No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / reload1.c
blob861cbaa5ab91efe75138dd8994addd5f630c4f50
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "obstack.h"
33 #include "insn-config.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
48 /* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
82 /* During reload_as_needed, element N contains a REG rtx for the hard reg
83 into which reg N has been reloaded (perhaps for a previous insn). */
84 static rtx *reg_last_reload_reg;
86 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
87 for an output reload that stores into reg N. */
88 static char *reg_has_output_reload;
90 /* Indicates which hard regs are reload-registers for an output reload
91 in the current insn. */
92 static HARD_REG_SET reg_is_output_reload;
94 /* Element N is the constant value to which pseudo reg N is equivalent,
95 or zero if pseudo reg N is not equivalent to a constant.
96 find_reloads looks at this in order to replace pseudo reg N
97 with the constant it stands for. */
98 rtx *reg_equiv_constant;
100 /* Element N is an invariant value to which pseudo reg N is equivalent.
101 eliminate_regs_in_insn uses this to replace pseudos in particular
102 contexts. */
103 rtx *reg_equiv_invariant;
105 /* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
109 rtx *reg_equiv_memory_loc;
111 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
112 collector can keep track of what is inside. */
113 varray_type reg_equiv_memory_loc_varray;
115 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
116 This is used when the address is not valid as a memory address
117 (because its displacement is too big for the machine.) */
118 rtx *reg_equiv_address;
120 /* Element N is the memory slot to which pseudo reg N is equivalent,
121 or zero if pseudo reg N is not equivalent to a memory slot. */
122 rtx *reg_equiv_mem;
124 /* Widest width in which each pseudo reg is referred to (via subreg). */
125 static unsigned int *reg_max_ref_width;
127 /* Element N is the list of insns that initialized reg N from its equivalent
128 constant or memory slot. */
129 rtx *reg_equiv_init;
130 int reg_equiv_init_size;
132 /* Vector to remember old contents of reg_renumber before spilling. */
133 static short *reg_old_renumber;
135 /* During reload_as_needed, element N contains the last pseudo regno reloaded
136 into hard register N. If that pseudo reg occupied more than one register,
137 reg_reloaded_contents points to that pseudo for each spill register in
138 use; all of these must remain set for an inheritance to occur. */
139 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
141 /* During reload_as_needed, element N contains the insn for which
142 hard register N was last used. Its contents are significant only
143 when reg_reloaded_valid is set for this register. */
144 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
146 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
147 static HARD_REG_SET reg_reloaded_valid;
148 /* Indicate if the register was dead at the end of the reload.
149 This is only valid if reg_reloaded_contents is set and valid. */
150 static HARD_REG_SET reg_reloaded_dead;
152 /* Indicate whether the register's current value is one that is not
153 safe to retain across a call, even for registers that are normally
154 call-saved. */
155 static HARD_REG_SET reg_reloaded_call_part_clobbered;
157 /* Number of spill-regs so far; number of valid elements of spill_regs. */
158 static int n_spills;
160 /* In parallel with spill_regs, contains REG rtx's for those regs.
161 Holds the last rtx used for any given reg, or 0 if it has never
162 been used for spilling yet. This rtx is reused, provided it has
163 the proper mode. */
164 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
166 /* In parallel with spill_regs, contains nonzero for a spill reg
167 that was stored after the last time it was used.
168 The precise value is the insn generated to do the store. */
169 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
171 /* This is the register that was stored with spill_reg_store. This is a
172 copy of reload_out / reload_out_reg when the value was stored; if
173 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
174 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
176 /* This table is the inverse mapping of spill_regs:
177 indexed by hard reg number,
178 it contains the position of that reg in spill_regs,
179 or -1 for something that is not in spill_regs.
181 ?!? This is no longer accurate. */
182 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
184 /* This reg set indicates registers that can't be used as spill registers for
185 the currently processed insn. These are the hard registers which are live
186 during the insn, but not allocated to pseudos, as well as fixed
187 registers. */
188 static HARD_REG_SET bad_spill_regs;
190 /* These are the hard registers that can't be used as spill register for any
191 insn. This includes registers used for user variables and registers that
192 we can't eliminate. A register that appears in this set also can't be used
193 to retry register allocation. */
194 static HARD_REG_SET bad_spill_regs_global;
196 /* Describes order of use of registers for reloading
197 of spilled pseudo-registers. `n_spills' is the number of
198 elements that are actually valid; new ones are added at the end.
200 Both spill_regs and spill_reg_order are used on two occasions:
201 once during find_reload_regs, where they keep track of the spill registers
202 for a single insn, but also during reload_as_needed where they show all
203 the registers ever used by reload. For the latter case, the information
204 is calculated during finish_spills. */
205 static short spill_regs[FIRST_PSEUDO_REGISTER];
207 /* This vector of reg sets indicates, for each pseudo, which hard registers
208 may not be used for retrying global allocation because the register was
209 formerly spilled from one of them. If we allowed reallocating a pseudo to
210 a register that it was already allocated to, reload might not
211 terminate. */
212 static HARD_REG_SET *pseudo_previous_regs;
214 /* This vector of reg sets indicates, for each pseudo, which hard
215 registers may not be used for retrying global allocation because they
216 are used as spill registers during one of the insns in which the
217 pseudo is live. */
218 static HARD_REG_SET *pseudo_forbidden_regs;
220 /* All hard regs that have been used as spill registers for any insn are
221 marked in this set. */
222 static HARD_REG_SET used_spill_regs;
224 /* Index of last register assigned as a spill register. We allocate in
225 a round-robin fashion. */
226 static int last_spill_reg;
228 /* Nonzero if indirect addressing is supported on the machine; this means
229 that spilling (REG n) does not require reloading it into a register in
230 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
231 value indicates the level of indirect addressing supported, e.g., two
232 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
233 a hard register. */
234 static char spill_indirect_levels;
236 /* Nonzero if indirect addressing is supported when the innermost MEM is
237 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
238 which these are valid is the same as spill_indirect_levels, above. */
239 char indirect_symref_ok;
241 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
242 char double_reg_address_ok;
244 /* Record the stack slot for each spilled hard register. */
245 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
247 /* Width allocated so far for that stack slot. */
248 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
250 /* Record which pseudos needed to be spilled. */
251 static regset_head spilled_pseudos;
253 /* Used for communication between order_regs_for_reload and count_pseudo.
254 Used to avoid counting one pseudo twice. */
255 static regset_head pseudos_counted;
257 /* First uid used by insns created by reload in this function.
258 Used in find_equiv_reg. */
259 int reload_first_uid;
261 /* Flag set by local-alloc or global-alloc if anything is live in
262 a call-clobbered reg across calls. */
263 int caller_save_needed;
265 /* Set to 1 while reload_as_needed is operating.
266 Required by some machines to handle any generated moves differently. */
267 int reload_in_progress = 0;
269 /* These arrays record the insn_code of insns that may be needed to
270 perform input and output reloads of special objects. They provide a
271 place to pass a scratch register. */
272 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
273 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
275 /* This obstack is used for allocation of rtl during register elimination.
276 The allocated storage can be freed once find_reloads has processed the
277 insn. */
278 static struct obstack reload_obstack;
280 /* Points to the beginning of the reload_obstack. All insn_chain structures
281 are allocated first. */
282 static char *reload_startobj;
284 /* The point after all insn_chain structures. Used to quickly deallocate
285 memory allocated in copy_reloads during calculate_needs_all_insns. */
286 static char *reload_firstobj;
288 /* This points before all local rtl generated by register elimination.
289 Used to quickly free all memory after processing one insn. */
290 static char *reload_insn_firstobj;
292 /* List of insn_chain instructions, one for every insn that reload needs to
293 examine. */
294 struct insn_chain *reload_insn_chain;
296 /* List of all insns needing reloads. */
297 static struct insn_chain *insns_need_reload;
299 /* This structure is used to record information about register eliminations.
300 Each array entry describes one possible way of eliminating a register
301 in favor of another. If there is more than one way of eliminating a
302 particular register, the most preferred should be specified first. */
304 struct elim_table
306 int from; /* Register number to be eliminated. */
307 int to; /* Register number used as replacement. */
308 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
309 int can_eliminate; /* Nonzero if this elimination can be done. */
310 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
311 insns made by reload. */
312 HOST_WIDE_INT offset; /* Current offset between the two regs. */
313 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
314 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
315 rtx from_rtx; /* REG rtx for the register to be eliminated.
316 We cannot simply compare the number since
317 we might then spuriously replace a hard
318 register corresponding to a pseudo
319 assigned to the reg to be eliminated. */
320 rtx to_rtx; /* REG rtx for the replacement. */
323 static struct elim_table *reg_eliminate = 0;
325 /* This is an intermediate structure to initialize the table. It has
326 exactly the members provided by ELIMINABLE_REGS. */
327 static const struct elim_table_1
329 const int from;
330 const int to;
331 } reg_eliminate_1[] =
333 /* If a set of eliminable registers was specified, define the table from it.
334 Otherwise, default to the normal case of the frame pointer being
335 replaced by the stack pointer. */
337 #ifdef ELIMINABLE_REGS
338 ELIMINABLE_REGS;
339 #else
340 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
341 #endif
343 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
345 /* Record the number of pending eliminations that have an offset not equal
346 to their initial offset. If nonzero, we use a new copy of each
347 replacement result in any insns encountered. */
348 int num_not_at_initial_offset;
350 /* Count the number of registers that we may be able to eliminate. */
351 static int num_eliminable;
352 /* And the number of registers that are equivalent to a constant that
353 can be eliminated to frame_pointer / arg_pointer + constant. */
354 static int num_eliminable_invariants;
356 /* For each label, we record the offset of each elimination. If we reach
357 a label by more than one path and an offset differs, we cannot do the
358 elimination. This information is indexed by the difference of the
359 number of the label and the first label number. We can't offset the
360 pointer itself as this can cause problems on machines with segmented
361 memory. The first table is an array of flags that records whether we
362 have yet encountered a label and the second table is an array of arrays,
363 one entry in the latter array for each elimination. */
365 static int first_label_num;
366 static char *offsets_known_at;
367 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
369 /* Number of labels in the current function. */
371 static int num_labels;
373 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
374 static void maybe_fix_stack_asms (void);
375 static void copy_reloads (struct insn_chain *);
376 static void calculate_needs_all_insns (int);
377 static int find_reg (struct insn_chain *, int);
378 static void find_reload_regs (struct insn_chain *);
379 static void select_reload_regs (void);
380 static void delete_caller_save_insns (void);
382 static void spill_failure (rtx, enum reg_class);
383 static void count_spilled_pseudo (int, int, int);
384 static void delete_dead_insn (rtx);
385 static void alter_reg (int, int);
386 static void set_label_offsets (rtx, rtx, int);
387 static void check_eliminable_occurrences (rtx);
388 static void elimination_effects (rtx, enum machine_mode);
389 static int eliminate_regs_in_insn (rtx, int);
390 static void update_eliminable_offsets (void);
391 static void mark_not_eliminable (rtx, rtx, void *);
392 static void set_initial_elim_offsets (void);
393 static bool verify_initial_elim_offsets (void);
394 static void set_initial_label_offsets (void);
395 static void set_offsets_for_label (rtx);
396 static void init_elim_table (void);
397 static void update_eliminables (HARD_REG_SET *);
398 static void spill_hard_reg (unsigned int, int);
399 static int finish_spills (int);
400 static void scan_paradoxical_subregs (rtx);
401 static void count_pseudo (int);
402 static void order_regs_for_reload (struct insn_chain *);
403 static void reload_as_needed (int);
404 static void forget_old_reloads_1 (rtx, rtx, void *);
405 static int reload_reg_class_lower (const void *, const void *);
406 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
407 enum machine_mode);
408 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
409 enum machine_mode);
410 static int reload_reg_free_p (unsigned int, int, enum reload_type);
411 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
412 rtx, rtx, int, int);
413 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
414 rtx, rtx, int, int);
415 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
416 static int allocate_reload_reg (struct insn_chain *, int, int);
417 static int conflicts_with_override (rtx);
418 static void failed_reload (rtx, int);
419 static int set_reload_reg (int, int);
420 static void choose_reload_regs_init (struct insn_chain *, rtx *);
421 static void choose_reload_regs (struct insn_chain *);
422 static void merge_assigned_reloads (rtx);
423 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
424 rtx, int);
425 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
426 int);
427 static void do_input_reload (struct insn_chain *, struct reload *, int);
428 static void do_output_reload (struct insn_chain *, struct reload *, int);
429 static bool inherit_piecemeal_p (int, int);
430 static void emit_reload_insns (struct insn_chain *);
431 static void delete_output_reload (rtx, int, int);
432 static void delete_address_reloads (rtx, rtx);
433 static void delete_address_reloads_1 (rtx, rtx, rtx);
434 static rtx inc_for_reload (rtx, rtx, rtx, int);
435 #ifdef AUTO_INC_DEC
436 static void add_auto_inc_notes (rtx, rtx);
437 #endif
438 static void copy_eh_notes (rtx, rtx);
439 static int reloads_conflict (int, int);
440 static rtx gen_reload (rtx, rtx, int, enum reload_type);
441 static rtx emit_insn_if_valid_for_reload (rtx);
443 /* Initialize the reload pass once per compilation. */
445 void
446 init_reload (void)
448 int i;
450 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
451 Set spill_indirect_levels to the number of levels such addressing is
452 permitted, zero if it is not permitted at all. */
454 rtx tem
455 = gen_rtx_MEM (Pmode,
456 gen_rtx_PLUS (Pmode,
457 gen_rtx_REG (Pmode,
458 LAST_VIRTUAL_REGISTER + 1),
459 GEN_INT (4)));
460 spill_indirect_levels = 0;
462 while (memory_address_p (QImode, tem))
464 spill_indirect_levels++;
465 tem = gen_rtx_MEM (Pmode, tem);
468 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
470 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
471 indirect_symref_ok = memory_address_p (QImode, tem);
473 /* See if reg+reg is a valid (and offsettable) address. */
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 tem = gen_rtx_PLUS (Pmode,
478 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
479 gen_rtx_REG (Pmode, i));
481 /* This way, we make sure that reg+reg is an offsettable address. */
482 tem = plus_constant (tem, 4);
484 if (memory_address_p (QImode, tem))
486 double_reg_address_ok = 1;
487 break;
491 /* Initialize obstack for our rtl allocation. */
492 gcc_obstack_init (&reload_obstack);
493 reload_startobj = obstack_alloc (&reload_obstack, 0);
495 INIT_REG_SET (&spilled_pseudos);
496 INIT_REG_SET (&pseudos_counted);
497 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
500 /* List of insn chains that are currently unused. */
501 static struct insn_chain *unused_insn_chains = 0;
503 /* Allocate an empty insn_chain structure. */
504 struct insn_chain *
505 new_insn_chain (void)
507 struct insn_chain *c;
509 if (unused_insn_chains == 0)
511 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
512 INIT_REG_SET (&c->live_throughout);
513 INIT_REG_SET (&c->dead_or_set);
515 else
517 c = unused_insn_chains;
518 unused_insn_chains = c->next;
520 c->is_caller_save_insn = 0;
521 c->need_operand_change = 0;
522 c->need_reload = 0;
523 c->need_elim = 0;
524 return c;
527 /* Small utility function to set all regs in hard reg set TO which are
528 allocated to pseudos in regset FROM. */
530 void
531 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
533 unsigned int regno;
534 reg_set_iterator rsi;
536 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
538 int r = reg_renumber[regno];
539 int nregs;
541 if (r < 0)
543 /* reload_combine uses the information from
544 BASIC_BLOCK->global_live_at_start, which might still
545 contain registers that have not actually been allocated
546 since they have an equivalence. */
547 gcc_assert (reload_completed);
549 else
551 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
552 while (nregs-- > 0)
553 SET_HARD_REG_BIT (*to, r + nregs);
558 /* Replace all pseudos found in LOC with their corresponding
559 equivalences. */
561 static void
562 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
564 rtx x = *loc;
565 enum rtx_code code;
566 const char *fmt;
567 int i, j;
569 if (! x)
570 return;
572 code = GET_CODE (x);
573 if (code == REG)
575 unsigned int regno = REGNO (x);
577 if (regno < FIRST_PSEUDO_REGISTER)
578 return;
580 x = eliminate_regs (x, mem_mode, usage);
581 if (x != *loc)
583 *loc = x;
584 replace_pseudos_in (loc, mem_mode, usage);
585 return;
588 if (reg_equiv_constant[regno])
589 *loc = reg_equiv_constant[regno];
590 else if (reg_equiv_mem[regno])
591 *loc = reg_equiv_mem[regno];
592 else if (reg_equiv_address[regno])
593 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
594 else
596 gcc_assert (!REG_P (regno_reg_rtx[regno])
597 || REGNO (regno_reg_rtx[regno]) != regno);
598 *loc = regno_reg_rtx[regno];
601 return;
603 else if (code == MEM)
605 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
606 return;
609 /* Process each of our operands recursively. */
610 fmt = GET_RTX_FORMAT (code);
611 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
612 if (*fmt == 'e')
613 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
614 else if (*fmt == 'E')
615 for (j = 0; j < XVECLEN (x, i); j++)
616 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
620 /* Global variables used by reload and its subroutines. */
622 /* Set during calculate_needs if an insn needs register elimination. */
623 static int something_needs_elimination;
624 /* Set during calculate_needs if an insn needs an operand changed. */
625 static int something_needs_operands_changed;
627 /* Nonzero means we couldn't get enough spill regs. */
628 static int failure;
630 /* Main entry point for the reload pass.
632 FIRST is the first insn of the function being compiled.
634 GLOBAL nonzero means we were called from global_alloc
635 and should attempt to reallocate any pseudoregs that we
636 displace from hard regs we will use for reloads.
637 If GLOBAL is zero, we do not have enough information to do that,
638 so any pseudo reg that is spilled must go to the stack.
640 Return value is nonzero if reload failed
641 and we must not do any more for this function. */
644 reload (rtx first, int global)
646 int i;
647 rtx insn;
648 struct elim_table *ep;
649 basic_block bb;
651 /* Make sure even insns with volatile mem refs are recognizable. */
652 init_recog ();
654 failure = 0;
656 reload_firstobj = obstack_alloc (&reload_obstack, 0);
658 /* Make sure that the last insn in the chain
659 is not something that needs reloading. */
660 emit_note (NOTE_INSN_DELETED);
662 /* Enable find_equiv_reg to distinguish insns made by reload. */
663 reload_first_uid = get_max_uid ();
665 #ifdef SECONDARY_MEMORY_NEEDED
666 /* Initialize the secondary memory table. */
667 clear_secondary_mem ();
668 #endif
670 /* We don't have a stack slot for any spill reg yet. */
671 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
672 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
674 /* Initialize the save area information for caller-save, in case some
675 are needed. */
676 init_save_areas ();
678 /* Compute which hard registers are now in use
679 as homes for pseudo registers.
680 This is done here rather than (eg) in global_alloc
681 because this point is reached even if not optimizing. */
682 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
683 mark_home_live (i);
685 /* A function that receives a nonlocal goto must save all call-saved
686 registers. */
687 if (current_function_has_nonlocal_label)
688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
689 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
690 regs_ever_live[i] = 1;
692 /* Find all the pseudo registers that didn't get hard regs
693 but do have known equivalent constants or memory slots.
694 These include parameters (known equivalent to parameter slots)
695 and cse'd or loop-moved constant memory addresses.
697 Record constant equivalents in reg_equiv_constant
698 so they will be substituted by find_reloads.
699 Record memory equivalents in reg_mem_equiv so they can
700 be substituted eventually by altering the REG-rtx's. */
702 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
703 reg_equiv_invariant = xcalloc (max_regno, sizeof (rtx));
704 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
705 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
706 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
707 reg_old_renumber = xcalloc (max_regno, sizeof (short));
708 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
709 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
710 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
712 CLEAR_HARD_REG_SET (bad_spill_regs_global);
714 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
715 to. Also find all paradoxical subregs and find largest such for
716 each pseudo. */
718 num_eliminable_invariants = 0;
719 for (insn = first; insn; insn = NEXT_INSN (insn))
721 rtx set = single_set (insn);
723 /* We may introduce USEs that we want to remove at the end, so
724 we'll mark them with QImode. Make sure there are no
725 previously-marked insns left by say regmove. */
726 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
727 && GET_MODE (insn) != VOIDmode)
728 PUT_MODE (insn, VOIDmode);
730 if (INSN_P (insn))
731 scan_paradoxical_subregs (PATTERN (insn));
733 if (set != 0 && REG_P (SET_DEST (set)))
735 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
736 rtx x;
738 if (! note)
739 continue;
741 i = REGNO (SET_DEST (set));
742 x = XEXP (note, 0);
744 if (i <= LAST_VIRTUAL_REGISTER)
745 continue;
747 if (! function_invariant_p (x)
748 || ! flag_pic
749 /* A function invariant is often CONSTANT_P but may
750 include a register. We promise to only pass
751 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
752 || (CONSTANT_P (x)
753 && LEGITIMATE_PIC_OPERAND_P (x)))
755 /* It can happen that a REG_EQUIV note contains a MEM
756 that is not a legitimate memory operand. As later
757 stages of reload assume that all addresses found
758 in the reg_equiv_* arrays were originally legitimate,
759 we ignore such REG_EQUIV notes. */
760 if (memory_operand (x, VOIDmode))
762 /* Always unshare the equivalence, so we can
763 substitute into this insn without touching the
764 equivalence. */
765 reg_equiv_memory_loc[i] = copy_rtx (x);
767 else if (function_invariant_p (x))
769 if (GET_CODE (x) == PLUS)
771 /* This is PLUS of frame pointer and a constant,
772 and might be shared. Unshare it. */
773 reg_equiv_invariant[i] = copy_rtx (x);
774 num_eliminable_invariants++;
776 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
778 reg_equiv_invariant[i] = x;
779 num_eliminable_invariants++;
781 else if (LEGITIMATE_CONSTANT_P (x))
782 reg_equiv_constant[i] = x;
783 else
785 reg_equiv_memory_loc[i]
786 = force_const_mem (GET_MODE (SET_DEST (set)), x);
787 if (! reg_equiv_memory_loc[i])
788 reg_equiv_init[i] = NULL_RTX;
791 else
793 reg_equiv_init[i] = NULL_RTX;
794 continue;
797 else
798 reg_equiv_init[i] = NULL_RTX;
802 if (dump_file)
803 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
804 if (reg_equiv_init[i])
806 fprintf (dump_file, "init_insns for %u: ", i);
807 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
808 fprintf (dump_file, "\n");
811 init_elim_table ();
813 first_label_num = get_first_label_num ();
814 num_labels = max_label_num () - first_label_num;
816 /* Allocate the tables used to store offset information at labels. */
817 /* We used to use alloca here, but the size of what it would try to
818 allocate would occasionally cause it to exceed the stack limit and
819 cause a core dump. */
820 offsets_known_at = xmalloc (num_labels);
821 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
823 /* Alter each pseudo-reg rtx to contain its hard reg number.
824 Assign stack slots to the pseudos that lack hard regs or equivalents.
825 Do not touch virtual registers. */
827 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 alter_reg (i, -1);
830 /* If we have some registers we think can be eliminated, scan all insns to
831 see if there is an insn that sets one of these registers to something
832 other than itself plus a constant. If so, the register cannot be
833 eliminated. Doing this scan here eliminates an extra pass through the
834 main reload loop in the most common case where register elimination
835 cannot be done. */
836 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
837 if (INSN_P (insn))
838 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
840 maybe_fix_stack_asms ();
842 insns_need_reload = 0;
843 something_needs_elimination = 0;
845 /* Initialize to -1, which means take the first spill register. */
846 last_spill_reg = -1;
848 /* Spill any hard regs that we know we can't eliminate. */
849 CLEAR_HARD_REG_SET (used_spill_regs);
850 /* There can be multiple ways to eliminate a register;
851 they should be listed adjacently.
852 Elimination for any register fails only if all possible ways fail. */
853 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
855 int from = ep->from;
856 int can_eliminate = 0;
859 can_eliminate |= ep->can_eliminate;
860 ep++;
862 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
863 if (! can_eliminate)
864 spill_hard_reg (from, 1);
867 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
868 if (frame_pointer_needed)
869 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
870 #endif
871 finish_spills (global);
873 /* From now on, we may need to generate moves differently. We may also
874 allow modifications of insns which cause them to not be recognized.
875 Any such modifications will be cleaned up during reload itself. */
876 reload_in_progress = 1;
878 /* This loop scans the entire function each go-round
879 and repeats until one repetition spills no additional hard regs. */
880 for (;;)
882 int something_changed;
883 int did_spill;
885 HOST_WIDE_INT starting_frame_size;
887 /* Round size of stack frame to stack_alignment_needed. This must be done
888 here because the stack size may be a part of the offset computation
889 for register elimination, and there might have been new stack slots
890 created in the last iteration of this loop. */
891 if (cfun->stack_alignment_needed)
892 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
894 starting_frame_size = get_frame_size ();
896 set_initial_elim_offsets ();
897 set_initial_label_offsets ();
899 /* For each pseudo register that has an equivalent location defined,
900 try to eliminate any eliminable registers (such as the frame pointer)
901 assuming initial offsets for the replacement register, which
902 is the normal case.
904 If the resulting location is directly addressable, substitute
905 the MEM we just got directly for the old REG.
907 If it is not addressable but is a constant or the sum of a hard reg
908 and constant, it is probably not addressable because the constant is
909 out of range, in that case record the address; we will generate
910 hairy code to compute the address in a register each time it is
911 needed. Similarly if it is a hard register, but one that is not
912 valid as an address register.
914 If the location is not addressable, but does not have one of the
915 above forms, assign a stack slot. We have to do this to avoid the
916 potential of producing lots of reloads if, e.g., a location involves
917 a pseudo that didn't get a hard register and has an equivalent memory
918 location that also involves a pseudo that didn't get a hard register.
920 Perhaps at some point we will improve reload_when_needed handling
921 so this problem goes away. But that's very hairy. */
923 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
924 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
926 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
928 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
929 XEXP (x, 0)))
930 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
931 else if (CONSTANT_P (XEXP (x, 0))
932 || (REG_P (XEXP (x, 0))
933 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
934 || (GET_CODE (XEXP (x, 0)) == PLUS
935 && REG_P (XEXP (XEXP (x, 0), 0))
936 && (REGNO (XEXP (XEXP (x, 0), 0))
937 < FIRST_PSEUDO_REGISTER)
938 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
939 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
940 else
942 /* Make a new stack slot. Then indicate that something
943 changed so we go back and recompute offsets for
944 eliminable registers because the allocation of memory
945 below might change some offset. reg_equiv_{mem,address}
946 will be set up for this pseudo on the next pass around
947 the loop. */
948 reg_equiv_memory_loc[i] = 0;
949 reg_equiv_init[i] = 0;
950 alter_reg (i, -1);
954 if (caller_save_needed)
955 setup_save_areas ();
957 /* If we allocated another stack slot, redo elimination bookkeeping. */
958 if (starting_frame_size != get_frame_size ())
959 continue;
961 if (caller_save_needed)
963 save_call_clobbered_regs ();
964 /* That might have allocated new insn_chain structures. */
965 reload_firstobj = obstack_alloc (&reload_obstack, 0);
968 calculate_needs_all_insns (global);
970 CLEAR_REG_SET (&spilled_pseudos);
971 did_spill = 0;
973 something_changed = 0;
975 /* If we allocated any new memory locations, make another pass
976 since it might have changed elimination offsets. */
977 if (starting_frame_size != get_frame_size ())
978 something_changed = 1;
980 /* Even if the frame size remained the same, we might still have
981 changed elimination offsets, e.g. if find_reloads called
982 force_const_mem requiring the back end to allocate a constant
983 pool base register that needs to be saved on the stack. */
984 else if (!verify_initial_elim_offsets ())
985 something_changed = 1;
988 HARD_REG_SET to_spill;
989 CLEAR_HARD_REG_SET (to_spill);
990 update_eliminables (&to_spill);
991 AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
994 if (TEST_HARD_REG_BIT (to_spill, i))
996 spill_hard_reg (i, 1);
997 did_spill = 1;
999 /* Regardless of the state of spills, if we previously had
1000 a register that we thought we could eliminate, but now can
1001 not eliminate, we must run another pass.
1003 Consider pseudos which have an entry in reg_equiv_* which
1004 reference an eliminable register. We must make another pass
1005 to update reg_equiv_* so that we do not substitute in the
1006 old value from when we thought the elimination could be
1007 performed. */
1008 something_changed = 1;
1012 select_reload_regs ();
1013 if (failure)
1014 goto failed;
1016 if (insns_need_reload != 0 || did_spill)
1017 something_changed |= finish_spills (global);
1019 if (! something_changed)
1020 break;
1022 if (caller_save_needed)
1023 delete_caller_save_insns ();
1025 obstack_free (&reload_obstack, reload_firstobj);
1028 /* If global-alloc was run, notify it of any register eliminations we have
1029 done. */
1030 if (global)
1031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1032 if (ep->can_eliminate)
1033 mark_elimination (ep->from, ep->to);
1035 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1036 If that insn didn't set the register (i.e., it copied the register to
1037 memory), just delete that insn instead of the equivalencing insn plus
1038 anything now dead. If we call delete_dead_insn on that insn, we may
1039 delete the insn that actually sets the register if the register dies
1040 there and that is incorrect. */
1042 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1044 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1046 rtx list;
1047 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1049 rtx equiv_insn = XEXP (list, 0);
1051 /* If we already deleted the insn or if it may trap, we can't
1052 delete it. The latter case shouldn't happen, but can
1053 if an insn has a variable address, gets a REG_EH_REGION
1054 note added to it, and then gets converted into a load
1055 from a constant address. */
1056 if (NOTE_P (equiv_insn)
1057 || can_throw_internal (equiv_insn))
1059 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1060 delete_dead_insn (equiv_insn);
1061 else
1062 SET_INSN_DELETED (equiv_insn);
1067 /* Use the reload registers where necessary
1068 by generating move instructions to move the must-be-register
1069 values into or out of the reload registers. */
1071 if (insns_need_reload != 0 || something_needs_elimination
1072 || something_needs_operands_changed)
1074 HOST_WIDE_INT old_frame_size = get_frame_size ();
1076 reload_as_needed (global);
1078 gcc_assert (old_frame_size == get_frame_size ());
1080 gcc_assert (verify_initial_elim_offsets ());
1083 /* If we were able to eliminate the frame pointer, show that it is no
1084 longer live at the start of any basic block. If it ls live by
1085 virtue of being in a pseudo, that pseudo will be marked live
1086 and hence the frame pointer will be known to be live via that
1087 pseudo. */
1089 if (! frame_pointer_needed)
1090 FOR_EACH_BB (bb)
1091 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1092 HARD_FRAME_POINTER_REGNUM);
1094 /* Come here (with failure set nonzero) if we can't get enough spill
1095 regs. */
1096 failed:
1098 CLEAR_REG_SET (&spilled_pseudos);
1099 reload_in_progress = 0;
1101 /* Now eliminate all pseudo regs by modifying them into
1102 their equivalent memory references.
