No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / regmove.c
blobf74295834df2ce84fe49dff2f07b166b04c804c8
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
50 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
51 #ifdef STACK_GROWS_DOWNWARD
52 #undef STACK_GROWS_DOWNWARD
53 #define STACK_GROWS_DOWNWARD 1
54 #else
55 #define STACK_GROWS_DOWNWARD 0
56 #endif
58 static int perhaps_ends_bb_p (rtx);
59 static int optimize_reg_copy_1 (rtx, rtx, rtx);
60 static void optimize_reg_copy_2 (rtx, rtx, rtx);
61 static void optimize_reg_copy_3 (rtx, rtx, rtx);
62 static void copy_src_to_dest (rtx, rtx, rtx, int);
63 static int *regmove_bb_head;
65 struct match {
66 int with[MAX_RECOG_OPERANDS];
67 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
68 int commutative[MAX_RECOG_OPERANDS];
69 int early_clobber[MAX_RECOG_OPERANDS];
72 static rtx discover_flags_reg (void);
73 static void mark_flags_life_zones (rtx);
74 static void flags_set_1 (rtx, rtx, void *);
76 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
77 static int find_matches (rtx, struct match *);
78 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
79 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int, FILE *);
80 static int reg_is_remote_constant_p (rtx, rtx, rtx);
81 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
82 static int regclass_compatible_p (int, int);
83 static int replacement_quality (rtx);
84 static int fixup_match_2 (rtx, rtx, rtx, rtx, FILE *);
86 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
87 causing too much register allocation problems. */
88 static int
89 regclass_compatible_p (int class0, int class1)
91 return (class0 == class1
92 || (reg_class_subset_p (class0, class1)
93 && ! CLASS_LIKELY_SPILLED_P (class0))
94 || (reg_class_subset_p (class1, class0)
95 && ! CLASS_LIKELY_SPILLED_P (class1)));
98 /* INC_INSN is an instruction that adds INCREMENT to REG.
99 Try to fold INC_INSN as a post/pre in/decrement into INSN.
100 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
101 Return nonzero for success. */
102 static int
103 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
104 HOST_WIDE_INT increment, int pre)
106 enum rtx_code inc_code;
108 rtx pset = single_set (insn);
109 if (pset)
111 /* Can't use the size of SET_SRC, we might have something like
112 (sign_extend:SI (mem:QI ... */
113 rtx use = find_use_as_address (pset, reg, 0);
114 if (use != 0 && use != (rtx) (size_t) 1)
116 int size = GET_MODE_SIZE (GET_MODE (use));
117 if (0
118 || (HAVE_POST_INCREMENT
119 && pre == 0 && (inc_code = POST_INC, increment == size))
120 || (HAVE_PRE_INCREMENT
121 && pre == 1 && (inc_code = PRE_INC, increment == size))
122 || (HAVE_POST_DECREMENT
123 && pre == 0 && (inc_code = POST_DEC, increment == -size))
124 || (HAVE_PRE_DECREMENT
125 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
128 if (inc_insn_set)
129 validate_change
130 (inc_insn,
131 &SET_SRC (inc_insn_set),
132 XEXP (SET_SRC (inc_insn_set), 0), 1);
133 validate_change (insn, &XEXP (use, 0),
134 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
135 if (apply_change_group ())
137 /* If there is a REG_DEAD note on this insn, we must
138 change this not to REG_UNUSED meaning that the register
139 is set, but the value is dead. Failure to do so will
140 result in a sched1 dieing -- when it recomputes lifetime
141 information, the number of REG_DEAD notes will have
142 changed. */
143 rtx note = find_reg_note (insn, REG_DEAD, reg);
144 if (note)
145 PUT_MODE (note, REG_UNUSED);
147 REG_NOTES (insn)
148 = gen_rtx_EXPR_LIST (REG_INC,
149 reg, REG_NOTES (insn));
150 if (! inc_insn_set)
151 delete_insn (inc_insn);
152 return 1;
157 return 0;
160 /* Determine if the pattern generated by add_optab has a clobber,
161 such as might be issued for a flags hard register. To make the
162 code elsewhere simpler, we handle cc0 in this same framework.
164 Return the register if one was discovered. Return NULL_RTX if
165 if no flags were found. Return pc_rtx if we got confused. */
167 static rtx
168 discover_flags_reg (void)
170 rtx tmp;
171 tmp = gen_rtx_REG (word_mode, 10000);
172 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
174 /* If we get something that isn't a simple set, or a
175 [(set ..) (clobber ..)], this whole function will go wrong. */
176 if (GET_CODE (tmp) == SET)
177 return NULL_RTX;
178 else if (GET_CODE (tmp) == PARALLEL)
180 int found;
182 if (XVECLEN (tmp, 0) != 2)
183 return pc_rtx;
184 tmp = XVECEXP (tmp, 0, 1);
185 if (GET_CODE (tmp) != CLOBBER)
186 return pc_rtx;
187 tmp = XEXP (tmp, 0);
189 /* Don't do anything foolish if the md wanted to clobber a
190 scratch or something. We only care about hard regs.
191 Moreover we don't like the notion of subregs of hard regs. */
192 if (GET_CODE (tmp) == SUBREG
193 && REG_P (SUBREG_REG (tmp))
194 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
195 return pc_rtx;
196 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
198 return (found ? tmp : NULL_RTX);
201 return pc_rtx;
204 /* It is a tedious task identifying when the flags register is live and
205 when it is safe to optimize. Since we process the instruction stream
206 multiple times, locate and record these live zones by marking the
207 mode of the instructions --
209 QImode is used on the instruction at which the flags becomes live.
211 HImode is used within the range (exclusive) that the flags are
212 live. Thus the user of the flags is not marked.
214 All other instructions are cleared to VOIDmode. */
216 /* Used to communicate with flags_set_1. */
217 static rtx flags_set_1_rtx;
218 static int flags_set_1_set;
220 static void
221 mark_flags_life_zones (rtx flags)
223 int flags_regno;
224 int flags_nregs;
225 basic_block block;
227 #ifdef HAVE_cc0
228 /* If we found a flags register on a cc0 host, bail. */
229 if (flags == NULL_RTX)
230 flags = cc0_rtx;
231 else if (flags != cc0_rtx)
232 flags = pc_rtx;
233 #endif
235 /* Simple cases first: if no flags, clear all modes. If confusing,
236 mark the entire function as being in a flags shadow. */
237 if (flags == NULL_RTX || flags == pc_rtx)
239 enum machine_mode mode = (flags ? HImode : VOIDmode);
240 rtx insn;
241 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
242 PUT_MODE (insn, mode);
243 return;
246 #ifdef HAVE_cc0
247 flags_regno = -1;
248 flags_nregs = 1;
249 #else
250 flags_regno = REGNO (flags);
251 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
252 #endif
253 flags_set_1_rtx = flags;
255 /* Process each basic block. */
256 FOR_EACH_BB_REVERSE (block)
258 rtx insn, end;
259 int live;
261 insn = BB_HEAD (block);
262 end = BB_END (block);
264 /* Look out for the (unlikely) case of flags being live across
265 basic block boundaries. */
266 live = 0;
267 #ifndef HAVE_cc0
269 int i;
270 for (i = 0; i < flags_nregs; ++i)
271 live |= REGNO_REG_SET_P (block->il.rtl->global_live_at_start,
272 flags_regno + i);
274 #endif
276 while (1)
278 /* Process liveness in reverse order of importance --
279 alive, death, birth. This lets more important info
280 overwrite the mode of lesser info. */
282 if (INSN_P (insn))
284 #ifdef HAVE_cc0
285 /* In the cc0 case, death is not marked in reg notes,
286 but is instead the mere use of cc0 when it is alive. */
287 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
288 live = 0;
289 #else
290 /* In the hard reg case, we watch death notes. */
291 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
292 live = 0;
293 #endif
294 PUT_MODE (insn, (live ? HImode : VOIDmode));
296 /* In either case, birth is denoted simply by its presence
297 as the destination of a set. */
298 flags_set_1_set = 0;
299 note_stores (PATTERN (insn), flags_set_1, NULL);
300 if (flags_set_1_set)
302 live = 1;
303 PUT_MODE (insn, QImode);
306 else
307 PUT_MODE (insn, (live ? HImode : VOIDmode));
309 if (insn == end)
310 break;
311 insn = NEXT_INSN (insn);
316 /* A subroutine of mark_flags_life_zones, called through note_stores. */
318 static void
319 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
321 if (GET_CODE (pat) == SET
322 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
323 flags_set_1_set = 1;
326 static int *regno_src_regno;
328 /* Indicate how good a choice REG (which appears as a source) is to replace
329 a destination register with. The higher the returned value, the better
330 the choice. The main objective is to avoid using a register that is
331 a candidate for tying to a hard register, since the output might in
332 turn be a candidate to be tied to a different hard register. */
333 static int
334 replacement_quality (rtx reg)
336 int src_regno;
338 /* Bad if this isn't a register at all. */
339 if (!REG_P (reg))
340 return 0;
342 /* If this register is not meant to get a hard register,
343 it is a poor choice. */
344 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
345 return 0;
347 src_regno = regno_src_regno[REGNO (reg)];
349 /* If it was not copied from another register, it is fine. */
350 if (src_regno < 0)
351 return 3;
353 /* Copied from a hard register? */
354 if (src_regno < FIRST_PSEUDO_REGISTER)
355 return 1;
357 /* Copied from a pseudo register - not as bad as from a hard register,
358 yet still cumbersome, since the register live length will be lengthened
359 when the registers get tied. */
360 return 2;
363 /* Return 1 if INSN might end a basic block. */
365 static int perhaps_ends_bb_p (rtx insn)
367 switch (GET_CODE (insn))
369 case CODE_LABEL:
370 case JUMP_INSN:
371 /* These always end a basic block. */
372 return 1;
374 case CALL_INSN:
375 /* A CALL_INSN might be the last insn of a basic block, if it is inside
376 an EH region or if there are nonlocal gotos. Note that this test is
377 very conservative. */
378 if (nonlocal_goto_handler_labels)
379 return 1;
380 /* Fall through. */
381 default:
382 return can_throw_internal (insn);
386 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
387 in INSN.
