No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-ssa-live.h
blob2c4127402fab6f9e4dd9e1ef3b17a0196ba71caa
1 /* Routines for liveness in SSA trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
23 #ifndef _TREE_SSA_LIVE_H
24 #define _TREE_SSA_LIVE_H 1
26 #include "partition.h"
28 /* Used to create the variable mapping when we go out of SSA form. */
29 typedef struct _var_map
31 /* The partition of all variables. */
32 partition var_partition;
34 /* Vector for compacting partitions. */
35 int *partition_to_compact;
36 int *compact_to_partition;
38 /* Mapping of partition numbers to vars. */
39 tree *partition_to_var;
41 /* Current number of partitions. */
42 unsigned int num_partitions;
44 /* Original partition size. */
45 unsigned int partition_size;
47 /* Reference count, if required. */
48 int *ref_count;
49 } *var_map;
51 #define VAR_ANN_PARTITION(ann) (ann->partition)
52 #define VAR_ANN_ROOT_INDEX(ann) (ann->root_index)
54 #define NO_PARTITION -1
56 /* Flags to pass to compact_var_map */
58 #define VARMAP_NORMAL 0
59 #define VARMAP_NO_SINGLE_DEFS 1
61 extern var_map init_var_map (int);
62 extern void delete_var_map (var_map);
63 extern void dump_var_map (FILE *, var_map);
64 extern int var_union (var_map, tree, tree);
65 extern void change_partition_var (var_map, tree, int);
66 extern void compact_var_map (var_map, int);
67 #ifdef ENABLE_CHECKING
68 extern void register_ssa_partition_check (tree ssa_var);
69 #endif
71 static inline unsigned num_var_partitions (var_map);
72 static inline tree var_to_partition_to_var (var_map, tree);
73 static inline tree partition_to_var (var_map, int);
74 static inline int var_to_partition (var_map, tree);
75 static inline tree version_to_var (var_map, int);
76 static inline int version_ref_count (var_map, tree);
77 static inline void register_ssa_partition (var_map, tree, bool);
79 #define SSA_VAR_MAP_REF_COUNT 0x01
80 extern var_map create_ssa_var_map (int);
82 /* Number of partitions in MAP. */
84 static inline unsigned
85 num_var_partitions (var_map map)
87 return map->num_partitions;
91 /* Return the reference count for SSA_VAR's partition in MAP. */
93 static inline int
94 version_ref_count (var_map map, tree ssa_var)
96 int version = SSA_NAME_VERSION (ssa_var);
97 gcc_assert (map->ref_count);
98 return map->ref_count[version];
102 /* Given partition index I from MAP, return the variable which represents that
103 partition. */
105 static inline tree
106 partition_to_var (var_map map, int i)
108 if (map->compact_to_partition)
109 i = map->compact_to_partition[i];
110 i = partition_find (map->var_partition, i);
111 return map->partition_to_var[i];
115 /* Given ssa_name VERSION, if it has a partition in MAP, return the var it
116 is associated with. Otherwise return NULL. */
118 static inline tree version_to_var (var_map map, int version)
120 int part;
121 part = partition_find (map->var_partition, version);
122 if (map->partition_to_compact)
123 part = map->partition_to_compact[part];
124 if (part == NO_PARTITION)
125 return NULL_TREE;
127 return partition_to_var (map, part);
131 /* Given VAR, return the partition number in MAP which contains it.