1103 The REG-rtx's for the pseudos are modified in place,
1104 so all insns that used to refer to them now refer to memory.
1106 For a reg that has a reg_equiv_address, all those insns
1107 were changed by reloading so that no insns refer to it any longer;
1108 but the DECL_RTL of a variable decl may refer to it,
1109 and if so this causes the debugging info to mention the variable. */
1111 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1113 rtx addr = 0;
1115 if (reg_equiv_mem[i])
1116 addr = XEXP (reg_equiv_mem[i], 0);
1118 if (reg_equiv_address[i])
1119 addr = reg_equiv_address[i];
1121 if (addr)
1123 if (reg_renumber[i] < 0)
1125 rtx reg = regno_reg_rtx[i];
1127 REG_USERVAR_P (reg) = 0;
1128 PUT_CODE (reg, MEM);
1129 XEXP (reg, 0) = addr;
1130 if (reg_equiv_memory_loc[i])
1131 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1132 else
1134 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1135 MEM_ATTRS (reg) = 0;
1137 MEM_NOTRAP_P (reg) = 1;
1139 else if (reg_equiv_mem[i])
1140 XEXP (reg_equiv_mem[i], 0) = addr;
1144 /* We must set reload_completed now since the cleanup_subreg_operands call
1145 below will re-recognize each insn and reload may have generated insns
1146 which are only valid during and after reload. */
1147 reload_completed = 1;
1149 /* Make a pass over all the insns and delete all USEs which we inserted
1150 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1151 notes. Delete all CLOBBER insns, except those that refer to the return
1152 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1153 from misarranging variable-array code, and simplify (subreg (reg))
1154 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1155 are no longer useful or accurate. Strip and regenerate REG_INC notes
1156 that may have been moved around. */
1158 for (insn = first; insn; insn = NEXT_INSN (insn))
1159 if (INSN_P (insn))
1161 rtx *pnote;
1163 if (CALL_P (insn))
1164 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1165 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1167 if ((GET_CODE (PATTERN (insn)) == USE
1168 /* We mark with QImode USEs introduced by reload itself. */
1169 && (GET_MODE (insn) == QImode
1170 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1171 || (GET_CODE (PATTERN (insn)) == CLOBBER
1172 && (!MEM_P (XEXP (PATTERN (insn), 0))
1173 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1174 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1175 && XEXP (XEXP (PATTERN (insn), 0), 0)
1176 != stack_pointer_rtx))
1177 && (!REG_P (XEXP (PATTERN (insn), 0))
1178 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1180 delete_insn (insn);
1181 continue;
1184 /* Some CLOBBERs may survive until here and still reference unassigned
1185 pseudos with const equivalent, which may in turn cause ICE in later
1186 passes if the reference remains in place. */
1187 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1188 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1189 VOIDmode, PATTERN (insn));
1191 /* Discard obvious no-ops, even without -O. This optimization
1192 is fast and doesn't interfere with debugging. */
1193 if (NONJUMP_INSN_P (insn)
1194 && GET_CODE (PATTERN (insn)) == SET
1195 && REG_P (SET_SRC (PATTERN (insn)))
1196 && REG_P (SET_DEST (PATTERN (insn)))
1197 && (REGNO (SET_SRC (PATTERN (insn)))
1198 == REGNO (SET_DEST (PATTERN (insn)))))
1200 delete_insn (insn);
1201 continue;
1204 pnote = &REG_NOTES (insn);
1205 while (*pnote != 0)
1207 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1208 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1209 || REG_NOTE_KIND (*pnote) == REG_INC
1210 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1211 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1212 *pnote = XEXP (*pnote, 1);
1213 else
1214 pnote = &XEXP (*pnote, 1);
1217 #ifdef AUTO_INC_DEC
1218 add_auto_inc_notes (insn, PATTERN (insn));
1219 #endif
1221 /* And simplify (subreg (reg)) if it appears as an operand. */
1222 cleanup_subreg_operands (insn);
1225 /* If we are doing stack checking, give a warning if this function's
1226 frame size is larger than we expect. */
1227 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1229 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1230 static int verbose_warned = 0;
1232 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1233 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1234 size += UNITS_PER_WORD;
1236 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1238 warning (0, "frame size too large for reliable stack checking");
1239 if (! verbose_warned)
1241 warning (0, "try reducing the number of local variables");
1242 verbose_warned = 1;
1247 /* Indicate that we no longer have known memory locations or constants. */
1248 if (reg_equiv_constant)
1249 free (reg_equiv_constant);
1250 if (reg_equiv_invariant)
1251 free (reg_equiv_invariant);
1252 reg_equiv_constant = 0;
1253 reg_equiv_invariant = 0;
1254 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
1255 reg_equiv_memory_loc = 0;
1257 if (offsets_known_at)
1258 free (offsets_known_at);
1259 if (offsets_at)
1260 free (offsets_at);
1262 free (reg_equiv_mem);
1263 reg_equiv_init = 0;
1264 free (reg_equiv_address);
1265 free (reg_max_ref_width);
1266 free (reg_old_renumber);
1267 free (pseudo_previous_regs);
1268 free (pseudo_forbidden_regs);
1270 CLEAR_HARD_REG_SET (used_spill_regs);
1271 for (i = 0; i < n_spills; i++)
1272 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1274 /* Free all the insn_chain structures at once. */
1275 obstack_free (&reload_obstack, reload_startobj);
1276 unused_insn_chains = 0;
1277 fixup_abnormal_edges ();
1279 /* Replacing pseudos with their memory equivalents might have
1280 created shared rtx. Subsequent passes would get confused
1281 by this, so unshare everything here. */
1282 unshare_all_rtl_again (first);
1284 #ifdef STACK_BOUNDARY
1285 /* init_emit has set the alignment of the hard frame pointer
1286 to STACK_BOUNDARY. It is very likely no longer valid if
1287 the hard frame pointer was used for register allocation. */
1288 if (!frame_pointer_needed)
1289 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1290 #endif
1292 return failure;
1295 /* Yet another special case. Unfortunately, reg-stack forces people to
1296 write incorrect clobbers in asm statements. These clobbers must not
1297 cause the register to appear in bad_spill_regs, otherwise we'll call
1298 fatal_insn later. We clear the corresponding regnos in the live
1299 register sets to avoid this.
1300 The whole thing is rather sick, I'm afraid. */
1302 static void
1303 maybe_fix_stack_asms (void)
1305 #ifdef STACK_REGS
1306 const char *constraints[MAX_RECOG_OPERANDS];
1307 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1308 struct insn_chain *chain;
1310 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1312 int i, noperands;
1313 HARD_REG_SET clobbered, allowed;
1314 rtx pat;
1316 if (! INSN_P (chain->insn)
1317 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1318 continue;
1319 pat = PATTERN (chain->insn);
1320 if (GET_CODE (pat) != PARALLEL)
1321 continue;
1323 CLEAR_HARD_REG_SET (clobbered);
1324 CLEAR_HARD_REG_SET (allowed);
1326 /* First, make a mask of all stack regs that are clobbered. */
1327 for (i = 0; i < XVECLEN (pat, 0); i++)
1329 rtx t = XVECEXP (pat, 0, i);
1330 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1331 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1334 /* Get the operand values and constraints out of the insn. */
1335 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1336 constraints, operand_mode);
1338 /* For every operand, see what registers are allowed. */
1339 for (i = 0; i < noperands; i++)
1341 const char *p = constraints[i];
1342 /* For every alternative, we compute the class of registers allowed
1343 for reloading in CLS, and merge its contents into the reg set
1344 ALLOWED. */
1345 int cls = (int) NO_REGS;
1347 for (;;)
1349 char c = *p;
1351 if (c == '\0' || c == ',' || c == '#')
1353 /* End of one alternative - mark the regs in the current
1354 class, and reset the class. */
1355 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1356 cls = NO_REGS;
1357 p++;
1358 if (c == '#')
1359 do {
1360 c = *p++;
1361 } while (c != '\0' && c != ',');
1362 if (c == '\0')
1363 break;
1364 continue;
1367 switch (c)
1369 case '=': case '+': case '*': case '%': case '?': case '!':
1370 case '0': case '1': case '2': case '3': case '4': case 'm':
1371 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1372 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1373 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1374 case 'P':
1375 break;
1377 case 'p':
1378 cls = (int) reg_class_subunion[cls]
1379 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1380 break;
1382 case 'g':
1383 case 'r':
1384 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1385 break;
1387 default:
1388 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1389 cls = (int) reg_class_subunion[cls]
1390 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1391 else
1392 cls = (int) reg_class_subunion[cls]
1393 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1395 p += CONSTRAINT_LEN (c, p);
1398 /* Those of the registers which are clobbered, but allowed by the
1399 constraints, must be usable as reload registers. So clear them
1400 out of the life information. */
1401 AND_HARD_REG_SET (allowed, clobbered);
1402 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1403 if (TEST_HARD_REG_BIT (allowed, i))
1405 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1406 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1410 #endif
1413 /* Copy the global variables n_reloads and rld into the corresponding elts
1414 of CHAIN. */
1415 static void
1416 copy_reloads (struct insn_chain *chain)
1418 chain->n_reloads = n_reloads;
1419 chain->rld = obstack_alloc (&reload_obstack,
1420 n_reloads * sizeof (struct reload));
1421 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1422 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1425 /* Walk the chain of insns, and determine for each whether it needs reloads
1426 and/or eliminations. Build the corresponding insns_need_reload list, and
1427 set something_needs_elimination as appropriate. */
1428 static void
1429 calculate_needs_all_insns (int global)
1431 struct insn_chain **pprev_reload = &insns_need_reload;
1432 struct insn_chain *chain, *next = 0;
1434 something_needs_elimination = 0;
1436 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1437 for (chain = reload_insn_chain; chain != 0; chain = next)
1439 rtx insn = chain->insn;
1441 next = chain->next;
1443 /* Clear out the shortcuts. */
1444 chain->n_reloads = 0;
1445 chain->need_elim = 0;
1446 chain->need_reload = 0;
1447 chain->need_operand_change = 0;
1449 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1450 include REG_LABEL), we need to see what effects this has on the
1451 known offsets at labels. */
1453 if (LABEL_P (insn) || JUMP_P (insn)
1454 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1455 set_label_offsets (insn, insn, 0);
1457 if (INSN_P (insn))
1459 rtx old_body = PATTERN (insn);
1460 int old_code = INSN_CODE (insn);
1461 rtx old_notes = REG_NOTES (insn);
1462 int did_elimination = 0;
1463 int operands_changed = 0;
1464 rtx set = single_set (insn);
1466 /* Skip insns that only set an equivalence. */
1467 if (set && REG_P (SET_DEST (set))
1468 && reg_renumber[REGNO (SET_DEST (set))] < 0
1469 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1470 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1471 && reg_equiv_init[REGNO (SET_DEST (set))])
1472 continue;
1474 /* If needed, eliminate any eliminable registers. */
1475 if (num_eliminable || num_eliminable_invariants)
1476 did_elimination = eliminate_regs_in_insn (insn, 0);
1478 /* Analyze the instruction. */
1479 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1480 global, spill_reg_order);
1482 /* If a no-op set needs more than one reload, this is likely
1483 to be something that needs input address reloads. We
1484 can't get rid of this cleanly later, and it is of no use
1485 anyway, so discard it now.
1486 We only do this when expensive_optimizations is enabled,
1487 since this complements reload inheritance / output
1488 reload deletion, and it can make debugging harder. */
1489 if (flag_expensive_optimizations && n_reloads > 1)
1491 rtx set = single_set (insn);
1492 if (set
1493 && SET_SRC (set) == SET_DEST (set)
1494 && REG_P (SET_SRC (set))
1495 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1497 delete_insn (insn);
1498 /* Delete it from the reload chain. */
1499 if (chain->prev)
1500 chain->prev->next = next;
1501 else
1502 reload_insn_chain = next;
1503 if (next)
1504 next->prev = chain->prev;
1505 chain->next = unused_insn_chains;
1506 unused_insn_chains = chain;
1507 continue;
1510 if (num_eliminable)
1511 update_eliminable_offsets ();
1513 /* Remember for later shortcuts which insns had any reloads or
1514 register eliminations. */
1515 chain->need_elim = did_elimination;
1516 chain->need_reload = n_reloads > 0;
1517 chain->need_operand_change = operands_changed;
1519 /* Discard any register replacements done. */
1520 if (did_elimination)
1522 obstack_free (&reload_obstack, reload_insn_firstobj);
1523 PATTERN (insn) = old_body;
1524 INSN_CODE (insn) = old_code;
1525 REG_NOTES (insn) = old_notes;
1526 something_needs_elimination = 1;
1529 something_needs_operands_changed |= operands_changed;
1531 if (n_reloads != 0)
1533 copy_reloads (chain);
1534 *pprev_reload = chain;
1535 pprev_reload = &chain->next_need_reload;
1539 *pprev_reload = 0;
1542 /* Comparison function for qsort to decide which of two reloads
1543 should be handled first. *P1 and *P2 are the reload numbers. */
1545 static int
1546 reload_reg_class_lower (const void *r1p, const void *r2p)
1548 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1549 int t;
1551 /* Consider required reloads before optional ones. */
1552 t = rld[r1].optional - rld[r2].optional;
1553 if (t != 0)
1554 return t;
1556 /* Count all solitary classes before non-solitary ones. */
1557 t = ((reg_class_size[(int) rld[r2].class] == 1)
1558 - (reg_class_size[(int) rld[r1].class] == 1));
1559 if (t != 0)
1560 return t;
1562 /* Aside from solitaires, consider all multi-reg groups first. */
1563 t = rld[r2].nregs - rld[r1].nregs;
1564 if (t != 0)
1565 return t;
1567 /* Consider reloads in order of increasing reg-class number. */
1568 t = (int) rld[r1].class - (int) rld[r2].class;
1569 if (t != 0)
1570 return t;
1572 /* If reloads are equally urgent, sort by reload number,
1573 so that the results of qsort leave nothing to chance. */
1574 return r1 - r2;
1577 /* The cost of spilling each hard reg. */
1578 static int spill_cost[FIRST_PSEUDO_REGISTER];
1580 /* When spilling multiple hard registers, we use SPILL_COST for the first
1581 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1582 only the first hard reg for a multi-reg pseudo. */
1583 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1585 /* Update the spill cost arrays, considering that pseudo REG is live. */
1587 static void
1588 count_pseudo (int reg)
1590 int freq = REG_FREQ (reg);
1591 int r = reg_renumber[reg];
1592 int nregs;
1594 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1595 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1596 return;
1598 SET_REGNO_REG_SET (&pseudos_counted, reg);
1600 gcc_assert (r >= 0);
1602 spill_add_cost[r] += freq;
1604 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1605 while (nregs-- > 0)
1606 spill_cost[r + nregs] += freq;
1609 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1610 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1612 static void
1613 order_regs_for_reload (struct insn_chain *chain)
1615 unsigned i;
1616 HARD_REG_SET used_by_pseudos;
1617 HARD_REG_SET used_by_pseudos2;
1618 reg_set_iterator rsi;
1620 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1622 memset (spill_cost, 0, sizeof spill_cost);
1623 memset (spill_add_cost, 0, sizeof spill_add_cost);
1625 /* Count number of uses of each hard reg by pseudo regs allocated to it
1626 and then order them by decreasing use. First exclude hard registers
1627 that are live in or across this insn. */
1629 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1630 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1631 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1632 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1634 /* Now find out which pseudos are allocated to it, and update
1635 hard_reg_n_uses. */
1636 CLEAR_REG_SET (&pseudos_counted);
1638 EXECUTE_IF_SET_IN_REG_SET
1639 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1641 count_pseudo (i);
1643 EXECUTE_IF_SET_IN_REG_SET
1644 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1646 count_pseudo (i);
1648 CLEAR_REG_SET (&pseudos_counted);
1651 /* Vector of reload-numbers showing the order in which the reloads should
1652 be processed. */
1653 static short reload_order[MAX_RELOADS];
1655 /* This is used to keep track of the spill regs used in one insn. */
1656 static HARD_REG_SET used_spill_regs_local;
1658 /* We decided to spill hard register SPILLED, which has a size of
1659 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1660 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1661 update SPILL_COST/SPILL_ADD_COST. */
1663 static void
1664 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1666 int r = reg_renumber[reg];
1667 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1669 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1670 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1671 return;
1673 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1675 spill_add_cost[r] -= REG_FREQ (reg);
1676 while (nregs-- > 0)
1677 spill_cost[r + nregs] -= REG_FREQ (reg);
1680 /* Find reload register to use for reload number ORDER. */
1682 static int
1683 find_reg (struct insn_chain *chain, int order)
1685 int rnum = reload_order[order];
1686 struct reload *rl = rld + rnum;
1687 int best_cost = INT_MAX;
1688 int best_reg = -1;
1689 unsigned int i, j;
1690 int k;
1691 HARD_REG_SET not_usable;
1692 HARD_REG_SET used_by_other_reload;
1693 reg_set_iterator rsi;
1695 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1696 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1697 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1699 CLEAR_HARD_REG_SET (used_by_other_reload);
1700 for (k = 0; k < order; k++)
1702 int other = reload_order[k];
1704 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1705 for (j = 0; j < rld[other].nregs; j++)
1706 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1709 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1711 unsigned int regno = i;
1713 if (! TEST_HARD_REG_BIT (not_usable, regno)
1714 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1715 && HARD_REGNO_MODE_OK (regno, rl->mode))
1717 int this_cost = spill_cost[regno];
1718 int ok = 1;
1719 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1721 for (j = 1; j < this_nregs; j++)
1723 this_cost += spill_add_cost[regno + j];
1724 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1725 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1726 ok = 0;
1728 if (! ok)
1729 continue;
1730 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1731 this_cost--;
1732 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1733 this_cost--;
1734 if (this_cost < best_cost
1735 /* Among registers with equal cost, prefer caller-saved ones, or
1736 use REG_ALLOC_ORDER if it is defined. */
1737 || (this_cost == best_cost
1738 #ifdef REG_ALLOC_ORDER
1739 && (inv_reg_alloc_order[regno]
1740 < inv_reg_alloc_order[best_reg])
1741 #else
1742 && call_used_regs[regno]
1743 && ! call_used_regs[best_reg]
1744 #endif
1747 best_reg = regno;
1748 best_cost = this_cost;
1752 if (best_reg == -1)
1753 return 0;
1755 if (dump_file)
1756 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1758 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1759 rl->regno = best_reg;
1761 EXECUTE_IF_SET_IN_REG_SET
1762 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1764 count_spilled_pseudo (best_reg, rl->nregs, j);
1767 EXECUTE_IF_SET_IN_REG_SET
1768 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1770 count_spilled_pseudo (best_reg, rl->nregs, j);
1773 for (i = 0; i < rl->nregs; i++)
1775 gcc_assert (spill_cost[best_reg + i] == 0);
1776 gcc_assert (spill_add_cost[best_reg + i] == 0);
1777 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1779 return 1;
1782 /* Find more reload regs to satisfy the remaining need of an insn, which
1783 is given by CHAIN.
1784 Do it by ascending class number, since otherwise a reg
1785 might be spilled for a big class and might fail to count
1786 for a smaller class even though it belongs to that class. */
1788 static void
1789 find_reload_regs (struct insn_chain *chain)
1791 int i;
1793 /* In order to be certain of getting the registers we need,
1794 we must sort the reloads into order of increasing register class.
1795 Then our grabbing of reload registers will parallel the process
1796 that provided the reload registers. */
1797 for (i = 0; i < chain->n_reloads; i++)
1799 /* Show whether this reload already has a hard reg. */
1800 if (chain->rld[i].reg_rtx)
1802 int regno = REGNO (chain->rld[i].reg_rtx);
1803 chain->rld[i].regno = regno;
1804 chain->rld[i].nregs
1805 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1807 else
1808 chain->rld[i].regno = -1;
1809 reload_order[i] = i;
1812 n_reloads = chain->n_reloads;
1813 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1815 CLEAR_HARD_REG_SET (used_spill_regs_local);
1817 if (dump_file)
1818 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1820 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1822 /* Compute the order of preference for hard registers to spill. */
1824 order_regs_for_reload (chain);
1826 for (i = 0; i < n_reloads; i++)
1828 int r = reload_order[i];
1830 /* Ignore reloads that got marked inoperative. */
1831 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1832 && ! rld[r].optional
1833 && rld[r].regno == -1)
1834 if (! find_reg (chain, i))
1836 spill_failure (chain->insn, rld[r].class);
1837 failure = 1;
1838 return;
1842 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1843 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1845 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1848 static void
1849 select_reload_regs (void)
1851 struct insn_chain *chain;
1853 /* Try to satisfy the needs for each insn. */
1854 for (chain = insns_need_reload; chain != 0;
1855 chain = chain->next_need_reload)
1856 find_reload_regs (chain);
1859 /* Delete all insns that were inserted by emit_caller_save_insns during
1860 this iteration. */
1861 static void
1862 delete_caller_save_insns (void)
1864 struct insn_chain *c = reload_insn_chain;
1866 while (c != 0)
1868 while (c != 0 && c->is_caller_save_insn)
1870 struct insn_chain *next = c->next;
1871 rtx insn = c->insn;
1873 if (c == reload_insn_chain)
1874 reload_insn_chain = next;
1875 delete_insn (insn);
1877 if (next)
1878 next->prev = c->prev;
1879 if (c->prev)
1880 c->prev->next = next;
1881 c->next = unused_insn_chains;
1882 unused_insn_chains = c;
1883 c = next;
1885 if (c != 0)
1886 c = c->next;
1890 /* Handle the failure to find a register to spill.
1891 INSN should be one of the insns which needed this particular spill reg. */
1893 static void
1894 spill_failure (rtx insn, enum reg_class class)
1896 if (asm_noperands (PATTERN (insn)) >= 0)
1897 error_for_asm (insn, "can't find a register in class %qs while "
1898 "reloading %<asm%>",
1899 reg_class_names[class]);
1900 else
1902 error ("unable to find a register to spill in class %qs",
1903 reg_class_names[class]);
1904 fatal_insn ("this is the insn:", insn);
1908 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1909 data that is dead in INSN. */
1911 static void
1912 delete_dead_insn (rtx insn)
1914 rtx prev = prev_real_insn (insn);
1915 rtx prev_dest;
1917 /* If the previous insn sets a register that dies in our insn, delete it
1918 too. */
1919 if (prev && GET_CODE (PATTERN (prev)) == SET
1920 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1921 && reg_mentioned_p (prev_dest, PATTERN (insn))
1922 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1923 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1924 delete_dead_insn (prev);
1926 SET_INSN_DELETED (insn);
1929 /* Modify the home of pseudo-reg I.
1930 The new home is present in reg_renumber[I].
1932 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1933 or it may be -1, meaning there is none or it is not relevant.
1934 This is used so that all pseudos spilled from a given hard reg
1935 can share one stack slot. */
1937 static void
1938 alter_reg (int i, int from_reg)
1940 /* When outputting an inline function, this can happen
1941 for a reg that isn't actually used. */
1942 if (regno_reg_rtx[i] == 0)
1943 return;
1945 /* If the reg got changed to a MEM at rtl-generation time,
1946 ignore it. */
1947 if (!REG_P (regno_reg_rtx[i]))
1948 return;
1950 /* Modify the reg-rtx to contain the new hard reg
1951 number or else to contain its pseudo reg number. */
1952 REGNO (regno_reg_rtx[i])
1953 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1955 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1956 allocate a stack slot for it. */
1958 if (reg_renumber[i] < 0
1959 && REG_N_REFS (i) > 0
1960 && reg_equiv_constant[i] == 0
1961 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1962 && reg_equiv_memory_loc[i] == 0)
1964 rtx x;
1965 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1966 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1967 int adjust = 0;
1969 /* Each pseudo reg has an inherent size which comes from its own mode,
1970 and a total size which provides room for paradoxical subregs
1971 which refer to the pseudo reg in wider modes.
1973 We can use a slot already allocated if it provides both
1974 enough inherent space and enough total space.
1975 Otherwise, we allocate a new slot, making sure that it has no less
1976 inherent space, and no less total space, then the previous slot. */
1977 if (from_reg == -1)
1979 /* No known place to spill from => no slot to reuse. */
1980 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1981 inherent_size == total_size ? 0 : -1);
1982 if (BYTES_BIG_ENDIAN)
1983 /* Cancel the big-endian correction done in assign_stack_local.
1984 Get the address of the beginning of the slot.
1985 This is so we can do a big-endian correction unconditionally
1986 below. */
1987 adjust = inherent_size - total_size;
1989 /* Nothing can alias this slot except this pseudo. */
1990 set_mem_alias_set (x, new_alias_set ());
1993 /* Reuse a stack slot if possible. */
1994 else if (spill_stack_slot[from_reg] != 0
1995 && spill_stack_slot_width[from_reg] >= total_size
1996 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1997 >= inherent_size))
1998 x = spill_stack_slot[from_reg];
2000 /* Allocate a bigger slot. */
2001 else
2003 /* Compute maximum size needed, both for inherent size
2004 and for total size. */
2005 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2006 rtx stack_slot;
2008 if (spill_stack_slot[from_reg])
2010 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2011 > inherent_size)
2012 mode = GET_MODE (spill_stack_slot[from_reg]);
2013 if (spill_stack_slot_width[from_reg] > total_size)
2014 total_size = spill_stack_slot_width[from_reg];
2017 /* Make a slot with that size. */
2018 x = assign_stack_local (mode, total_size,
2019 inherent_size == total_size ? 0 : -1);
2020 stack_slot = x;
2022 /* All pseudos mapped to this slot can alias each other. */
2023 if (spill_stack_slot[from_reg])
2024 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2025 else
2026 set_mem_alias_set (x, new_alias_set ());
2028 if (BYTES_BIG_ENDIAN)
2030 /* Cancel the big-endian correction done in assign_stack_local.
2031 Get the address of the beginning of the slot.
2032 This is so we can do a big-endian correction unconditionally
2033 below. */
2034 adjust = GET_MODE_SIZE (mode) - total_size;
2035 if (adjust)
2036 stack_slot
2037 = adjust_address_nv (x, mode_for_size (total_size
2038 * BITS_PER_UNIT,
2039 MODE_INT, 1),
2040 adjust);
2043 spill_stack_slot[from_reg] = stack_slot;
2044 spill_stack_slot_width[from_reg] = total_size;
2047 /* On a big endian machine, the "address" of the slot
2048 is the address of the low part that fits its inherent mode. */
2049 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2050 adjust += (total_size - inherent_size);
2052 /* If we have any adjustment to make, or if the stack slot is the
2053 wrong mode, make a new stack slot. */
2054 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2056 /* If we have a decl for the original register, set it for the
2057 memory. If this is a shared MEM, make a copy. */
2058 if (REG_EXPR (regno_reg_rtx[i])
2059 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2061 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2063 /* We can do this only for the DECLs home pseudo, not for
2064 any copies of it, since otherwise when the stack slot
2065 is reused, nonoverlapping_memrefs_p might think they
2066 cannot overlap. */
2067 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2069 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2070 x = copy_rtx (x);
2072 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2076 /* Save the stack slot for later. */
2077 reg_equiv_memory_loc[i] = x;
2081 /* Mark the slots in regs_ever_live for the hard regs
2082 used by pseudo-reg number REGNO. */
2084 void
2085 mark_home_live (int regno)
2087 int i, lim;
2089 i = reg_renumber[regno];
2090 if (i < 0)
2091 return;
2092 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2093 while (i < lim)
2094 regs_ever_live[i++] = 1;
2097 /* This function handles the tracking of elimination offsets around branches.