389 Search forward to see if SRC dies before either it or DEST is modified,
390 but don't scan past the end of a basic block. If so, we can replace SRC
391 with DEST and let SRC die in INSN.
393 This will reduce the number of registers live in that range and may enable
394 DEST to be tied to SRC, thus often saving one register in addition to a
395 register-register copy. */
397 static int
398 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
400 rtx p, q;
401 rtx note;
402 rtx dest_death = 0;
403 int sregno = REGNO (src);
404 int dregno = REGNO (dest);
406 /* We don't want to mess with hard regs if register classes are small. */
407 if (sregno == dregno
408 || (SMALL_REGISTER_CLASSES
409 && (sregno < FIRST_PSEUDO_REGISTER
410 || dregno < FIRST_PSEUDO_REGISTER))
411 /* We don't see all updates to SP if they are in an auto-inc memory
412 reference, so we must disallow this optimization on them. */
413 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
414 return 0;
416 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
418 /* ??? We can't scan past the end of a basic block without updating
419 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
420 if (perhaps_ends_bb_p (p))
421 break;
422 else if (! INSN_P (p))
423 continue;
425 if (reg_set_p (src, p) || reg_set_p (dest, p)
426 /* If SRC is an asm-declared register, it must not be replaced
427 in any asm. Unfortunately, the REG_EXPR tree for the asm
428 variable may be absent in the SRC rtx, so we can't check the
429 actual register declaration easily (the asm operand will have
430 it, though). To avoid complicating the test for a rare case,
431 we just don't perform register replacement for a hard reg
432 mentioned in an asm. */
433 || (sregno < FIRST_PSEUDO_REGISTER
434 && asm_noperands (PATTERN (p)) >= 0
435 && reg_overlap_mentioned_p (src, PATTERN (p)))
436 /* Don't change hard registers used by a call. */
437 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
438 && find_reg_fusage (p, USE, src))
439 /* Don't change a USE of a register. */
440 || (GET_CODE (PATTERN (p)) == USE
441 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
442 break;
444 /* See if all of SRC dies in P. This test is slightly more
445 conservative than it needs to be. */
446 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
447 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
449 int failed = 0;
450 int d_length = 0;
451 int s_length = 0;
452 int d_n_calls = 0;
453 int s_n_calls = 0;
455 /* We can do the optimization. Scan forward from INSN again,
456 replacing regs as we go. Set FAILED if a replacement can't
457 be done. In that case, we can't move the death note for SRC.
458 This should be rare. */
460 /* Set to stop at next insn. */
461 for (q = next_real_insn (insn);
462 q != next_real_insn (p);
463 q = next_real_insn (q))
465 if (reg_overlap_mentioned_p (src, PATTERN (q)))
467 /* If SRC is a hard register, we might miss some
468 overlapping registers with validate_replace_rtx,
469 so we would have to undo it. We can't if DEST is
470 present in the insn, so fail in that combination
471 of cases. */
472 if (sregno < FIRST_PSEUDO_REGISTER
473 && reg_mentioned_p (dest, PATTERN (q)))
474 failed = 1;
476 /* Replace all uses and make sure that the register
477 isn't still present. */
478 else if (validate_replace_rtx (src, dest, q)
479 && (sregno >= FIRST_PSEUDO_REGISTER
480 || ! reg_overlap_mentioned_p (src,
481 PATTERN (q))))
483 else
485 validate_replace_rtx (dest, src, q);
486 failed = 1;
490 /* For SREGNO, count the total number of insns scanned.
491 For DREGNO, count the total number of insns scanned after
492 passing the death note for DREGNO. */
493 s_length++;
494 if (dest_death)
495 d_length++;
497 /* If the insn in which SRC dies is a CALL_INSN, don't count it
498 as a call that has been crossed. Otherwise, count it. */
499 if (q != p && CALL_P (q))
501 /* Similarly, total calls for SREGNO, total calls beyond
502 the death note for DREGNO. */
503 s_n_calls++;
504 if (dest_death)
505 d_n_calls++;
508 /* If DEST dies here, remove the death note and save it for
509 later. Make sure ALL of DEST dies here; again, this is
510 overly conservative. */
511 if (dest_death == 0
512 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
514 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
515 failed = 1, dest_death = 0;
516 else
517 remove_note (q, dest_death);
521 if (! failed)
523 /* These counters need to be updated if and only if we are
524 going to move the REG_DEAD note. */
525 if (sregno >= FIRST_PSEUDO_REGISTER)
527 if (REG_LIVE_LENGTH (sregno) >= 0)
529 REG_LIVE_LENGTH (sregno) -= s_length;
530 /* REG_LIVE_LENGTH is only an approximation after
531 combine if sched is not run, so make sure that we
532 still have a reasonable value. */
533 if (REG_LIVE_LENGTH (sregno) < 2)
534 REG_LIVE_LENGTH (sregno) = 2;
537 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
540 /* Move death note of SRC from P to INSN. */
541 remove_note (p, note);
542 XEXP (note, 1) = REG_NOTES (insn);
543 REG_NOTES (insn) = note;
546 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
547 if (! dest_death
548 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
550 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
551 remove_note (insn, dest_death);
554 /* Put death note of DEST on P if we saw it die. */
555 if (dest_death)
557 XEXP (dest_death, 1) = REG_NOTES (p);
558 REG_NOTES (p) = dest_death;
560 if (dregno >= FIRST_PSEUDO_REGISTER)
562 /* If and only if we are moving the death note for DREGNO,
563 then we need to update its counters. */
564 if (REG_LIVE_LENGTH (dregno) >= 0)
565 REG_LIVE_LENGTH (dregno) += d_length;
566 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
570 return ! failed;
573 /* If SRC is a hard register which is set or killed in some other
574 way, we can't do this optimization. */
575 else if (sregno < FIRST_PSEUDO_REGISTER
576 && dead_or_set_p (p, src))
577 break;
579 return 0;
582 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
583 a sequence of insns that modify DEST followed by an insn that sets
584 SRC to DEST in which DEST dies, with no prior modification of DEST.
585 (There is no need to check if the insns in between actually modify
586 DEST. We should not have cases where DEST is not modified, but
587 the optimization is safe if no such modification is detected.)
588 In that case, we can replace all uses of DEST, starting with INSN and
589 ending with the set of SRC to DEST, with SRC. We do not do this
590 optimization if a CALL_INSN is crossed unless SRC already crosses a
591 call or if DEST dies before the copy back to SRC.
