACT. */
1012 if (GET_CODE (set) != SET
1013 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1014 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1016 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1018 reg_state[i].use_index = -1;
1019 reg_state[i].store_ruid = reload_combine_ruid;
1022 else
1024 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1026 reg_state[i].store_ruid = reload_combine_ruid;
1027 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1032 /* XP points to a piece of rtl that has to be checked for any uses of
1033 registers.
1034 *XP is the pattern of INSN, or a part of it.
1035 Called from reload_combine, and recursively by itself. */
1036 static void
1037 reload_combine_note_use (rtx *xp, rtx insn)
1039 rtx x = *xp;
1040 enum rtx_code code = x->code;
1041 const char *fmt;
1042 int i, j;
1043 rtx offset = const0_rtx; /* For the REG case below. */
1045 switch (code)
1047 case SET:
1048 if (REG_P (SET_DEST (x)))
1050 reload_combine_note_use (&SET_SRC (x), insn);
1051 return;
1053 break;
1055 case USE:
1056 /* If this is the USE of a return value, we can't change it. */
1057 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1059 /* Mark the return register as used in an unknown fashion. */
1060 rtx reg = XEXP (x, 0);
1061 int regno = REGNO (reg);
1062 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1064 while (--nregs >= 0)
1065 reg_state[regno + nregs].use_index = -1;
1066 return;
1068 break;
1070 case CLOBBER:
1071 if (REG_P (SET_DEST (x)))
1073 /* No spurious CLOBBERs of pseudo registers may remain. */
1074 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1075 return;
1077 break;
1079 case PLUS:
1080 /* We are interested in (plus (reg) (const_int)) . */
1081 if (!REG_P (XEXP (x, 0))
1082 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1083 break;
1084 offset = XEXP (x, 1);
1085 x = XEXP (x, 0);
1086 /* Fall through. */
1087 case REG:
1089 int regno = REGNO (x);
1090 int use_index;
1091 int nregs;
1093 /* No spurious USEs of pseudo registers may remain. */
1094 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1096 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1098 /* We can't substitute into multi-hard-reg uses. */
1099 if (nregs > 1)
1101 while (--nregs >= 0)
1102 reg_state[regno + nregs].use_index = -1;
1103 return;
1106 /* If this register is already used in some unknown fashion, we
1107 can't do anything.
1108 If we decrement the index from zero to -1, we can't store more
1109 uses, so this register becomes used in an unknown fashion. */
1110 use_index = --reg_state[regno].use_index;
1111 if (use_index < 0)
1112 return;
1114 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1116 /* We have found another use for a register that is already
1117 used later. Check if the offsets match; if not, mark the
1118 register as used in an unknown fashion. */
1119 if (! rtx_equal_p (offset, reg_state[regno].offset))
1121 reg_state[regno].use_index = -1;
1122 return;
1125 else
1127 /* This is the first use of this register we have seen since we
1128 marked it as dead. */
1129 reg_state[regno].offset = offset;
1130 reg_state[regno].use_ruid = reload_combine_ruid;
1132 reg_state[regno].reg_use[use_index].insn = insn;
1133 reg_state[regno].reg_use[use_index].usep = xp;
1134 return;
1137 default:
1138 break;
1141 /* Recursively process the components of X. */
1142 fmt = GET_RTX_FORMAT (code);
1143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1145 if (fmt[i] == 'e')
1146 reload_combine_note_use (&XEXP (x, i), insn);
1147 else if (fmt[i] == 'E')
1149 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1150 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1155 /* See if we can reduce the cost of a constant by replacing a move
1156 with an add. We track situations in which a register is set to a
1157 constant or to a register plus a constant. */
1158 /* We cannot do our optimization across labels. Invalidating all the
1159 information about register contents we have would be costly, so we
1160 use move2add_last_label_luid to note where the label is and then
1161 later disable any optimization that would cross it.
1162 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1163 reg_set_luid[n] is greater than move2add_last_label_luid. */
1164 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1166 /* If reg_base_reg[n] is negative, register n has been set to
1167 reg_offset[n] in mode reg_mode[n] .