2099 X is a piece of RTL being scanned.
2101 INSN is the insn that it came from, if any.
2103 INITIAL_P is nonzero if we are to set the offset to be the initial
2104 offset and zero if we are setting the offset of the label to be the
2105 current offset. */
2107 static void
2108 set_label_offsets (rtx x, rtx insn, int initial_p)
2110 enum rtx_code code = GET_CODE (x);
2111 rtx tem;
2112 unsigned int i;
2113 struct elim_table *p;
2115 switch (code)
2117 case LABEL_REF:
2118 if (LABEL_REF_NONLOCAL_P (x))
2119 return;
2121 x = XEXP (x, 0);
2123 /* ... fall through ... */
2125 case CODE_LABEL:
2126 /* If we know nothing about this label, set the desired offsets. Note
2127 that this sets the offset at a label to be the offset before a label
2128 if we don't know anything about the label. This is not correct for
2129 the label after a BARRIER, but is the best guess we can make. If
2130 we guessed wrong, we will suppress an elimination that might have
2131 been possible had we been able to guess correctly. */
2133 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2135 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2136 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2137 = (initial_p ? reg_eliminate[i].initial_offset
2138 : reg_eliminate[i].offset);
2139 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2142 /* Otherwise, if this is the definition of a label and it is
2143 preceded by a BARRIER, set our offsets to the known offset of
2144 that label. */
2146 else if (x == insn
2147 && (tem = prev_nonnote_insn (insn)) != 0
2148 && BARRIER_P (tem))
2149 set_offsets_for_label (insn);
2150 else
2151 /* If neither of the above cases is true, compare each offset
2152 with those previously recorded and suppress any eliminations
2153 where the offsets disagree. */
2155 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2156 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2157 != (initial_p ? reg_eliminate[i].initial_offset
2158 : reg_eliminate[i].offset))
2159 reg_eliminate[i].can_eliminate = 0;
2161 return;
2163 case JUMP_INSN:
2164 set_label_offsets (PATTERN (insn), insn, initial_p);
2166 /* ... fall through ... */
2168 case INSN:
2169 case CALL_INSN:
2170 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2171 and hence must have all eliminations at their initial offsets. */
2172 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2173 if (REG_NOTE_KIND (tem) == REG_LABEL)
2174 set_label_offsets (XEXP (tem, 0), insn, 1);
2175 return;
2177 case PARALLEL:
2178 case ADDR_VEC:
2179 case ADDR_DIFF_VEC:
2180 /* Each of the labels in the parallel or address vector must be
2181 at their initial offsets. We want the first field for PARALLEL
2182 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2184 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2185 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2186 insn, initial_p);
2187 return;
2189 case SET:
2190 /* We only care about setting PC. If the source is not RETURN,
2191 IF_THEN_ELSE, or a label, disable any eliminations not at
2192 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2193 isn't one of those possibilities. For branches to a label,
2194 call ourselves recursively.
2196 Note that this can disable elimination unnecessarily when we have
2197 a non-local goto since it will look like a non-constant jump to
2198 someplace in the current function. This isn't a significant
2199 problem since such jumps will normally be when all elimination
2200 pairs are back to their initial offsets. */
2202 if (SET_DEST (x) != pc_rtx)
2203 return;
2205 switch (GET_CODE (SET_SRC (x)))
2207 case PC:
2208 case RETURN:
2209 return;
2211 case LABEL_REF:
2212 set_label_offsets (SET_SRC (x), insn, initial_p);
2213 return;
2215 case IF_THEN_ELSE:
2216 tem = XEXP (SET_SRC (x), 1);
2217 if (GET_CODE (tem) == LABEL_REF)
2218 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2219 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2220 break;
2222 tem = XEXP (SET_SRC (x), 2);
2223 if (GET_CODE (tem) == LABEL_REF)
2224 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2225 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2226 break;
2227 return;
2229 default:
2230 break;
2233 /* If we reach here, all eliminations must be at their initial
2234 offset because we are doing a jump to a variable address. */
2235 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2236 if (p->offset != p->initial_offset)
2237 p->can_eliminate = 0;
2238 break;
2240 default:
2241 break;
2245 /* Scan X and replace any eliminable registers (such as fp) with a
2246 replacement (such as sp), plus an offset.
2248 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2249 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2250 MEM, we are allowed to replace a sum of a register and the constant zero
2251 with the register, which we cannot do outside a MEM. In addition, we need
2252 to record the fact that a register is referenced outside a MEM.
2254 If INSN is an insn, it is the insn containing X. If we replace a REG
2255 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2256 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2257 the REG is being modified.
2259 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2260 That's used when we eliminate in expressions stored in notes.
2261 This means, do not set ref_outside_mem even if the reference
2262 is outside of MEMs.
2264 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2265 replacements done assuming all offsets are at their initial values. If
2266 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2267 encounter, return the actual location so that find_reloads will do
2268 the proper thing. */
2270 static rtx
2271 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2272 bool may_use_invariant)
2274 enum rtx_code code = GET_CODE (x);
2275 struct elim_table *ep;
2276 int regno;
2277 rtx new;
2278 int i, j;
2279 const char *fmt;
2280 int copied = 0;
2282 if (! current_function_decl)
2283 return x;
2285 switch (code)
2287 case CONST_INT:
2288 case CONST_DOUBLE:
2289 case CONST_VECTOR:
2290 case CONST:
2291 case SYMBOL_REF:
2292 case CODE_LABEL:
2293 case PC:
2294 case CC0:
2295 case ASM_INPUT:
2296 case ADDR_VEC:
2297 case ADDR_DIFF_VEC:
2298 case RETURN:
2299 return x;
2301 case REG:
2302 regno = REGNO (x);
2304 /* First handle the case where we encounter a bare register that
2305 is eliminable. Replace it with a PLUS. */
2306 if (regno < FIRST_PSEUDO_REGISTER)
2308 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2309 ep++)
2310 if (ep->from_rtx == x && ep->can_eliminate)
2311 return plus_constant (ep->to_rtx, ep->previous_offset);
2314 else if (reg_renumber && reg_renumber[regno] < 0
2315 && reg_equiv_invariant && reg_equiv_invariant[regno])
2317 if (may_use_invariant)
2318 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2319 mem_mode, insn, true);
2320 /* There exists at least one use of REGNO that cannot be
2321 eliminated. Prevent the defining insn from being deleted. */
2322 reg_equiv_init[regno] = NULL_RTX;
2323 alter_reg (regno, -1);
2325 return x;
2327 /* You might think handling MINUS in a manner similar to PLUS is a
2328 good idea. It is not. It has been tried multiple times and every
2329 time the change has had to have been reverted.
2331 Other parts of reload know a PLUS is special (gen_reload for example)
2332 and require special code to handle code a reloaded PLUS operand.
2334 Also consider backends where the flags register is clobbered by a
2335 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2336 lea instruction comes to mind). If we try to reload a MINUS, we
2337 may kill the flags register that was holding a useful value.
2339 So, please before trying to handle MINUS, consider reload as a
2340 whole instead of this little section as well as the backend issues. */
2341 case PLUS:
2342 /* If this is the sum of an eliminable register and a constant, rework
2343 the sum. */
2344 if (REG_P (XEXP (x, 0))
2345 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2346 && CONSTANT_P (XEXP (x, 1)))
2348 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2349 ep++)
2350 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2352 /* The only time we want to replace a PLUS with a REG (this
2353 occurs when the constant operand of the PLUS is the negative
2354 of the offset) is when we are inside a MEM. We won't want
2355 to do so at other times because that would change the
2356 structure of the insn in a way that reload can't handle.
2357 We special-case the commonest situation in
2358 eliminate_regs_in_insn, so just replace a PLUS with a
2359 PLUS here, unless inside a MEM. */
2360 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2361 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2362 return ep->to_rtx;
2363 else
2364 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2365 plus_constant (XEXP (x, 1),
2366 ep->previous_offset));
2369 /* If the register is not eliminable, we are done since the other
2370 operand is a constant. */
2371 return x;
2374 /* If this is part of an address, we want to bring any constant to the
2375 outermost PLUS. We will do this by doing register replacement in
2376 our operands and seeing if a constant shows up in one of them.
2378 Note that there is no risk of modifying the structure of the insn,
2379 since we only get called for its operands, thus we are either
2380 modifying the address inside a MEM, or something like an address
2381 operand of a load-address insn. */
2384 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2385 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2387 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2389 /* If one side is a PLUS and the other side is a pseudo that
2390 didn't get a hard register but has a reg_equiv_constant,
2391 we must replace the constant here since it may no longer
2392 be in the position of any operand. */
2393 if (GET_CODE (new0) == PLUS && REG_P (new1)
2394 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2395 && reg_renumber[REGNO (new1)] < 0
2396 && reg_equiv_constant != 0
2397 && reg_equiv_constant[REGNO (new1)] != 0)
2398 new1 = reg_equiv_constant[REGNO (new1)];
2399 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2400 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2401 && reg_renumber[REGNO (new0)] < 0
2402 && reg_equiv_constant[REGNO (new0)] != 0)
2403 new0 = reg_equiv_constant[REGNO (new0)];
2405 new = form_sum (new0, new1);
2407 /* As above, if we are not inside a MEM we do not want to
2408 turn a PLUS into something else. We might try to do so here
2409 for an addition of 0 if we aren't optimizing. */
2410 if (! mem_mode && GET_CODE (new) != PLUS)
2411 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2412 else
2413 return new;
2416 return x;
2418 case MULT:
2419 /* If this is the product of an eliminable register and a
2420 constant, apply the distribute law and move the constant out
2421 so that we have (plus (mult ..) ..). This is needed in order
2422 to keep load-address insns valid. This case is pathological.
2423 We ignore the possibility of overflow here. */
2424 if (REG_P (XEXP (x, 0))
2425 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2426 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2427 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2428 ep++)
2429 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2431 if (! mem_mode
2432 /* Refs inside notes don't count for this purpose. */
2433 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2434 || GET_CODE (insn) == INSN_LIST)))
2435 ep->ref_outside_mem = 1;
2437 return
2438 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2439 ep->previous_offset * INTVAL (XEXP (x, 1)));
2442 /* ... fall through ... */
2444 case CALL:
2445 case COMPARE:
2446 /* See comments before PLUS about handling MINUS. */
2447 case MINUS:
2448 case DIV: case UDIV:
2449 case MOD: case UMOD:
2450 case AND: case IOR: case XOR:
2451 case ROTATERT: case ROTATE:
2452 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2453 case NE: case EQ:
2454 case GE: case GT: case GEU: case GTU:
2455 case LE: case LT: case LEU: case LTU:
2457 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2458 rtx new1 = XEXP (x, 1)
2459 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2461 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2462 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2464 return x;
2466 case EXPR_LIST:
2467 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2468 if (XEXP (x, 0))
2470 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2471 if (new != XEXP (x, 0))
2473 /* If this is a REG_DEAD note, it is not valid anymore.
2474 Using the eliminated version could result in creating a
2475 REG_DEAD note for the stack or frame pointer. */
2476 if (GET_MODE (x) == REG_DEAD)
2477 return (XEXP (x, 1)
2478 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2479 : NULL_RTX);
2481 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2485 /* ... fall through ... */
2487 case INSN_LIST:
2488 /* Now do eliminations in the rest of the chain. If this was
2489 an EXPR_LIST, this might result in allocating more memory than is
2490 strictly needed, but it simplifies the code. */
2491 if (XEXP (x, 1))
2493 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2494 if (new != XEXP (x, 1))
2495 return
2496 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2498 return x;
2500 case PRE_INC:
2501 case POST_INC:
2502 case PRE_DEC:
2503 case POST_DEC:
2504 case STRICT_LOW_PART:
2505 case NEG: case NOT:
2506 case SIGN_EXTEND: case ZERO_EXTEND:
2507 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2508 case FLOAT: case FIX:
2509 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2510 case ABS:
2511 case SQRT:
2512 case FFS:
2513 case CLZ:
2514 case CTZ:
2515 case POPCOUNT:
2516 case PARITY:
2517 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2518 if (new != XEXP (x, 0))
2519 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2520 return x;
2522 case SUBREG:
2523 /* Similar to above processing, but preserve SUBREG_BYTE.
2524 Convert (subreg (mem)) to (mem) if not paradoxical.
2525 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2526 pseudo didn't get a hard reg, we must replace this with the
2527 eliminated version of the memory location because push_reload
2528 may do the replacement in certain circumstances. */
2529 if (REG_P (SUBREG_REG (x))
2530 && (GET_MODE_SIZE (GET_MODE (x))
2531 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2532 && reg_equiv_memory_loc != 0
2533 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2535 new = SUBREG_REG (x);
2537 else
2538 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2540 if (new != SUBREG_REG (x))
2542 int x_size = GET_MODE_SIZE (GET_MODE (x));
2543 int new_size = GET_MODE_SIZE (GET_MODE (new));
2545 if (MEM_P (new)
2546 && ((x_size < new_size
2547 #ifdef WORD_REGISTER_OPERATIONS
2548 /* On these machines, combine can create rtl of the form
2549 (set (subreg:m1 (reg:m2 R) 0) ...)
2550 where m1 < m2, and expects something interesting to
2551 happen to the entire word. Moreover, it will use the
2552 (reg:m2 R) later, expecting all bits to be preserved.
2553 So if the number of words is the same, preserve the
2554 subreg so that push_reload can see it. */
2555 && ! ((x_size - 1) / UNITS_PER_WORD
2556 == (new_size -1 ) / UNITS_PER_WORD)
2557 #endif
2559 || x_size == new_size)
2561 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2562 else
2563 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2566 return x;
2568 case MEM:
2569 /* Our only special processing is to pass the mode of the MEM to our
2570 recursive call and copy the flags. While we are here, handle this
2571 case more efficiently. */
2572 return
2573 replace_equiv_address_nv (x,
2574 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2575 insn, true));
2577 case USE:
2578 /* Handle insn_list USE that a call to a pure function may generate. */
2579 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2580 if (new != XEXP (x, 0))
2581 return gen_rtx_USE (GET_MODE (x), new);
2582 return x;
2584 case CLOBBER:
2585 case ASM_OPERANDS:
2586 case SET:
2587 gcc_unreachable ();
2589 default:
2590 break;
2593 /* Process each of our operands recursively. If any have changed, make a
2594 copy of the rtx. */
2595 fmt = GET_RTX_FORMAT (code);
2596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2598 if (*fmt == 'e')
2600 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2601 if (new != XEXP (x, i) && ! copied)
2603 rtx new_x = rtx_alloc (code);
2604 memcpy (new_x, x, RTX_SIZE (code));
2605 x = new_x;
2606 copied = 1;
2608 XEXP (x, i) = new;
2610 else if (*fmt == 'E')
2612 int copied_vec = 0;
2613 for (j = 0; j < XVECLEN (x, i); j++)
2615 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2616 if (new != XVECEXP (x, i, j) && ! copied_vec)
2618 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2619 XVEC (x, i)->elem);
2620 if (! copied)
2622 rtx new_x = rtx_alloc (code);
2623 memcpy (new_x, x, RTX_SIZE (code));
2624 x = new_x;
2625 copied = 1;
2627 XVEC (x, i) = new_v;
2628 copied_vec = 1;
2630 XVECEXP (x, i, j) = new;
2635 return x;
2639 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2641 return eliminate_regs_1 (x, mem_mode, insn, false);
2644 /* Scan rtx X for modifications of elimination target registers. Update
2645 the table of eliminables to reflect the changed state. MEM_MODE is
2646 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2648 static void
2649 elimination_effects (rtx x, enum machine_mode mem_mode)
2651 enum rtx_code code = GET_CODE (x);
2652 struct elim_table *ep;
2653 int regno;
2654 int i, j;
2655 const char *fmt;
2657 switch (code)
2659 case CONST_INT:
2660 case CONST_DOUBLE:
2661 case CONST_VECTOR:
2662 case CONST:
2663 case SYMBOL_REF:
2664 case CODE_LABEL:
2665 case PC:
2666 case CC0:
2667 case ASM_INPUT:
2668 case ADDR_VEC:
2669 case ADDR_DIFF_VEC:
2670 case RETURN:
2671 return;
2673 case REG:
2674 regno = REGNO (x);
2676 /* First handle the case where we encounter a bare register that
2677 is eliminable. Replace it with a PLUS. */
2678 if (regno < FIRST_PSEUDO_REGISTER)
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2681 ep++)
2682 if (ep->from_rtx == x && ep->can_eliminate)
2684 if (! mem_mode)
2685 ep->ref_outside_mem = 1;
2686 return;
2690 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2691 && reg_equiv_constant[regno]
2692 && ! function_invariant_p (reg_equiv_constant[regno]))
2693 elimination_effects (reg_equiv_constant[regno], mem_mode);
2694 return;
2696 case PRE_INC:
2697 case POST_INC:
2698 case PRE_DEC:
2699 case POST_DEC:
2700 case POST_MODIFY:
2701 case PRE_MODIFY:
2702 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2703 if (ep->to_rtx == XEXP (x, 0))
2705 int size = GET_MODE_SIZE (mem_mode);
2707 /* If more bytes than MEM_MODE are pushed, account for them. */
2708 #ifdef PUSH_ROUNDING
2709 if (ep->to_rtx == stack_pointer_rtx)
2710 size = PUSH_ROUNDING (size);
2711 #endif
2712 if (code == PRE_DEC || code == POST_DEC)
2713 ep->offset += size;
2714 else if (code == PRE_INC || code == POST_INC)
2715 ep->offset -= size;
2716 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2717 && GET_CODE (XEXP (x, 1)) == PLUS
2718 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2719 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2720 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2723 /* These two aren't unary operators. */
2724 if (code == POST_MODIFY || code == PRE_MODIFY)
2725 break;
2727 /* Fall through to generic unary operation case. */
2728 case STRICT_LOW_PART:
2729 case NEG: case NOT:
2730 case SIGN_EXTEND: case ZERO_EXTEND:
2731 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2732 case FLOAT: case FIX:
2733 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2734 case ABS:
2735 case SQRT:
2736 case FFS:
2737 case CLZ:
2738 case CTZ:
2739 case POPCOUNT:
2740 case PARITY:
2741 elimination_effects (XEXP (x, 0), mem_mode);
2742 return;
2744 case SUBREG:
2745 if (REG_P (SUBREG_REG (x))
2746 && (GET_MODE_SIZE (GET_MODE (x))
2747 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2748 && reg_equiv_memory_loc != 0
2749 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2750 return;
2752 elimination_effects (SUBREG_REG (x), mem_mode);
2753 return;
2755 case USE:
2756 /* If using a register that is the source of an eliminate we still
2757 think can be performed, note it cannot be performed since we don't
2758 know how this register is used. */
2759 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2760 if (ep->from_rtx == XEXP (x, 0))
2761 ep->can_eliminate = 0;
2763 elimination_effects (XEXP (x, 0), mem_mode);
2764 return;
2766 case CLOBBER:
2767 /* If clobbering a register that is the replacement register for an
2768 elimination we still think can be performed, note that it cannot
2769 be performed. Otherwise, we need not be concerned about it. */
2770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2771 if (ep->to_rtx == XEXP (x, 0))
2772 ep->can_eliminate = 0;
2774 elimination_effects (XEXP (x, 0), mem_mode);
2775 return;
2777 case SET:
2778 /* Check for setting a register that we know about. */
2779 if (REG_P (SET_DEST (x)))
2781 /* See if this is setting the replacement register for an
2782 elimination.
2784 If DEST is the hard frame pointer, we do nothing because we
2785 assume that all assignments to the frame pointer are for
2786 non-local gotos and are being done at a time when they are valid
2787 and do not disturb anything else. Some machines want to
2788 eliminate a fake argument pointer (or even a fake frame pointer)
2789 with either the real frame or the stack pointer. Assignments to
2790 the hard frame pointer must not prevent this elimination. */
2792 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2793 ep++)
2794 if (ep->to_rtx == SET_DEST (x)
2795 && SET_DEST (x) != hard_frame_pointer_rtx)
2797 /* If it is being incremented, adjust the offset. Otherwise,
2798 this elimination can't be done. */
2799 rtx src = SET_SRC (x);
2801 if (GET_CODE (src) == PLUS
2802 && XEXP (src, 0) == SET_DEST (x)
2803 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2804 ep->offset -= INTVAL (XEXP (src, 1));
2805 else
2806 ep->can_eliminate = 0;
2810 elimination_effects (SET_DEST (x), 0);
2811 elimination_effects (SET_SRC (x), 0);
2812 return;
2814 case MEM:
2815 /* Our only special processing is to pass the mode of the MEM to our
2816 recursive call. */
2817 elimination_effects (XEXP (x, 0), GET_MODE (x));
2818 return;
2820 default:
2821 break;
2824 fmt = GET_RTX_FORMAT (code);
2825 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2827 if (*fmt == 'e')
2828 elimination_effects (XEXP (x, i), mem_mode);
2829 else if (*fmt == 'E')
2830 for (j = 0; j < XVECLEN (x, i); j++)
2831 elimination_effects (XVECEXP (x, i, j), mem_mode);
2835 /* Descend through rtx X and verify that no references to eliminable registers
2836 remain. If any do remain, mark the involved register as not
2837 eliminable. */
2839 static void
2840 check_eliminable_occurrences (rtx x)
2842 const char *fmt;
2843 int i;
2844 enum rtx_code code;
2846 if (x == 0)
2847 return;
2849 code = GET_CODE (x);
2851 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2853 struct elim_table *ep;
2855 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2856 if (ep->from_rtx == x)
2857 ep->can_eliminate = 0;
2858 return;
2861 fmt = GET_RTX_FORMAT (code);
2862 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2864 if (*fmt == 'e')
2865 check_eliminable_occurrences (XEXP (x, i));
2866 else if (*fmt == 'E')
2868 int j;
2869 for (j = 0; j < XVECLEN (x, i); j++)
2870 check_eliminable_occurrences (XVECEXP (x, i, j));
2875 /* Scan INSN and eliminate all eliminable registers in it.
2877 If REPLACE is nonzero, do the replacement destructively. Also
2878 delete the insn as dead it if it is setting an eliminable register.
2880 If REPLACE is zero, do all our allocations in reload_obstack.
2882 If no eliminations were done and this insn doesn't require any elimination
2883 processing (these are not identical conditions: it might be updating sp,
2884 but not referencing fp; this needs to be seen during reload_as_needed so
2885 that the offset between fp and sp can be taken into consideration), zero
2886 is returned. Otherwise, 1 is returned. */
2888 static int
2889 eliminate_regs_in_insn (rtx insn, int replace)
2891 int icode = recog_memoized (insn);
2892 rtx old_body = PATTERN (insn);
2893 int insn_is_asm = asm_noperands (old_body) >= 0;
2894 rtx old_set = single_set (insn);
2895 rtx new_body;
2896 int val = 0;
2897 int i;
2898 rtx substed_operand[MAX_RECOG_OPERANDS];
2899 rtx orig_operand[MAX_RECOG_OPERANDS];
2900 struct elim_table *ep;
2901 rtx plus_src, plus_cst_src;
2903 if (! insn_is_asm && icode < 0)
2905 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2906 || GET_CODE (PATTERN (insn)) == CLOBBER
2907 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2908 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2909 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2910 return 0;
2913 if (old_set != 0 && REG_P (SET_DEST (old_set))
2914 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2916 /* Check for setting an eliminable register. */
2917 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2918 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2920 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2921 /* If this is setting the frame pointer register to the
2922 hardware frame pointer register and this is an elimination
2923 that will be done (tested above), this insn is really
2924 adjusting the frame pointer downward to compensate for
2925 the adjustment done before a nonlocal goto. */
2926 if (ep->from == FRAME_POINTER_REGNUM
2927 && ep->to == HARD_FRAME_POINTER_REGNUM)
2929 rtx base = SET_SRC (old_set);
2930 rtx base_insn = insn;
2931 HOST_WIDE_INT offset = 0;
2933 while (base != ep->to_rtx)
2935 rtx prev_insn, prev_set;
2937 if (GET_CODE (base) == PLUS
2938 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2940 offset += INTVAL (XEXP (base, 1));
2941 base = XEXP (base, 0);
2943 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2944 && (prev_set = single_set (prev_insn)) != 0
2945 && rtx_equal_p (SET_DEST (prev_set), base))
2947 base = SET_SRC (prev_set);
2948 base_insn = prev_insn;
2950 else
2951 break;
2954 if (base == ep->to_rtx)
2956 rtx src
2957 = plus_constant (ep->to_rtx, offset - ep->offset);
2959 new_body = old_body;
2960 if (! replace)
2962 new_body = copy_insn (old_body);
2963 if (REG_NOTES (insn))
2964 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2966 PATTERN (insn) = new_body;
2967 old_set = single_set (insn);
2969 /* First see if this insn remains valid when we
2970 make the change. If not, keep the INSN_CODE
2971 the same and let reload fit it up. */
2972 validate_change (insn, &SET_SRC (old_set), src, 1);
2973 validate_change (insn, &SET_DEST (old_set),
2974 ep->to_rtx, 1);
2975 if (! apply_change_group ())
2977 SET_SRC (old_set) = src;
2978 SET_DEST (old_set) = ep->to_rtx;
2981 val = 1;
2982 goto done;
2985 #endif
2987 /* In this case this insn isn't serving a useful purpose. We
2988 will delete it in reload_as_needed once we know that this
2989 elimination is, in fact, being done.
2991 If REPLACE isn't set, we can't delete this insn, but needn't
2992 process it since it won't be used unless something changes. */
2993 if (replace)
2995 delete_dead_insn (insn);
2996 return 1;
2998 val = 1;
2999 goto done;
3003 /* We allow one special case which happens to work on all machines we
3004 currently support: a single set with the source or a REG_EQUAL
3005 note being a PLUS of an eliminable register and a constant. */
3006 plus_src = plus_cst_src = 0;
3007 if (old_set && REG_P (SET_DEST (old_set)))
3009 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3010 plus_src = SET_SRC (old_set);
3011 /* First see if the source is of the form (plus (...) CST). */
3012 if (plus_src
3013 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3014 plus_cst_src = plus_src;
3015 else if (REG_P (SET_SRC (old_set))
3016 || plus_src)
3018 /* Otherwise, see if we have a REG_EQUAL note of the form
3019 (plus (...) CST). */
3020 rtx links;
3021 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3023 if (REG_NOTE_KIND (links) == REG_EQUAL
3024 && GET_CODE (XEXP (links, 0)) == PLUS
3025 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3027 plus_cst_src = XEXP (links, 0);
3028 break;
3033 /* Check that the first operand of the PLUS is a hard reg or
3034 the lowpart subreg of one. */
3035 if (plus_cst_src)
3037 rtx reg = XEXP (plus_cst_src, 0);
3038 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3039 reg = SUBREG_REG (reg);
3041 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3042 plus_cst_src = 0;
3045 if (plus_cst_src)
3047 rtx reg = XEXP (plus_cst_src, 0);
3048 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3050 if (GET_CODE (reg) == SUBREG)
3051 reg = SUBREG_REG (reg);
3053 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3054 if (ep->from_rtx == reg && ep->can_eliminate)
3056 rtx to_rtx = ep->to_rtx;
3057 offset += ep->offset;
3058 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3060 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3061 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3062 to_rtx);
3063 /* If we have a nonzero offset, and the source is already
3064 a simple REG, the following transformation would
3065 increase the cost of the insn by replacing a simple REG
3066 with (plus (reg sp) CST). So try only when we already
3067 had a PLUS before. */
3068 if (offset == 0 || plus_src)
3070 rtx new_src = plus_constant (to_rtx, offset);
3072 new_body = old_body;
3073 if (! replace)
3075 new_body = copy_insn (old_body);
3076 if (REG_NOTES (insn))
3077 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3079 PATTERN (insn) = new_body;
3080 old_set = single_set (insn);
3082 /* First see if this insn remains valid when we make the
3083 change. If not, try to replace the whole pattern with
3084 a simple set (this may help if the original insn was a
3085 PARALLEL that was only recognized as single_set due to
3086 REG_UNUSED notes). If this isn't valid either, keep
3087 the INSN_CODE the same and let reload fix it up. */
3088 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3090 rtx new_pat = gen_rtx_SET (VOIDmode,
3091 SET_DEST (old_set), new_src);
3093 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3094 SET_SRC (old_set) = new_src;
3097 else
3098 break;
3100 val = 1;
3101 /* This can't have an effect on elimination offsets, so skip right
3102 to the end. */
3103 goto done;
3107 /* Determine the effects of this insn on elimination offsets. */
3108 elimination_effects (old_body, 0);
3110 /* Eliminate all eliminable registers occurring in operands that
3111 can be handled by reload. */
3112 extract_insn (insn);
3113 for (i = 0; i < recog_data.n_operands; i++)
3115 orig_operand[i] = recog_data.operand[i];
3116 substed_operand[i] = recog_data.operand[i];
3118 /* For an asm statement, every operand is eliminable. */
3119 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3121 bool is_set_src, in_plus;
3123 /* Check for setting a register that we know about. */
3124 if (recog_data.operand_type[i] != OP_IN
3125 && REG_P (orig_operand[i]))
3127 /* If we are assigning to a register that can be eliminated, it
3128 must be as part of a PARALLEL, since the code above handles
3129 single SETs. We must indicate that we can no longer
3130 eliminate this reg. */
3131 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3132 ep++)
3133 if (ep->from_rtx == orig_operand[i])
3134 ep->can_eliminate = 0;
3137 /* Companion to the above plus substitution, we can allow
3138 invariants as the source of a plain move. */
3139 is_set_src = false;
3140 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3141 is_set_src = true;
3142 in_plus = false;
3143 if (plus_src
3144 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3145 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3146 in_plus = true;
3148 substed_operand[i]
3149 = eliminate_regs_1 (recog_data.operand[i], 0,
3150 replace ? insn : NULL_RTX,
3151 is_set_src || in_plus);
3152 if (substed_operand[i] != orig_operand[i])
3153 val = 1;
3154 /* Terminate the search in check_eliminable_occurrences at
3155 this point. */
3156 *recog_data.operand_loc[i] = 0;
3158 /* If an output operand changed from a REG to a MEM and INSN is an
3159 insn, write a CLOBBER insn. */
3160 if (recog_data.operand_type[i] != OP_IN
3161 && REG_P (orig_operand[i])
3162 && MEM_P (substed_operand[i])
3163 && replace)
3164 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3165 insn);
3169 for (i = 0; i < recog_data.n_dups; i++)
3170 *recog_data.dup_loc[i]
3171 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3173 /* If any eliminable remain, they aren't eliminable anymore. */
3174 check_eliminable_occurrences (old_body);
3176 /* Substitute the operands; the new values are in the substed_operand
3177 array. */
3178 for (i = 0; i < recog_data.n_operands; i++)
3179 *recog_data.operand_loc[i] = substed_operand[i];
3180 for (i = 0; i < recog_data.n_dups; i++)
3181 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3183 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3184 re-recognize the insn. We do this in case we had a simple addition
3185 but now can do this as a load-address. This saves an insn in this
3186 common case.
3187 If re-recognition fails, the old insn code number will still be used,
3188 and some register operands may have changed into PLUS expressions.