132 NO_PARTITION is returned if it's not in any partition. */
134 static inline int
135 var_to_partition (var_map map, tree var)
137 var_ann_t ann;
138 int part;
140 if (TREE_CODE (var) == SSA_NAME)
142 part = partition_find (map->var_partition, SSA_NAME_VERSION (var));
143 if (map->partition_to_compact)
144 part = map->partition_to_compact[part];
146 else
148 ann = var_ann (var);
149 if (ann->out_of_ssa_tag)
150 part = VAR_ANN_PARTITION (ann);
151 else
152 part = NO_PARTITION;
154 return part;
158 /* Given VAR, return the variable which represents the entire partition
159 it is a member of in MAP. NULL is returned if it is not in a partition. */
161 static inline tree
162 var_to_partition_to_var (var_map map, tree var)
164 int part;
166 part = var_to_partition (map, var);
167 if (part == NO_PARTITION)
168 return NULL_TREE;
169 return partition_to_var (map, part);
173 /* This routine registers a partition for SSA_VAR with MAP. IS_USE is used
174 to count references. Any unregistered partitions may be compacted out
175 later. */
177 static inline void
178 register_ssa_partition (var_map map, tree ssa_var, bool is_use)
180 int version;
182 #if defined ENABLE_CHECKING
183 register_ssa_partition_check (ssa_var);
184 #endif
186 version = SSA_NAME_VERSION (ssa_var);
187 if (is_use && map->ref_count)
188 map->ref_count[version]++;
190 if (map->partition_to_var[version] == NULL_TREE)
191 map->partition_to_var[SSA_NAME_VERSION (ssa_var)] = ssa_var;
195 /* ---------------- live on entry/exit info ------------------------------
197 This structure is used to represent live range information on SSA based
198 trees. A partition map must be provided, and based on the active partitions,
199 live-on-entry information and live-on-exit information can be calculated.
200 As well, partitions are marked as to whether they are global (live
201 outside the basic block they are defined in).
203 The live-on-entry information is per variable. It provide a bitmap for
204 each variable which has a bit set for each basic block that the variable
205 is live on entry to that block.
207 The live-on-exit information is per block. It provides a bitmap for each
208 block indicating which partitions are live on exit from the block.
210 For the purposes of this implementation, we treat the elements of a PHI
211 as follows:
213 Uses in a PHI are considered LIVE-ON-EXIT to the block from which they
214 originate. They are *NOT* considered live on entry to the block
215 containing the PHI node.
217 The Def of a PHI node is *not* considered live on entry to the block.
218 It is considered to be "define early" in the block. Picture it as each
219 block having a stmt (or block-preheader) before the first real stmt in
220 the block which defines all the variables that are defined by PHIs.
222 ----------------------------------------------------------------------- */
225 typedef struct tree_live_info_d
227 /* Var map this relates to. */
228 var_map map;
230 /* Bitmap indicating which partitions are global. */
231 bitmap global;
233 /* Bitmap of live on entry blocks for partition elements. */
234 bitmap *livein;
236 /* Number of basic blocks when live on exit calculated. */
237 int num_blocks;
239 /* Bitmap of what variables are live on exit for a basic blocks. */
240 bitmap *liveout;
241 } *tree_live_info_p;
244 extern tree_live_info_p calculate_live_on_entry (var_map);
245 extern void calculate_live_on_exit (tree_live_info_p);
246 extern void delete_tree_live_info (tree_live_info_p);
248 #define LIVEDUMP_ENTRY 0x01
249 #define LIVEDUMP_EXIT 0x02
250 #define LIVEDUMP_ALL (LIVEDUMP_ENTRY | LIVEDUMP_EXIT)
251 extern void dump_live_info (FILE *, tree_live_info_p, int);
253 static inline int partition_is_global (tree_live_info_p, int);
254 static inline bitmap live_entry_blocks (tree_live_info_p, int);
255 static inline bitmap live_on_exit (tree_live_info_p, basic_block);