1168 If reg_base_reg[n] is non-negative, register n has been set to the
1169 sum of reg_offset[n] and the value of register reg_base_reg[n]
1170 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1171 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1172 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1173 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1175 /* move2add_luid is linearly increased while scanning the instructions
1176 from first to last. It is used to set reg_set_luid in
1177 reload_cse_move2add and move2add_note_store. */
1178 static int move2add_luid;
1180 /* move2add_last_label_luid is set whenever a label is found. Labels
1181 invalidate all previously collected reg_offset data. */
1182 static int move2add_last_label_luid;
1184 /* ??? We don't know how zero / sign extension is handled, hence we
1185 can't go from a narrower to a wider mode. */
1186 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1187 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1188 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1189 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1190 GET_MODE_BITSIZE (INMODE))))
1192 static void
1193 reload_cse_move2add (rtx first)
1195 int i;
1196 rtx insn;
1198 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1199 reg_set_luid[i] = 0;
1201 move2add_last_label_luid = 0;
1202 move2add_luid = 2;
1203 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1205 rtx pat, note;
1207 if (LABEL_P (insn))
1209 move2add_last_label_luid = move2add_luid;
1210 /* We're going to increment move2add_luid twice after a
1211 label, so that we can use move2add_last_label_luid + 1 as
1212 the luid for constants. */
1213 move2add_luid++;
1214 continue;
1216 if (! INSN_P (insn))
1217 continue;
1218 pat = PATTERN (insn);
1219 /* For simplicity, we only perform this optimization on
1220 straightforward SETs. */
1221 if (GET_CODE (pat) == SET
1222 && REG_P (SET_DEST (pat)))
1224 rtx reg = SET_DEST (pat);
1225 int regno = REGNO (reg);
1226 rtx src = SET_SRC (pat);
1228 /* Check if we have valid information on the contents of this
1229 register in the mode of REG. */
1230 if (reg_set_luid[regno] > move2add_last_label_luid
1231 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1233 /* Try to transform (set (REGX) (CONST_INT A))
1235 (set (REGX) (CONST_INT B))
1237 (set (REGX) (CONST_INT A))
1239 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1241 (set (REGX) (CONST_INT A))
1243 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1246 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1248 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1249 GET_MODE (reg));
1250 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1251 use (set (reg) (reg)) instead.
1252 We don't delete this insn, nor do we convert it into a
1253 note, to avoid losing register notes or the return
1254 value flag. jump2 already knows how to get rid of
1255 no-op moves. */
1256 if (new_src == const0_rtx)
1258 /* If the constants are different, this is a
1259 truncation, that, if turned into (set (reg)
1260 (reg)), would be discarded. Maybe we should
1261 try a truncMN pattern? */
1262 if (INTVAL (src) == reg_offset [regno])
1263 validate_change (insn, &SET_SRC (pat), reg, 0);
1265 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1266 && have_add2_insn (reg, new_src))
1268 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1269 validate_change (insn, &SET_SRC (pat), tem, 0);
1271 else if (GET_MODE (reg) != BImode)
1273 enum machine_mode narrow_mode;
1274 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1275 narrow_mode != VOIDmode
1276 && narrow_mode != GET_MODE (reg);
1277 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1279 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1280 && ((reg_offset[regno]
1281 & ~GET_MODE_MASK (narrow_mode))
1282 == (INTVAL (src)