3189 These will be handled by find_reloads by loading them into a register
3190 again. */
3192 if (val)
3194 /* If we aren't replacing things permanently and we changed something,
3195 make another copy to ensure that all the RTL is new. Otherwise
3196 things can go wrong if find_reload swaps commutative operands
3197 and one is inside RTL that has been copied while the other is not. */
3198 new_body = old_body;
3199 if (! replace)
3201 new_body = copy_insn (old_body);
3202 if (REG_NOTES (insn))
3203 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3205 PATTERN (insn) = new_body;
3207 /* If we had a move insn but now we don't, rerecognize it. This will
3208 cause spurious re-recognition if the old move had a PARALLEL since
3209 the new one still will, but we can't call single_set without
3210 having put NEW_BODY into the insn and the re-recognition won't
3211 hurt in this rare case. */
3212 /* ??? Why this huge if statement - why don't we just rerecognize the
3213 thing always? */
3214 if (! insn_is_asm
3215 && old_set != 0
3216 && ((REG_P (SET_SRC (old_set))
3217 && (GET_CODE (new_body) != SET
3218 || !REG_P (SET_SRC (new_body))))
3219 /* If this was a load from or store to memory, compare
3220 the MEM in recog_data.operand to the one in the insn.
3221 If they are not equal, then rerecognize the insn. */
3222 || (old_set != 0
3223 && ((MEM_P (SET_SRC (old_set))
3224 && SET_SRC (old_set) != recog_data.operand[1])
3225 || (MEM_P (SET_DEST (old_set))
3226 && SET_DEST (old_set) != recog_data.operand[0])))
3227 /* If this was an add insn before, rerecognize. */
3228 || GET_CODE (SET_SRC (old_set)) == PLUS))
3230 int new_icode = recog (PATTERN (insn), insn, 0);
3231 if (new_icode >= 0)
3232 INSN_CODE (insn) = new_icode;
3236 /* Restore the old body. If there were any changes to it, we made a copy
3237 of it while the changes were still in place, so we'll correctly return
3238 a modified insn below. */
3239 if (! replace)
3241 /* Restore the old body. */
3242 for (i = 0; i < recog_data.n_operands; i++)
3243 *recog_data.operand_loc[i] = orig_operand[i];
3244 for (i = 0; i < recog_data.n_dups; i++)
3245 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3248 /* Update all elimination pairs to reflect the status after the current
3249 insn. The changes we make were determined by the earlier call to
3250 elimination_effects.
3252 We also detect cases where register elimination cannot be done,
3253 namely, if a register would be both changed and referenced outside a MEM
3254 in the resulting insn since such an insn is often undefined and, even if
3255 not, we cannot know what meaning will be given to it. Note that it is
3256 valid to have a register used in an address in an insn that changes it
3257 (presumably with a pre- or post-increment or decrement).
3259 If anything changes, return nonzero. */
3261 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3263 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3264 ep->can_eliminate = 0;
3266 ep->ref_outside_mem = 0;
3268 if (ep->previous_offset != ep->offset)
3269 val = 1;
3272 done:
3273 /* If we changed something, perform elimination in REG_NOTES. This is
3274 needed even when REPLACE is zero because a REG_DEAD note might refer
3275 to a register that we eliminate and could cause a different number
3276 of spill registers to be needed in the final reload pass than in
3277 the pre-passes. */
3278 if (val && REG_NOTES (insn) != 0)
3279 REG_NOTES (insn)
3280 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3282 return val;
3285 /* Loop through all elimination pairs.
3286 Recalculate the number not at initial offset.
3288 Compute the maximum offset (minimum offset if the stack does not
3289 grow downward) for each elimination pair. */
3291 static void
3292 update_eliminable_offsets (void)
3294 struct elim_table *ep;
3296 num_not_at_initial_offset = 0;
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3299 ep->previous_offset = ep->offset;
3300 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3301 num_not_at_initial_offset++;
3305 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3306 replacement we currently believe is valid, mark it as not eliminable if X
3307 modifies DEST in any way other than by adding a constant integer to it.
3309 If DEST is the frame pointer, we do nothing because we assume that
3310 all assignments to the hard frame pointer are nonlocal gotos and are being
3311 done at a time when they are valid and do not disturb anything else.
3312 Some machines want to eliminate a fake argument pointer with either the
3313 frame or stack pointer. Assignments to the hard frame pointer must not
3314 prevent this elimination.
3316 Called via note_stores from reload before starting its passes to scan
3317 the insns of the function. */
3319 static void
3320 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3322 unsigned int i;
3324 /* A SUBREG of a hard register here is just changing its mode. We should
3325 not see a SUBREG of an eliminable hard register, but check just in
3326 case. */
3327 if (GET_CODE (dest) == SUBREG)
3328 dest = SUBREG_REG (dest);
3330 if (dest == hard_frame_pointer_rtx)
3331 return;
3333 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3334 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3335 && (GET_CODE (x) != SET
3336 || GET_CODE (SET_SRC (x)) != PLUS
3337 || XEXP (SET_SRC (x), 0) != dest
3338 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3340 reg_eliminate[i].can_eliminate_previous
3341 = reg_eliminate[i].can_eliminate = 0;
3342 num_eliminable--;
3346 /* Verify that the initial elimination offsets did not change since the
3347 last call to set_initial_elim_offsets. This is used to catch cases
3348 where something illegal happened during reload_as_needed that could
3349 cause incorrect code to be generated if we did not check for it. */
3351 static bool
3352 verify_initial_elim_offsets (void)
3354 HOST_WIDE_INT t;
3356 if (!num_eliminable)
3357 return true;
3359 #ifdef ELIMINABLE_REGS
3361 struct elim_table *ep;
3363 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3365 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3366 if (t != ep->initial_offset)
3367 return false;
3370 #else
3371 INITIAL_FRAME_POINTER_OFFSET (t);
3372 if (t != reg_eliminate[0].initial_offset)
3373 return false;
3374 #endif
3376 return true;
3379 /* Reset all offsets on eliminable registers to their initial values. */
3381 static void
3382 set_initial_elim_offsets (void)
3384 struct elim_table *ep = reg_eliminate;
3386 #ifdef ELIMINABLE_REGS
3387 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3389 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3390 ep->previous_offset = ep->offset = ep->initial_offset;
3392 #else
3393 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3394 ep->previous_offset = ep->offset = ep->initial_offset;
3395 #endif
3397 num_not_at_initial_offset = 0;
3400 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3402 static void
3403 set_initial_eh_label_offset (rtx label)
3405 set_label_offsets (label, NULL_RTX, 1);
3408 /* Initialize the known label offsets.
3409 Set a known offset for each forced label to be at the initial offset
3410 of each elimination. We do this because we assume that all
3411 computed jumps occur from a location where each elimination is
3412 at its initial offset.
3413 For all other labels, show that we don't know the offsets. */
3415 static void
3416 set_initial_label_offsets (void)
3418 rtx x;
3419 memset (offsets_known_at, 0, num_labels);
3421 for (x = forced_labels; x; x = XEXP (x, 1))
3422 if (XEXP (x, 0))
3423 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3425 for_each_eh_label (set_initial_eh_label_offset);
3428 /* Set all elimination offsets to the known values for the code label given
3429 by INSN. */
3431 static void
3432 set_offsets_for_label (rtx insn)
3434 unsigned int i;
3435 int label_nr = CODE_LABEL_NUMBER (insn);
3436 struct elim_table *ep;
3438 num_not_at_initial_offset = 0;
3439 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3441 ep->offset = ep->previous_offset
3442 = offsets_at[label_nr - first_label_num][i];
3443 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3444 num_not_at_initial_offset++;
3448 /* See if anything that happened changes which eliminations are valid.
3449 For example, on the SPARC, whether or not the frame pointer can
3450 be eliminated can depend on what registers have been used. We need
3451 not check some conditions again (such as flag_omit_frame_pointer)
3452 since they can't have changed. */
3454 static void
3455 update_eliminables (HARD_REG_SET *pset)
3457 int previous_frame_pointer_needed = frame_pointer_needed;
3458 struct elim_table *ep;
3460 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3461 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3462 #ifdef ELIMINABLE_REGS
3463 || ! CAN_ELIMINATE (ep->from, ep->to)
3464 #endif
3466 ep->can_eliminate = 0;
3468 /* Look for the case where we have discovered that we can't replace
3469 register A with register B and that means that we will now be
3470 trying to replace register A with register C. This means we can
3471 no longer replace register C with register B and we need to disable
3472 such an elimination, if it exists. This occurs often with A == ap,
3473 B == sp, and C == fp. */
3475 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3477 struct elim_table *op;
3478 int new_to = -1;
3480 if (! ep->can_eliminate && ep->can_eliminate_previous)
3482 /* Find the current elimination for ep->from, if there is a
3483 new one. */
3484 for (op = reg_eliminate;
3485 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3486 if (op->from == ep->from && op->can_eliminate)
3488 new_to = op->to;
3489 break;
3492 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3493 disable it. */
3494 for (op = reg_eliminate;
3495 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3496 if (op->from == new_to && op->to == ep->to)
3497 op->can_eliminate = 0;
3501 /* See if any registers that we thought we could eliminate the previous
3502 time are no longer eliminable. If so, something has changed and we
3503 must spill the register. Also, recompute the number of eliminable
3504 registers and see if the frame pointer is needed; it is if there is
3505 no elimination of the frame pointer that we can perform. */
3507 frame_pointer_needed = 1;
3508 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3510 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3511 && ep->to != HARD_FRAME_POINTER_REGNUM)
3512 frame_pointer_needed = 0;
3514 if (! ep->can_eliminate && ep->can_eliminate_previous)
3516 ep->can_eliminate_previous = 0;
3517 SET_HARD_REG_BIT (*pset, ep->from);
3518 num_eliminable--;
3522 /* If we didn't need a frame pointer last time, but we do now, spill
3523 the hard frame pointer. */
3524 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3525 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3528 /* Initialize the table of registers to eliminate. */
3530 static void
3531 init_elim_table (void)
3533 struct elim_table *ep;
3534 #ifdef ELIMINABLE_REGS
3535 const struct elim_table_1 *ep1;
3536 #endif
3538 if (!reg_eliminate)
3539 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3541 /* Does this function require a frame pointer? */
3543 frame_pointer_needed = (! flag_omit_frame_pointer
3544 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3545 and restore sp for alloca. So we can't eliminate
3546 the frame pointer in that case. At some point,
3547 we should improve this by emitting the
3548 sp-adjusting insns for this case. */
3549 || (current_function_calls_alloca
3550 && EXIT_IGNORE_STACK)
3551 || current_function_accesses_prior_frames
3552 || FRAME_POINTER_REQUIRED);
3554 num_eliminable = 0;
3556 #ifdef ELIMINABLE_REGS
3557 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3558 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3560 ep->from = ep1->from;
3561 ep->to = ep1->to;
3562 ep->can_eliminate = ep->can_eliminate_previous
3563 = (CAN_ELIMINATE (ep->from, ep->to)
3564 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3566 #else
3567 reg_eliminate[0].from = reg_eliminate_1[0].from;
3568 reg_eliminate[0].to = reg_eliminate_1[0].to;
3569 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3570 = ! frame_pointer_needed;
3571 #endif
3573 /* Count the number of eliminable registers and build the FROM and TO
3574 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3575 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3576 We depend on this. */
3577 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3579 num_eliminable += ep->can_eliminate;
3580 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3581 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3585 /* Kick all pseudos out of hard register REGNO.
3587 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3588 because we found we can't eliminate some register. In the case, no pseudos
3589 are allowed to be in the register, even if they are only in a block that
3590 doesn't require spill registers, unlike the case when we are spilling this
3591 hard reg to produce another spill register.
3593 Return nonzero if any pseudos needed to be kicked out. */
3595 static void
3596 spill_hard_reg (unsigned int regno, int cant_eliminate)
3598 int i;
3600 if (cant_eliminate)
3602 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3603 regs_ever_live[regno] = 1;
3606 /* Spill every pseudo reg that was allocated to this reg
3607 or to something that overlaps this reg. */
3609 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3610 if (reg_renumber[i] >= 0
3611 && (unsigned int) reg_renumber[i] <= regno
3612 && ((unsigned int) reg_renumber[i]
3613 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3614 [PSEUDO_REGNO_MODE (i)]
3615 > regno))
3616 SET_REGNO_REG_SET (&spilled_pseudos, i);
3619 /* After find_reload_regs has been run for all insn that need reloads,
3620 and/or spill_hard_regs was called, this function is used to actually
3621 spill pseudo registers and try to reallocate them. It also sets up the
3622 spill_regs array for use by choose_reload_regs. */
3624 static int
3625 finish_spills (int global)
3627 struct insn_chain *chain;
3628 int something_changed = 0;
3629 unsigned i;
3630 reg_set_iterator rsi;
3632 /* Build the spill_regs array for the function. */
3633 /* If there are some registers still to eliminate and one of the spill regs
3634 wasn't ever used before, additional stack space may have to be
3635 allocated to store this register. Thus, we may have changed the offset
3636 between the stack and frame pointers, so mark that something has changed.
3638 One might think that we need only set VAL to 1 if this is a call-used
3639 register. However, the set of registers that must be saved by the
3640 prologue is not identical to the call-used set. For example, the
3641 register used by the call insn for the return PC is a call-used register,
3642 but must be saved by the prologue. */
3644 n_spills = 0;
3645 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3646 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3648 spill_reg_order[i] = n_spills;
3649 spill_regs[n_spills++] = i;
3650 if (num_eliminable && ! regs_ever_live[i])
3651 something_changed = 1;
3652 regs_ever_live[i] = 1;
3654 else
3655 spill_reg_order[i] = -1;
3657 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3659 /* Record the current hard register the pseudo is allocated to in
3660 pseudo_previous_regs so we avoid reallocating it to the same
3661 hard reg in a later pass. */
3662 gcc_assert (reg_renumber[i] >= 0);
3664 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3665 /* Mark it as no longer having a hard register home. */
3666 reg_renumber[i] = -1;
3667 /* We will need to scan everything again. */
3668 something_changed = 1;
3671 /* Retry global register allocation if possible. */
3672 if (global)
3674 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3675 /* For every insn that needs reloads, set the registers used as spill
3676 regs in pseudo_forbidden_regs for every pseudo live across the
3677 insn. */
3678 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3680 EXECUTE_IF_SET_IN_REG_SET
3681 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3683 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3684 chain->used_spill_regs);
3686 EXECUTE_IF_SET_IN_REG_SET
3687 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3689 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3690 chain->used_spill_regs);
3694 /* Retry allocating the spilled pseudos. For each reg, merge the
3695 various reg sets that indicate which hard regs can't be used,
3696 and call retry_global_alloc.
3697 We change spill_pseudos here to only contain pseudos that did not
3698 get a new hard register. */
3699 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3700 if (reg_old_renumber[i] != reg_renumber[i])
3702 HARD_REG_SET forbidden;
3703 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3704 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3705 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3706 retry_global_alloc (i, forbidden);
3707 if (reg_renumber[i] >= 0)
3708 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3712 /* Fix up the register information in the insn chain.
3713 This involves deleting those of the spilled pseudos which did not get
3714 a new hard register home from the live_{before,after} sets. */
3715 for (chain = reload_insn_chain; chain; chain = chain->next)
3717 HARD_REG_SET used_by_pseudos;
3718 HARD_REG_SET used_by_pseudos2;
3720 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3721 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3723 /* Mark any unallocated hard regs as available for spills. That
3724 makes inheritance work somewhat better. */
3725 if (chain->need_reload)
3727 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3728 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3729 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3731 /* Save the old value for the sanity test below. */
3732 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3734 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3735 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3736 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3737 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3739 /* Make sure we only enlarge the set. */
3740 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3741 gcc_unreachable ();
3742 ok:;
3746 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3747 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3749 int regno = reg_renumber[i];
3750 if (reg_old_renumber[i] == regno)
3751 continue;
3753 alter_reg (i, reg_old_renumber[i]);
3754 reg_old_renumber[i] = regno;
3755 if (dump_file)
3757 if (regno == -1)
3758 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3759 else
3760 fprintf (dump_file, " Register %d now in %d.\n\n",
3761 i, reg_renumber[i]);
3765 return something_changed;
3768 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3770 static void
3771 scan_paradoxical_subregs (rtx x)
3773 int i;
3774 const char *fmt;
3775 enum rtx_code code = GET_CODE (x);
3777 switch (code)
3779 case REG:
3780 case CONST_INT:
3781 case CONST:
3782 case SYMBOL_REF:
3783 case LABEL_REF:
3784 case CONST_DOUBLE:
3785 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3786 case CC0:
3787 case PC:
3788 case USE:
3789 case CLOBBER:
3790 return;
3792 case SUBREG:
3793 if (REG_P (SUBREG_REG (x))
3794 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3795 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3796 = GET_MODE_SIZE (GET_MODE (x));
3797 return;
3799 default:
3800 break;
3803 fmt = GET_RTX_FORMAT (code);
3804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3806 if (fmt[i] == 'e')
3807 scan_paradoxical_subregs (XEXP (x, i));
3808 else if (fmt[i] == 'E')
3810 int j;
3811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3812 scan_paradoxical_subregs (XVECEXP (x, i, j));
3817 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3818 examine all of the reload insns between PREV and NEXT exclusive, and
3819 annotate all that may trap. */
3821 static void
3822 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3824 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3825 unsigned int trap_count;
3826 rtx i;
3828 if (note == NULL)
3829 return;
3831 if (may_trap_p (PATTERN (insn)))
3832 trap_count = 1;
3833 else
3835 remove_note (insn, note);
3836 trap_count = 0;
3839 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3840 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3842 trap_count++;
3843 REG_NOTES (i)
3844 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3848 /* Reload pseudo-registers into hard regs around each insn as needed.
3849 Additional register load insns are output before the insn that needs it
3850 and perhaps store insns after insns that modify the reloaded pseudo reg.
3852 reg_last_reload_reg and reg_reloaded_contents keep track of
3853 which registers are already available in reload registers.
3854 We update these for the reloads that we perform,
3855 as the insns are scanned. */
3857 static void
3858 reload_as_needed (int live_known)
3860 struct insn_chain *chain;
3861 #if defined (AUTO_INC_DEC)
3862 int i;
3863 #endif
3864 rtx x;
3866 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3867 memset (spill_reg_store, 0, sizeof spill_reg_store);
3868 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3869 reg_has_output_reload = xmalloc (max_regno);
3870 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3871 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3873 set_initial_elim_offsets ();
3875 for (chain = reload_insn_chain; chain; chain = chain->next)
3877 rtx prev = 0;
3878 rtx insn = chain->insn;
3879 rtx old_next = NEXT_INSN (insn);
3881 /* If we pass a label, copy the offsets from the label information
3882 into the current offsets of each elimination. */
3883 if (LABEL_P (insn))
3884 set_offsets_for_label (insn);
3886 else if (INSN_P (insn))
3888 rtx oldpat = copy_rtx (PATTERN (insn));
3890 /* If this is a USE and CLOBBER of a MEM, ensure that any
3891 references to eliminable registers have been removed. */
3893 if ((GET_CODE (PATTERN (insn)) == USE
3894 || GET_CODE (PATTERN (insn)) == CLOBBER)
3895 && MEM_P (XEXP (PATTERN (insn), 0)))
3896 XEXP (XEXP (PATTERN (insn), 0), 0)
3897 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3898 GET_MODE (XEXP (PATTERN (insn), 0)),
3899 NULL_RTX);
3901 /* If we need to do register elimination processing, do so.
3902 This might delete the insn, in which case we are done. */
3903 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3905 eliminate_regs_in_insn (insn, 1);
3906 if (NOTE_P (insn))
3908 update_eliminable_offsets ();
3909 continue;
3913 /* If need_elim is nonzero but need_reload is zero, one might think
3914 that we could simply set n_reloads to 0. However, find_reloads
3915 could have done some manipulation of the insn (such as swapping
3916 commutative operands), and these manipulations are lost during
3917 the first pass for every insn that needs register elimination.
3918 So the actions of find_reloads must be redone here. */
3920 if (! chain->need_elim && ! chain->need_reload
3921 && ! chain->need_operand_change)
3922 n_reloads = 0;
3923 /* First find the pseudo regs that must be reloaded for this insn.
3924 This info is returned in the tables reload_... (see reload.h).
3925 Also modify the body of INSN by substituting RELOAD
3926 rtx's for those pseudo regs. */
3927 else
3929 memset (reg_has_output_reload, 0, max_regno);
3930 CLEAR_HARD_REG_SET (reg_is_output_reload);
3932 find_reloads (insn, 1, spill_indirect_levels, live_known,
3933 spill_reg_order);
3936 if (n_reloads > 0)
3938 rtx next = NEXT_INSN (insn);
3939 rtx p;
3941 prev = PREV_INSN (insn);
3943 /* Now compute which reload regs to reload them into. Perhaps
3944 reusing reload regs from previous insns, or else output
3945 load insns to reload them. Maybe output store insns too.
3946 Record the choices of reload reg in reload_reg_rtx. */
3947 choose_reload_regs (chain);
3949 /* Merge any reloads that we didn't combine for fear of
3950 increasing the number of spill registers needed but now
3951 discover can be safely merged. */
3952 if (SMALL_REGISTER_CLASSES)
3953 merge_assigned_reloads (insn);
3955 /* Generate the insns to reload operands into or out of
3956 their reload regs. */
3957 emit_reload_insns (chain);
3959 /* Substitute the chosen reload regs from reload_reg_rtx
3960 into the insn's body (or perhaps into the bodies of other
3961 load and store insn that we just made for reloading
3962 and that we moved the structure into). */
3963 subst_reloads (insn);
3965 /* Adjust the exception region notes for loads and stores. */
3966 if (flag_non_call_exceptions && !CALL_P (insn))
3967 fixup_eh_region_note (insn, prev, next);
3969 /* If this was an ASM, make sure that all the reload insns
3970 we have generated are valid. If not, give an error
3971 and delete them. */
3972 if (asm_noperands (PATTERN (insn)) >= 0)
3973 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3974 if (p != insn && INSN_P (p)
3975 && GET_CODE (PATTERN (p)) != USE
3976 && (recog_memoized (p) < 0
3977 || (extract_insn (p), ! constrain_operands (1))))
3979 error_for_asm (insn,
3980 "%<asm%> operand requires "
3981 "impossible reload");
3982 delete_insn (p);
3986 if (num_eliminable && chain->need_elim)
3987 update_eliminable_offsets ();
3989 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3990 is no longer validly lying around to save a future reload.
3991 Note that this does not detect pseudos that were reloaded
3992 for this insn in order to be stored in
3993 (obeying register constraints). That is correct; such reload
3994 registers ARE still valid. */
3995 note_stores (oldpat, forget_old_reloads_1, NULL);
3997 /* There may have been CLOBBER insns placed after INSN. So scan
3998 between INSN and NEXT and use them to forget old reloads. */
3999 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4000 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4001 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4003 #ifdef AUTO_INC_DEC
4004 /* Likewise for regs altered by auto-increment in this insn.
4005 REG_INC notes have been changed by reloading:
4006 find_reloads_address_1 records substitutions for them,
4007 which have been performed by subst_reloads above. */
4008 for (i = n_reloads - 1; i >= 0; i--)
4010 rtx in_reg = rld[i].in_reg;
4011 if (in_reg)
4013 enum rtx_code code = GET_CODE (in_reg);
4014 /* PRE_INC / PRE_DEC will have the reload register ending up
4015 with the same value as the stack slot, but that doesn't
4016 hold true for POST_INC / POST_DEC. Either we have to
4017 convert the memory access to a true POST_INC / POST_DEC,
4018 or we can't use the reload register for inheritance. */
4019 if ((code == POST_INC || code == POST_DEC)
4020 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4021 REGNO (rld[i].reg_rtx))
4022 /* Make sure it is the inc/dec pseudo, and not
4023 some other (e.g. output operand) pseudo. */
4024 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4025 == REGNO (XEXP (in_reg, 0))))
4028 rtx reload_reg = rld[i].reg_rtx;
4029 enum machine_mode mode = GET_MODE (reload_reg);
4030 int n = 0;
4031 rtx p;
4033 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4035 /* We really want to ignore REG_INC notes here, so
4036 use PATTERN (p) as argument to reg_set_p . */
4037 if (reg_set_p (reload_reg, PATTERN (p)))
4038 break;
4039 n = count_occurrences (PATTERN (p), reload_reg, 0);
4040 if (! n)
4041 continue;
4042 if (n == 1)
4044 n = validate_replace_rtx (reload_reg,
4045 gen_rtx_fmt_e (code,
4046 mode,
4047 reload_reg),
4050 /* We must also verify that the constraints
4051 are met after the replacement. */
4052 extract_insn (p);
4053 if (n)
4054 n = constrain_operands (1);
4055 else
4056 break;
4058 /* If the constraints were not met, then
4059 undo the replacement. */
4060 if (!n)
4062 validate_replace_rtx (gen_rtx_fmt_e (code,
4063 mode,
4064 reload_reg),
4065 reload_reg, p);
4066 break;
4070 break;
4072 if (n == 1)
4074 REG_NOTES (p)
4075 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4076 REG_NOTES (p));
4077 /* Mark this as having an output reload so that the
4078 REG_INC processing code below won't invalidate
4079 the reload for inheritance. */
4080 SET_HARD_REG_BIT (reg_is_output_reload,
4081 REGNO (reload_reg));
4082 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4084 else
4085 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4086 NULL);
4088 else if ((code == PRE_INC || code == PRE_DEC)
4089 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4090 REGNO (rld[i].reg_rtx))
4091 /* Make sure it is the inc/dec pseudo, and not
4092 some other (e.g. output operand) pseudo. */
4093 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4094 == REGNO (XEXP (in_reg, 0))))
4096 SET_HARD_REG_BIT (reg_is_output_reload,
4097 REGNO (rld[i].reg_rtx));
4098 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4102 /* If a pseudo that got a hard register is auto-incremented,
4103 we must purge records of copying it into pseudos without
4104 hard registers. */
4105 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4106 if (REG_NOTE_KIND (x) == REG_INC)
4108 /* See if this pseudo reg was reloaded in this insn.
4109 If so, its last-reload info is still valid
4110 because it is based on this insn's reload. */
4111 for (i = 0; i < n_reloads; i++)
4112 if (rld[i].out == XEXP (x, 0))
4113 break;
4115 if (i == n_reloads)
4116 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4118 #endif
4120 /* A reload reg's contents are unknown after a label. */
4121 if (LABEL_P (insn))
4122 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4124 /* Don't assume a reload reg is still good after a call insn
4125 if it is a call-used reg, or if it contains a value that will
4126 be partially clobbered by the call. */
4127 else if (CALL_P (insn))
4129 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4130 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4134 /* Clean up. */
4135 free (reg_last_reload_reg);
4136 free (reg_has_output_reload);
4139 /* Discard all record of any value reloaded from X,
4140 or reloaded in X from someplace else;
4141 unless X is an output reload reg of the current insn.
4143 X may be a hard reg (the reload reg)
4144 or it may be a pseudo reg that was reloaded from. */
4146 static void
4147 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4148 void *data ATTRIBUTE_UNUSED)
4150 unsigned int regno;
4151 unsigned int nr;
4153 /* note_stores does give us subregs of hard regs,
4154 subreg_regno_offset requires a hard reg. */
4155 while (GET_CODE (x) == SUBREG)
4157 /* We ignore the subreg offset when calculating the regno,
4158 because we are using the entire underlying hard register
4159 below. */
4160 x = SUBREG_REG (x);
4163 if (!REG_P (x))
4164 return;
4166 regno = REGNO (x);
4168 if (regno >= FIRST_PSEUDO_REGISTER)
4169 nr = 1;
4170 else
4172 unsigned int i;
4174 nr = hard_regno_nregs[regno][GET_MODE (x)];
4175 /* Storing into a spilled-reg invalidates its contents.
4176 This can happen if a block-local pseudo is allocated to that reg
4177 and it wasn't spilled because this block's total need is 0.
4178 Then some insn might have an optional reload and use this reg. */
4179 for (i = 0; i < nr; i++)
4180 /* But don't do this if the reg actually serves as an output
4181 reload reg in the current instruction. */
4182 if (n_reloads == 0
4183 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4185 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4186 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4187 spill_reg_store[regno + i] = 0;
4191 /* Since value of X has changed,
4192 forget any value previously copied from it. */
4194 while (nr-- > 0)
4195 /* But don't forget a copy if this is the output reload
4196 that establishes the copy's validity. */
4197 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4198 reg_last_reload_reg[regno + nr] = 0;
4201 /* The following HARD_REG_SETs indicate when each hard register is
4202 used for a reload of various parts of the current insn. */
4204 /* If reg is unavailable for all reloads. */
4205 static HARD_REG_SET reload_reg_unavailable;
4206 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4207 static HARD_REG_SET reload_reg_used;
4208 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4209 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4210 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4211 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4212 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4213 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4214 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4215 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4216 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4217 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4218 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4219 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4220 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4221 static HARD_REG_SET reload_reg_used_in_op_addr;
4222 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4223 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4224 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4225 static HARD_REG_SET reload_reg_used_in_insn;
4226 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4227 static HARD_REG_SET reload_reg_used_in_other_addr;
4229 /* If reg is in use as a reload reg for any sort of reload. */
4230 static HARD_REG_SET reload_reg_used_at_all;
4232 /* If reg is use as an inherited reload. We just mark the first register
4233 in the group. */
4234 static HARD_REG_SET reload_reg_used_for_inherit;
4236 /* Records which hard regs are used in any way, either as explicit use or
4237 by being allocated to a pseudo during any point of the current insn. */
4238 static HARD_REG_SET reg_used_in_insn;
4240 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4241 TYPE. MODE is used to indicate how many consecutive regs are
4242 actually used. */
4244 static void
4245 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4246 enum machine_mode mode)
4248 unsigned int nregs = hard_regno_nregs[regno][mode];
4249 unsigned int i;
4251 for (i = regno; i < nregs + regno; i++)
4253 switch (type)
4255 case RELOAD_OTHER:
4256 SET_HARD_REG_BIT (reload_reg_used, i);
4257 break;
4259 case RELOAD_FOR_INPUT_ADDRESS:
4260 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4261 break;
4263 case RELOAD_FOR_INPADDR_ADDRESS:
4264 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4265 break;
4267 case RELOAD_FOR_OUTPUT_ADDRESS:
4268 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4269 break;
4271 case RELOAD_FOR_OUTADDR_ADDRESS:
4272 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4273 break;
4275 case RELOAD_FOR_OPERAND_ADDRESS:
4276 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4277 break;
4279 case RELOAD_FOR_OPADDR_ADDR:
4280 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4281 break;
4283 case RELOAD_FOR_OTHER_ADDRESS:
4284 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4285 break;
4287 case RELOAD_FOR_INPUT:
4288 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4289 break;
4291 case RELOAD_FOR_OUTPUT:
4292 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4293 break;
4295 case RELOAD_FOR_INSN:
4296 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4297 break;
4300 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4304 /* Similarly, but show REGNO is no longer in use for a reload. */
4306 static void
4307 clear_reload_reg_in_use (unsigned int regno, int opnum,
4308 enum reload_type type, enum machine_mode mode)
4310 unsigned int nregs = hard_regno_nregs[regno][mode];
4311 unsigned int start_regno, end_regno, r;
4312 int i;
4313 /* A complication is that for some reload types, inheritance might
4314 allow multiple reloads of the same types to share a reload register.
