No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-ssa-propagate.c
blob71ee02fbc265fe5b9cbf9b1dfc40ec500b666187
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static GTY(()) varray_type cfg_blocks = NULL;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy the
193 full space of the original array. */
194 cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
195 cfg_blocks_head = 0;
196 VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
198 else
199 cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
202 VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
203 SET_BIT (bb_in_list, bb->index);
207 /* Remove a block from the worklist. */
209 static basic_block
210 cfg_blocks_get (void)
212 basic_block bb;
214 bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
216 gcc_assert (!cfg_blocks_empty_p ());
217 gcc_assert (bb);
219 cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
220 --cfg_blocks_num;
221 RESET_BIT (bb_in_list, bb->index);
223 return bb;
227 /* We have just defined a new value for VAR. If IS_VARYING is true,
228 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
229 them to INTERESTING_SSA_EDGES. */
231 static void
232 add_ssa_edge (tree var, bool is_varying)
234 imm_use_iterator iter;
235 use_operand_p use_p;
237 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
239 tree use_stmt = USE_STMT (use_p);
241 if (!DONT_SIMULATE_AGAIN (use_stmt)
242 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
244 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
245 if (is_varying)
246 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
247 else
248 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
254 /* Add edge E to the control flow worklist. */
256 static void
257 add_control_edge (edge e)
259 basic_block bb = e->dest;
260 if (bb == EXIT_BLOCK_PTR)
261 return;
263 /* If the edge had already been executed, skip it. */
264 if (e->flags & EDGE_EXECUTABLE)
265 return;
267 e->flags |= EDGE_EXECUTABLE;
269 /* If the block is already in the list, we're done. */
270 if (TEST_BIT (bb_in_list, bb->index))
271 return;
273 cfg_blocks_add (bb);
275 if (dump_file && (dump_flags & TDF_DETAILS))
276 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
277 e->src->index, e->dest->index);
281 /* Simulate the execution of STMT and update the work lists accordingly. */
283 static void
284 simulate_stmt (tree stmt)
286 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
287 edge taken_edge = NULL;
288 tree output_name = NULL_TREE;
290 /* Don't bother visiting statements that are already
291 considered varying by the propagator. */
292 if (DONT_SIMULATE_AGAIN (stmt))
293 return;
295 if (TREE_CODE (stmt) == PHI_NODE)
297 val = ssa_prop_visit_phi (stmt);
298 output_name = PHI_RESULT (stmt);
300 else
301 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
303 if (val == SSA_PROP_VARYING)
305 DONT_SIMULATE_AGAIN (stmt) = 1;
307 /* If the statement produced a new varying value, add the SSA
308 edges coming out of OUTPUT_NAME. */
309 if (output_name)
310 add_ssa_edge (output_name, true);
312 /* If STMT transfers control out of its basic block, add
313 all outgoing edges to the work list. */
314 if (stmt_ends_bb_p (stmt))
316 edge e;
317 edge_iterator ei;
318 basic_block bb = bb_for_stmt (stmt);
319 FOR_EACH_EDGE (e, ei, bb->succs)
320 add_control_edge (e);
323 else if (val == SSA_PROP_INTERESTING)
325 /* If the statement produced new value, add the SSA edges coming
326 out of OUTPUT_NAME. */
327 if (output_name)
328 add_ssa_edge (output_name, false);
330 /* If we know which edge is going to be taken out of this block,
331 add it to the CFG work list. */
332 if (taken_edge)
333 add_control_edge (taken_edge);
337 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
338 drain. This pops statements off the given WORKLIST and processes
339 them until there are no more statements on WORKLIST.
340 We take a pointer to WORKLIST because it may be reallocated when an
341 SSA edge is added to it in simulate_stmt. */
343 static void
344 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
346 /* Drain the entire worklist. */
347 while (VEC_length (tree, *worklist) > 0)
349 basic_block bb;
351 /* Pull the statement to simulate off the worklist. */
352 tree stmt = VEC_pop (tree, *worklist);
354 /* If this statement was already visited by simulate_block, then
355 we don't need to visit it again here. */
356 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
357 continue;
359 /* STMT is no longer in a worklist. */
360 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
362 if (dump_file && (dump_flags & TDF_DETAILS))
364 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
365 print_generic_stmt (dump_file, stmt, dump_flags);
368 bb = bb_for_stmt (stmt);
370 /* PHI nodes are always visited, regardless of whether or not
371 the destination block is executable. Otherwise, visit the
372 statement only if its block is marked executable. */
373 if (TREE_CODE (stmt) == PHI_NODE
374 || TEST_BIT (executable_blocks, bb->index))
375 simulate_stmt (stmt);
380 /* Simulate the execution of BLOCK. Evaluate the statement associated
381 with each variable reference inside the block. */
383 static void
384 simulate_block (basic_block block)
386 tree phi;
388 /* There is nothing to do for the exit block. */
389 if (block == EXIT_BLOCK_PTR)
390 return;
392 if (dump_file && (dump_flags & TDF_DETAILS))
393 fprintf (dump_file, "\nSimulating block %d\n", block->index);
395 /* Always simulate PHI nodes, even if we have simulated this block
396 before. */
397 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
398 simulate_stmt (phi);
400 /* If this is the first time we've simulated this block, then we
401 must simulate each of its statements. */
402 if (!TEST_BIT (executable_blocks, block->index))
404 block_stmt_iterator j;
405 unsigned int normal_edge_count;
406 edge e, normal_edge;
407 edge_iterator ei;
409 /* Note that we have simulated this block. */
410 SET_BIT (executable_blocks, block->index);
412 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
414 tree stmt = bsi_stmt (j);
416 /* If this statement is already in the worklist then
417 "cancel" it. The reevaluation implied by the worklist
418 entry will produce the same value we generate here and
419 thus reevaluating it again from the worklist is
420 pointless. */
421 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
422 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
424 simulate_stmt (stmt);
427 /* We can not predict when abnormal edges will be executed, so
428 once a block is considered executable, we consider any
429 outgoing abnormal edges as executable.