1283 & ~GET_MODE_MASK (narrow_mode))))
1285 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1286 REGNO (reg));
1287 rtx narrow_src = gen_int_mode (INTVAL (src),
1288 narrow_mode);
1289 rtx new_set =
1290 gen_rtx_SET (VOIDmode,
1291 gen_rtx_STRICT_LOW_PART (VOIDmode,
1292 narrow_reg),
1293 narrow_src);
1294 if (validate_change (insn, &PATTERN (insn),
1295 new_set, 0))
1296 break;
1300 reg_set_luid[regno] = move2add_luid;
1301 reg_mode[regno] = GET_MODE (reg);
1302 reg_offset[regno] = INTVAL (src);
1303 continue;
1306 /* Try to transform (set (REGX) (REGY))
1307 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1309 (set (REGX) (REGY))
1310 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1312 (set (REGX) (REGY))
1313 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1315 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1316 else if (REG_P (src)
1317 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1318 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1319 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1320 reg_mode[REGNO (src)]))
1322 rtx next = next_nonnote_insn (insn);
1323 rtx set = NULL_RTX;
1324 if (next)
1325 set = single_set (next);
1326 if (set
1327 && SET_DEST (set) == reg
1328 && GET_CODE (SET_SRC (set)) == PLUS
1329 && XEXP (SET_SRC (set), 0) == reg
1330 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1332 rtx src3 = XEXP (SET_SRC (set), 1);
1333 HOST_WIDE_INT added_offset = INTVAL (src3);
1334 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1335 HOST_WIDE_INT regno_offset = reg_offset[regno];
1336 rtx new_src =
1337 gen_int_mode (added_offset
1338 + base_offset
1339 - regno_offset,
1340 GET_MODE (reg));
1341 int success = 0;
1343 if (new_src == const0_rtx)
1344 /* See above why we create (set (reg) (reg)) here. */
1345 success
1346 = validate_change (next, &SET_SRC (set), reg, 0);
1347 else if ((rtx_cost (new_src, PLUS)
1348 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1349 && have_add2_insn (reg, new_src))
1351 rtx newpat = gen_rtx_SET (VOIDmode,
1352 reg,
1353 gen_rtx_PLUS (GET_MODE (reg),
1354 reg,
1355 new_src));
1356 success
1357 = validate_change (next, &PATTERN (next),
1358 newpat, 0);
1360 if (success)
1361 delete_insn (insn);
1362 insn = next;
1363 reg_mode[regno] = GET_MODE (reg);
1364 reg_offset[regno] =
1365 trunc_int_for_mode (added_offset + base_offset,
1366 GET_MODE (reg));
1367 continue;
1373 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1375 if (REG_NOTE_KIND (note) == REG_INC
1376 && REG_P (XEXP (note, 0)))
1378 /* Reset the information about this register. */
1379 int regno = REGNO (XEXP (note, 0));
1380 if (regno < FIRST_PSEUDO_REGISTER)
1381 reg_set_luid[regno] = 0;
1384 note_stores (PATTERN (insn), move2add_note_store, NULL);
1386 /* If INSN is a conditional branch, we try to extract an
1387 implicit set out of it. */
1388 if (any_condjump_p (insn))
1390 rtx cnd = fis_get_condition (insn);
1392 if (cnd != NULL_RTX
1393 && GET_CODE (cnd) == NE
1394 && REG_P (XEXP (cnd, 0))
1395 && !reg_set_p (XEXP (cnd, 0), insn)
1396 /* The following two checks, which are also in
1397 move2add_note_store, are intended to reduce the
1398 number of calls to gen_rtx_SET to avoid memory
1399 allocation if possible. */
1400 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1401 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1402 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1404 rtx implicit_set =
1405 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1406 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1410 /* If this is a CALL_INSN, all call used registers are stored with
1411 unknown values. */
1412 if (CALL_P (insn))
1414 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1416 if (call_used_regs[i])
1417 /* Reset the information about this register. */
1418 reg_set_luid[i] = 0;
1424 /* SET is a SET or CLOBBER that sets DST.