4315 We set check_opnum if we have to check only reloads with the same
4316 operand number, and check_any if we have to check all reloads. */
4317 int check_opnum = 0;
4318 int check_any = 0;
4319 HARD_REG_SET *used_in_set;
4321 switch (type)
4323 case RELOAD_OTHER:
4324 used_in_set = &reload_reg_used;
4325 break;
4327 case RELOAD_FOR_INPUT_ADDRESS:
4328 used_in_set = &reload_reg_used_in_input_addr[opnum];
4329 break;
4331 case RELOAD_FOR_INPADDR_ADDRESS:
4332 check_opnum = 1;
4333 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4334 break;
4336 case RELOAD_FOR_OUTPUT_ADDRESS:
4337 used_in_set = &reload_reg_used_in_output_addr[opnum];
4338 break;
4340 case RELOAD_FOR_OUTADDR_ADDRESS:
4341 check_opnum = 1;
4342 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4343 break;
4345 case RELOAD_FOR_OPERAND_ADDRESS:
4346 used_in_set = &reload_reg_used_in_op_addr;
4347 break;
4349 case RELOAD_FOR_OPADDR_ADDR:
4350 check_any = 1;
4351 used_in_set = &reload_reg_used_in_op_addr_reload;
4352 break;
4354 case RELOAD_FOR_OTHER_ADDRESS:
4355 used_in_set = &reload_reg_used_in_other_addr;
4356 check_any = 1;
4357 break;
4359 case RELOAD_FOR_INPUT:
4360 used_in_set = &reload_reg_used_in_input[opnum];
4361 break;
4363 case RELOAD_FOR_OUTPUT:
4364 used_in_set = &reload_reg_used_in_output[opnum];
4365 break;
4367 case RELOAD_FOR_INSN:
4368 used_in_set = &reload_reg_used_in_insn;
4369 break;
4370 default:
4371 gcc_unreachable ();
4373 /* We resolve conflicts with remaining reloads of the same type by
4374 excluding the intervals of reload registers by them from the
4375 interval of freed reload registers. Since we only keep track of
4376 one set of interval bounds, we might have to exclude somewhat
4377 more than what would be necessary if we used a HARD_REG_SET here.
4378 But this should only happen very infrequently, so there should
4379 be no reason to worry about it. */
4381 start_regno = regno;
4382 end_regno = regno + nregs;
4383 if (check_opnum || check_any)
4385 for (i = n_reloads - 1; i >= 0; i--)
4387 if (rld[i].when_needed == type
4388 && (check_any || rld[i].opnum == opnum)
4389 && rld[i].reg_rtx)
4391 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4392 unsigned int conflict_end
4393 = (conflict_start
4394 + hard_regno_nregs[conflict_start][rld[i].mode]);
4396 /* If there is an overlap with the first to-be-freed register,
4397 adjust the interval start. */
4398 if (conflict_start <= start_regno && conflict_end > start_regno)
4399 start_regno = conflict_end;
4400 /* Otherwise, if there is a conflict with one of the other
4401 to-be-freed registers, adjust the interval end. */
4402 if (conflict_start > start_regno && conflict_start < end_regno)
4403 end_regno = conflict_start;
4408 for (r = start_regno; r < end_regno; r++)
4409 CLEAR_HARD_REG_BIT (*used_in_set, r);
4412 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4413 specified by OPNUM and TYPE. */
4415 static int
4416 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4418 int i;
4420 /* In use for a RELOAD_OTHER means it's not available for anything. */
4421 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4422 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4423 return 0;
4425 switch (type)
4427 case RELOAD_OTHER:
4428 /* In use for anything means we can't use it for RELOAD_OTHER. */
4429 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4430 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4431 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4432 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4433 return 0;
4435 for (i = 0; i < reload_n_operands; i++)
4436 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4437 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4438 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4439 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4440 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4441 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4442 return 0;
4444 return 1;
4446 case RELOAD_FOR_INPUT:
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4448 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4449 return 0;
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4452 return 0;
4454 /* If it is used for some other input, can't use it. */
4455 for (i = 0; i < reload_n_operands; i++)
4456 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4457 return 0;
4459 /* If it is used in a later operand's address, can't use it. */
4460 for (i = opnum + 1; i < reload_n_operands; i++)
4461 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4462 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4463 return 0;
4465 return 1;
4467 case RELOAD_FOR_INPUT_ADDRESS:
4468 /* Can't use a register if it is used for an input address for this
4469 operand or used as an input in an earlier one. */
4470 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4471 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4472 return 0;
4474 for (i = 0; i < opnum; i++)
4475 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4476 return 0;
4478 return 1;
4480 case RELOAD_FOR_INPADDR_ADDRESS:
4481 /* Can't use a register if it is used for an input address
4482 for this operand or used as an input in an earlier
4483 one. */
4484 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4485 return 0;
4487 for (i = 0; i < opnum; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4489 return 0;
4491 return 1;
4493 case RELOAD_FOR_OUTPUT_ADDRESS:
4494 /* Can't use a register if it is used for an output address for this
4495 operand or used as an output in this or a later operand. Note
4496 that multiple output operands are emitted in reverse order, so
4497 the conflicting ones are those with lower indices. */
4498 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4499 return 0;
4501 for (i = 0; i <= opnum; i++)
4502 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4503 return 0;
4505 return 1;
4507 case RELOAD_FOR_OUTADDR_ADDRESS:
4508 /* Can't use a register if it is used for an output address
4509 for this operand or used as an output in this or a
4510 later operand. Note that multiple output operands are
4511 emitted in reverse order, so the conflicting ones are
4512 those with lower indices. */
4513 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4514 return 0;
4516 for (i = 0; i <= opnum; i++)
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4518 return 0;
4520 return 1;
4522 case RELOAD_FOR_OPERAND_ADDRESS:
4523 for (i = 0; i < reload_n_operands; i++)
4524 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4525 return 0;
4527 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4528 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4530 case RELOAD_FOR_OPADDR_ADDR:
4531 for (i = 0; i < reload_n_operands; i++)
4532 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4533 return 0;
4535 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4537 case RELOAD_FOR_OUTPUT:
4538 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4539 outputs, or an operand address for this or an earlier output.
4540 Note that multiple output operands are emitted in reverse order,
4541 so the conflicting ones are those with higher indices. */
4542 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4543 return 0;
4545 for (i = 0; i < reload_n_operands; i++)
4546 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4547 return 0;
4549 for (i = opnum; i < reload_n_operands; i++)
4550 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4551 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4552 return 0;
4554 return 1;
4556 case RELOAD_FOR_INSN:
4557 for (i = 0; i < reload_n_operands; i++)
4558 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4559 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4560 return 0;
4562 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4563 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4565 case RELOAD_FOR_OTHER_ADDRESS:
4566 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4568 default:
4569 gcc_unreachable ();
4573 /* Return 1 if the value in reload reg REGNO, as used by a reload
4574 needed for the part of the insn specified by OPNUM and TYPE,
4575 is still available in REGNO at the end of the insn.
4577 We can assume that the reload reg was already tested for availability
4578 at the time it is needed, and we should not check this again,
4579 in case the reg has already been marked in use. */
4581 static int
4582 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4584 int i;
4586 switch (type)
4588 case RELOAD_OTHER:
4589 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4590 its value must reach the end. */
4591 return 1;
4593 /* If this use is for part of the insn,
4594 its value reaches if no subsequent part uses the same register.
4595 Just like the above function, don't try to do this with lots
4596 of fallthroughs. */
4598 case RELOAD_FOR_OTHER_ADDRESS:
4599 /* Here we check for everything else, since these don't conflict
4600 with anything else and everything comes later. */
4602 for (i = 0; i < reload_n_operands; i++)
4603 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4604 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4605 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4606 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4607 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4608 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4609 return 0;
4611 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4612 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4613 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4614 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4616 case RELOAD_FOR_INPUT_ADDRESS:
4617 case RELOAD_FOR_INPADDR_ADDRESS:
4618 /* Similar, except that we check only for this and subsequent inputs
4619 and the address of only subsequent inputs and we do not need
4620 to check for RELOAD_OTHER objects since they are known not to
4621 conflict. */
4623 for (i = opnum; i < reload_n_operands; i++)
4624 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4625 return 0;
4627 for (i = opnum + 1; i < reload_n_operands; i++)
4628 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4629 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4630 return 0;
4632 for (i = 0; i < reload_n_operands; i++)
4633 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4634 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4635 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4636 return 0;
4638 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4639 return 0;
4641 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4642 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4643 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4645 case RELOAD_FOR_INPUT:
4646 /* Similar to input address, except we start at the next operand for
4647 both input and input address and we do not check for
4648 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4649 would conflict. */
4651 for (i = opnum + 1; i < reload_n_operands; i++)
4652 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4653 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4654 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4655 return 0;
4657 /* ... fall through ... */
4659 case RELOAD_FOR_OPERAND_ADDRESS:
4660 /* Check outputs and their addresses. */
4662 for (i = 0; i < reload_n_operands; i++)
4663 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4664 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4665 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4666 return 0;
4668 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4670 case RELOAD_FOR_OPADDR_ADDR:
4671 for (i = 0; i < reload_n_operands; i++)
4672 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4673 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4674 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4675 return 0;
4677 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4678 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4679 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4681 case RELOAD_FOR_INSN:
4682 /* These conflict with other outputs with RELOAD_OTHER. So
4683 we need only check for output addresses. */
4685 opnum = reload_n_operands;
4687 /* ... fall through ... */
4689 case RELOAD_FOR_OUTPUT:
4690 case RELOAD_FOR_OUTPUT_ADDRESS:
4691 case RELOAD_FOR_OUTADDR_ADDRESS:
4692 /* We already know these can't conflict with a later output. So the
4693 only thing to check are later output addresses.
4694 Note that multiple output operands are emitted in reverse order,
4695 so the conflicting ones are those with lower indices. */
4696 for (i = 0; i < opnum; i++)
4697 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4698 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4699 return 0;
4701 return 1;
4703 default:
4704 gcc_unreachable ();
4708 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4709 Return 0 otherwise.
4711 This function uses the same algorithm as reload_reg_free_p above. */
4713 static int
4714 reloads_conflict (int r1, int r2)
4716 enum reload_type r1_type = rld[r1].when_needed;
4717 enum reload_type r2_type = rld[r2].when_needed;
4718 int r1_opnum = rld[r1].opnum;
4719 int r2_opnum = rld[r2].opnum;
4721 /* RELOAD_OTHER conflicts with everything. */
4722 if (r2_type == RELOAD_OTHER)
4723 return 1;
4725 /* Otherwise, check conflicts differently for each type. */
4727 switch (r1_type)
4729 case RELOAD_FOR_INPUT:
4730 return (r2_type == RELOAD_FOR_INSN
4731 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4732 || r2_type == RELOAD_FOR_OPADDR_ADDR
4733 || r2_type == RELOAD_FOR_INPUT
4734 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4735 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4736 && r2_opnum > r1_opnum));
4738 case RELOAD_FOR_INPUT_ADDRESS:
4739 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4740 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4742 case RELOAD_FOR_INPADDR_ADDRESS:
4743 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4744 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4746 case RELOAD_FOR_OUTPUT_ADDRESS:
4747 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4748 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4750 case RELOAD_FOR_OUTADDR_ADDRESS:
4751 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4752 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4754 case RELOAD_FOR_OPERAND_ADDRESS:
4755 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4756 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4758 case RELOAD_FOR_OPADDR_ADDR:
4759 return (r2_type == RELOAD_FOR_INPUT
4760 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4762 case RELOAD_FOR_OUTPUT:
4763 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4764 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4765 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4766 && r2_opnum >= r1_opnum));
4768 case RELOAD_FOR_INSN:
4769 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4770 || r2_type == RELOAD_FOR_INSN
4771 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4773 case RELOAD_FOR_OTHER_ADDRESS:
4774 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4776 case RELOAD_OTHER:
4777 return 1;
4779 default:
4780 gcc_unreachable ();
4784 /* Indexed by reload number, 1 if incoming value
4785 inherited from previous insns. */
4786 static char reload_inherited[MAX_RELOADS];
4788 /* For an inherited reload, this is the insn the reload was inherited from,
4789 if we know it. Otherwise, this is 0. */
4790 static rtx reload_inheritance_insn[MAX_RELOADS];
4792 /* If nonzero, this is a place to get the value of the reload,
4793 rather than using reload_in. */
4794 static rtx reload_override_in[MAX_RELOADS];
4796 /* For each reload, the hard register number of the register used,
4797 or -1 if we did not need a register for this reload. */
4798 static int reload_spill_index[MAX_RELOADS];
4800 /* Subroutine of free_for_value_p, used to check a single register.
4801 START_REGNO is the starting regno of the full reload register
4802 (possibly comprising multiple hard registers) that we are considering. */
4804 static int
4805 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4806 enum reload_type type, rtx value, rtx out,
4807 int reloadnum, int ignore_address_reloads)
4809 int time1;
4810 /* Set if we see an input reload that must not share its reload register
4811 with any new earlyclobber, but might otherwise share the reload
4812 register with an output or input-output reload. */
4813 int check_earlyclobber = 0;
4814 int i;
4815 int copy = 0;
4817 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4818 return 0;
4820 if (out == const0_rtx)
4822 copy = 1;
4823 out = NULL_RTX;
4826 /* We use some pseudo 'time' value to check if the lifetimes of the
4827 new register use would overlap with the one of a previous reload
4828 that is not read-only or uses a different value.
4829 The 'time' used doesn't have to be linear in any shape or form, just
4830 monotonic.
4831 Some reload types use different 'buckets' for each operand.
4832 So there are MAX_RECOG_OPERANDS different time values for each
4833 such reload type.
4834 We compute TIME1 as the time when the register for the prospective
4835 new reload ceases to be live, and TIME2 for each existing
4836 reload as the time when that the reload register of that reload
4837 becomes live.
4838 Where there is little to be gained by exact lifetime calculations,
4839 we just make conservative assumptions, i.e. a longer lifetime;
4840 this is done in the 'default:' cases. */
4841 switch (type)
4843 case RELOAD_FOR_OTHER_ADDRESS:
4844 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4845 time1 = copy ? 0 : 1;
4846 break;
4847 case RELOAD_OTHER:
4848 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4849 break;
4850 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4851 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4852 respectively, to the time values for these, we get distinct time
4853 values. To get distinct time values for each operand, we have to
4854 multiply opnum by at least three. We round that up to four because
4855 multiply by four is often cheaper. */
4856 case RELOAD_FOR_INPADDR_ADDRESS:
4857 time1 = opnum * 4 + 2;
4858 break;
4859 case RELOAD_FOR_INPUT_ADDRESS:
4860 time1 = opnum * 4 + 3;
4861 break;
4862 case RELOAD_FOR_INPUT:
4863 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4864 executes (inclusive). */
4865 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4866 break;
4867 case RELOAD_FOR_OPADDR_ADDR:
4868 /* opnum * 4 + 4
4869 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4870 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4871 break;
4872 case RELOAD_FOR_OPERAND_ADDRESS:
4873 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4874 is executed. */
4875 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4876 break;
4877 case RELOAD_FOR_OUTADDR_ADDRESS:
4878 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4879 break;
4880 case RELOAD_FOR_OUTPUT_ADDRESS:
4881 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4882 break;
4883 default:
4884 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4887 for (i = 0; i < n_reloads; i++)
4889 rtx reg = rld[i].reg_rtx;
4890 if (reg && REG_P (reg)
4891 && ((unsigned) regno - true_regnum (reg)
4892 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4893 && i != reloadnum)
4895 rtx other_input = rld[i].in;
4897 /* If the other reload loads the same input value, that
4898 will not cause a conflict only if it's loading it into
4899 the same register. */
4900 if (true_regnum (reg) != start_regno)
4901 other_input = NULL_RTX;
4902 if (! other_input || ! rtx_equal_p (other_input, value)
4903 || rld[i].out || out)
4905 int time2;
4906 switch (rld[i].when_needed)
4908 case RELOAD_FOR_OTHER_ADDRESS:
4909 time2 = 0;
4910 break;
4911 case RELOAD_FOR_INPADDR_ADDRESS:
4912 /* find_reloads makes sure that a
4913 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4914 by at most one - the first -
4915 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4916 address reload is inherited, the address address reload
4917 goes away, so we can ignore this conflict. */
4918 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4919 && ignore_address_reloads
4920 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4921 Then the address address is still needed to store
4922 back the new address. */
4923 && ! rld[reloadnum].out)
4924 continue;
4925 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4926 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4927 reloads go away. */
4928 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4929 && ignore_address_reloads
4930 /* Unless we are reloading an auto_inc expression. */
4931 && ! rld[reloadnum].out)
4932 continue;
4933 time2 = rld[i].opnum * 4 + 2;
4934 break;
4935 case RELOAD_FOR_INPUT_ADDRESS:
4936 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4937 && ignore_address_reloads
4938 && ! rld[reloadnum].out)
4939 continue;
4940 time2 = rld[i].opnum * 4 + 3;
4941 break;
4942 case RELOAD_FOR_INPUT:
4943 time2 = rld[i].opnum * 4 + 4;
4944 check_earlyclobber = 1;
4945 break;
4946 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4947 == MAX_RECOG_OPERAND * 4 */
4948 case RELOAD_FOR_OPADDR_ADDR:
4949 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4950 && ignore_address_reloads
4951 && ! rld[reloadnum].out)
4952 continue;
4953 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4954 break;
4955 case RELOAD_FOR_OPERAND_ADDRESS:
4956 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4957 check_earlyclobber = 1;
4958 break;
4959 case RELOAD_FOR_INSN:
4960 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4961 break;
4962 case RELOAD_FOR_OUTPUT:
4963 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4964 instruction is executed. */
4965 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4966 break;
4967 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4968 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4969 value. */
4970 case RELOAD_FOR_OUTADDR_ADDRESS:
4971 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4972 && ignore_address_reloads
4973 && ! rld[reloadnum].out)
4974 continue;
4975 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4976 break;
4977 case RELOAD_FOR_OUTPUT_ADDRESS:
4978 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4979 break;
4980 case RELOAD_OTHER:
4981 /* If there is no conflict in the input part, handle this
4982 like an output reload. */
4983 if (! rld[i].in || rtx_equal_p (other_input, value))
4985 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4986 /* Earlyclobbered outputs must conflict with inputs. */
4987 if (earlyclobber_operand_p (rld[i].out))
4988 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4990 break;
4992 time2 = 1;
4993 /* RELOAD_OTHER might be live beyond instruction execution,
4994 but this is not obvious when we set time2 = 1. So check
4995 here if there might be a problem with the new reload
4996 clobbering the register used by the RELOAD_OTHER. */
4997 if (out)
4998 return 0;
4999 break;
5000 default:
5001 return 0;
5003 if ((time1 >= time2
5004 && (! rld[i].in || rld[i].out
5005 || ! rtx_equal_p (other_input, value)))
5006 || (out && rld[reloadnum].out_reg
5007 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5008 return 0;
5013 /* Earlyclobbered outputs must conflict with inputs. */
5014 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5015 return 0;
5017 return 1;
5020 /* Return 1 if the value in reload reg REGNO, as used by a reload
5021 needed for the part of the insn specified by OPNUM and TYPE,
5022 may be used to load VALUE into it.
5024 MODE is the mode in which the register is used, this is needed to
5025 determine how many hard regs to test.
5027 Other read-only reloads with the same value do not conflict
5028 unless OUT is nonzero and these other reloads have to live while
5029 output reloads live.
5030 If OUT is CONST0_RTX, this is a special case: it means that the
5031 test should not be for using register REGNO as reload register, but
5032 for copying from register REGNO into the reload register.
5034 RELOADNUM is the number of the reload we want to load this value for;
5035 a reload does not conflict with itself.
5037 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5038 reloads that load an address for the very reload we are considering.
5040 The caller has to make sure that there is no conflict with the return
5041 register. */
5043 static int
5044 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5045 enum reload_type type, rtx value, rtx out, int reloadnum,
5046 int ignore_address_reloads)
5048 int nregs = hard_regno_nregs[regno][mode];
5049 while (nregs-- > 0)
5050 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5051 value, out, reloadnum,
5052 ignore_address_reloads))
5053 return 0;
5054 return 1;
5057 /* Return nonzero if the rtx X is invariant over the current function. */
5058 /* ??? Actually, the places where we use this expect exactly what is
5059 tested here, and not everything that is function invariant. In
5060 particular, the frame pointer and arg pointer are special cased;
5061 pic_offset_table_rtx is not, and we must not spill these things to
5062 memory. */
5065 function_invariant_p (rtx x)
5067 if (CONSTANT_P (x))
5068 return 1;
5069 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5070 return 1;
5071 if (GET_CODE (x) == PLUS
5072 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5073 && CONSTANT_P (XEXP (x, 1)))
5074 return 1;
5075 return 0;
5078 /* Determine whether the reload reg X overlaps any rtx'es used for
5079 overriding inheritance. Return nonzero if so. */
5081 static int
5082 conflicts_with_override (rtx x)
5084 int i;
5085 for (i = 0; i < n_reloads; i++)
5086 if (reload_override_in[i]
5087 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5088 return 1;
5089 return 0;
5092 /* Give an error message saying we failed to find a reload for INSN,
5093 and clear out reload R. */
5094 static void
5095 failed_reload (rtx insn, int r)
5097 if (asm_noperands (PATTERN (insn)) < 0)
5098 /* It's the compiler's fault. */
5099 fatal_insn ("could not find a spill register", insn);
5101 /* It's the user's fault; the operand's mode and constraint
5102 don't match. Disable this reload so we don't crash in final. */
5103 error_for_asm (insn,
5104 "%<asm%> operand constraint incompatible with operand size");
5105 rld[r].in = 0;
5106 rld[r].out = 0;
5107 rld[r].reg_rtx = 0;
5108 rld[r].optional = 1;
5109 rld[r].secondary_p = 1;
5112 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5113 for reload R. If it's valid, get an rtx for it. Return nonzero if
5114 successful. */
5115 static int
5116 set_reload_reg (int i, int r)
5118 int regno;
5119 rtx reg = spill_reg_rtx[i];
5121 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5122 spill_reg_rtx[i] = reg
5123 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5125 regno = true_regnum (reg);
5127 /* Detect when the reload reg can't hold the reload mode.
5128 This used to be one `if', but Sequent compiler can't handle that. */
5129 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5131 enum machine_mode test_mode = VOIDmode;
5132 if (rld[r].in)
5133 test_mode = GET_MODE (rld[r].in);
5134 /* If rld[r].in has VOIDmode, it means we will load it
5135 in whatever mode the reload reg has: to wit, rld[r].mode.
5136 We have already tested that for validity. */
5137 /* Aside from that, we need to test that the expressions
5138 to reload from or into have modes which are valid for this
5139 reload register. Otherwise the reload insns would be invalid. */
5140 if (! (rld[r].in != 0 && test_mode != VOIDmode
5141 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5142 if (! (rld[r].out != 0
5143 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5145 /* The reg is OK. */
5146 last_spill_reg = i;
5148 /* Mark as in use for this insn the reload regs we use
5149 for this. */
5150 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5151 rld[r].when_needed, rld[r].mode);
5153 rld[r].reg_rtx = reg;
5154 reload_spill_index[r] = spill_regs[i];
5155 return 1;
5158 return 0;
5161 /* Find a spill register to use as a reload register for reload R.
5162 LAST_RELOAD is nonzero if this is the last reload for the insn being
5163 processed.
5165 Set rld[R].reg_rtx to the register allocated.
5167 We return 1 if successful, or 0 if we couldn't find a spill reg and
5168 we didn't change anything. */
5170 static int
5171 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5172 int last_reload)
5174 int i, pass, count;
5176 /* If we put this reload ahead, thinking it is a group,
5177 then insist on finding a group. Otherwise we can grab a
5178 reg that some other reload needs.
5179 (That can happen when we have a 68000 DATA_OR_FP_REG
5180 which is a group of data regs or one fp reg.)
5181 We need not be so restrictive if there are no more reloads
5182 for this insn.
5184 ??? Really it would be nicer to have smarter handling
5185 for that kind of reg class, where a problem like this is normal.
5186 Perhaps those classes should be avoided for reloading
5187 by use of more alternatives. */
5189 int force_group = rld[r].nregs > 1 && ! last_reload;
5191 /* If we want a single register and haven't yet found one,
5192 take any reg in the right class and not in use.
5193 If we want a consecutive group, here is where we look for it.
5195 We use two passes so we can first look for reload regs to
5196 reuse, which are already in use for other reloads in this insn,
5197 and only then use additional registers.
5198 I think that maximizing reuse is needed to make sure we don't
5199 run out of reload regs. Suppose we have three reloads, and
5200 reloads A and B can share regs. These need two regs.
5201 Suppose A and B are given different regs.
5202 That leaves none for C. */
5203 for (pass = 0; pass < 2; pass++)
5205 /* I is the index in spill_regs.
5206 We advance it round-robin between insns to use all spill regs
5207 equally, so that inherited reloads have a chance
5208 of leapfrogging each other. */
5210 i = last_spill_reg;
5212 for (count = 0; count < n_spills; count++)
5214 int class = (int) rld[r].class;
5215 int regnum;
5217 i++;
5218 if (i >= n_spills)
5219 i -= n_spills;
5220 regnum = spill_regs[i];
5222 if ((reload_reg_free_p (regnum, rld[r].opnum,
5223 rld[r].when_needed)
5224 || (rld[r].in
5225 /* We check reload_reg_used to make sure we
5226 don't clobber the return register. */
5227 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5228 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5229 rld[r].when_needed, rld[r].in,
5230 rld[r].out, r, 1)))
5231 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5232 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5233 /* Look first for regs to share, then for unshared. But
5234 don't share regs used for inherited reloads; they are
5235 the ones we want to preserve. */
5236 && (pass
5237 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5238 regnum)
5239 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5240 regnum))))
5242 int nr = hard_regno_nregs[regnum][rld[r].mode];
5243 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5244 (on 68000) got us two FP regs. If NR is 1,
5245 we would reject both of them. */
5246 if (force_group)
5247 nr = rld[r].nregs;
5248 /* If we need only one reg, we have already won. */
5249 if (nr == 1)
5251 /* But reject a single reg if we demand a group. */
5252 if (force_group)
5253 continue;
5254 break;
5256 /* Otherwise check that as many consecutive regs as we need
5257 are available here. */
5258 while (nr > 1)
5260 int regno = regnum + nr - 1;
5261 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5262 && spill_reg_order[regno] >= 0
5263 && reload_reg_free_p (regno, rld[r].opnum,
5264 rld[r].when_needed)))
5265 break;
5266 nr--;
5268 if (nr == 1)
5269 break;
5273 /* If we found something on pass 1, omit pass 2. */
5274 if (count < n_spills)
5275 break;
5278 /* We should have found a spill register by now. */
5279 if (count >= n_spills)
5280 return 0;
5282 /* I is the index in SPILL_REG_RTX of the reload register we are to
5283 allocate. Get an rtx for it and find its register number. */
5285 return set_reload_reg (i, r);
5288 /* Initialize all the tables needed to allocate reload registers.
5289 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5290 is the array we use to restore the reg_rtx field for every reload. */
5292 static void
5293 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5295 int i;
5297 for (i = 0; i < n_reloads; i++)
5298 rld[i].reg_rtx = save_reload_reg_rtx[i];
5300 memset (reload_inherited, 0, MAX_RELOADS);
5301 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5302 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5304 CLEAR_HARD_REG_SET (reload_reg_used);
5305 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5306 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5307 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5308 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5309 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5311 CLEAR_HARD_REG_SET (reg_used_in_insn);
5313 HARD_REG_SET tmp;
5314 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5315 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5316 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5317 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5318 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5319 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5322 for (i = 0; i < reload_n_operands; i++)
5324 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5325 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5326 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5327 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5328 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5329 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5332 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5334 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5336 for (i = 0; i < n_reloads; i++)
5337 /* If we have already decided to use a certain register,
5338 don't use it in another way. */
5339 if (rld[i].reg_rtx)
5340 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5341 rld[i].when_needed, rld[i].mode);
5344 /* Assign hard reg targets for the pseudo-registers we must reload
5345 into hard regs for this insn.
5346 Also output the instructions to copy them in and out of the hard regs.
5348 For machines with register classes, we are responsible for
5349 finding a reload reg in the proper class. */
5351 static void
5352 choose_reload_regs (struct insn_chain *chain)
5354 rtx insn = chain->insn;
5355 int i, j;
5356 unsigned int max_group_size = 1;
5357 enum reg_class group_class = NO_REGS;
5358 int pass, win, inheritance;
5360 rtx save_reload_reg_rtx[MAX_RELOADS];
5362 /* In order to be certain of getting the registers we need,
5363 we must sort the reloads into order of increasing register class.