593 It is assumed that DEST and SRC are pseudos; it is too complicated to do
594 this for hard registers since the substitutions we may make might fail. */
596 static void
597 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
599 rtx p, q;
600 rtx set;
601 int sregno = REGNO (src);
602 int dregno = REGNO (dest);
604 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
606 /* ??? We can't scan past the end of a basic block without updating
607 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
608 if (perhaps_ends_bb_p (p))
609 break;
610 else if (! INSN_P (p))
611 continue;
613 set = single_set (p);
614 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
615 && find_reg_note (p, REG_DEAD, dest))
617 /* We can do the optimization. Scan forward from INSN again,
618 replacing regs as we go. */
620 /* Set to stop at next insn. */
621 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
622 if (INSN_P (q))
624 if (reg_mentioned_p (dest, PATTERN (q)))
625 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
628 if (CALL_P (q))
630 REG_N_CALLS_CROSSED (dregno)--;
631 REG_N_CALLS_CROSSED (sregno)++;
635 remove_note (p, find_reg_note (p, REG_DEAD, dest));
636 REG_N_DEATHS (dregno)--;
637 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
638 REG_N_DEATHS (sregno)--;
639 return;
642 if (reg_set_p (src, p)
643 || find_reg_note (p, REG_DEAD, dest)
644 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
645 break;
648 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
649 Look if SRC dies there, and if it is only set once, by loading
650 it from memory. If so, try to incorporate the zero/sign extension
651 into the memory read, change SRC to the mode of DEST, and alter
652 the remaining accesses to use the appropriate SUBREG. This allows
653 SRC and DEST to be tied later. */
654 static void
655 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
657 rtx src_reg = XEXP (src, 0);
658 int src_no = REGNO (src_reg);
659 int dst_no = REGNO (dest);
660 rtx p, set;
661 enum machine_mode old_mode;
663 if (src_no < FIRST_PSEUDO_REGISTER
664 || dst_no < FIRST_PSEUDO_REGISTER
665 || ! find_reg_note (insn, REG_DEAD, src_reg)
666 || REG_N_DEATHS (src_no) != 1
667 || REG_N_SETS (src_no) != 1)
668 return;
669 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
670 /* ??? We can't scan past the end of a basic block without updating
671 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
672 if (perhaps_ends_bb_p (p))
673 break;
675 if (! p)
676 return;
678 if (! (set = single_set (p))
679 || !MEM_P (SET_SRC (set))
680 /* If there's a REG_EQUIV note, this must be an insn that loads an
681 argument. Prefer keeping the note over doing this optimization. */
682 || find_reg_note (p, REG_EQUIV, NULL_RTX)
683 || SET_DEST (set) != src_reg)
684 return;
686 /* Be conservative: although this optimization is also valid for
687 volatile memory references, that could cause trouble in later passes. */
688 if (MEM_VOLATILE_P (SET_SRC (set)))
689 return;
691 /* Do not use a SUBREG to truncate from one mode to another if truncation
692 is not a nop. */
693 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
694 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
695 GET_MODE_BITSIZE (GET_MODE (src_reg))))
696 return;
698 old_mode = GET_MODE (src_reg);
699 PUT_MODE (src_reg, GET_MODE (src));
700 XEXP (src, 0) = SET_SRC (set);
702 /* Include this change in the group so that it's easily undone if
703 one of the changes in the group is invalid. */
704 validate_change (p, &SET_SRC (set), src, 1);
706 /* Now walk forward making additional replacements. We want to be able
707 to undo all the changes if a later substitution fails. */
708 while (p = NEXT_INSN (p), p != insn)
710 if (! INSN_P (p))
711 continue;
713 /* Make a tentative change. */
714 validate_replace_rtx_group (src_reg,
715 gen_lowpart_SUBREG (old_mode, src_reg),
719 validate_replace_rtx_group (src, src_reg, insn);
721 /* Now see if all the changes are valid. */
722 if (! apply_change_group ())
724 /* One or more changes were no good. Back out everything. */
725 PUT_MODE (src_reg, old_mode);
726 XEXP (src, 0) = src_reg;
728 else
730 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
731 if (note)
732 remove_note (p, note);
737 /* If we were not able to update the users of src to use dest directly, try
738 instead moving the value to dest directly before the operation. */
740 static void
741 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
743 rtx seq;
744 rtx link;
745 rtx next;
746 rtx set;
747 rtx move_insn;
748 rtx *p_insn_notes;
749 rtx *p_move_notes;
750 int src_regno;
751 int dest_regno;
752 int bb;
753 int insn_uid;
754 int move_uid;
756 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
757 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
758 parameter when there is no frame pointer that is not allocated a register.
759 For now, we just reject them, rather than incrementing the live length. */
761 if (REG_P (src)
762 && REG_LIVE_LENGTH (REGNO (src)) > 0
763 && REG_P (dest)
764 && REG_LIVE_LENGTH (REGNO (dest)) > 0
765 && (set = single_set (insn)) != NULL_RTX
766 && !reg_mentioned_p (dest, SET_SRC (set))
767 && GET_MODE (src) == GET_MODE (dest))
769 int old_num_regs = reg_rtx_no;
771 /* Generate the src->dest move. */
772 start_sequence ();
773 emit_move_insn (dest, src);
774 seq = get_insns ();
775 end_sequence ();
776 /* If this sequence uses new registers, we may not use it. */
777 if (old_num_regs != reg_rtx_no
778 || ! validate_replace_rtx (src, dest, insn))
780 /* We have to restore reg_rtx_no to its old value, lest
781 recompute_reg_usage will try to compute the usage of the
782 new regs, yet reg_n_info is not valid for them. */
783 reg_rtx_no = old_num_regs;
784 return;
786 emit_insn_before (seq, insn);
787 move_insn = PREV_INSN (insn);
788 p_move_notes = &REG_NOTES (move_insn);
789 p_insn_notes = &REG_NOTES (insn);
791 /* Move any notes mentioning src to the move instruction. */
792 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
794 next = XEXP (link, 1);
795 if (XEXP (link, 0) == src)
797 *p_move_notes = link;
798 p_move_notes = &XEXP (link, 1);
800 else
802 *p_insn_notes = link;
803 p_insn_notes = &XEXP (link, 1);
807 *p_move_notes = NULL_RTX;
808 *p_insn_notes = NULL_RTX;
810 /* Is the insn the head of a basic block? If so extend it. */
811 insn_uid = INSN_UID (insn);
812 move_uid = INSN_UID (move_insn);
813 if (insn_uid < old_max_uid)
815 bb = regmove_bb_head[insn_uid];
816 if (bb >= 0)
818 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
819 regmove_bb_head[insn_uid] = -1;
823 /* Update the various register tables. */
824 dest_regno = REGNO (dest);
825 REG_N_SETS (dest_regno) ++;
826 REG_LIVE_LENGTH (dest_regno)++;
827 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
828 REGNO_FIRST_UID (dest_regno) = move_uid;
830 src_regno = REGNO (src);
831 if (! find_reg_note (move_insn, REG_DEAD, src))
832 REG_LIVE_LENGTH (src_regno)++;
834 if (REGNO_FIRST_UID (src_regno) == insn_uid)
835 REGNO_FIRST_UID (src_regno) = move_uid;
837 if (REGNO_LAST_UID (src_regno) == insn_uid)
838 REGNO_LAST_UID (src_regno) = move_uid;
843 /* Return whether REG is set in only one location, and is set to a
844 constant, but is set in a different basic block from INSN (an
845 instructions which uses REG). In this case REG is equivalent to a
846 constant, and we don't want to break that equivalence, because that
847 may increase register pressure and make reload harder. If REG is
848 set in the same basic block as INSN, we don't worry about it,
849 because we'll probably need a register anyhow (??? but what if REG
850 is used in a different basic block as well as this one?). FIRST is
851 the first insn in the function. */
853 static int
854 reg_is_remote_constant_p (rtx reg, rtx insn, rtx first)
856 rtx p;
858 if (REG_N_SETS (REGNO (reg)) != 1)
859 return 0;
861 /* Look for the set. */
862 for (p = BB_HEAD (BLOCK_FOR_INSN (insn)); p != insn; p = NEXT_INSN (p))
864 rtx s;
866 if (!INSN_P (p))
867 continue;
868 s = single_set (p);
869 if (s != 0
870 && REG_P (SET_DEST (s))
871 && REGNO (SET_DEST (s)) == REGNO (reg))
873 /* The register is set in the same basic block. */
874 return 0;
878 for (p = first; p && p != insn; p = NEXT_INSN (p))
880 rtx s;
882 if (! INSN_P (p))
883 continue;
884 s = single_set (p);
885 if (s != 0
886 && REG_P (SET_DEST (s))
887 && REGNO (SET_DEST (s)) == REGNO (reg))
889 /* This is the instruction which sets REG. If there is a
890 REG_EQUAL note, then REG is equivalent to a constant. */
891 if (find_reg_note (p, REG_EQUAL, NULL_RTX))
892 return 1;
893 return 0;
897 return 0;
900 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
901 another add immediate instruction with the same source and dest registers,
902 and if we find one, we change INSN to an increment, and return 1. If
903 no changes are made, we return 0.