256 static inline var_map live_var_map (tree_live_info_p);
257 static inline void live_merge_and_clear (tree_live_info_p, int, int);
258 static inline void make_live_on_entry (tree_live_info_p, basic_block, int);
261 /* Return TRUE if P is marked as a global in LIVE. */
263 static inline int
264 partition_is_global (tree_live_info_p live, int p)
266 gcc_assert (live->global);
267 return bitmap_bit_p (live->global, p);
271 /* Return the bitmap from LIVE representing the live on entry blocks for
272 partition P. */
274 static inline bitmap
275 live_entry_blocks (tree_live_info_p live, int p)
277 gcc_assert (live->livein);
278 return live->livein[p];
282 /* Return the bitmap from LIVE representing the live on exit partitions from
283 block BB. */
285 static inline bitmap
286 live_on_exit (tree_live_info_p live, basic_block bb)
288 gcc_assert (live->liveout);
289 gcc_assert (bb != ENTRY_BLOCK_PTR);
290 gcc_assert (bb != EXIT_BLOCK_PTR);
292 return live->liveout[bb->index];
296 /* Return the partition map which the information in LIVE utilizes. */
298 static inline var_map
299 live_var_map (tree_live_info_p live)
301 return live->map;
305 /* Merge the live on entry information in LIVE for partitions P1 and P2. Place
306 the result into P1. Clear P2. */
308 static inline void
309 live_merge_and_clear (tree_live_info_p live, int p1, int p2)
311 bitmap_ior_into (live->livein[p1], live->livein[p2]);
312 bitmap_zero (live->livein[p2]);
316 /* Mark partition P as live on entry to basic block BB in LIVE. */
318 static inline void
319 make_live_on_entry (tree_live_info_p live, basic_block bb , int p)
321 bitmap_set_bit (live->livein[p], bb->index);
322 bitmap_set_bit (live->global, p);
326 /* A tree_partition_associator (TPA)object is a base structure which allows
327 partitions to be associated with a tree object.
329 A varray of tree elements represent each distinct tree item.
330 A parallel int array represents the first partition number associated with
331 the tree.
332 This partition number is then used as in index into the next_partition
333 array, which returns the index of the next partition which is associated
334 with the tree. TPA_NONE indicates the end of the list.
335 A varray paralleling the partition list 'partition_to_tree_map' is used
336 to indicate which tree index the partition is in. */
338 typedef struct tree_partition_associator_d
340 VEC(tree,heap) *trees;
341 varray_type first_partition;
342 int *next_partition;
343 int *partition_to_tree_map;
344 int num_trees;
345 int uncompressed_num;
346 var_map map;
347 } *tpa_p;
349 /* Value returned when there are no more partitions associated with a tree. */
350 #define TPA_NONE -1
352 static inline tree tpa_tree (tpa_p, int);
353 static inline int tpa_first_partition (tpa_p, int);
354 static inline int tpa_next_partition (tpa_p, int);
355 static inline int tpa_num_trees (tpa_p);
356 static inline int tpa_find_tree (tpa_p, int);
357 static inline void tpa_decompact (tpa_p);
358 extern void tpa_delete (tpa_p);
359 extern void tpa_dump (FILE *, tpa_p);
360 extern void tpa_remove_partition (tpa_p, int, int);
361 extern int tpa_compact (tpa_p);
364 /* Return the number of distinct tree nodes in TPA. */
366 static inline int
367 tpa_num_trees (tpa_p tpa)
369 return tpa->num_trees;
373 /* Return the tree node for index I in TPA. */
375 static inline tree
376 tpa_tree (tpa_p tpa, int i)
378 return VEC_index (tree, tpa->trees, i);
382 /* Return the first partition associated with tree list I in TPA. */
384 static inline int
385 tpa_first_partition (tpa_p tpa, int i)
387 return VARRAY_INT (tpa->first_partition, i);
391 /* Return the next partition after partition I in TPA's list. */
393 static inline int
394 tpa_next_partition (tpa_p tpa, int i)
396 return tpa->next_partition[i];
400 /* Return the tree index from TPA whose list contains partition I.