5364 Then our grabbing of reload registers will parallel the process
5365 that provided the reload registers.
5367 Also note whether any of the reloads wants a consecutive group of regs.
5368 If so, record the maximum size of the group desired and what
5369 register class contains all the groups needed by this insn. */
5371 for (j = 0; j < n_reloads; j++)
5373 reload_order[j] = j;
5374 reload_spill_index[j] = -1;
5376 if (rld[j].nregs > 1)
5378 max_group_size = MAX (rld[j].nregs, max_group_size);
5379 group_class
5380 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5383 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5386 if (n_reloads > 1)
5387 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5389 /* If -O, try first with inheritance, then turning it off.
5390 If not -O, don't do inheritance.
5391 Using inheritance when not optimizing leads to paradoxes
5392 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5393 because one side of the comparison might be inherited. */
5394 win = 0;
5395 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5397 choose_reload_regs_init (chain, save_reload_reg_rtx);
5399 /* Process the reloads in order of preference just found.
5400 Beyond this point, subregs can be found in reload_reg_rtx.
5402 This used to look for an existing reloaded home for all of the
5403 reloads, and only then perform any new reloads. But that could lose
5404 if the reloads were done out of reg-class order because a later
5405 reload with a looser constraint might have an old home in a register
5406 needed by an earlier reload with a tighter constraint.
5408 To solve this, we make two passes over the reloads, in the order
5409 described above. In the first pass we try to inherit a reload
5410 from a previous insn. If there is a later reload that needs a
5411 class that is a proper subset of the class being processed, we must
5412 also allocate a spill register during the first pass.
5414 Then make a second pass over the reloads to allocate any reloads
5415 that haven't been given registers yet. */
5417 for (j = 0; j < n_reloads; j++)
5419 int r = reload_order[j];
5420 rtx search_equiv = NULL_RTX;
5422 /* Ignore reloads that got marked inoperative. */
5423 if (rld[r].out == 0 && rld[r].in == 0
5424 && ! rld[r].secondary_p)
5425 continue;
5427 /* If find_reloads chose to use reload_in or reload_out as a reload
5428 register, we don't need to chose one. Otherwise, try even if it
5429 found one since we might save an insn if we find the value lying
5430 around.
5431 Try also when reload_in is a pseudo without a hard reg. */
5432 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5433 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5434 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5435 && !MEM_P (rld[r].in)
5436 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5437 continue;
5439 #if 0 /* No longer needed for correct operation.
5440 It might give better code, or might not; worth an experiment? */
5441 /* If this is an optional reload, we can't inherit from earlier insns
5442 until we are sure that any non-optional reloads have been allocated.
5443 The following code takes advantage of the fact that optional reloads
5444 are at the end of reload_order. */
5445 if (rld[r].optional != 0)
5446 for (i = 0; i < j; i++)
5447 if ((rld[reload_order[i]].out != 0
5448 || rld[reload_order[i]].in != 0
5449 || rld[reload_order[i]].secondary_p)
5450 && ! rld[reload_order[i]].optional
5451 && rld[reload_order[i]].reg_rtx == 0)
5452 allocate_reload_reg (chain, reload_order[i], 0);
5453 #endif
5455 /* First see if this pseudo is already available as reloaded
5456 for a previous insn. We cannot try to inherit for reloads
5457 that are smaller than the maximum number of registers needed
5458 for groups unless the register we would allocate cannot be used
5459 for the groups.
5461 We could check here to see if this is a secondary reload for
5462 an object that is already in a register of the desired class.
5463 This would avoid the need for the secondary reload register.
5464 But this is complex because we can't easily determine what
5465 objects might want to be loaded via this reload. So let a
5466 register be allocated here. In `emit_reload_insns' we suppress
5467 one of the loads in the case described above. */
5469 if (inheritance)
5471 int byte = 0;
5472 int regno = -1;
5473 enum machine_mode mode = VOIDmode;
5475 if (rld[r].in == 0)
5477 else if (REG_P (rld[r].in))
5479 regno = REGNO (rld[r].in);
5480 mode = GET_MODE (rld[r].in);
5482 else if (REG_P (rld[r].in_reg))
5484 regno = REGNO (rld[r].in_reg);
5485 mode = GET_MODE (rld[r].in_reg);
5487 else if (GET_CODE (rld[r].in_reg) == SUBREG
5488 && REG_P (SUBREG_REG (rld[r].in_reg)))
5490 byte = SUBREG_BYTE (rld[r].in_reg);
5491 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5492 if (regno < FIRST_PSEUDO_REGISTER)
5493 regno = subreg_regno (rld[r].in_reg);
5494 mode = GET_MODE (rld[r].in_reg);
5496 #ifdef AUTO_INC_DEC
5497 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5498 || GET_CODE (rld[r].in_reg) == PRE_DEC
5499 || GET_CODE (rld[r].in_reg) == POST_INC
5500 || GET_CODE (rld[r].in_reg) == POST_DEC)
5501 && REG_P (XEXP (rld[r].in_reg, 0)))
5503 regno = REGNO (XEXP (rld[r].in_reg, 0));
5504 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5505 rld[r].out = rld[r].in;
5507 #endif
5508 #if 0
5509 /* This won't work, since REGNO can be a pseudo reg number.
5510 Also, it takes much more hair to keep track of all the things
5511 that can invalidate an inherited reload of part of a pseudoreg. */
5512 else if (GET_CODE (rld[r].in) == SUBREG
5513 && REG_P (SUBREG_REG (rld[r].in)))
5514 regno = subreg_regno (rld[r].in);
5515 #endif
5517 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5519 enum reg_class class = rld[r].class, last_class;
5520 rtx last_reg = reg_last_reload_reg[regno];
5521 enum machine_mode need_mode;
5523 i = REGNO (last_reg);
5524 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5525 last_class = REGNO_REG_CLASS (i);
5527 if (byte == 0)
5528 need_mode = mode;
5529 else
5530 need_mode
5531 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5532 + byte * BITS_PER_UNIT,
5533 GET_MODE_CLASS (mode));
5535 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5536 >= GET_MODE_SIZE (need_mode))
5537 #ifdef CANNOT_CHANGE_MODE_CLASS
5538 /* Verify that the register in "i" can be obtained
5539 from LAST_REG. */
5540 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5541 GET_MODE (last_reg),
5542 mode)
5543 #endif
5544 && reg_reloaded_contents[i] == regno
5545 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5546 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5547 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5548 /* Even if we can't use this register as a reload
5549 register, we might use it for reload_override_in,
5550 if copying it to the desired class is cheap
5551 enough. */
5552 || ((REGISTER_MOVE_COST (mode, last_class, class)
5553 < MEMORY_MOVE_COST (mode, class, 1))
5554 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5555 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5556 last_reg)
5557 == NO_REGS)
5558 #endif
5559 #ifdef SECONDARY_MEMORY_NEEDED
5560 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5561 mode)
5562 #endif
5565 && (rld[r].nregs == max_group_size
5566 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5568 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5569 rld[r].when_needed, rld[r].in,
5570 const0_rtx, r, 1))
5572 /* If a group is needed, verify that all the subsequent
5573 registers still have their values intact. */
5574 int nr = hard_regno_nregs[i][rld[r].mode];
5575 int k;
5577 for (k = 1; k < nr; k++)
5578 if (reg_reloaded_contents[i + k] != regno
5579 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5580 break;
5582 if (k == nr)
5584 int i1;
5585 int bad_for_class;
5587 last_reg = (GET_MODE (last_reg) == mode
5588 ? last_reg : gen_rtx_REG (mode, i));
5590 bad_for_class = 0;
5591 for (k = 0; k < nr; k++)
5592 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5593 i+k);
5595 /* We found a register that contains the
5596 value we need. If this register is the
5597 same as an `earlyclobber' operand of the
5598 current insn, just mark it as a place to
5599 reload from since we can't use it as the
5600 reload register itself. */
5602 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5603 if (reg_overlap_mentioned_for_reload_p
5604 (reg_last_reload_reg[regno],
5605 reload_earlyclobbers[i1]))
5606 break;
5608 if (i1 != n_earlyclobbers
5609 || ! (free_for_value_p (i, rld[r].mode,
5610 rld[r].opnum,
5611 rld[r].when_needed, rld[r].in,
5612 rld[r].out, r, 1))
5613 /* Don't use it if we'd clobber a pseudo reg. */
5614 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5615 && rld[r].out
5616 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5617 /* Don't clobber the frame pointer. */
5618 || (i == HARD_FRAME_POINTER_REGNUM
5619 && frame_pointer_needed
5620 && rld[r].out)
5621 /* Don't really use the inherited spill reg
5622 if we need it wider than we've got it. */
5623 || (GET_MODE_SIZE (rld[r].mode)
5624 > GET_MODE_SIZE (mode))
5625 || bad_for_class
5627 /* If find_reloads chose reload_out as reload
5628 register, stay with it - that leaves the
5629 inherited register for subsequent reloads. */
5630 || (rld[r].out && rld[r].reg_rtx
5631 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5633 if (! rld[r].optional)
5635 reload_override_in[r] = last_reg;
5636 reload_inheritance_insn[r]
5637 = reg_reloaded_insn[i];
5640 else
5642 int k;
5643 /* We can use this as a reload reg. */
5644 /* Mark the register as in use for this part of
5645 the insn. */
5646 mark_reload_reg_in_use (i,
5647 rld[r].opnum,
5648 rld[r].when_needed,
5649 rld[r].mode);
5650 rld[r].reg_rtx = last_reg;
5651 reload_inherited[r] = 1;
5652 reload_inheritance_insn[r]
5653 = reg_reloaded_insn[i];
5654 reload_spill_index[r] = i;
5655 for (k = 0; k < nr; k++)
5656 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5657 i + k);
5664 /* Here's another way to see if the value is already lying around. */
5665 if (inheritance
5666 && rld[r].in != 0
5667 && ! reload_inherited[r]
5668 && rld[r].out == 0
5669 && (CONSTANT_P (rld[r].in)
5670 || GET_CODE (rld[r].in) == PLUS
5671 || REG_P (rld[r].in)
5672 || MEM_P (rld[r].in))
5673 && (rld[r].nregs == max_group_size
5674 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5675 search_equiv = rld[r].in;
5676 /* If this is an output reload from a simple move insn, look
5677 if an equivalence for the input is available. */
5678 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5680 rtx set = single_set (insn);
5682 if (set
5683 && rtx_equal_p (rld[r].out, SET_DEST (set))
5684 && CONSTANT_P (SET_SRC (set)))
5685 search_equiv = SET_SRC (set);
5688 if (search_equiv)
5690 rtx equiv
5691 = find_equiv_reg (search_equiv, insn, rld[r].class,
5692 -1, NULL, 0, rld[r].mode);
5693 int regno = 0;
5695 if (equiv != 0)
5697 if (REG_P (equiv))
5698 regno = REGNO (equiv);
5699 else
5701 /* This must be a SUBREG of a hard register.
5702 Make a new REG since this might be used in an
5703 address and not all machines support SUBREGs
5704 there. */
5705 gcc_assert (GET_CODE (equiv) == SUBREG);
5706 regno = subreg_regno (equiv);
5707 equiv = gen_rtx_REG (rld[r].mode, regno);
5708 /* If we choose EQUIV as the reload register, but the
5709 loop below decides to cancel the inheritance, we'll
5710 end up reloading EQUIV in rld[r].mode, not the mode
5711 it had originally. That isn't safe when EQUIV isn't
5712 available as a spill register since its value might
5713 still be live at this point. */
5714 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5715 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5716 equiv = 0;
5720 /* If we found a spill reg, reject it unless it is free
5721 and of the desired class. */
5722 if (equiv != 0)
5724 int regs_used = 0;
5725 int bad_for_class = 0;
5726 int max_regno = regno + rld[r].nregs;
5728 for (i = regno; i < max_regno; i++)
5730 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5732 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5736 if ((regs_used
5737 && ! free_for_value_p (regno, rld[r].mode,
5738 rld[r].opnum, rld[r].when_needed,
5739 rld[r].in, rld[r].out, r, 1))
5740 || bad_for_class)
5741 equiv = 0;
5744 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5745 equiv = 0;
5747 /* We found a register that contains the value we need.
5748 If this register is the same as an `earlyclobber' operand
5749 of the current insn, just mark it as a place to reload from
5750 since we can't use it as the reload register itself. */
5752 if (equiv != 0)
5753 for (i = 0; i < n_earlyclobbers; i++)
5754 if (reg_overlap_mentioned_for_reload_p (equiv,
5755 reload_earlyclobbers[i]))
5757 if (! rld[r].optional)
5758 reload_override_in[r] = equiv;
5759 equiv = 0;
5760 break;
5763 /* If the equiv register we have found is explicitly clobbered
5764 in the current insn, it depends on the reload type if we
5765 can use it, use it for reload_override_in, or not at all.
5766 In particular, we then can't use EQUIV for a
5767 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5769 if (equiv != 0)
5771 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5772 switch (rld[r].when_needed)
5774 case RELOAD_FOR_OTHER_ADDRESS:
5775 case RELOAD_FOR_INPADDR_ADDRESS:
5776 case RELOAD_FOR_INPUT_ADDRESS:
5777 case RELOAD_FOR_OPADDR_ADDR:
5778 break;
5779 case RELOAD_OTHER:
5780 case RELOAD_FOR_INPUT:
5781 case RELOAD_FOR_OPERAND_ADDRESS:
5782 if (! rld[r].optional)
5783 reload_override_in[r] = equiv;
5784 /* Fall through. */
5785 default:
5786 equiv = 0;
5787 break;
5789 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5790 switch (rld[r].when_needed)
5792 case RELOAD_FOR_OTHER_ADDRESS:
5793 case RELOAD_FOR_INPADDR_ADDRESS:
5794 case RELOAD_FOR_INPUT_ADDRESS:
5795 case RELOAD_FOR_OPADDR_ADDR:
5796 case RELOAD_FOR_OPERAND_ADDRESS:
5797 case RELOAD_FOR_INPUT:
5798 break;
5799 case RELOAD_OTHER:
5800 if (! rld[r].optional)
5801 reload_override_in[r] = equiv;
5802 /* Fall through. */
5803 default:
5804 equiv = 0;
5805 break;
5809 /* If we found an equivalent reg, say no code need be generated
5810 to load it, and use it as our reload reg. */
5811 if (equiv != 0
5812 && (regno != HARD_FRAME_POINTER_REGNUM
5813 || !frame_pointer_needed))
5815 int nr = hard_regno_nregs[regno][rld[r].mode];
5816 int k;
5817 rld[r].reg_rtx = equiv;
5818 reload_inherited[r] = 1;
5820 /* If reg_reloaded_valid is not set for this register,
5821 there might be a stale spill_reg_store lying around.
5822 We must clear it, since otherwise emit_reload_insns
5823 might delete the store. */
5824 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5825 spill_reg_store[regno] = NULL_RTX;
5826 /* If any of the hard registers in EQUIV are spill
5827 registers, mark them as in use for this insn. */
5828 for (k = 0; k < nr; k++)
5830 i = spill_reg_order[regno + k];
5831 if (i >= 0)
5833 mark_reload_reg_in_use (regno, rld[r].opnum,
5834 rld[r].when_needed,
5835 rld[r].mode);
5836 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5837 regno + k);
5843 /* If we found a register to use already, or if this is an optional
5844 reload, we are done. */
5845 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5846 continue;
5848 #if 0
5849 /* No longer needed for correct operation. Might or might
5850 not give better code on the average. Want to experiment? */
5852 /* See if there is a later reload that has a class different from our
5853 class that intersects our class or that requires less register
5854 than our reload. If so, we must allocate a register to this
5855 reload now, since that reload might inherit a previous reload
5856 and take the only available register in our class. Don't do this
5857 for optional reloads since they will force all previous reloads
5858 to be allocated. Also don't do this for reloads that have been
5859 turned off. */
5861 for (i = j + 1; i < n_reloads; i++)
5863 int s = reload_order[i];
5865 if ((rld[s].in == 0 && rld[s].out == 0
5866 && ! rld[s].secondary_p)
5867 || rld[s].optional)
5868 continue;
5870 if ((rld[s].class != rld[r].class
5871 && reg_classes_intersect_p (rld[r].class,
5872 rld[s].class))
5873 || rld[s].nregs < rld[r].nregs)
5874 break;
5877 if (i == n_reloads)
5878 continue;
5880 allocate_reload_reg (chain, r, j == n_reloads - 1);
5881 #endif
5884 /* Now allocate reload registers for anything non-optional that
5885 didn't get one yet. */
5886 for (j = 0; j < n_reloads; j++)
5888 int r = reload_order[j];
5890 /* Ignore reloads that got marked inoperative. */
5891 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5892 continue;
5894 /* Skip reloads that already have a register allocated or are
5895 optional. */
5896 if (rld[r].reg_rtx != 0 || rld[r].optional)
5897 continue;
5899 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5900 break;
5903 /* If that loop got all the way, we have won. */
5904 if (j == n_reloads)
5906 win = 1;
5907 break;
5910 /* Loop around and try without any inheritance. */
5913 if (! win)
5915 /* First undo everything done by the failed attempt
5916 to allocate with inheritance. */
5917 choose_reload_regs_init (chain, save_reload_reg_rtx);
5919 /* Some sanity tests to verify that the reloads found in the first
5920 pass are identical to the ones we have now. */
5921 gcc_assert (chain->n_reloads == n_reloads);
5923 for (i = 0; i < n_reloads; i++)
5925 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5926 continue;
5927 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
5928 for (j = 0; j < n_spills; j++)
5929 if (spill_regs[j] == chain->rld[i].regno)
5930 if (! set_reload_reg (j, i))
5931 failed_reload (chain->insn, i);
5935 /* If we thought we could inherit a reload, because it seemed that
5936 nothing else wanted the same reload register earlier in the insn,
5937 verify that assumption, now that all reloads have been assigned.
5938 Likewise for reloads where reload_override_in has been set. */
5940 /* If doing expensive optimizations, do one preliminary pass that doesn't
5941 cancel any inheritance, but removes reloads that have been needed only
5942 for reloads that we know can be inherited. */
5943 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5945 for (j = 0; j < n_reloads; j++)
5947 int r = reload_order[j];
5948 rtx check_reg;
5949 if (reload_inherited[r] && rld[r].reg_rtx)
5950 check_reg = rld[r].reg_rtx;
5951 else if (reload_override_in[r]
5952 && (REG_P (reload_override_in[r])
5953 || GET_CODE (reload_override_in[r]) == SUBREG))
5954 check_reg = reload_override_in[r];
5955 else
5956 continue;
5957 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5958 rld[r].opnum, rld[r].when_needed, rld[r].in,
5959 (reload_inherited[r]
5960 ? rld[r].out : const0_rtx),
5961 r, 1))
5963 if (pass)
5964 continue;
5965 reload_inherited[r] = 0;
5966 reload_override_in[r] = 0;
5968 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5969 reload_override_in, then we do not need its related
5970 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5971 likewise for other reload types.
5972 We handle this by removing a reload when its only replacement
5973 is mentioned in reload_in of the reload we are going to inherit.
5974 A special case are auto_inc expressions; even if the input is
5975 inherited, we still need the address for the output. We can
5976 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5977 If we succeeded removing some reload and we are doing a preliminary
5978 pass just to remove such reloads, make another pass, since the
5979 removal of one reload might allow us to inherit another one. */
5980 else if (rld[r].in
5981 && rld[r].out != rld[r].in
5982 && remove_address_replacements (rld[r].in) && pass)
5983 pass = 2;
5987 /* Now that reload_override_in is known valid,
5988 actually override reload_in. */
5989 for (j = 0; j < n_reloads; j++)
5990 if (reload_override_in[j])
5991 rld[j].in = reload_override_in[j];
5993 /* If this reload won't be done because it has been canceled or is
5994 optional and not inherited, clear reload_reg_rtx so other
5995 routines (such as subst_reloads) don't get confused. */
5996 for (j = 0; j < n_reloads; j++)
5997 if (rld[j].reg_rtx != 0
5998 && ((rld[j].optional && ! reload_inherited[j])
5999 || (rld[j].in == 0 && rld[j].out == 0
6000 && ! rld[j].secondary_p)))
6002 int regno = true_regnum (rld[j].reg_rtx);
6004 if (spill_reg_order[regno] >= 0)
6005 clear_reload_reg_in_use (regno, rld[j].opnum,
6006 rld[j].when_needed, rld[j].mode);
6007 rld[j].reg_rtx = 0;
6008 reload_spill_index[j] = -1;
6011 /* Record which pseudos and which spill regs have output reloads. */
6012 for (j = 0; j < n_reloads; j++)
6014 int r = reload_order[j];
6016 i = reload_spill_index[r];
6018 /* I is nonneg if this reload uses a register.
6019 If rld[r].reg_rtx is 0, this is an optional reload
6020 that we opted to ignore. */
6021 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6022 && rld[r].reg_rtx != 0)
6024 int nregno = REGNO (rld[r].out_reg);
6025 int nr = 1;
6027 if (nregno < FIRST_PSEUDO_REGISTER)
6028 nr = hard_regno_nregs[nregno][rld[r].mode];
6030 while (--nr >= 0)
6031 reg_has_output_reload[nregno + nr] = 1;
6033 if (i >= 0)
6035 nr = hard_regno_nregs[i][rld[r].mode];
6036 while (--nr >= 0)
6037 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6040 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6041 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6042 || rld[r].when_needed == RELOAD_FOR_INSN);
6047 /* Deallocate the reload register for reload R. This is called from
6048 remove_address_replacements. */
6050 void
6051 deallocate_reload_reg (int r)
6053 int regno;
6055 if (! rld[r].reg_rtx)
6056 return;
6057 regno = true_regnum (rld[r].reg_rtx);
6058 rld[r].reg_rtx = 0;
6059 if (spill_reg_order[regno] >= 0)
6060 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6061 rld[r].mode);
6062 reload_spill_index[r] = -1;
6065 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6066 reloads of the same item for fear that we might not have enough reload
6067 registers. However, normally they will get the same reload register
6068 and hence actually need not be loaded twice.
6070 Here we check for the most common case of this phenomenon: when we have
6071 a number of reloads for the same object, each of which were allocated
6072 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6073 reload, and is not modified in the insn itself. If we find such,
6074 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6075 This will not increase the number of spill registers needed and will
6076 prevent redundant code. */
6078 static void
6079 merge_assigned_reloads (rtx insn)
6081 int i, j;
6083 /* Scan all the reloads looking for ones that only load values and
6084 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6085 assigned and not modified by INSN. */
6087 for (i = 0; i < n_reloads; i++)
6089 int conflicting_input = 0;
6090 int max_input_address_opnum = -1;
6091 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6093 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6094 || rld[i].out != 0 || rld[i].reg_rtx == 0
6095 || reg_set_p (rld[i].reg_rtx, insn))
6096 continue;
6098 /* Look at all other reloads. Ensure that the only use of this
6099 reload_reg_rtx is in a reload that just loads the same value
6100 as we do. Note that any secondary reloads must be of the identical
6101 class since the values, modes, and result registers are the
6102 same, so we need not do anything with any secondary reloads. */
6104 for (j = 0; j < n_reloads; j++)
6106 if (i == j || rld[j].reg_rtx == 0
6107 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6108 rld[i].reg_rtx))
6109 continue;
6111 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6112 && rld[j].opnum > max_input_address_opnum)
6113 max_input_address_opnum = rld[j].opnum;
6115 /* If the reload regs aren't exactly the same (e.g, different modes)
6116 or if the values are different, we can't merge this reload.
6117 But if it is an input reload, we might still merge
6118 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6120 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6121 || rld[j].out != 0 || rld[j].in == 0
6122 || ! rtx_equal_p (rld[i].in, rld[j].in))
6124 if (rld[j].when_needed != RELOAD_FOR_INPUT
6125 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6126 || rld[i].opnum > rld[j].opnum)
6127 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6128 break;
6129 conflicting_input = 1;
6130 if (min_conflicting_input_opnum > rld[j].opnum)
6131 min_conflicting_input_opnum = rld[j].opnum;
6135 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6136 we, in fact, found any matching reloads. */
6138 if (j == n_reloads
6139 && max_input_address_opnum <= min_conflicting_input_opnum)
6141 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6143 for (j = 0; j < n_reloads; j++)
6144 if (i != j && rld[j].reg_rtx != 0
6145 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6146 && (! conflicting_input
6147 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6148 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6150 rld[i].when_needed = RELOAD_OTHER;
6151 rld[j].in = 0;
6152 reload_spill_index[j] = -1;
6153 transfer_replacements (i, j);
6156 /* If this is now RELOAD_OTHER, look for any reloads that load
6157 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6158 if they were for inputs, RELOAD_OTHER for outputs. Note that
6159 this test is equivalent to looking for reloads for this operand
6160 number. */
6161 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6162 share registers with a RELOAD_FOR_INPUT, so we can not change it
6163 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6164 do not modify RELOAD_FOR_OUTPUT. */
6166 if (rld[i].when_needed == RELOAD_OTHER)
6167 for (j = 0; j < n_reloads; j++)
6168 if (rld[j].in != 0
6169 && rld[j].when_needed != RELOAD_OTHER
6170 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6171 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6172 && (! conflicting_input
6173 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6174 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6175 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6176 rld[i].in))
6178 int k;
6180 rld[j].when_needed
6181 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6182 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6183 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6185 /* Check to see if we accidentally converted two
6186 reloads that use the same reload register with
6187 different inputs to the same type. If so, the
6188 resulting code won't work. */
6189 if (rld[j].reg_rtx)
6190 for (k = 0; k < j; k++)
6191 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6192 || rld[k].when_needed != rld[j].when_needed
6193 || !rtx_equal_p (rld[k].reg_rtx,
6194 rld[j].reg_rtx)
6195 || rtx_equal_p (rld[k].in,
6196 rld[j].in));
6202 /* These arrays are filled by emit_reload_insns and its subroutines. */
6203 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6204 static rtx other_input_address_reload_insns = 0;
6205 static rtx other_input_reload_insns = 0;
6206 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6207 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6208 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6209 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6210 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6211 static rtx operand_reload_insns = 0;
6212 static rtx other_operand_reload_insns = 0;
6213 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6215 /* Values to be put in spill_reg_store are put here first. */
6216 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6217 static HARD_REG_SET reg_reloaded_died;
6219 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6220 has the number J. OLD contains the value to be used as input. */
6222 static void
6223 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6224 rtx old, int j)
6226 rtx insn = chain->insn;
6227 rtx reloadreg = rl->reg_rtx;
6228 rtx oldequiv_reg = 0;
6229 rtx oldequiv = 0;
6230 int special = 0;
6231 enum machine_mode mode;
6232 rtx *where;
6234 /* Determine the mode to reload in.
6235 This is very tricky because we have three to choose from.
6236 There is the mode the insn operand wants (rl->inmode).
6237 There is the mode of the reload register RELOADREG.
6238 There is the intrinsic mode of the operand, which we could find
6239 by stripping some SUBREGs.
6240 It turns out that RELOADREG's mode is irrelevant:
6241 we can change that arbitrarily.
6243 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6244 then the reload reg may not support QImode moves, so use SImode.
6245 If foo is in memory due to spilling a pseudo reg, this is safe,
6246 because the QImode value is in the least significant part of a
6247 slot big enough for a SImode. If foo is some other sort of
6248 memory reference, then it is impossible to reload this case,
6249 so previous passes had better make sure this never happens.
6251 Then consider a one-word union which has SImode and one of its
6252 members is a float, being fetched as (SUBREG:SF union:SI).
6253 We must fetch that as SFmode because we could be loading into
6254 a float-only register. In this case OLD's mode is correct.
6256 Consider an immediate integer: it has VOIDmode. Here we need
6257 to get a mode from something else.
6259 In some cases, there is a fourth mode, the operand's
6260 containing mode. If the insn specifies a containing mode for
6261 this operand, it overrides all others.
6263 I am not sure whether the algorithm here is always right,
6264 but it does the right things in those cases. */
6266 mode = GET_MODE (old);
6267 if (mode == VOIDmode)
6268 mode = rl->inmode;
6270 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6271 /* If we need a secondary register for this operation, see if
6272 the value is already in a register in that class. Don't
6273 do this if the secondary register will be used as a scratch
6274 register. */
6276 if (rl->secondary_in_reload >= 0
6277 && rl->secondary_in_icode == CODE_FOR_nothing
6278 && optimize)
6279 oldequiv
6280 = find_equiv_reg (old, insn,
6281 rld[rl->secondary_in_reload].class,
6282 -1, NULL, 0, mode);
6283 #endif
6285 /* If reloading from memory, see if there is a register
6286 that already holds the same value. If so, reload from there.