905 This changes
906 (set (reg100) (plus reg1 offset1))
908 (set (reg100) (plus reg1 offset2))
910 (set (reg100) (plus reg1 offset1))
912 (set (reg100) (plus reg100 offset2-offset1)) */
914 /* ??? What does this comment mean? */
915 /* cse disrupts preincrement / postdecrement sequences when it finds a
916 hard register as ultimate source, like the frame pointer. */
918 static int
919 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset, FILE *regmove_dump_file)
921 rtx p, dst_death = 0;
922 int length, num_calls = 0;
924 /* If SRC dies in INSN, we'd have to move the death note. This is
925 considered to be very unlikely, so we just skip the optimization
926 in this case. */
927 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
928 return 0;
930 /* Scan backward to find the first instruction that sets DST. */
932 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
934 rtx pset;
936 /* ??? We can't scan past the end of a basic block without updating
937 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
938 if (perhaps_ends_bb_p (p))
939 break;
940 else if (! INSN_P (p))
941 continue;
943 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
944 dst_death = p;
945 if (! dst_death)
946 length++;
948 pset = single_set (p);
949 if (pset && SET_DEST (pset) == dst
950 && GET_CODE (SET_SRC (pset)) == PLUS
951 && XEXP (SET_SRC (pset), 0) == src
952 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
954 HOST_WIDE_INT newconst
955 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
956 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
958 if (add && validate_change (insn, &PATTERN (insn), add, 0))
960 /* Remove the death note for DST from DST_DEATH. */
961 if (dst_death)
963 remove_death (REGNO (dst), dst_death);
964 REG_LIVE_LENGTH (REGNO (dst)) += length;
965 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
968 if (regmove_dump_file)
969 fprintf (regmove_dump_file,
970 "Fixed operand of insn %d.\n",
971 INSN_UID (insn));
973 #ifdef AUTO_INC_DEC
974 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
976 if (LABEL_P (p)
977 || JUMP_P (p))
978 break;
979 if (! INSN_P (p))
980 continue;
981 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
983 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
984 return 1;
985 break;
988 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
990 if (LABEL_P (p)
991 || JUMP_P (p))
992 break;
993 if (! INSN_P (p))
994 continue;
995 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
997 try_auto_increment (p, insn, 0, dst, newconst, 1);
998 break;
1001 #endif
1002 return 1;
1006 if (reg_set_p (dst, PATTERN (p)))
1007 break;
1009 /* If we have passed a call instruction, and the
1010 pseudo-reg SRC is not already live across a call,
1011 then don't perform the optimization. */
1012 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1013 hard regs are clobbered. Thus, we only use it for src for
1014 non-call insns. */
1015 if (CALL_P (p))
1017 if (! dst_death)
1018 num_calls++;
1020 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1021 break;
1023 if (call_used_regs [REGNO (dst)]
1024 || find_reg_fusage (p, CLOBBER, dst))
1025 break;
1027 else if (reg_set_p (src, PATTERN (p)))
1028 break;
1031 return 0;
1034 /* Main entry for the register move optimization.
1035 F is the first instruction.
1036 NREGS is one plus the highest pseudo-reg number used in the instruction.
1037 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1038 (or 0 if none should be output). */
1040 void
1041 regmove_optimize (rtx f, int nregs, FILE *regmove_dump_file)
1043 int old_max_uid = get_max_uid ();
1044 rtx insn;
1045 struct match match;
1046 int pass;
1047 int i;
1048 rtx copy_src, copy_dst;
1049 basic_block bb;
1051 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1052 confused by non-call exceptions ending blocks. */
1053 if (flag_non_call_exceptions)
1054 return;
1056 /* Find out where a potential flags register is live, and so that we
1057 can suppress some optimizations in those zones. */
1058 mark_flags_life_zones (discover_flags_reg ());
1060 regno_src_regno = xmalloc (sizeof *regno_src_regno * nregs);
1061 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1063 regmove_bb_head = xmalloc (sizeof (int) * (old_max_uid + 1));
1064 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1065 FOR_EACH_BB (bb)
1066 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1068 /* A forward/backward pass. Replace output operands with input operands. */
1070 for (pass = 0; pass <= 2; pass++)
1072 if (! flag_regmove && pass >= flag_expensive_optimizations)
1073 goto done;
1075 if (regmove_dump_file)
1076 fprintf (regmove_dump_file, "Starting %s pass...\n",
1077 pass ? "backward" : "forward");
1079 for (insn = pass ? get_last_insn () : f; insn;
1080 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1082 rtx set;
1083 int op_no, match_no;
1085 set = single_set (insn);
1086 if (! set)
1087 continue;
1089 if (flag_expensive_optimizations && ! pass
1090 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1091 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1092 && REG_P (XEXP (SET_SRC (set), 0))
1093 && REG_P (SET_DEST (set)))
1094 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1096 if (flag_expensive_optimizations && ! pass
1097 && REG_P (SET_SRC (set))
1098 && REG_P (SET_DEST (set)))
1100 /* If this is a register-register copy where SRC is not dead,
1101 see if we can optimize it. If this optimization succeeds,
1102 it will become a copy where SRC is dead. */
1103 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1104 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1105 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1107 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1108 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1109 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1110 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1111 && SET_SRC (set) != SET_DEST (set))
1113 int srcregno = REGNO (SET_SRC (set));
1114 if (regno_src_regno[srcregno] >= 0)
1115 srcregno = regno_src_regno[srcregno];
1116 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1120 if (! flag_regmove)
1121 continue;
1123 if (! find_matches (insn, &match))
1124 continue;
1126 /* Now scan through the operands looking for a source operand
1127 which is supposed to match the destination operand.
1128 Then scan forward for an instruction which uses the dest
1129 operand.
1130 If it dies there, then replace the dest in both operands with
1131 the source operand. */
1133 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1135 rtx src, dst, src_subreg;
1136 enum reg_class src_class, dst_class;
1138 match_no = match.with[op_no];
1140 /* Nothing to do if the two operands aren't supposed to match. */
1141 if (match_no < 0)
1142 continue;
1144 src = recog_data.operand[op_no];
1145 dst = recog_data.operand[match_no];
1147 if (!REG_P (src))
1148 continue;
1150 src_subreg = src;
1151 if (GET_CODE (dst) == SUBREG
1152 && GET_MODE_SIZE (GET_MODE (dst))
1153 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1155 dst = SUBREG_REG (dst);
1156 src_subreg = lowpart_subreg (GET_MODE (dst),
1157 src, GET_MODE (src));
1158 if (!src_subreg)
1159 continue;
1161 if (!REG_P (dst)
1162 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1163 continue;
1165 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1167 if (match.commutative[op_no] < op_no)
1168 regno_src_regno[REGNO (dst)] = REGNO (src);
1169 continue;
1172 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1173 continue;
1175 /* op_no/src must be a read-only operand, and
1176 match_operand/dst must be a write-only operand. */
1177 if (match.use[op_no] != READ
1178 || match.use[match_no] != WRITE)
1179 continue;
1181 if (match.early_clobber[match_no]
1182 && count_occurrences (PATTERN (insn), src, 0) > 1)
1183 continue;
1185 /* Make sure match_operand is the destination. */
1186 if (recog_data.operand[match_no] != SET_DEST (set))
1187 continue;
1189 /* If the operands already match, then there is nothing to do. */
1190 if (operands_match_p (src, dst))
1191 continue;
1193 /* But in the commutative case, we might find a better match. */
1194 if (match.commutative[op_no] >= 0)
1196 rtx comm = recog_data.operand[match.commutative[op_no]];
1197 if (operands_match_p (comm, dst)
1198 && (replacement_quality (comm)
1199 >= replacement_quality (src)))
1200 continue;
1203 src_class = reg_preferred_class (REGNO (src));
1204 dst_class = reg_preferred_class (REGNO (dst));
1205 if (! regclass_compatible_p (src_class, dst_class))
1206 continue;
1208 if (GET_MODE (src) != GET_MODE (dst))
1209 continue;
1211 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1212 op_no, match_no,
1213 regmove_dump_file))
1214 break;
1219 /* A backward pass. Replace input operands with output operands. */
1221 if (regmove_dump_file)
1222 fprintf (regmove_dump_file, "Starting backward pass...\n");
1224 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1226 if (INSN_P (insn))
1228 int op_no, match_no;
1229 int success = 0;
1231 if (! find_matches (insn, &match))
1232 continue;
1234 /* Now scan through the operands looking for a destination operand
1235 which is supposed to match a source operand.