401 TPA_NONE is returned if I is not associated with any list. */
403 static inline int
404 tpa_find_tree (tpa_p tpa, int i)
406 int index;
408 index = tpa->partition_to_tree_map[i];
409 /* When compressed, any index higher than the number of tree elements is
410 a compressed element, so return TPA_NONE. */
411 if (index != TPA_NONE && index >= tpa_num_trees (tpa))
413 gcc_assert (tpa->uncompressed_num != -1);
414 index = TPA_NONE;
417 return index;
421 /* This function removes any compaction which was performed on TPA. */
423 static inline void
424 tpa_decompact(tpa_p tpa)
426 gcc_assert (tpa->uncompressed_num != -1);
427 tpa->num_trees = tpa->uncompressed_num;
431 /* Once a var_map has been created and compressed, a complementary root_var
432 object can be built. This creates a list of all the root variables from
433 which ssa version names are derived. Each root variable has a list of
434 which partitions are versions of that root.
436 This is implemented using the tree_partition_associator.
438 The tree vector is used to represent the root variable.
439 The list of partitions represent SSA versions of the root variable. */
441 typedef tpa_p root_var_p;
443 static inline tree root_var (root_var_p, int);
444 static inline int root_var_first_partition (root_var_p, int);
445 static inline int root_var_next_partition (root_var_p, int);
446 static inline int root_var_num (root_var_p);
447 static inline void root_var_dump (FILE *, root_var_p);
448 static inline void root_var_remove_partition (root_var_p, int, int);
449 static inline void root_var_delete (root_var_p);
450 static inline int root_var_find (root_var_p, int);
451 static inline int root_var_compact (root_var_p);
452 static inline void root_var_decompact (tpa_p);
454 extern root_var_p root_var_init (var_map);
456 /* Value returned when there are no more partitions associated with a root
457 variable. */
458 #define ROOT_VAR_NONE TPA_NONE
461 /* Return the number of distinct root variables in RV. */
463 static inline int
464 root_var_num (root_var_p rv)
466 return tpa_num_trees (rv);
470 /* Return root variable I from RV. */
472 static inline tree
473 root_var (root_var_p rv, int i)
475 return tpa_tree (rv, i);
479 /* Return the first partition in RV belonging to root variable list I. */
481 static inline int
482 root_var_first_partition (root_var_p rv, int i)
484 return tpa_first_partition (rv, i);
488 /* Return the next partition after partition I in a root list from RV. */
490 static inline int
491 root_var_next_partition (root_var_p rv, int i)
493 return tpa_next_partition (rv, i);
497 /* Send debug info for root_var list RV to file F. */
499 static inline void
500 root_var_dump (FILE *f, root_var_p rv)
502 fprintf (f, "\nRoot Var dump\n");
503 tpa_dump (f, rv);
504 fprintf (f, "\n");
508 /* Destroy root_var object RV. */
510 static inline void
511 root_var_delete (root_var_p rv)
513 tpa_delete (rv);
517 /* Remove partition PARTITION_INDEX from root_var list ROOT_INDEX in RV. */
519 static inline void
520 root_var_remove_partition (root_var_p rv, int root_index, int partition_index)
522 tpa_remove_partition (rv, root_index, partition_index);
526 /* Return the root_var list index for partition I in RV. */
528 static inline int
529 root_var_find (root_var_p rv, int i)
531 return tpa_find_tree (rv, i);
535 /* Hide single element lists in RV. */
537 static inline int
538 root_var_compact (root_var_p rv)
540 return tpa_compact (rv);
544 /* Expose the single element lists in RV. */
546 static inline void
547 root_var_decompact (root_var_p rv)
549 tpa_decompact (rv);
553 /* A TYPE_VAR object is similar to a root_var object, except this associates
554 partitions with their type rather than their root variable. This is used to
555 coalesce memory locations based on type. */
557 typedef tpa_p type_var_p;
559 static inline tree type_var (type_var_p, int);
560 static inline int type_var_first_partition (type_var_p, int);
561 static inline int type_var_next_partition (type_var_p, int);
562 static inline int type_var_num (type_var_p);