6287 We can pass 0 as the reload_reg_p argument because
6288 any other reload has either already been emitted,
6289 in which case find_equiv_reg will see the reload-insn,
6290 or has yet to be emitted, in which case it doesn't matter
6291 because we will use this equiv reg right away. */
6293 if (oldequiv == 0 && optimize
6294 && (MEM_P (old)
6295 || (REG_P (old)
6296 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6297 && reg_renumber[REGNO (old)] < 0)))
6298 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6300 if (oldequiv)
6302 unsigned int regno = true_regnum (oldequiv);
6304 /* Don't use OLDEQUIV if any other reload changes it at an
6305 earlier stage of this insn or at this stage. */
6306 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6307 rl->in, const0_rtx, j, 0))
6308 oldequiv = 0;
6310 /* If it is no cheaper to copy from OLDEQUIV into the
6311 reload register than it would be to move from memory,
6312 don't use it. Likewise, if we need a secondary register
6313 or memory. */
6315 if (oldequiv != 0
6316 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6317 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6318 rl->class)
6319 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6320 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6321 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6322 mode, oldequiv)
6323 != NO_REGS)
6324 #endif
6325 #ifdef SECONDARY_MEMORY_NEEDED
6326 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6327 rl->class,
6328 mode)
6329 #endif
6331 oldequiv = 0;
6334 /* delete_output_reload is only invoked properly if old contains
6335 the original pseudo register. Since this is replaced with a
6336 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6337 find the pseudo in RELOAD_IN_REG. */
6338 if (oldequiv == 0
6339 && reload_override_in[j]
6340 && REG_P (rl->in_reg))
6342 oldequiv = old;
6343 old = rl->in_reg;
6345 if (oldequiv == 0)
6346 oldequiv = old;
6347 else if (REG_P (oldequiv))
6348 oldequiv_reg = oldequiv;
6349 else if (GET_CODE (oldequiv) == SUBREG)
6350 oldequiv_reg = SUBREG_REG (oldequiv);
6352 /* If we are reloading from a register that was recently stored in
6353 with an output-reload, see if we can prove there was
6354 actually no need to store the old value in it. */
6356 if (optimize && REG_P (oldequiv)
6357 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6358 && spill_reg_store[REGNO (oldequiv)]
6359 && REG_P (old)
6360 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6361 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6362 rl->out_reg)))
6363 delete_output_reload (insn, j, REGNO (oldequiv));
6365 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6366 then load RELOADREG from OLDEQUIV. Note that we cannot use
6367 gen_lowpart_common since it can do the wrong thing when
6368 RELOADREG has a multi-word mode. Note that RELOADREG
6369 must always be a REG here. */
6371 if (GET_MODE (reloadreg) != mode)
6372 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6373 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6374 oldequiv = SUBREG_REG (oldequiv);
6375 if (GET_MODE (oldequiv) != VOIDmode
6376 && mode != GET_MODE (oldequiv))
6377 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6379 /* Switch to the right place to emit the reload insns. */
6380 switch (rl->when_needed)
6382 case RELOAD_OTHER:
6383 where = &other_input_reload_insns;
6384 break;
6385 case RELOAD_FOR_INPUT:
6386 where = &input_reload_insns[rl->opnum];
6387 break;
6388 case RELOAD_FOR_INPUT_ADDRESS:
6389 where = &input_address_reload_insns[rl->opnum];
6390 break;
6391 case RELOAD_FOR_INPADDR_ADDRESS:
6392 where = &inpaddr_address_reload_insns[rl->opnum];
6393 break;
6394 case RELOAD_FOR_OUTPUT_ADDRESS:
6395 where = &output_address_reload_insns[rl->opnum];
6396 break;
6397 case RELOAD_FOR_OUTADDR_ADDRESS:
6398 where = &outaddr_address_reload_insns[rl->opnum];
6399 break;
6400 case RELOAD_FOR_OPERAND_ADDRESS:
6401 where = &operand_reload_insns;
6402 break;
6403 case RELOAD_FOR_OPADDR_ADDR:
6404 where = &other_operand_reload_insns;
6405 break;
6406 case RELOAD_FOR_OTHER_ADDRESS:
6407 where = &other_input_address_reload_insns;
6408 break;
6409 default:
6410 gcc_unreachable ();
6413 push_to_sequence (*where);
6415 /* Auto-increment addresses must be reloaded in a special way. */
6416 if (rl->out && ! rl->out_reg)
6418 /* We are not going to bother supporting the case where a
6419 incremented register can't be copied directly from
6420 OLDEQUIV since this seems highly unlikely. */
6421 gcc_assert (rl->secondary_in_reload < 0);
6423 if (reload_inherited[j])
6424 oldequiv = reloadreg;
6426 old = XEXP (rl->in_reg, 0);
6428 if (optimize && REG_P (oldequiv)
6429 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6430 && spill_reg_store[REGNO (oldequiv)]
6431 && REG_P (old)
6432 && (dead_or_set_p (insn,
6433 spill_reg_stored_to[REGNO (oldequiv)])
6434 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6435 old)))
6436 delete_output_reload (insn, j, REGNO (oldequiv));
6438 /* Prevent normal processing of this reload. */
6439 special = 1;
6440 /* Output a special code sequence for this case. */
6441 new_spill_reg_store[REGNO (reloadreg)]
6442 = inc_for_reload (reloadreg, oldequiv, rl->out,
6443 rl->inc);
6446 /* If we are reloading a pseudo-register that was set by the previous
6447 insn, see if we can get rid of that pseudo-register entirely
6448 by redirecting the previous insn into our reload register. */
6450 else if (optimize && REG_P (old)
6451 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6452 && dead_or_set_p (insn, old)
6453 /* This is unsafe if some other reload
6454 uses the same reg first. */
6455 && ! conflicts_with_override (reloadreg)
6456 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6457 rl->when_needed, old, rl->out, j, 0))
6459 rtx temp = PREV_INSN (insn);
6460 while (temp && NOTE_P (temp))
6461 temp = PREV_INSN (temp);
6462 if (temp
6463 && NONJUMP_INSN_P (temp)
6464 && GET_CODE (PATTERN (temp)) == SET
6465 && SET_DEST (PATTERN (temp)) == old
6466 /* Make sure we can access insn_operand_constraint. */
6467 && asm_noperands (PATTERN (temp)) < 0
6468 /* This is unsafe if operand occurs more than once in current
6469 insn. Perhaps some occurrences aren't reloaded. */
6470 && count_occurrences (PATTERN (insn), old, 0) == 1)
6472 rtx old = SET_DEST (PATTERN (temp));
6473 /* Store into the reload register instead of the pseudo. */
6474 SET_DEST (PATTERN (temp)) = reloadreg;
6476 /* Verify that resulting insn is valid. */
6477 extract_insn (temp);
6478 if (constrain_operands (1))
6480 /* If the previous insn is an output reload, the source is
6481 a reload register, and its spill_reg_store entry will
6482 contain the previous destination. This is now
6483 invalid. */
6484 if (REG_P (SET_SRC (PATTERN (temp)))
6485 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6487 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6488 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6491 /* If these are the only uses of the pseudo reg,
6492 pretend for GDB it lives in the reload reg we used. */
6493 if (REG_N_DEATHS (REGNO (old)) == 1
6494 && REG_N_SETS (REGNO (old)) == 1)
6496 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6497 alter_reg (REGNO (old), -1);
6499 special = 1;
6501 else
6503 SET_DEST (PATTERN (temp)) = old;
6508 /* We can't do that, so output an insn to load RELOADREG. */
6510 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6511 /* If we have a secondary reload, pick up the secondary register
6512 and icode, if any. If OLDEQUIV and OLD are different or
6513 if this is an in-out reload, recompute whether or not we
6514 still need a secondary register and what the icode should
6515 be. If we still need a secondary register and the class or
6516 icode is different, go back to reloading from OLD if using
6517 OLDEQUIV means that we got the wrong type of register. We
6518 cannot have different class or icode due to an in-out reload
6519 because we don't make such reloads when both the input and
6520 output need secondary reload registers. */
6522 if (! special && rl->secondary_in_reload >= 0)
6524 rtx second_reload_reg = 0;
6525 int secondary_reload = rl->secondary_in_reload;
6526 rtx real_oldequiv = oldequiv;
6527 rtx real_old = old;
6528 rtx tmp;
6529 enum insn_code icode;
6531 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6532 and similarly for OLD.
6533 See comments in get_secondary_reload in reload.c. */
6534 /* If it is a pseudo that cannot be replaced with its
6535 equivalent MEM, we must fall back to reload_in, which
6536 will have all the necessary substitutions registered.
6537 Likewise for a pseudo that can't be replaced with its
6538 equivalent constant.
6540 Take extra care for subregs of such pseudos. Note that
6541 we cannot use reg_equiv_mem in this case because it is
6542 not in the right mode. */
6544 tmp = oldequiv;
6545 if (GET_CODE (tmp) == SUBREG)
6546 tmp = SUBREG_REG (tmp);
6547 if (REG_P (tmp)
6548 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6549 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6550 || reg_equiv_constant[REGNO (tmp)] != 0))
6552 if (! reg_equiv_mem[REGNO (tmp)]
6553 || num_not_at_initial_offset
6554 || GET_CODE (oldequiv) == SUBREG)
6555 real_oldequiv = rl->in;
6556 else
6557 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6560 tmp = old;
6561 if (GET_CODE (tmp) == SUBREG)
6562 tmp = SUBREG_REG (tmp);
6563 if (REG_P (tmp)
6564 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6565 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6566 || reg_equiv_constant[REGNO (tmp)] != 0))
6568 if (! reg_equiv_mem[REGNO (tmp)]
6569 || num_not_at_initial_offset
6570 || GET_CODE (old) == SUBREG)
6571 real_old = rl->in;
6572 else
6573 real_old = reg_equiv_mem[REGNO (tmp)];
6576 second_reload_reg = rld[secondary_reload].reg_rtx;
6577 icode = rl->secondary_in_icode;
6579 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6580 || (rl->in != 0 && rl->out != 0))
6582 enum reg_class new_class
6583 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6584 mode, real_oldequiv);
6586 if (new_class == NO_REGS)
6587 second_reload_reg = 0;
6588 else
6590 enum insn_code new_icode;
6591 enum machine_mode new_mode;
6593 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6594 REGNO (second_reload_reg)))
6595 oldequiv = old, real_oldequiv = real_old;
6596 else
6598 new_icode = reload_in_optab[(int) mode];
6599 if (new_icode != CODE_FOR_nothing
6600 && ((insn_data[(int) new_icode].operand[0].predicate
6601 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6602 (reloadreg, mode)))
6603 || (insn_data[(int) new_icode].operand[1].predicate
6604 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6605 (real_oldequiv, mode)))))
6606 new_icode = CODE_FOR_nothing;
6608 if (new_icode == CODE_FOR_nothing)
6609 new_mode = mode;
6610 else
6611 new_mode = insn_data[(int) new_icode].operand[2].mode;
6613 if (GET_MODE (second_reload_reg) != new_mode)
6615 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6616 new_mode))
6617 oldequiv = old, real_oldequiv = real_old;
6618 else
6619 second_reload_reg
6620 = reload_adjust_reg_for_mode (second_reload_reg,
6621 new_mode);
6627 /* If we still need a secondary reload register, check
6628 to see if it is being used as a scratch or intermediate
6629 register and generate code appropriately. If we need
6630 a scratch register, use REAL_OLDEQUIV since the form of
6631 the insn may depend on the actual address if it is
6632 a MEM. */
6634 if (second_reload_reg)
6636 if (icode != CODE_FOR_nothing)
6638 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6639 second_reload_reg));
6640 special = 1;
6642 else
6644 /* See if we need a scratch register to load the
6645 intermediate register (a tertiary reload). */
6646 enum insn_code tertiary_icode
6647 = rld[secondary_reload].secondary_in_icode;
6649 if (tertiary_icode != CODE_FOR_nothing)
6651 rtx third_reload_reg
6652 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6654 emit_insn ((GEN_FCN (tertiary_icode)
6655 (second_reload_reg, real_oldequiv,
6656 third_reload_reg)));
6658 else
6659 gen_reload (second_reload_reg, real_oldequiv,
6660 rl->opnum,
6661 rl->when_needed);
6663 oldequiv = second_reload_reg;
6667 #endif
6669 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6671 rtx real_oldequiv = oldequiv;
6673 if ((REG_P (oldequiv)
6674 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6675 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6676 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6677 || (GET_CODE (oldequiv) == SUBREG
6678 && REG_P (SUBREG_REG (oldequiv))
6679 && (REGNO (SUBREG_REG (oldequiv))
6680 >= FIRST_PSEUDO_REGISTER)
6681 && ((reg_equiv_memory_loc
6682 [REGNO (SUBREG_REG (oldequiv))] != 0)
6683 || (reg_equiv_constant
6684 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6685 || (CONSTANT_P (oldequiv)
6686 && (PREFERRED_RELOAD_CLASS (oldequiv,
6687 REGNO_REG_CLASS (REGNO (reloadreg)))
6688 == NO_REGS)))
6689 real_oldequiv = rl->in;
6690 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6691 rl->when_needed);
6694 if (flag_non_call_exceptions)
6695 copy_eh_notes (insn, get_insns ());
6697 /* End this sequence. */
6698 *where = get_insns ();
6699 end_sequence ();
6701 /* Update reload_override_in so that delete_address_reloads_1
6702 can see the actual register usage. */
6703 if (oldequiv_reg)
6704 reload_override_in[j] = oldequiv;
6707 /* Generate insns to for the output reload RL, which is for the insn described
6708 by CHAIN and has the number J. */
6709 static void
6710 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6711 int j)
6713 rtx reloadreg = rl->reg_rtx;
6714 rtx insn = chain->insn;
6715 int special = 0;
6716 rtx old = rl->out;
6717 enum machine_mode mode = GET_MODE (old);
6718 rtx p;
6720 if (rl->when_needed == RELOAD_OTHER)
6721 start_sequence ();
6722 else
6723 push_to_sequence (output_reload_insns[rl->opnum]);
6725 /* Determine the mode to reload in.
6726 See comments above (for input reloading). */
6728 if (mode == VOIDmode)
6730 /* VOIDmode should never happen for an output. */
6731 if (asm_noperands (PATTERN (insn)) < 0)
6732 /* It's the compiler's fault. */
6733 fatal_insn ("VOIDmode on an output", insn);
6734 error_for_asm (insn, "output operand is constant in %<asm%>");
6735 /* Prevent crash--use something we know is valid. */
6736 mode = word_mode;
6737 old = gen_rtx_REG (mode, REGNO (reloadreg));
6740 if (GET_MODE (reloadreg) != mode)
6741 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6743 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6745 /* If we need two reload regs, set RELOADREG to the intermediate
6746 one, since it will be stored into OLD. We might need a secondary
6747 register only for an input reload, so check again here. */
6749 if (rl->secondary_out_reload >= 0)
6751 rtx real_old = old;
6753 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6754 && reg_equiv_mem[REGNO (old)] != 0)
6755 real_old = reg_equiv_mem[REGNO (old)];
6757 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6758 mode, real_old)
6759 != NO_REGS))
6761 rtx second_reloadreg = reloadreg;
6762 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6764 /* See if RELOADREG is to be used as a scratch register
6765 or as an intermediate register. */
6766 if (rl->secondary_out_icode != CODE_FOR_nothing)
6768 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6769 (real_old, second_reloadreg, reloadreg)));
6770 special = 1;
6772 else
6774 /* See if we need both a scratch and intermediate reload
6775 register. */
6777 int secondary_reload = rl->secondary_out_reload;
6778 enum insn_code tertiary_icode
6779 = rld[secondary_reload].secondary_out_icode;
6781 if (GET_MODE (reloadreg) != mode)
6782 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6784 if (tertiary_icode != CODE_FOR_nothing)
6786 rtx third_reloadreg
6787 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6788 rtx tem;
6790 /* Copy primary reload reg to secondary reload reg.
6791 (Note that these have been swapped above, then
6792 secondary reload reg to OLD using our insn.) */
6794 /* If REAL_OLD is a paradoxical SUBREG, remove it
6795 and try to put the opposite SUBREG on
6796 RELOADREG. */
6797 if (GET_CODE (real_old) == SUBREG
6798 && (GET_MODE_SIZE (GET_MODE (real_old))
6799 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6800 && 0 != (tem = gen_lowpart_common
6801 (GET_MODE (SUBREG_REG (real_old)),
6802 reloadreg)))
6803 real_old = SUBREG_REG (real_old), reloadreg = tem;
6805 gen_reload (reloadreg, second_reloadreg,
6806 rl->opnum, rl->when_needed);
6807 emit_insn ((GEN_FCN (tertiary_icode)
6808 (real_old, reloadreg, third_reloadreg)));
6809 special = 1;
6812 else
6813 /* Copy between the reload regs here and then to
6814 OUT later. */
6816 gen_reload (reloadreg, second_reloadreg,
6817 rl->opnum, rl->when_needed);
6821 #endif
6823 /* Output the last reload insn. */
6824 if (! special)
6826 rtx set;
6828 /* Don't output the last reload if OLD is not the dest of
6829 INSN and is in the src and is clobbered by INSN. */
6830 if (! flag_expensive_optimizations
6831 || !REG_P (old)
6832 || !(set = single_set (insn))
6833 || rtx_equal_p (old, SET_DEST (set))
6834 || !reg_mentioned_p (old, SET_SRC (set))
6835 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6836 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6837 gen_reload (old, reloadreg, rl->opnum,
6838 rl->when_needed);
6841 /* Look at all insns we emitted, just to be safe. */
6842 for (p = get_insns (); p; p = NEXT_INSN (p))
6843 if (INSN_P (p))
6845 rtx pat = PATTERN (p);
6847 /* If this output reload doesn't come from a spill reg,
6848 clear any memory of reloaded copies of the pseudo reg.
6849 If this output reload comes from a spill reg,
6850 reg_has_output_reload will make this do nothing. */
6851 note_stores (pat, forget_old_reloads_1, NULL);
6853 if (reg_mentioned_p (rl->reg_rtx, pat))
6855 rtx set = single_set (insn);
6856 if (reload_spill_index[j] < 0
6857 && set
6858 && SET_SRC (set) == rl->reg_rtx)
6860 int src = REGNO (SET_SRC (set));
6862 reload_spill_index[j] = src;
6863 SET_HARD_REG_BIT (reg_is_output_reload, src);
6864 if (find_regno_note (insn, REG_DEAD, src))
6865 SET_HARD_REG_BIT (reg_reloaded_died, src);
6867 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6869 int s = rl->secondary_out_reload;
6870 set = single_set (p);
6871 /* If this reload copies only to the secondary reload
6872 register, the secondary reload does the actual
6873 store. */
6874 if (s >= 0 && set == NULL_RTX)
6875 /* We can't tell what function the secondary reload
6876 has and where the actual store to the pseudo is
6877 made; leave new_spill_reg_store alone. */
6879 else if (s >= 0
6880 && SET_SRC (set) == rl->reg_rtx
6881 && SET_DEST (set) == rld[s].reg_rtx)
6883 /* Usually the next instruction will be the
6884 secondary reload insn; if we can confirm
6885 that it is, setting new_spill_reg_store to
6886 that insn will allow an extra optimization. */
6887 rtx s_reg = rld[s].reg_rtx;
6888 rtx next = NEXT_INSN (p);
6889 rld[s].out = rl->out;
6890 rld[s].out_reg = rl->out_reg;
6891 set = single_set (next);
6892 if (set && SET_SRC (set) == s_reg
6893 && ! new_spill_reg_store[REGNO (s_reg)])
6895 SET_HARD_REG_BIT (reg_is_output_reload,
6896 REGNO (s_reg));
6897 new_spill_reg_store[REGNO (s_reg)] = next;
6900 else
6901 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6906 if (rl->when_needed == RELOAD_OTHER)
6908 emit_insn (other_output_reload_insns[rl->opnum]);
6909 other_output_reload_insns[rl->opnum] = get_insns ();
6911 else
6912 output_reload_insns[rl->opnum] = get_insns ();
6914 if (flag_non_call_exceptions)
6915 copy_eh_notes (insn, get_insns ());
6917 end_sequence ();
6920 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6921 and has the number J. */
6922 static void
6923 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6925 rtx insn = chain->insn;
6926 rtx old = (rl->in && MEM_P (rl->in)
6927 ? rl->in_reg : rl->in);
6929 if (old != 0
6930 /* AUTO_INC reloads need to be handled even if inherited. We got an
6931 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6932 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6933 && ! rtx_equal_p (rl->reg_rtx, old)
6934 && rl->reg_rtx != 0)
6935 emit_input_reload_insns (chain, rld + j, old, j);
6937 /* When inheriting a wider reload, we have a MEM in rl->in,
6938 e.g. inheriting a SImode output reload for
6939 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6940 if (optimize && reload_inherited[j] && rl->in
6941 && MEM_P (rl->in)
6942 && MEM_P (rl->in_reg)
6943 && reload_spill_index[j] >= 0
6944 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6945 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6947 /* If we are reloading a register that was recently stored in with an
6948 output-reload, see if we can prove there was
6949 actually no need to store the old value in it. */
6951 if (optimize
6952 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
6953 that there may be multiple uses of the previous output reload.
6954 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
6955 && rl->when_needed == RELOAD_FOR_INPUT
6956 && (reload_inherited[j] || reload_override_in[j])
6957 && rl->reg_rtx
6958 && REG_P (rl->reg_rtx)
6959 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6960 #if 0
6961 /* There doesn't seem to be any reason to restrict this to pseudos
6962 and doing so loses in the case where we are copying from a
6963 register of the wrong class. */
6964 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6965 >= FIRST_PSEUDO_REGISTER)
6966 #endif
6967 /* The insn might have already some references to stackslots
6968 replaced by MEMs, while reload_out_reg still names the
6969 original pseudo. */
6970 && (dead_or_set_p (insn,
6971 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6972 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6973 rl->out_reg)))
6974 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6977 /* Do output reloading for reload RL, which is for the insn described by
6978 CHAIN and has the number J.
6979 ??? At some point we need to support handling output reloads of
6980 JUMP_INSNs or insns that set cc0. */
6981 static void
6982 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6984 rtx note, old;
6985 rtx insn = chain->insn;
6986 /* If this is an output reload that stores something that is
6987 not loaded in this same reload, see if we can eliminate a previous
6988 store. */
6989 rtx pseudo = rl->out_reg;
6991 if (pseudo
6992 && optimize
6993 && REG_P (pseudo)
6994 && ! rtx_equal_p (rl->in_reg, pseudo)
6995 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6996 && reg_last_reload_reg[REGNO (pseudo)])
6998 int pseudo_no = REGNO (pseudo);
6999 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7001 /* We don't need to test full validity of last_regno for
7002 inherit here; we only want to know if the store actually
7003 matches the pseudo. */
7004 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7005 && reg_reloaded_contents[last_regno] == pseudo_no
7006 && spill_reg_store[last_regno]
7007 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7008 delete_output_reload (insn, j, last_regno);
7011 old = rl->out_reg;
7012 if (old == 0
7013 || rl->reg_rtx == old
7014 || rl->reg_rtx == 0)
7015 return;
7017 /* An output operand that dies right away does need a reload,
7018 but need not be copied from it. Show the new location in the
7019 REG_UNUSED note. */
7020 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7021 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7023 XEXP (note, 0) = rl->reg_rtx;
7024 return;
7026 /* Likewise for a SUBREG of an operand that dies. */
7027 else if (GET_CODE (old) == SUBREG
7028 && REG_P (SUBREG_REG (old))
7029 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7030 SUBREG_REG (old))))
7032 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7033 rl->reg_rtx);
7034 return;
7036 else if (GET_CODE (old) == SCRATCH)
7037 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7038 but we don't want to make an output reload. */
7039 return;
7041 /* If is a JUMP_INSN, we can't support output reloads yet. */
7042 gcc_assert (!JUMP_P (insn));
7044 emit_output_reload_insns (chain, rld + j, j);
7047 /* Reload number R reloads from or to a group of hard registers starting at
7048 register REGNO. Return true if it can be treated for inheritance purposes
7049 like a group of reloads, each one reloading a single hard register.
7050 The caller has already checked that the spill register and REGNO use
7051 the same number of registers to store the reload value. */
7053 static bool
7054 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7056 #ifdef CANNOT_CHANGE_MODE_CLASS
7057 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7058 GET_MODE (rld[r].reg_rtx),
7059 reg_raw_mode[reload_spill_index[r]])
7060 && !REG_CANNOT_CHANGE_MODE_P (regno,
7061 GET_MODE (rld[r].reg_rtx),
7062 reg_raw_mode[regno]));
7063 #else
7064 return true;
7065 #endif
7068 /* Output insns to reload values in and out of the chosen reload regs. */
7070 static void
7071 emit_reload_insns (struct insn_chain *chain)
7073 rtx insn = chain->insn;
7075 int j;
7077 CLEAR_HARD_REG_SET (reg_reloaded_died);
7079 for (j = 0; j < reload_n_operands; j++)
7080 input_reload_insns[j] = input_address_reload_insns[j]
7081 = inpaddr_address_reload_insns[j]
7082 = output_reload_insns[j] = output_address_reload_insns[j]
7083 = outaddr_address_reload_insns[j]
7084 = other_output_reload_insns[j] = 0;
7085 other_input_address_reload_insns = 0;
7086 other_input_reload_insns = 0;
7087 operand_reload_insns = 0;
7088 other_operand_reload_insns = 0;
7090 /* Dump reloads into the dump file. */
7091 if (dump_file)
7093 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7094 debug_reload_to_stream (dump_file);
7097 /* Now output the instructions to copy the data into and out of the
7098 reload registers. Do these in the order that the reloads were reported,
7099 since reloads of base and index registers precede reloads of operands
7100 and the operands may need the base and index registers reloaded. */
7102 for (j = 0; j < n_reloads; j++)
7104 if (rld[j].reg_rtx
7105 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7106 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7108 do_input_reload (chain, rld + j, j);
7109 do_output_reload (chain, rld + j, j);
7112 /* Now write all the insns we made for reloads in the order expected by
7113 the allocation functions. Prior to the insn being reloaded, we write
7114 the following reloads:
7116 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7118 RELOAD_OTHER reloads.
7120 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7121 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7122 RELOAD_FOR_INPUT reload for the operand.
7124 RELOAD_FOR_OPADDR_ADDRS reloads.
7126 RELOAD_FOR_OPERAND_ADDRESS reloads.
7128 After the insn being reloaded, we write the following:
7130 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7131 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7132 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7133 reloads for the operand. The RELOAD_OTHER output reloads are
7134 output in descending order by reload number. */
7136 emit_insn_before (other_input_address_reload_insns, insn);
7137 emit_insn_before (other_input_reload_insns, insn);
7139 for (j = 0; j < reload_n_operands; j++)
7141 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7142 emit_insn_before (input_address_reload_insns[j], insn);
7143 emit_insn_before (input_reload_insns[j], insn);
7146 emit_insn_before (other_operand_reload_insns, insn);
7147 emit_insn_before (operand_reload_insns, insn);
7149 for (j = 0; j < reload_n_operands; j++)
7151 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7152 x = emit_insn_after (output_address_reload_insns[j], x);
7153 x = emit_insn_after (output_reload_insns[j], x);
7154 emit_insn_after (other_output_reload_insns[j], x);
7157 /* For all the spill regs newly reloaded in this instruction,
7158 record what they were reloaded from, so subsequent instructions
7159 can inherit the reloads.
7161 Update spill_reg_store for the reloads of this insn.
7162 Copy the elements that were updated in the loop above. */
7164 for (j = 0; j < n_reloads; j++)
7166 int r = reload_order[j];
7167 int i = reload_spill_index[r];
7169 /* If this is a non-inherited input reload from a pseudo, we must
7170 clear any memory of a previous store to the same pseudo. Only do
7171 something if there will not be an output reload for the pseudo
7172 being reloaded. */
7173 if (rld[r].in_reg != 0
7174 && ! (reload_inherited[r] || reload_override_in[r]))
7176 rtx reg = rld[r].in_reg;
7178 if (GET_CODE (reg) == SUBREG)
7179 reg = SUBREG_REG (reg);
7181 if (REG_P (reg)
7182 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7183 && ! reg_has_output_reload[REGNO (reg)])
7185 int nregno = REGNO (reg);
7187 if (reg_last_reload_reg[nregno])
7189 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7191 if (reg_reloaded_contents[last_regno] == nregno)
7192 spill_reg_store[last_regno] = 0;
7197 /* I is nonneg if this reload used a register.
7198 If rld[r].reg_rtx is 0, this is an optional reload
7199 that we opted to ignore. */
7201 if (i >= 0 && rld[r].reg_rtx != 0)
7203 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7204 int k;
7205 int part_reaches_end = 0;
7206 int all_reaches_end = 1;
7208 /* For a multi register reload, we need to check if all or part
7209 of the value lives to the end. */
7210 for (k = 0; k < nr; k++)
7212 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7213 rld[r].when_needed))
7214 part_reaches_end = 1;
7215 else
7216 all_reaches_end = 0;
7219 /* Ignore reloads that don't reach the end of the insn in
7220 entirety. */
7221 if (all_reaches_end)
7223 /* First, clear out memory of what used to be in this spill reg.
7224 If consecutive registers are used, clear them all. */
7226 for (k = 0; k < nr; k++)
7228 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7229 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7232 /* Maybe the spill reg contains a copy of reload_out. */
7233 if (rld[r].out != 0
7234 && (REG_P (rld[r].out)
7235 #ifdef AUTO_INC_DEC
7236 || ! rld[r].out_reg
7237 #endif
7238 || REG_P (rld[r].out_reg)))
7240 rtx out = (REG_P (rld[r].out)
7241 ? rld[r].out
7242 : rld[r].out_reg
7243 ? rld[r].out_reg
7244 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7245 int nregno = REGNO (out);
7246 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7247 : hard_regno_nregs[nregno]
7248 [GET_MODE (rld[r].reg_rtx)]);
7249 bool piecemeal;
7251 spill_reg_store[i] = new_spill_reg_store[i];
7252 spill_reg_stored_to[i] = out;
7253 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7255 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7256 && nr == nnr
7257 && inherit_piecemeal_p (r, nregno));
7259 /* If NREGNO is a hard register, it may occupy more than
7260 one register. If it does, say what is in the
7261 rest of the registers assuming that both registers
7262 agree on how many words the object takes. If not,
7263 invalidate the subsequent registers. */
7265 if (nregno < FIRST_PSEUDO_REGISTER)
7266 for (k = 1; k < nnr; k++)
7267 reg_last_reload_reg[nregno + k]
7268 = (piecemeal
7269 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7270 : 0);
7272 /* Now do the inverse operation. */
7273 for (k = 0; k < nr; k++)
7275 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7276 reg_reloaded_contents[i + k]
7277 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7278 ? nregno
7279 : nregno + k);
7280 reg_reloaded_insn[i + k] = insn;
7281 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7282 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7283 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7287 /* Maybe the spill reg contains a copy of reload_in. Only do
7288 something if there will not be an output reload for
7289 the register being reloaded. */
7290 else if (rld[r].out_reg == 0
7291 && rld[r].in != 0
7292 && ((REG_P (rld[r].in)
7293 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7294 && ! reg_has_output_reload[REGNO (rld[r].in)])
7295 || (REG_P (rld[r].in_reg)
7296 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7297 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7299 int nregno;
7300 int nnr;
7301 rtx in;
7302 bool piecemeal;
7304 if (REG_P (rld[r].in)
7305 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7306 in = rld[r].in;
7307 else if (REG_P (rld[r].in_reg))
7308 in = rld[r].in_reg;
7309 else
7310 in = XEXP (rld[r].in_reg, 0);
7311 nregno = REGNO (in);
7313 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7314 : hard_regno_nregs[nregno]
7315 [GET_MODE (rld[r].reg_rtx)]);
7317 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7319 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7320 && nr == nnr
7321 && inherit_piecemeal_p (r, nregno));
7323 if (nregno < FIRST_PSEUDO_REGISTER)
7324 for (k = 1; k < nnr; k++)
7325 reg_last_reload_reg[nregno + k]
7326 = (piecemeal
7327 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7328 : 0);
7330 /* Unless we inherited this reload, show we haven't
7331 recently done a store.