1236 Then scan backward for an instruction which sets the source
1237 operand. If safe, then replace the source operand with the
1238 dest operand in both instructions. */
1240 copy_src = NULL_RTX;
1241 copy_dst = NULL_RTX;
1242 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1244 rtx set, p, src, dst;
1245 rtx src_note, dst_note;
1246 int num_calls = 0;
1247 enum reg_class src_class, dst_class;
1248 int length;
1250 match_no = match.with[op_no];
1252 /* Nothing to do if the two operands aren't supposed to match. */
1253 if (match_no < 0)
1254 continue;
1256 dst = recog_data.operand[match_no];
1257 src = recog_data.operand[op_no];
1259 if (!REG_P (src))
1260 continue;
1262 if (!REG_P (dst)
1263 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1264 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1265 || GET_MODE (src) != GET_MODE (dst))
1266 continue;
1268 /* If the operands already match, then there is nothing to do. */
1269 if (operands_match_p (src, dst))
1270 continue;
1272 if (match.commutative[op_no] >= 0)
1274 rtx comm = recog_data.operand[match.commutative[op_no]];
1275 if (operands_match_p (comm, dst))
1276 continue;
1279 set = single_set (insn);
1280 if (! set)
1281 continue;
1283 /* Note that single_set ignores parts of a parallel set for
1284 which one of the destinations is REG_UNUSED. We can't
1285 handle that here, since we can wind up rewriting things
1286 such that a single register is set twice within a single
1287 parallel. */
1288 if (reg_set_p (src, insn))
1289 continue;
1291 /* match_no/dst must be a write-only operand, and
1292 operand_operand/src must be a read-only operand. */
1293 if (match.use[op_no] != READ
1294 || match.use[match_no] != WRITE)
1295 continue;
1297 if (match.early_clobber[match_no]
1298 && count_occurrences (PATTERN (insn), src, 0) > 1)
1299 continue;
1301 /* Make sure match_no is the destination. */
1302 if (recog_data.operand[match_no] != SET_DEST (set))
1303 continue;
1305 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1307 if (GET_CODE (SET_SRC (set)) == PLUS
1308 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1309 && XEXP (SET_SRC (set), 0) == src
1310 && fixup_match_2 (insn, dst, src,
1311 XEXP (SET_SRC (set), 1),
1312 regmove_dump_file))
1313 break;
1314 continue;
1316 src_class = reg_preferred_class (REGNO (src));
1317 dst_class = reg_preferred_class (REGNO (dst));
1319 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1321 /* We used to force the copy here like in other cases, but
1322 it produces worse code, as it eliminates no copy
1323 instructions and the copy emitted will be produced by
1324 reload anyway. On patterns with multiple alternatives,
1325 there may be better solution available.
1327 In particular this change produced slower code for numeric
1328 i387 programs. */
1330 continue;
1333 if (! regclass_compatible_p (src_class, dst_class))
1335 if (!copy_src)
1337 copy_src = src;
1338 copy_dst = dst;
1340 continue;
1343 /* Can not modify an earlier insn to set dst if this insn
1344 uses an old value in the source. */
1345 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1347 if (!copy_src)
1349 copy_src = src;
1350 copy_dst = dst;
1352 continue;
1355 /* If src is set once in a different basic block,
1356 and is set equal to a constant, then do not use
1357 it for this optimization, as this would make it
1358 no longer equivalent to a constant. */
1360 if (reg_is_remote_constant_p (src, insn, f))
1362 if (!copy_src)
1364 copy_src = src;
1365 copy_dst = dst;
1367 continue;
1371 if (regmove_dump_file)
1372 fprintf (regmove_dump_file,
1373 "Could fix operand %d of insn %d matching operand %d.\n",
1374 op_no, INSN_UID (insn), match_no);
1376 /* Scan backward to find the first instruction that uses
1377 the input operand. If the operand is set here, then
1378 replace it in both instructions with match_no. */
1380 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1382 rtx pset;
1384 /* ??? We can't scan past the end of a basic block without
1385 updating the register lifetime info
1386 (REG_DEAD/basic_block_live_at_start). */
1387 if (perhaps_ends_bb_p (p))
1388 break;
1389 else if (! INSN_P (p))
1390 continue;
1392 length++;
1394 /* ??? See if all of SRC is set in P. This test is much
1395 more conservative than it needs to be. */
1396 pset = single_set (p);
1397 if (pset && SET_DEST (pset) == src)
1399 /* We use validate_replace_rtx, in case there
1400 are multiple identical source operands. All of
1401 them have to be changed at the same time. */
1402 if (validate_replace_rtx (src, dst, insn))
1404 if (validate_change (p, &SET_DEST (pset),
1405 dst, 0))
1406 success = 1;
1407 else
1409 /* Change all source operands back.
1410 This modifies the dst as a side-effect. */
1411 validate_replace_rtx (dst, src, insn);
1412 /* Now make sure the dst is right. */
1413 validate_change (insn,
1414 recog_data.operand_loc[match_no],
1415 dst, 0);
1418 break;
1421 if (reg_overlap_mentioned_p (src, PATTERN (p))
1422 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1423 break;
1425 /* If we have passed a call instruction, and the
1426 pseudo-reg DST is not already live across a call,
1427 then don't perform the optimization. */
1428 if (CALL_P (p))
1430 num_calls++;
1432 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1433 break;
1437 if (success)
1439 int dstno, srcno;
1441 /* Remove the death note for SRC from INSN. */
1442 remove_note (insn, src_note);
1443 /* Move the death note for SRC to P if it is used
1444 there. */
1445 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1447 XEXP (src_note, 1) = REG_NOTES (p);
1448 REG_NOTES (p) = src_note;
1450 /* If there is a REG_DEAD note for DST on P, then remove
1451 it, because DST is now set there. */
1452 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1453 remove_note (p, dst_note);
1455 dstno = REGNO (dst);
1456 srcno = REGNO (src);
1458 REG_N_SETS (dstno)++;
1459 REG_N_SETS (srcno)--;
1461 REG_N_CALLS_CROSSED (dstno) += num_calls;
1462 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1464 REG_LIVE_LENGTH (dstno) += length;
1465 if (REG_LIVE_LENGTH (srcno) >= 0)
1467 REG_LIVE_LENGTH (srcno) -= length;
1468 /* REG_LIVE_LENGTH is only an approximation after
1469 combine if sched is not run, so make sure that we
1470 still have a reasonable value. */
1471 if (REG_LIVE_LENGTH (srcno) < 2)
1472 REG_LIVE_LENGTH (srcno) = 2;
1475 if (regmove_dump_file)
1476 fprintf (regmove_dump_file,
1477 "Fixed operand %d of insn %d matching operand %d.\n",
1478 op_no, INSN_UID (insn), match_no);
1480 break;
1484 /* If we weren't able to replace any of the alternatives, try an
1485 alternative approach of copying the source to the destination. */
1486 if (!success && copy_src != NULL_RTX)
1487 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1492 /* In fixup_match_1, some insns may have been inserted after basic block
1493 ends. Fix that here. */
1494 FOR_EACH_BB (bb)
1496 rtx end = BB_END (bb);
1497 rtx new = end;
1498 rtx next = NEXT_INSN (new);
1499 while (next != 0 && INSN_UID (next) >= old_max_uid
1500 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1501 new = next, next = NEXT_INSN (new);
1502 BB_END (bb) = new;
1505 done:
1506 /* Clean up. */
1507 free (regno_src_regno);
1508 free (regmove_bb_head);
1511 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1512 Returns 0 if INSN can't be recognized, or if the alternative can't be
1513 determined.
1515 Initialize the info in MATCHP based on the constraints. */
1517 static int
1518 find_matches (rtx insn, struct match *matchp)
1520 int likely_spilled[MAX_RECOG_OPERANDS];
1521 int op_no;
1522 int any_matches = 0;
1524 extract_insn (insn);
1525 if (! constrain_operands (0))
1526 return 0;
1528 /* Must initialize this before main loop, because the code for
1529 the commutative case may set matches for operands other than
1530 the current one. */
1531 for (op_no = recog_data.n_operands; --op_no >= 0; )
1532 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1534 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1536 const char *p;
1537 char c;
1538 int i = 0;
1540 p = recog_data.constraints[op_no];
1542 likely_spilled[op_no] = 0;
1543 matchp->use[op_no] = READ;
1544 matchp->early_clobber[op_no] = 0;
1545 if (*p == '=')
1546 matchp->use[op_no] = WRITE;
1547 else if (*p == '+')
1548 matchp->use[op_no] = READWRITE;
1550 for (;*p && i < which_alternative; p++)
1551 if (*p == ',')
1552 i++;
1554 while ((c = *p) != '\0' && c != ',')
1556 switch (c)
1558 case '=':
1559 break;
1560 case '+':
1561 break;
1562 case '&':
1563 matchp->early_clobber[op_no] = 1;
1564 break;
1565 case '%':
1566 matchp->commutative[op_no] = op_no + 1;
1567 matchp->commutative[op_no + 1] = op_no;
1568 break;
1570 case '0': case '1': case '2': case '3': case '4':
1571 case '5': case '6': case '7': case '8': case '9':
1573 char *end;
1574 unsigned long match_ul = strtoul (p, &end, 10);
1575 int match = match_ul;
1577 p = end;
1579 if (match < op_no && likely_spilled[match])
1580 continue;
1581 matchp->with[op_no] = match;
1582 any_matches = 1;
1583 if (matchp->commutative[op_no] >= 0)
1584 matchp->with[matchp->commutative[op_no]] = match;
1586 continue;
1588 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1589 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1590 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1591 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1592 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1593 likely_spilled[op_no] = 1;
1594 break;
1596 p += CONSTRAINT_LEN (c, p);
1599 return any_matches;
1602 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1603 assumed to be in INSN. */
1605 static void
1606 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1608 rtx x = *loc;
1609 enum rtx_code code;
1610 const char *fmt;
1611 int i, j;
1613 if (! x)
1614 return;
1616 code = GET_CODE (x);
1617 if (code == REG)
1619 if (REGNO (x) != dst_reg)
1620 return;
1622 validate_change (insn, loc, src, 1);
1624 return;
1627 /* Process each of our operands recursively. */
1628 fmt = GET_RTX_FORMAT (code);
1629 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1630 if (*fmt == 'e')
1631 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1632 else if (*fmt == 'E')
1633 for (j = 0; j < XVECLEN (x, i); j++)
1634 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1637 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1638 the only set in INSN. INSN has just been recognized and constrained.