563 static inline void type_var_dump (FILE *, type_var_p);
564 static inline void type_var_remove_partition (type_var_p, int, int);
565 static inline void type_var_delete (type_var_p);
566 static inline int type_var_find (type_var_p, int);
567 static inline int type_var_compact (type_var_p);
568 static inline void type_var_decompact (type_var_p);
570 extern type_var_p type_var_init (var_map);
572 /* Value returned when there is no partitions associated with a list. */
573 #define TYPE_VAR_NONE TPA_NONE
576 /* Return the number of distinct type lists in TV. */
578 static inline int
579 type_var_num (type_var_p tv)
581 return tpa_num_trees (tv);
585 /* Return the type of list I in TV. */
587 static inline tree
588 type_var (type_var_p tv, int i)
590 return tpa_tree (tv, i);
594 /* Return the first partition belonging to type list I in TV. */
596 static inline int
597 type_var_first_partition (type_var_p tv, int i)
599 return tpa_first_partition (tv, i);
603 /* Return the next partition after partition I in a type list within TV. */
605 static inline int
606 type_var_next_partition (type_var_p tv, int i)
608 return tpa_next_partition (tv, i);
612 /* Send debug info for type_var object TV to file F. */
614 static inline void
615 type_var_dump (FILE *f, type_var_p tv)
617 fprintf (f, "\nType Var dump\n");
618 tpa_dump (f, tv);
619 fprintf (f, "\n");
623 /* Delete type_var object TV. */
625 static inline void
626 type_var_delete (type_var_p tv)
628 tpa_delete (tv);
632 /* Remove partition PARTITION_INDEX from type list TYPE_INDEX in TV. */
634 static inline void
635 type_var_remove_partition (type_var_p tv, int type_index, int partition_index)
637 tpa_remove_partition (tv, type_index, partition_index);
641 /* Return the type index in TV for the list partition I is in. */
643 static inline int
644 type_var_find (type_var_p tv, int i)
646 return tpa_find_tree (tv, i);
650 /* Hide single element lists in TV. */
652 static inline int
653 type_var_compact (type_var_p tv)
655 return tpa_compact (tv);
659 /* Expose single element lists in TV. */
661 static inline void
662 type_var_decompact (type_var_p tv)
664 tpa_decompact (tv);
667 /* This set of routines implements a coalesce_list. This is an object which
668 is used to track pairs of partitions which are desirable to coalesce
669 together at some point. Costs are associated with each pair, and when
670 all desired information has been collected, the object can be used to
671 order the pairs for processing. */
673 /* This structure defines a pair for coalescing. */
675 typedef struct partition_pair_d
677 int first_partition;
678 int second_partition;
679 int cost;
680 struct partition_pair_d *next;
681 } *partition_pair_p;
683 /* This structure maintains the list of coalesce pairs.
684 When add_mode is true, list is a triangular shaped list of coalesce pairs.
685 The smaller partition number is used to index the list, and the larger is
686 index is located in a partition_pair_p object. These lists are sorted from
687 smallest to largest by 'second_partition'. New coalesce pairs are allowed
688 to be added in this mode.
689 When add_mode is false, the lists have all been merged into list[0]. The
690 rest of the lists are not used. list[0] is ordered from most desirable
691 coalesce to least desirable. pop_best_coalesce() retrieves the pairs
692 one at a time. */
694 typedef struct coalesce_list_d
696 var_map map;
697 partition_pair_p *list;
698 bool add_mode;
699 } *coalesce_list_p;
701 extern coalesce_list_p create_coalesce_list (var_map);
702 extern void add_coalesce (coalesce_list_p, int, int, int);
703 extern int coalesce_cost (int, bool, bool);
704 extern void sort_coalesce_list (coalesce_list_p);
705 extern void dump_coalesce_list (FILE *, coalesce_list_p);
706 extern void delete_coalesce_list (coalesce_list_p);
708 #define NO_BEST_COALESCE -1
710 extern conflict_graph build_tree_conflict_graph (tree_live_info_p, tpa_p,
711 coalesce_list_p);
712 extern void coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
713 coalesce_list_p cl, FILE *);
716 #endif /* _TREE_SSA_LIVE_H */