1425 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1426 Called from reload_cse_move2add via note_stores. */
1428 static void
1429 move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
1431 unsigned int regno = 0;
1432 unsigned int i;
1433 enum machine_mode mode = GET_MODE (dst);
1435 if (GET_CODE (dst) == SUBREG)
1437 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1438 GET_MODE (SUBREG_REG (dst)),
1439 SUBREG_BYTE (dst),
1440 GET_MODE (dst));
1441 dst = SUBREG_REG (dst);
1444 /* Some targets do argument pushes without adding REG_INC notes. */
1446 if (MEM_P (dst))
1448 dst = XEXP (dst, 0);
1449 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1450 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1451 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1452 return;
1454 if (!REG_P (dst))
1455 return;
1457 regno += REGNO (dst);
1459 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1460 && hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
1461 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1462 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1464 rtx src = SET_SRC (set);
1465 rtx base_reg;
1466 HOST_WIDE_INT offset;
1467 int base_regno;
1468 /* This may be different from mode, if SET_DEST (set) is a
1469 SUBREG. */
1470 enum machine_mode dst_mode = GET_MODE (dst);
1472 switch (GET_CODE (src))
1474 case PLUS:
1475 if (REG_P (XEXP (src, 0)))
1477 base_reg = XEXP (src, 0);
1479 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1480 offset = INTVAL (XEXP (src, 1));
1481 else if (REG_P (XEXP (src, 1))
1482 && (reg_set_luid[REGNO (XEXP (src, 1))]
1483 > move2add_last_label_luid)
1484 && (MODES_OK_FOR_MOVE2ADD
1485 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1487 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1488 offset = reg_offset[REGNO (XEXP (src, 1))];
1489 /* Maybe the first register is known to be a
1490 constant. */
1491 else if (reg_set_luid[REGNO (base_reg)]
1492 > move2add_last_label_luid
1493 && (MODES_OK_FOR_MOVE2ADD
1494 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1495 && reg_base_reg[REGNO (base_reg)] < 0)
1497 offset = reg_offset[REGNO (base_reg)];
1498 base_reg = XEXP (src, 1);
1500 else
1501 goto invalidate;
1503 else
1504 goto invalidate;
1506 break;
1509 goto invalidate;
1511 case REG:
1512 base_reg = src;
1513 offset = 0;
1514 break;
1516 case CONST_INT:
1517 /* Start tracking the register as a constant. */
1518 reg_base_reg[regno] = -1;
1519 reg_offset[regno] = INTVAL (SET_SRC (set));
1520 /* We assign the same luid to all registers set to constants. */
1521 reg_set_luid[regno] = move2add_last_label_luid + 1;
1522 reg_mode[regno] = mode;
1523 return;
1525 default:
1526 invalidate:
1527 /* Invalidate the contents of the register. */
1528 reg_set_luid[regno] = 0;
1529 return;
1532 base_regno = REGNO (base_reg);
1533 /* If information about the base register is not valid, set it
1534 up as a new base register, pretending its value is known
1535 starting from the current insn. */
1536 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1538 reg_base_reg[base_regno] = base_regno;
1539 reg_offset[base_regno] = 0;
1540 reg_set_luid[base_regno] = move2add_luid;
1541 reg_mode[base_regno] = mode;
1543 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1544 reg_mode[base_regno]))
1545 goto invalidate;
1547 reg_mode[regno] = mode;
1549 /* Copy base information from our base register. */
1550 reg_set_luid[regno] = reg_set_luid[base_regno];
1551 reg_base_reg[regno] = reg_base_reg[base_regno];
1553 /* Compute the sum of the offsets or constants. */
1554 reg_offset[regno] = trunc_int_for_mode (offset
1555 + reg_offset[base_regno],
1556 dst_mode);
1558 else
1560 unsigned int endregno = regno + hard_regno_nregs[regno][mode];
1562 for (i = regno; i < endregno; i++)
1563 /* Reset the information about this register. */
1564 reg_set_luid[i] = 0;
1568 static bool
1569 gate_handle_postreload (void)
1571 return (optimize > 0);
1575 static void
1576 rest_of_handle_postreload (void)
1578 /* Do a very simple CSE pass over just the hard registers. */
1579 reload_cse_regs (get_insns ());
1580 /* reload_cse_regs can eliminate potentially-trapping MEMs.
1581 Remove any EH edges associated with them. */
1582 if (flag_non_call_exceptions)
1583 purge_all_dead_edges ();
1586 struct tree_opt_pass pass_postreload_cse =
1588 "postreload", /* name */
1589 gate_handle_postreload, /* gate */
1590 rest_of_handle_postreload, /* execute */
1591 NULL, /* sub */
1592 NULL, /* next */
1593 0, /* static_pass_number */
1594 TV_RELOAD_CSE_REGS, /* tv_id */
1595 0, /* properties_required */
1596 0, /* properties_provided */
1597 0, /* properties_destroyed */
1598 0, /* todo_flags_start */
1599 TODO_dump_func, /* todo_flags_finish */
1600 'o' /* letter */