1639 SRC is operand number OPERAND_NUMBER in INSN.
1640 DST is operand number MATCH_NUMBER in INSN.
1641 If BACKWARD is nonzero, we have been called in a backward pass.
1642 Return nonzero for success. */
1644 static int
1645 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1646 int backward, int operand_number, int match_number,
1647 FILE *regmove_dump_file)
1649 rtx p;
1650 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1651 int success = 0;
1652 int num_calls = 0, s_num_calls = 0;
1653 enum rtx_code code = NOTE;
1654 HOST_WIDE_INT insn_const = 0, newconst = 0;
1655 rtx overlap = 0; /* need to move insn ? */
1656 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1657 int length, s_length;
1659 if (! src_note)
1661 /* Look for (set (regX) (op regA constX))
1662 (set (regY) (op regA constY))
1663 and change that to
1664 (set (regA) (op regA constX)).
1665 (set (regY) (op regA constY-constX)).
1666 This works for add and shift operations, if
1667 regA is dead after or set by the second insn. */
1669 code = GET_CODE (SET_SRC (set));
1670 if ((code == PLUS || code == LSHIFTRT
1671 || code == ASHIFT || code == ASHIFTRT)
1672 && XEXP (SET_SRC (set), 0) == src
1673 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1674 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1675 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1676 return 0;
1677 else
1678 /* We might find a src_note while scanning. */
1679 code = NOTE;
1682 if (regmove_dump_file)
1683 fprintf (regmove_dump_file,
1684 "Could fix operand %d of insn %d matching operand %d.\n",
1685 operand_number, INSN_UID (insn), match_number);
1687 /* If SRC is equivalent to a constant set in a different basic block,
1688 then do not use it for this optimization. We want the equivalence
1689 so that if we have to reload this register, we can reload the
1690 constant, rather than extending the lifespan of the register. */
1691 if (reg_is_remote_constant_p (src, insn, get_insns ()))
1692 return 0;
1694 /* Scan forward to find the next instruction that
1695 uses the output operand. If the operand dies here,
1696 then replace it in both instructions with
1697 operand_number. */
1699 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1701 if (CALL_P (p))
1702 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1703 REGNO (dst), src, p);
1705 /* ??? We can't scan past the end of a basic block without updating
1706 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1707 if (perhaps_ends_bb_p (p))
1708 break;
1709 else if (! INSN_P (p))
1710 continue;
1712 length++;
1713 if (src_note)
1714 s_length++;
1716 if (reg_set_p (src, p) || reg_set_p (dst, p)
1717 || (GET_CODE (PATTERN (p)) == USE
1718 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1719 break;
1721 /* See if all of DST dies in P. This test is
1722 slightly more conservative than it needs to be. */
1723 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1724 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1726 /* If we would be moving INSN, check that we won't move it
1727 into the shadow of a live a live flags register. */
1728 /* ??? We only try to move it in front of P, although
1729 we could move it anywhere between OVERLAP and P. */
1730 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1731 break;
1733 if (! src_note)
1735 rtx q;
1736 rtx set2 = NULL_RTX;
1738 /* If an optimization is done, the value of SRC while P
1739 is executed will be changed. Check that this is OK. */
1740 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1741 break;
1742 for (q = p; q; q = NEXT_INSN (q))
1744 /* ??? We can't scan past the end of a basic block without
1745 updating the register lifetime info
1746 (REG_DEAD/basic_block_live_at_start). */
1747 if (perhaps_ends_bb_p (q))
1749 q = 0;
1750 break;
1752 else if (! INSN_P (q))
1753 continue;
1754 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1755 || reg_set_p (src, q))
1756 break;
1758 if (q)
1759 set2 = single_set (q);
1760 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1761 || XEXP (SET_SRC (set2), 0) != src
1762 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1763 || (SET_DEST (set2) != src
1764 && ! find_reg_note (q, REG_DEAD, src)))
1766 /* If this is a PLUS, we can still save a register by doing
1767 src += insn_const;
1769 src -= insn_const; .
1770 This also gives opportunities for subsequent
1771 optimizations in the backward pass, so do it there. */
1772 if (code == PLUS && backward
1773 /* Don't do this if we can likely tie DST to SET_DEST
1774 of P later; we can't do this tying here if we got a
1775 hard register. */
1776 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1777 && single_set (p)
1778 && REG_P (SET_DEST (single_set (p)))
1779 && (REGNO (SET_DEST (single_set (p)))
1780 < FIRST_PSEUDO_REGISTER))
1781 /* We may only emit an insn directly after P if we
1782 are not in the shadow of a live flags register. */
1783 && GET_MODE (p) == VOIDmode)
1785 search_end = q;
1786 q = insn;
1787 set2 = set;
1788 newconst = -insn_const;
1789 code = MINUS;
1791 else
1792 break;
1794 else
1796 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1797 /* Reject out of range shifts. */
1798 if (code != PLUS
1799 && (newconst < 0
1800 || ((unsigned HOST_WIDE_INT) newconst
1801 >= (GET_MODE_BITSIZE (GET_MODE
1802 (SET_SRC (set2)))))))
1803 break;
1804 if (code == PLUS)
1806 post_inc = q;
1807 if (SET_DEST (set2) != src)
1808 post_inc_set = set2;
1811 /* We use 1 as last argument to validate_change so that all
1812 changes are accepted or rejected together by apply_change_group
1813 when it is called by validate_replace_rtx . */
1814 validate_change (q, &XEXP (SET_SRC (set2), 1),
1815 GEN_INT (newconst), 1);
1817 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1818 if (validate_replace_rtx (dst, src_subreg, p))
1819 success = 1;
1820 break;
1823 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1824 break;
1825 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1827 /* INSN was already checked to be movable wrt. the registers that it
1828 sets / uses when we found no REG_DEAD note for src on it, but it
1829 still might clobber the flags register. We'll have to check that
1830 we won't insert it into the shadow of a live flags register when
1831 we finally know where we are to move it. */
1832 overlap = p;
1833 src_note = find_reg_note (p, REG_DEAD, src);
1836 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1837 already live across a call, then don't perform the optimization. */
1838 if (CALL_P (p))
1840 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1841 break;
1843 num_calls++;
1845 if (src_note)
1846 s_num_calls++;
1851 if (! success)
1852 return 0;
1854 /* Remove the death note for DST from P. */
1855 remove_note (p, dst_note);
1856 if (code == MINUS)
1858 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1859 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1860 && search_end
1861 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1862 post_inc = 0;
1863 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1864 REG_N_SETS (REGNO (src))++;
1865 REG_LIVE_LENGTH (REGNO (src))++;
1867 if (overlap)
1869 /* The lifetime of src and dest overlap,
1870 but we can change this by moving insn. */
1871 rtx pat = PATTERN (insn);
1872 if (src_note)
1873 remove_note (overlap, src_note);
1874 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1875 && code == PLUS
1876 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1877 insn = overlap;
1878 else
1880 rtx notes = REG_NOTES (insn);
1882 emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
1883 delete_insn (insn);
1884 /* emit_insn_after_with_line_notes has no
1885 return value, so search for the new insn. */
1886 insn = p;
1887 while (! INSN_P (insn) || PATTERN (insn) != pat)
1888 insn = PREV_INSN (insn);
1890 REG_NOTES (insn) = notes;
1893 /* Sometimes we'd generate src = const; src += n;
1894 if so, replace the instruction that set src
1895 in the first place. */
1897 if (! overlap && (code == PLUS || code == MINUS))
1899 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1900 rtx q, set2 = NULL_RTX;
1901 int num_calls2 = 0, s_length2 = 0;
1903 if (note && CONSTANT_P (XEXP (note, 0)))
1905 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1907 /* ??? We can't scan past the end of a basic block without
1908 updating the register lifetime info
1909 (REG_DEAD/basic_block_live_at_start). */
1910 if (perhaps_ends_bb_p (q))
1912 q = 0;
1913 break;
1915 else if (! INSN_P (q))
1916 continue;
1918 s_length2++;
1919 if (reg_set_p (src, q))
1921 set2 = single_set (q);
1922 break;
1924 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1926 q = 0;
1927 break;
1929 if (CALL_P (p))
1930 num_calls2++;
1932 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1933 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1935 delete_insn (q);
1936 REG_N_SETS (REGNO (src))--;
1937 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1938 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1939 insn_const = 0;
1944 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1945 && (code == PLUS || code == MINUS) && insn_const
1946 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1947 insn = p;
1948 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1949 && post_inc
1950 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1951 post_inc = 0;
1952 /* If post_inc still prevails, try to find an
1953 insn where it can be used as a pre-in/decrement.