7332 Previous stores of inherited auto_inc expressions
7333 also have to be discarded. */
7334 if (! reload_inherited[r]
7335 || (rld[r].out && ! rld[r].out_reg))
7336 spill_reg_store[i] = 0;
7338 for (k = 0; k < nr; k++)
7340 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7341 reg_reloaded_contents[i + k]
7342 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7343 ? nregno
7344 : nregno + k);
7345 reg_reloaded_insn[i + k] = insn;
7346 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7347 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7348 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7353 /* However, if part of the reload reaches the end, then we must
7354 invalidate the old info for the part that survives to the end. */
7355 else if (part_reaches_end)
7357 for (k = 0; k < nr; k++)
7358 if (reload_reg_reaches_end_p (i + k,
7359 rld[r].opnum,
7360 rld[r].when_needed))
7361 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7365 /* The following if-statement was #if 0'd in 1.34 (or before...).
7366 It's reenabled in 1.35 because supposedly nothing else
7367 deals with this problem. */
7369 /* If a register gets output-reloaded from a non-spill register,
7370 that invalidates any previous reloaded copy of it.
7371 But forget_old_reloads_1 won't get to see it, because
7372 it thinks only about the original insn. So invalidate it here. */
7373 if (i < 0 && rld[r].out != 0
7374 && (REG_P (rld[r].out)
7375 || (MEM_P (rld[r].out)
7376 && REG_P (rld[r].out_reg))))
7378 rtx out = (REG_P (rld[r].out)
7379 ? rld[r].out : rld[r].out_reg);
7380 int nregno = REGNO (out);
7381 if (nregno >= FIRST_PSEUDO_REGISTER)
7383 rtx src_reg, store_insn = NULL_RTX;
7385 reg_last_reload_reg[nregno] = 0;
7387 /* If we can find a hard register that is stored, record
7388 the storing insn so that we may delete this insn with
7389 delete_output_reload. */
7390 src_reg = rld[r].reg_rtx;
7392 /* If this is an optional reload, try to find the source reg
7393 from an input reload. */
7394 if (! src_reg)
7396 rtx set = single_set (insn);
7397 if (set && SET_DEST (set) == rld[r].out)
7399 int k;
7401 src_reg = SET_SRC (set);
7402 store_insn = insn;
7403 for (k = 0; k < n_reloads; k++)
7405 if (rld[k].in == src_reg)
7407 src_reg = rld[k].reg_rtx;
7408 break;
7413 else
7414 store_insn = new_spill_reg_store[REGNO (src_reg)];
7415 if (src_reg && REG_P (src_reg)
7416 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7418 int src_regno = REGNO (src_reg);
7419 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7420 /* The place where to find a death note varies with
7421 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7422 necessarily checked exactly in the code that moves
7423 notes, so just check both locations. */
7424 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7425 if (! note && store_insn)
7426 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7427 while (nr-- > 0)
7429 spill_reg_store[src_regno + nr] = store_insn;
7430 spill_reg_stored_to[src_regno + nr] = out;
7431 reg_reloaded_contents[src_regno + nr] = nregno;
7432 reg_reloaded_insn[src_regno + nr] = store_insn;
7433 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7434 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7435 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7436 GET_MODE (src_reg)))
7437 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7438 src_regno + nr);
7439 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7440 if (note)
7441 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7442 else
7443 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7445 reg_last_reload_reg[nregno] = src_reg;
7446 /* We have to set reg_has_output_reload here, or else
7447 forget_old_reloads_1 will clear reg_last_reload_reg
7448 right away. */
7449 reg_has_output_reload[nregno] = 1;
7452 else
7454 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7456 while (num_regs-- > 0)
7457 reg_last_reload_reg[nregno + num_regs] = 0;
7461 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7464 /* Go through the motions to emit INSN and test if it is strictly valid.
7465 Return the emitted insn if valid, else return NULL. */
7467 static rtx
7468 emit_insn_if_valid_for_reload (rtx insn)
7470 rtx last = get_last_insn ();
7471 int code;
7473 insn = emit_insn (insn);
7474 code = recog_memoized (insn);
7476 if (code >= 0)
7478 extract_insn (insn);
7479 /* We want constrain operands to treat this insn strictly in its
7480 validity determination, i.e., the way it would after reload has
7481 completed. */
7482 if (constrain_operands (1))
7483 return insn;
7486 delete_insns_since (last);
7487 return NULL;
7490 /* Emit code to perform a reload from IN (which may be a reload register) to
7491 OUT (which may also be a reload register). IN or OUT is from operand
7492 OPNUM with reload type TYPE.
7494 Returns first insn emitted. */
7496 static rtx
7497 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7499 rtx last = get_last_insn ();
7500 rtx tem;
7502 /* If IN is a paradoxical SUBREG, remove it and try to put the
7503 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7504 if (GET_CODE (in) == SUBREG
7505 && (GET_MODE_SIZE (GET_MODE (in))
7506 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7507 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7508 in = SUBREG_REG (in), out = tem;
7509 else if (GET_CODE (out) == SUBREG
7510 && (GET_MODE_SIZE (GET_MODE (out))
7511 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7512 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7513 out = SUBREG_REG (out), in = tem;
7515 /* How to do this reload can get quite tricky. Normally, we are being
7516 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7517 register that didn't get a hard register. In that case we can just
7518 call emit_move_insn.
7520 We can also be asked to reload a PLUS that adds a register or a MEM to
7521 another register, constant or MEM. This can occur during frame pointer
7522 elimination and while reloading addresses. This case is handled by
7523 trying to emit a single insn to perform the add. If it is not valid,
7524 we use a two insn sequence.
7526 Or we can be asked to reload an unary operand that was a fragment of
7527 an addressing mode, into a register. If it isn't recognized as-is,
7528 we try making the unop operand and the reload-register the same:
7529 (set reg:X (unop:X expr:Y))
7530 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7532 Finally, we could be called to handle an 'o' constraint by putting
7533 an address into a register. In that case, we first try to do this
7534 with a named pattern of "reload_load_address". If no such pattern
7535 exists, we just emit a SET insn and hope for the best (it will normally
7536 be valid on machines that use 'o').
7538 This entire process is made complex because reload will never
7539 process the insns we generate here and so we must ensure that
7540 they will fit their constraints and also by the fact that parts of
7541 IN might be being reloaded separately and replaced with spill registers.
7542 Because of this, we are, in some sense, just guessing the right approach
7543 here. The one listed above seems to work.
7545 ??? At some point, this whole thing needs to be rethought. */
7547 if (GET_CODE (in) == PLUS
7548 && (REG_P (XEXP (in, 0))
7549 || GET_CODE (XEXP (in, 0)) == SUBREG
7550 || MEM_P (XEXP (in, 0)))
7551 && (REG_P (XEXP (in, 1))
7552 || GET_CODE (XEXP (in, 1)) == SUBREG
7553 || CONSTANT_P (XEXP (in, 1))
7554 || MEM_P (XEXP (in, 1))))
7556 /* We need to compute the sum of a register or a MEM and another
7557 register, constant, or MEM, and put it into the reload
7558 register. The best possible way of doing this is if the machine
7559 has a three-operand ADD insn that accepts the required operands.
7561 The simplest approach is to try to generate such an insn and see if it
7562 is recognized and matches its constraints. If so, it can be used.
7564 It might be better not to actually emit the insn unless it is valid,
7565 but we need to pass the insn as an operand to `recog' and
7566 `extract_insn' and it is simpler to emit and then delete the insn if
7567 not valid than to dummy things up. */
7569 rtx op0, op1, tem, insn;
7570 int code;
7572 op0 = find_replacement (&XEXP (in, 0));
7573 op1 = find_replacement (&XEXP (in, 1));
7575 /* Since constraint checking is strict, commutativity won't be
7576 checked, so we need to do that here to avoid spurious failure
7577 if the add instruction is two-address and the second operand
7578 of the add is the same as the reload reg, which is frequently
7579 the case. If the insn would be A = B + A, rearrange it so
7580 it will be A = A + B as constrain_operands expects. */
7582 if (REG_P (XEXP (in, 1))
7583 && REGNO (out) == REGNO (XEXP (in, 1)))
7584 tem = op0, op0 = op1, op1 = tem;
7586 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7587 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7589 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7590 if (insn)
7591 return insn;
7593 /* If that failed, we must use a conservative two-insn sequence.
7595 Use a move to copy one operand into the reload register. Prefer
7596 to reload a constant, MEM or pseudo since the move patterns can
7597 handle an arbitrary operand. If OP1 is not a constant, MEM or
7598 pseudo and OP1 is not a valid operand for an add instruction, then
7599 reload OP1.
7601 After reloading one of the operands into the reload register, add
7602 the reload register to the output register.
7604 If there is another way to do this for a specific machine, a
7605 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7606 we emit below. */
7608 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7610 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7611 || (REG_P (op1)
7612 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7613 || (code != CODE_FOR_nothing
7614 && ! ((*insn_data[code].operand[2].predicate)
7615 (op1, insn_data[code].operand[2].mode))))
7616 tem = op0, op0 = op1, op1 = tem;
7618 gen_reload (out, op0, opnum, type);
7620 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7621 This fixes a problem on the 32K where the stack pointer cannot
7622 be used as an operand of an add insn. */
7624 if (rtx_equal_p (op0, op1))
7625 op1 = out;
7627 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7628 if (insn)
7630 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7631 REG_NOTES (insn)
7632 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7633 return insn;
7636 /* If that failed, copy the address register to the reload register.
7637 Then add the constant to the reload register. */
7639 gen_reload (out, op1, opnum, type);
7640 insn = emit_insn (gen_add2_insn (out, op0));
7641 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7644 #ifdef SECONDARY_MEMORY_NEEDED
7645 /* If we need a memory location to do the move, do it that way. */
7646 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7647 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7648 && (REG_P (out) || GET_CODE (out) == SUBREG)
7649 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7650 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7651 REGNO_REG_CLASS (reg_or_subregno (out)),
7652 GET_MODE (out)))
7654 /* Get the memory to use and rewrite both registers to its mode. */
7655 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7657 if (GET_MODE (loc) != GET_MODE (out))
7658 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7660 if (GET_MODE (loc) != GET_MODE (in))
7661 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7663 gen_reload (loc, in, opnum, type);
7664 gen_reload (out, loc, opnum, type);
7666 #endif
7667 else if (REG_P (out) && UNARY_P (in))
7669 rtx insn;
7670 rtx op1;
7671 rtx out_moded;
7672 rtx set;
7674 op1 = find_replacement (&XEXP (in, 0));
7675 if (op1 != XEXP (in, 0))
7676 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7678 /* First, try a plain SET. */
7679 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7680 if (set)
7681 return set;
7683 /* If that failed, move the inner operand to the reload
7684 register, and try the same unop with the inner expression
7685 replaced with the reload register. */
7687 if (GET_MODE (op1) != GET_MODE (out))
7688 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7689 else
7690 out_moded = out;
7692 gen_reload (out_moded, op1, opnum, type);
7694 insn
7695 = gen_rtx_SET (VOIDmode, out,
7696 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7697 out_moded));
7698 insn = emit_insn_if_valid_for_reload (insn);
7699 if (insn)
7701 REG_NOTES (insn)
7702 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7703 return insn;
7706 fatal_insn ("Failure trying to reload:", set);
7708 /* If IN is a simple operand, use gen_move_insn. */
7709 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7710 emit_insn (gen_move_insn (out, in));
7712 #ifdef HAVE_reload_load_address
7713 else if (HAVE_reload_load_address)
7714 emit_insn (gen_reload_load_address (out, in));
7715 #endif
7717 /* Otherwise, just write (set OUT IN) and hope for the best. */
7718 else
7719 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7721 /* Return the first insn emitted.
7722 We can not just return get_last_insn, because there may have
7723 been multiple instructions emitted. Also note that gen_move_insn may
7724 emit more than one insn itself, so we can not assume that there is one
7725 insn emitted per emit_insn_before call. */
7727 return last ? NEXT_INSN (last) : get_insns ();
7730 /* Delete a previously made output-reload whose result we now believe
7731 is not needed. First we double-check.
7733 INSN is the insn now being processed.
7734 LAST_RELOAD_REG is the hard register number for which we want to delete
7735 the last output reload.
7736 J is the reload-number that originally used REG. The caller has made
7737 certain that reload J doesn't use REG any longer for input. */
7739 static void
7740 delete_output_reload (rtx insn, int j, int last_reload_reg)
7742 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7743 rtx reg = spill_reg_stored_to[last_reload_reg];
7744 int k;
7745 int n_occurrences;
7746 int n_inherited = 0;
7747 rtx i1;
7748 rtx substed;
7750 /* It is possible that this reload has been only used to set another reload
7751 we eliminated earlier and thus deleted this instruction too. */
7752 if (INSN_DELETED_P (output_reload_insn))
7753 return;
7755 /* Get the raw pseudo-register referred to. */
7757 while (GET_CODE (reg) == SUBREG)
7758 reg = SUBREG_REG (reg);
7759 substed = reg_equiv_memory_loc[REGNO (reg)];
7761 /* This is unsafe if the operand occurs more often in the current
7762 insn than it is inherited. */
7763 for (k = n_reloads - 1; k >= 0; k--)
7765 rtx reg2 = rld[k].in;
7766 if (! reg2)
7767 continue;
7768 if (MEM_P (reg2) || reload_override_in[k])
7769 reg2 = rld[k].in_reg;
7770 #ifdef AUTO_INC_DEC
7771 if (rld[k].out && ! rld[k].out_reg)
7772 reg2 = XEXP (rld[k].in_reg, 0);
7773 #endif
7774 while (GET_CODE (reg2) == SUBREG)
7775 reg2 = SUBREG_REG (reg2);
7776 if (rtx_equal_p (reg2, reg))
7778 if (reload_inherited[k] || reload_override_in[k] || k == j)
7780 n_inherited++;
7781 reg2 = rld[k].out_reg;
7782 if (! reg2)
7783 continue;
7784 while (GET_CODE (reg2) == SUBREG)
7785 reg2 = XEXP (reg2, 0);
7786 if (rtx_equal_p (reg2, reg))
7787 n_inherited++;
7789 else
7790 return;
7793 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7794 if (substed)
7795 n_occurrences += count_occurrences (PATTERN (insn),
7796 eliminate_regs (substed, 0,
7797 NULL_RTX), 0);
7798 if (n_occurrences > n_inherited)
7799 return;
7801 /* If the pseudo-reg we are reloading is no longer referenced
7802 anywhere between the store into it and here,
7803 and we're within the same basic block, then the value can only
7804 pass through the reload reg and end up here.
7805 Otherwise, give up--return. */
7806 for (i1 = NEXT_INSN (output_reload_insn);
7807 i1 != insn; i1 = NEXT_INSN (i1))
7809 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7810 return;
7811 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7812 && reg_mentioned_p (reg, PATTERN (i1)))
7814 /* If this is USE in front of INSN, we only have to check that
7815 there are no more references than accounted for by inheritance. */
7816 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7818 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7819 i1 = NEXT_INSN (i1);
7821 if (n_occurrences <= n_inherited && i1 == insn)
7822 break;
7823 return;
7827 /* We will be deleting the insn. Remove the spill reg information. */
7828 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7830 spill_reg_store[last_reload_reg + k] = 0;
7831 spill_reg_stored_to[last_reload_reg + k] = 0;
7834 /* The caller has already checked that REG dies or is set in INSN.
7835 It has also checked that we are optimizing, and thus some
7836 inaccuracies in the debugging information are acceptable.
7837 So we could just delete output_reload_insn. But in some cases
7838 we can improve the debugging information without sacrificing
7839 optimization - maybe even improving the code: See if the pseudo
7840 reg has been completely replaced with reload regs. If so, delete
7841 the store insn and forget we had a stack slot for the pseudo. */
7842 if (rld[j].out != rld[j].in
7843 && REG_N_DEATHS (REGNO (reg)) == 1
7844 && REG_N_SETS (REGNO (reg)) == 1
7845 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7846 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7848 rtx i2;
7850 /* We know that it was used only between here and the beginning of
7851 the current basic block. (We also know that the last use before
7852 INSN was the output reload we are thinking of deleting, but never
7853 mind that.) Search that range; see if any ref remains. */
7854 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7856 rtx set = single_set (i2);
7858 /* Uses which just store in the pseudo don't count,
7859 since if they are the only uses, they are dead. */
7860 if (set != 0 && SET_DEST (set) == reg)
7861 continue;
7862 if (LABEL_P (i2)
7863 || JUMP_P (i2))
7864 break;
7865 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7866 && reg_mentioned_p (reg, PATTERN (i2)))
7868 /* Some other ref remains; just delete the output reload we
7869 know to be dead. */
7870 delete_address_reloads (output_reload_insn, insn);
7871 delete_insn (output_reload_insn);
7872 return;
7876 /* Delete the now-dead stores into this pseudo. Note that this
7877 loop also takes care of deleting output_reload_insn. */
7878 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7880 rtx set = single_set (i2);
7882 if (set != 0 && SET_DEST (set) == reg)
7884 delete_address_reloads (i2, insn);
7885 delete_insn (i2);
7887 if (LABEL_P (i2)
7888 || JUMP_P (i2))
7889 break;
7892 /* For the debugging info, say the pseudo lives in this reload reg. */
7893 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7894 alter_reg (REGNO (reg), -1);
7896 else
7898 delete_address_reloads (output_reload_insn, insn);
7899 delete_insn (output_reload_insn);
7903 /* We are going to delete DEAD_INSN. Recursively delete loads of
7904 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7905 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7906 static void
7907 delete_address_reloads (rtx dead_insn, rtx current_insn)
7909 rtx set = single_set (dead_insn);
7910 rtx set2, dst, prev, next;
7911 if (set)
7913 rtx dst = SET_DEST (set);
7914 if (MEM_P (dst))
7915 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7917 /* If we deleted the store from a reloaded post_{in,de}c expression,
7918 we can delete the matching adds. */
7919 prev = PREV_INSN (dead_insn);
7920 next = NEXT_INSN (dead_insn);
7921 if (! prev || ! next)
7922 return;
7923 set = single_set (next);
7924 set2 = single_set (prev);
7925 if (! set || ! set2
7926 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7927 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7928 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7929 return;
7930 dst = SET_DEST (set);
7931 if (! rtx_equal_p (dst, SET_DEST (set2))
7932 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7933 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7934 || (INTVAL (XEXP (SET_SRC (set), 1))
7935 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7936 return;
7937 delete_related_insns (prev);
7938 delete_related_insns (next);
7941 /* Subfunction of delete_address_reloads: process registers found in X. */
7942 static void
7943 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7945 rtx prev, set, dst, i2;
7946 int i, j;
7947 enum rtx_code code = GET_CODE (x);
7949 if (code != REG)
7951 const char *fmt = GET_RTX_FORMAT (code);
7952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7954 if (fmt[i] == 'e')
7955 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7956 else if (fmt[i] == 'E')
7958 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7959 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7960 current_insn);
7963 return;
7966 if (spill_reg_order[REGNO (x)] < 0)
7967 return;
7969 /* Scan backwards for the insn that sets x. This might be a way back due
7970 to inheritance. */
7971 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7973 code = GET_CODE (prev);
7974 if (code == CODE_LABEL || code == JUMP_INSN)
7975 return;
7976 if (!INSN_P (prev))
7977 continue;
7978 if (reg_set_p (x, PATTERN (prev)))
7979 break;
7980 if (reg_referenced_p (x, PATTERN (prev)))
7981 return;
7983 if (! prev || INSN_UID (prev) < reload_first_uid)
7984 return;
7985 /* Check that PREV only sets the reload register. */
7986 set = single_set (prev);
7987 if (! set)
7988 return;
7989 dst = SET_DEST (set);
7990 if (!REG_P (dst)
7991 || ! rtx_equal_p (dst, x))
7992 return;
7993 if (! reg_set_p (dst, PATTERN (dead_insn)))
7995 /* Check if DST was used in a later insn -
7996 it might have been inherited. */
7997 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7999 if (LABEL_P (i2))
8000 break;
8001 if (! INSN_P (i2))
8002 continue;
8003 if (reg_referenced_p (dst, PATTERN (i2)))
8005 /* If there is a reference to the register in the current insn,
8006 it might be loaded in a non-inherited reload. If no other
8007 reload uses it, that means the register is set before
8008 referenced. */
8009 if (i2 == current_insn)
8011 for (j = n_reloads - 1; j >= 0; j--)
8012 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8013 || reload_override_in[j] == dst)
8014 return;
8015 for (j = n_reloads - 1; j >= 0; j--)
8016 if (rld[j].in && rld[j].reg_rtx == dst)
8017 break;
8018 if (j >= 0)
8019 break;
8021 return;
8023 if (JUMP_P (i2))
8024 break;
8025 /* If DST is still live at CURRENT_INSN, check if it is used for
8026 any reload. Note that even if CURRENT_INSN sets DST, we still
8027 have to check the reloads. */
8028 if (i2 == current_insn)
8030 for (j = n_reloads - 1; j >= 0; j--)
8031 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8032 || reload_override_in[j] == dst)
8033 return;
8034 /* ??? We can't finish the loop here, because dst might be
8035 allocated to a pseudo in this block if no reload in this
8036 block needs any of the classes containing DST - see
8037 spill_hard_reg. There is no easy way to tell this, so we
8038 have to scan till the end of the basic block. */
8040 if (reg_set_p (dst, PATTERN (i2)))
8041 break;
8044 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8045 reg_reloaded_contents[REGNO (dst)] = -1;
8046 delete_insn (prev);
8049 /* Output reload-insns to reload VALUE into RELOADREG.
8050 VALUE is an autoincrement or autodecrement RTX whose operand
8051 is a register or memory location;
8052 so reloading involves incrementing that location.
8053 IN is either identical to VALUE, or some cheaper place to reload from.
8055 INC_AMOUNT is the number to increment or decrement by (always positive).
8056 This cannot be deduced from VALUE.
8058 Return the instruction that stores into RELOADREG. */
8060 static rtx
8061 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8063 /* REG or MEM to be copied and incremented. */
8064 rtx incloc = XEXP (value, 0);
8065 /* Nonzero if increment after copying. */
8066 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
8067 rtx last;
8068 rtx inc;
8069 rtx add_insn;
8070 int code;
8071 rtx store;
8072 rtx real_in = in == value ? XEXP (in, 0) : in;
8074 /* No hard register is equivalent to this register after
8075 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8076 we could inc/dec that register as well (maybe even using it for
8077 the source), but I'm not sure it's worth worrying about. */
8078 if (REG_P (incloc))
8079 reg_last_reload_reg[REGNO (incloc)] = 0;
8081 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8082 inc_amount = -inc_amount;
8084 inc = GEN_INT (inc_amount);
8086 /* If this is post-increment, first copy the location to the reload reg. */
8087 if (post && real_in != reloadreg)
8088 emit_insn (gen_move_insn (reloadreg, real_in));
8090 if (in == value)
8092 /* See if we can directly increment INCLOC. Use a method similar to
8093 that in gen_reload. */
8095 last = get_last_insn ();
8096 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8097 gen_rtx_PLUS (GET_MODE (incloc),
8098 incloc, inc)));
8100 code = recog_memoized (add_insn);
8101 if (code >= 0)
8103 extract_insn (add_insn);
8104 if (constrain_operands (1))
8106 /* If this is a pre-increment and we have incremented the value
8107 where it lives, copy the incremented value to RELOADREG to
8108 be used as an address. */
8110 if (! post)
8111 emit_insn (gen_move_insn (reloadreg, incloc));
8113 return add_insn;
8116 delete_insns_since (last);
8119 /* If couldn't do the increment directly, must increment in RELOADREG.
8120 The way we do this depends on whether this is pre- or post-increment.
8121 For pre-increment, copy INCLOC to the reload register, increment it
8122 there, then save back. */
8124 if (! post)
8126 if (in != reloadreg)
8127 emit_insn (gen_move_insn (reloadreg, real_in));
8128 emit_insn (gen_add2_insn (reloadreg, inc));
8129 store = emit_insn (gen_move_insn (incloc, reloadreg));
8131 else
8133 /* Postincrement.
8134 Because this might be a jump insn or a compare, and because RELOADREG
8135 may not be available after the insn in an input reload, we must do
8136 the incrementation before the insn being reloaded for.
8138 We have already copied IN to RELOADREG. Increment the copy in
8139 RELOADREG, save that back, then decrement RELOADREG so it has
8140 the original value. */
8142 emit_insn (gen_add2_insn (reloadreg, inc));
8143 store = emit_insn (gen_move_insn (incloc, reloadreg));
8144 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8147 return store;
8150 #ifdef AUTO_INC_DEC
8151 static void
8152 add_auto_inc_notes (rtx insn, rtx x)
8154 enum rtx_code code = GET_CODE (x);
8155 const char *fmt;
8156 int i, j;
8158 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8160 REG_NOTES (insn)
8161 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8162 return;
8165 /* Scan all the operand sub-expressions. */
8166 fmt = GET_RTX_FORMAT (code);
8167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8169 if (fmt[i] == 'e')
8170 add_auto_inc_notes (insn, XEXP (x, i));
8171 else if (fmt[i] == 'E')
8172 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8173 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8176 #endif
8178 /* Copy EH notes from an insn to its reloads. */
8179 static void
8180 copy_eh_notes (rtx insn, rtx x)
8182 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8183 if (eh_note)
8185 for (; x != 0; x = NEXT_INSN (x))
8187 if (may_trap_p (PATTERN (x)))
8188 REG_NOTES (x)
8189 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8190 REG_NOTES (x));
8195 /* This is used by reload pass, that does emit some instructions after
8196 abnormal calls moving basic block end, but in fact it wants to emit
8197 them on the edge. Looks for abnormal call edges, find backward the
8198 proper call and fix the damage.
8200 Similar handle instructions throwing exceptions internally. */
8201 void
8202 fixup_abnormal_edges (void)
8204 bool inserted = false;
8205 basic_block bb;
8207 FOR_EACH_BB (bb)
8209 edge e;
8210 edge_iterator ei;
8212 /* Look for cases we are interested in - calls or instructions causing
8213 exceptions. */
8214 FOR_EACH_EDGE (e, ei, bb->succs)
8216 if (e->flags & EDGE_ABNORMAL_CALL)
8217 break;
8218 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8219 == (EDGE_ABNORMAL | EDGE_EH))
8220 break;
8222 if (e && !CALL_P (BB_END (bb))
8223 && !can_throw_internal (BB_END (bb)))
8225 rtx insn;
8227 /* Get past the new insns generated. Allow notes, as the insns
8228 may be already deleted. */
8229 insn = BB_END (bb);
8230 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8231 && !can_throw_internal (insn)
8232 && insn != BB_HEAD (bb))
8233 insn = PREV_INSN (insn);
8235 if (CALL_P (insn) || can_throw_internal (insn))
8237 rtx stop, next;
8239 stop = NEXT_INSN (BB_END (bb));
8240 BB_END (bb) = insn;
8241 insn = NEXT_INSN (insn);
8243 FOR_EACH_EDGE (e, ei, bb->succs)
8244 if (e->flags & EDGE_FALLTHRU)
8245 break;
8247 while (insn && insn != stop)
8249 next = NEXT_INSN (insn);
8250 if (INSN_P (insn))
8252 delete_insn (insn);
8254 /* Sometimes there's still the return value USE.
8255 If it's placed after a trapping call (i.e. that
8256 call is the last insn anyway), we have no fallthru
8257 edge. Simply delete this use and don't try to insert
8258 on the non-existent edge. */
8259 if (GET_CODE (PATTERN (insn)) != USE)
8261 /* We're not deleting it, we're moving it. */
8262 INSN_DELETED_P (insn) = 0;
8263 PREV_INSN (insn) = NULL_RTX;
8264 NEXT_INSN (insn) = NULL_RTX;
8266 insert_insn_on_edge (insn, e);
8267 inserted = true;
8270 insn = next;
8274 /* It may be that we don't find any such trapping insn. In this
8275 case we discovered quite late that the insn that had been
8276 marked as can_throw_internal in fact couldn't trap at all.
8277 So we should in fact delete the EH edges out of the block. */
8278 else
8279 purge_dead_edges (bb);
8283 /* We've possibly turned single trapping insn into multiple ones. */
8284 if (flag_non_call_exceptions)
8286 sbitmap blocks;
8287 blocks = sbitmap_alloc (last_basic_block);
8288 sbitmap_ones (blocks);
8289 find_many_sub_basic_blocks (blocks);
8292 if (inserted)
8293 commit_edge_insertions ();
8295 #ifdef ENABLE_CHECKING
8296 /* Verify that we didn't turn one trapping insn into many, and that
8297 we found and corrected all of the problems wrt fixups on the
8298 fallthru edge. */
8299 verify_flow_info ();
8300 #endif