1954 If code is MINUS, this was already tried. */
1955 if (post_inc && code == PLUS
1956 /* Check that newconst is likely to be usable
1957 in a pre-in/decrement before starting the search. */
1958 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1959 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1960 && exact_log2 (newconst))
1962 rtx q, inc_dest;
1964 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1965 for (q = post_inc; (q = NEXT_INSN (q)); )
1967 /* ??? We can't scan past the end of a basic block without updating
1968 the register lifetime info
1969 (REG_DEAD/basic_block_live_at_start). */
1970 if (perhaps_ends_bb_p (q))
1971 break;
1972 else if (! INSN_P (q))
1973 continue;
1974 else if (src != inc_dest
1975 && (reg_overlap_mentioned_p (src, PATTERN (q))
1976 || reg_set_p (src, q)))
1977 break;
1978 else if (reg_set_p (inc_dest, q))
1979 break;
1980 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1982 try_auto_increment (q, post_inc,
1983 post_inc_set, inc_dest, newconst, 1);
1984 break;
1989 /* Move the death note for DST to INSN if it is used
1990 there. */
1991 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
1993 XEXP (dst_note, 1) = REG_NOTES (insn);
1994 REG_NOTES (insn) = dst_note;
1997 if (src_note)
1999 /* Move the death note for SRC from INSN to P. */
2000 if (! overlap)
2001 remove_note (insn, src_note);
2002 XEXP (src_note, 1) = REG_NOTES (p);
2003 REG_NOTES (p) = src_note;
2005 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2008 REG_N_SETS (REGNO (src))++;
2009 REG_N_SETS (REGNO (dst))--;
2011 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2013 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2014 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2016 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2017 /* REG_LIVE_LENGTH is only an approximation after
2018 combine if sched is not run, so make sure that we
2019 still have a reasonable value. */
2020 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2021 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2023 if (regmove_dump_file)
2024 fprintf (regmove_dump_file,
2025 "Fixed operand %d of insn %d matching operand %d.\n",
2026 operand_number, INSN_UID (insn), match_number);
2027 return 1;
2031 /* Return nonzero if X is stable and mentions no registers but for
2032 mentioning SRC or mentioning / changing DST . If in doubt, presume
2033 it is unstable.
2034 The rationale is that we want to check if we can move an insn easily
2035 while just paying attention to SRC and DST. */
2036 static int
2037 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2039 RTX_CODE code = GET_CODE (x);
2040 switch (GET_RTX_CLASS (code))
2042 case RTX_UNARY:
2043 case RTX_BIN_ARITH:
2044 case RTX_COMM_ARITH:
2045 case RTX_COMPARE:
2046 case RTX_COMM_COMPARE:
2047 case RTX_TERNARY:
2048 case RTX_BITFIELD_OPS:
2050 int i;
2051 const char *fmt = GET_RTX_FORMAT (code);
2052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 if (fmt[i] == 'e'
2054 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2055 return 0;
2056 return 1;
2058 case RTX_OBJ:
2059 if (code == REG)
2060 return x == src || x == dst;
2061 /* If this is a MEM, look inside - there might be a register hidden in
2062 the address of an unchanging MEM. */
2063 if (code == MEM
2064 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2065 return 0;
2066 /* Fall through. */
2067 default:
2068 return ! rtx_unstable_p (x);
2072 /* Track stack adjustments and stack memory references. Attempt to
2073 reduce the number of stack adjustments by back-propagating across
2074 the memory references.
2076 This is intended primarily for use with targets that do not define
2077 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2078 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2079 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2080 (e.g. x86 fp regs) which would ordinarily have to be implemented
2081 as a sub/mov pair due to restrictions in calls.c.
2083 Propagation stops when any of the insns that need adjusting are
2084 (a) no longer valid because we've exceeded their range, (b) a
2085 non-trivial push instruction, or (c) a call instruction.
2087 Restriction B is based on the assumption that push instructions
2088 are smaller or faster. If a port really wants to remove all
2089 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2090 one exception that is made is for an add immediately followed
2091 by a push. */
2093 /* This structure records stack memory references between stack adjusting
2094 instructions. */
2096 struct csa_memlist
2098 HOST_WIDE_INT sp_offset;
2099 rtx insn, *mem;
2100 struct csa_memlist *next;
2103 static int stack_memref_p (rtx);
2104 static rtx single_set_for_csa (rtx);
2105 static void free_csa_memlist (struct csa_memlist *);
2106 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2107 struct csa_memlist *);
2108 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2109 HOST_WIDE_INT, HOST_WIDE_INT);
2110 static void combine_stack_adjustments_for_block (basic_block);
2111 static int record_stack_memrefs (rtx *, void *);
2114 /* Main entry point for stack adjustment combination. */
2116 void
2117 combine_stack_adjustments (void)
2119 basic_block bb;
2121 FOR_EACH_BB (bb)
2122 combine_stack_adjustments_for_block (bb);
2125 /* Recognize a MEM of the form (sp) or (plus sp const). */
2127 static int
2128 stack_memref_p (rtx x)
2130 if (!MEM_P (x))
2131 return 0;
2132 x = XEXP (x, 0);
2134 if (x == stack_pointer_rtx)
2135 return 1;
2136 if (GET_CODE (x) == PLUS
2137 && XEXP (x, 0) == stack_pointer_rtx
2138 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2139 return 1;
2141 return 0;
2144 /* Recognize either normal single_set or the hack in i386.md for
2145 tying fp and sp adjustments. */
2147 static rtx
2148 single_set_for_csa (rtx insn)
2150 int i;
2151 rtx tmp = single_set (insn);
2152 if (tmp)
2153 return tmp;
2155 if (!NONJUMP_INSN_P (insn)
2156 || GET_CODE (PATTERN (insn)) != PARALLEL)
2157 return NULL_RTX;
2159 tmp = PATTERN (insn);
2160 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2161 return NULL_RTX;
2163 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2165 rtx this = XVECEXP (tmp, 0, i);
2167 /* The special case is allowing a no-op set. */
2168 if (GET_CODE (this) == SET
2169 && SET_SRC (this) == SET_DEST (this))
2171 else if (GET_CODE (this) != CLOBBER
2172 && GET_CODE (this) != USE)
2173 return NULL_RTX;
2176 return XVECEXP (tmp, 0, 0);
2179 /* Free the list of csa_memlist nodes. */
2181 static void
2182 free_csa_memlist (struct csa_memlist *memlist)
2184 struct csa_memlist *next;
2185 for (; memlist ; memlist = next)
2187 next = memlist->next;
2188 free (memlist);
2192 /* Create a new csa_memlist node from the given memory reference.
2193 It is already known that the memory is stack_memref_p. */
2195 static struct csa_memlist *
2196 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2198 struct csa_memlist *ml;
2200 ml = xmalloc (sizeof (*ml));
2202 if (XEXP (*mem, 0) == stack_pointer_rtx)
2203 ml->sp_offset = 0;
2204 else
2205 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2207 ml->insn = insn;
2208 ml->mem = mem;
2209 ml->next = next_memlist;
2211 return ml;
2214 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2215 as each of the memories in MEMLIST. Return true on success. */
2217 static int
2218 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2219 HOST_WIDE_INT delta)
2221 struct csa_memlist *ml;
2222 rtx set;
2224 set = single_set_for_csa (insn);
2225 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2227 for (ml = memlist; ml ; ml = ml->next)
2228 validate_change
2229 (ml->insn, ml->mem,
2230 replace_equiv_address_nv (*ml->mem,
2231 plus_constant (stack_pointer_rtx,
2232 ml->sp_offset - delta)), 1);
2234 if (apply_change_group ())
2236 /* Succeeded. Update our knowledge of the memory references. */
2237 for (ml = memlist; ml ; ml = ml->next)
2238 ml->sp_offset -= delta;
2240 return 1;
2242 else
2243 return 0;
2246 /* Called via for_each_rtx and used to record all stack memory references in
2247 the insn and discard all other stack pointer references. */
2248 struct record_stack_memrefs_data
2250 rtx insn;
2251 struct csa_memlist *memlist;
2254 static int
2255 record_stack_memrefs (rtx *xp, void *data)
2257 rtx x = *xp;
2258 struct record_stack_memrefs_data *d =
2259 (struct record_stack_memrefs_data *) data;
2260 if (!x)
2261 return 0;
2262 switch (GET_CODE (x))
2264 case MEM:
2265 if (!reg_mentioned_p (stack_pointer_rtx, x))
2266 return -1;
2267 /* We are not able to handle correctly all possible memrefs containing
2268 stack pointer, so this check is necessary. */
2269 if (stack_memref_p (x))
2271 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2272 return -1;
2274 return 1;
2275 case REG:
2276 /* ??? We want be able to handle non-memory stack pointer
2277 references later. For now just discard all insns referring to
2278 stack pointer outside mem expressions. We would probably
2279 want to teach validate_replace to simplify expressions first.
2281 We can't just compare with STACK_POINTER_RTX because the
2282 reference to the stack pointer might be in some other mode.
2283 In particular, an explicit clobber in an asm statement will
2284 result in a QImode clobber. */
2285 if (REGNO (x) == STACK_POINTER_REGNUM)
2286 return 1;
2287 break;
2288 default:
2289 break;
2291 return 0;
2294 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2296 static void
2297 combine_stack_adjustments_for_block (basic_block bb)
2299 HOST_WIDE_INT last_sp_adjust = 0;
2300 rtx last_sp_set = NULL_RTX;
2301 struct csa_memlist *memlist = NULL;
2302 rtx insn, next, set;
2303 struct record_stack_memrefs_data data;
2304 bool end_of_block = false;
2306 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2308 end_of_block = insn == BB_END (bb);
2309 next = NEXT_INSN (insn);
2311 if (! INSN_P (insn))
2312 continue;
2314 set = single_set_for_csa (insn);
2315 if (set)
2317 rtx dest = SET_DEST (set);
2318 rtx src = SET_SRC (set);
2320 /* Find constant additions to the stack pointer. */
2321 if (dest == stack_pointer_rtx
2322 && GET_CODE (src) == PLUS
2323 && XEXP (src, 0) == stack_pointer_rtx
2324 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2326 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2328 /* If we've not seen an adjustment previously, record
2329 it now and continue. */
2330 if (! last_sp_set)
2332 last_sp_set = insn;
2333 last_sp_adjust = this_adjust;
2334 continue;
2337 /* If not all recorded memrefs can be adjusted, or the
2338 adjustment is now too large for a constant addition,
2339 we cannot merge the two stack adjustments.
2341 Also we need to be careful to not move stack pointer
2342 such that we create stack accesses outside the allocated
2343 area. We can combine an allocation into the first insn,
2344 or a deallocation into the second insn. We can not
2345 combine an allocation followed by a deallocation.
2347 The only somewhat frequent occurrence of the later is when
2348 a function allocates a stack frame but does not use it.
2349 For this case, we would need to analyze rtl stream to be
2350 sure that allocated area is really unused. This means not
2351 only checking the memory references, but also all registers
2352 or global memory references possibly containing a stack
2353 frame address.
2355 Perhaps the best way to address this problem is to teach
2356 gcc not to allocate stack for objects never used. */
2358 /* Combine an allocation into the first instruction. */
2359 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2361 if (try_apply_stack_adjustment (last_sp_set, memlist,
2362 last_sp_adjust + this_adjust,
2363 this_adjust))
2365 /* It worked! */
2366 delete_insn (insn);
2367 last_sp_adjust += this_adjust;
2368 continue;
2372 /* Otherwise we have a deallocation. Do not combine with
2373 a previous allocation. Combine into the second insn. */
2374 else if (STACK_GROWS_DOWNWARD
2375 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2377 if (try_apply_stack_adjustment (insn, memlist,
2378 last_sp_adjust + this_adjust,
2379 -last_sp_adjust))
2381 /* It worked! */
2382 delete_insn (last_sp_set);
2383 last_sp_set = insn;
2384 last_sp_adjust += this_adjust;
2385 free_csa_memlist (memlist);
2386 memlist = NULL;
2387 continue;
2391 /* Combination failed. Restart processing from here. If
2392 deallocation+allocation conspired to cancel, we can
2393 delete the old deallocation insn. */
2394 if (last_sp_set && last_sp_adjust == 0)
2395 delete_insn (insn);
2396 free_csa_memlist (memlist);
2397 memlist = NULL;
2398 last_sp_set = insn;
2399 last_sp_adjust = this_adjust;
2400 continue;
2403 /* Find a predecrement of exactly the previous adjustment and
2404 turn it into a direct store. Obviously we can't do this if
2405 there were any intervening uses of the stack pointer. */
2406 if (memlist == NULL
2407 && MEM_P (dest)
2408 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2409 && (last_sp_adjust
2410 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2411 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2412 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2413 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2414 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2415 == CONST_INT)
2416 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2417 == -last_sp_adjust)))
2418 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2419 && ! reg_mentioned_p (stack_pointer_rtx, src)
2420 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2421 && validate_change (insn, &SET_DEST (set),
2422 replace_equiv_address (dest,
2423 stack_pointer_rtx),
2426 delete_insn (last_sp_set);
2427 free_csa_memlist (memlist);
2428 memlist = NULL;
2429 last_sp_set = NULL_RTX;
2430 last_sp_adjust = 0;
2431 continue;
2435 data.insn = insn;
2436 data.memlist = memlist;
2437 if (!CALL_P (insn) && last_sp_set
2438 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2440 memlist = data.memlist;
2441 continue;
2443 memlist = data.memlist;
2445 /* Otherwise, we were not able to process the instruction.
2446 Do not continue collecting data across such a one. */
2447 if (last_sp_set
2448 && (CALL_P (insn)
2449 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2451 if (last_sp_set && last_sp_adjust == 0)
2452 delete_insn (last_sp_set);
2453 free_csa_memlist (memlist);
2454 memlist = NULL;
2455 last_sp_set = NULL_RTX;
2456 last_sp_adjust = 0;
2460 if (last_sp_set && last_sp_adjust == 0)
2461 delete_insn (last_sp_set);
2463 if (memlist)
2464 free_csa_memlist (memlist);
2467 static bool
2468 gate_handle_regmove (void)
2470 return (optimize > 0 && flag_regmove);
2474 /* Register allocation pre-pass, to reduce number of moves necessary
2475 for two-address machines. */
2476 static void
2477 rest_of_handle_regmove (void)
2479 regmove_optimize (get_insns (), max_reg_num (), dump_file);
2480 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
2483 struct tree_opt_pass pass_regmove =
2485 "regmove", /* name */
2486 gate_handle_regmove, /* gate */
2487 rest_of_handle_regmove, /* execute */
2488 NULL, /* sub */
2489 NULL, /* next */
2490 0, /* static_pass_number */
2491 TV_REGMOVE, /* tv_id */
2492 0, /* properties_required */
2493 0, /* properties_provided */
2494 0, /* properties_destroyed */
2495 0, /* todo_flags_start */
2496 TODO_dump_func |
2497 TODO_ggc_collect, /* todo_flags_finish */
2498 'N' /* letter */
2502 static bool
2503 gate_handle_stack_adjustments (void)
2505 return (optimize > 0);
2508 static void
2509 rest_of_handle_stack_adjustments (void)
2511 life_analysis (dump_file, PROP_POSTRELOAD);
2512 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE
2513 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
2515 /* This is kind of a heuristic. We need to run combine_stack_adjustments
2516 even for machines with possibly nonzero RETURN_POPS_ARGS
2517 and ACCUMULATE_OUTGOING_ARGS. We expect that only ports having
2518 push instructions will have popping returns. */
2519 #ifndef PUSH_ROUNDING
2520 if (!ACCUMULATE_OUTGOING_ARGS)
2521 #endif
2522 combine_stack_adjustments ();
2525 struct tree_opt_pass pass_stack_adjustments =
2527 "csa", /* name */
2528 gate_handle_stack_adjustments, /* gate */
2529 rest_of_handle_stack_adjustments, /* execute */
2530 NULL, /* sub */
2531 NULL, /* next */
2532 0, /* static_pass_number */
2533 0, /* tv_id */
2534 0, /* properties_required */
2535 0, /* properties_provided */
2536 0, /* properties_destroyed */
2537 0, /* todo_flags_start */
2538 TODO_dump_func |
2539 TODO_ggc_collect, /* todo_flags_finish */
2540 0 /* letter */