431 At the same time, if this block has only one successor that is
432 reached by non-abnormal edges, then add that successor to the
433 worklist. */
434 normal_edge_count = 0;
435 normal_edge = NULL;
436 FOR_EACH_EDGE (e, ei, block->succs)
438 if (e->flags & EDGE_ABNORMAL)
439 add_control_edge (e);
440 else
442 normal_edge_count++;
443 normal_edge = e;
447 if (normal_edge_count == 1)
448 add_control_edge (normal_edge);
453 /* Initialize local data structures and work lists. */
455 static void
456 ssa_prop_init (void)
458 edge e;
459 edge_iterator ei;
460 basic_block bb;
461 size_t i;
463 /* Worklists of SSA edges. */
464 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
465 varying_ssa_edges = VEC_alloc (tree, gc, 20);
467 executable_blocks = sbitmap_alloc (last_basic_block);
468 sbitmap_zero (executable_blocks);
470 bb_in_list = sbitmap_alloc (last_basic_block);
471 sbitmap_zero (bb_in_list);
473 if (dump_file && (dump_flags & TDF_DETAILS))
474 dump_immediate_uses (dump_file);
476 VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
478 /* Initialize the values for every SSA_NAME. */
479 for (i = 1; i < num_ssa_names; i++)
480 if (ssa_name (i))
481 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
483 /* Initially assume that every edge in the CFG is not executable.
484 (including the edges coming out of ENTRY_BLOCK_PTR). */
485 FOR_ALL_BB (bb)
487 block_stmt_iterator si;
489 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
490 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
492 FOR_EACH_EDGE (e, ei, bb->succs)
493 e->flags &= ~EDGE_EXECUTABLE;
496 /* Seed the algorithm by adding the successors of the entry block to the
497 edge worklist. */
498 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
499 add_control_edge (e);
503 /* Free allocated storage. */
505 static void
506 ssa_prop_fini (void)
508 VEC_free (tree, gc, interesting_ssa_edges);
509 VEC_free (tree, gc, varying_ssa_edges);
510 cfg_blocks = NULL;
511 sbitmap_free (bb_in_list);
512 sbitmap_free (executable_blocks);
516 /* Get the main expression from statement STMT. */
518 tree
519 get_rhs (tree stmt)
521 enum tree_code code = TREE_CODE (stmt);
523 switch (code)
525 case RETURN_EXPR:
526 stmt = TREE_OPERAND (stmt, 0);
527 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
528 return stmt;
529 /* FALLTHRU */
531 case MODIFY_EXPR:
532 stmt = TREE_OPERAND (stmt, 1);
533 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
534 return TREE_OPERAND (stmt, 0);
535 else
536 return stmt;
538 case COND_EXPR:
539 return COND_EXPR_COND (stmt);
540 case SWITCH_EXPR:
541 return SWITCH_COND (stmt);
542 case GOTO_EXPR:
543 return GOTO_DESTINATION (stmt);
544 case LABEL_EXPR:
545 return LABEL_EXPR_LABEL (stmt);
547 default:
548 return stmt;
553 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
554 GIMPLE expression no changes are done and the function returns
555 false. */
557 bool
558 set_rhs (tree *stmt_p, tree expr)
560 tree stmt = *stmt_p, op;
561 enum tree_code code = TREE_CODE (expr);
562 stmt_ann_t ann;
563 tree var;
564 ssa_op_iter iter;
566 /* Verify the constant folded result is valid gimple. */
567 if (TREE_CODE_CLASS (code) == tcc_binary)
569 if (!is_gimple_val (TREE_OPERAND (expr, 0))
570 || !is_gimple_val (TREE_OPERAND (expr, 1)))
571 return false;
573 else if (TREE_CODE_CLASS (code) == tcc_unary)
575 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
576 return false;
578 else if (code == ADDR_EXPR)
580 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
581 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
582 return false;
584 else if (code == COMPOUND_EXPR)
585 return false;
587 switch (TREE_CODE (stmt))
589 case RETURN_EXPR:
590 op = TREE_OPERAND (stmt, 0);
591 if (TREE_CODE (op) != MODIFY_EXPR)
593 TREE_OPERAND (stmt, 0) = expr;
594 break;
596 stmt = op;
597 /* FALLTHRU */
599 case MODIFY_EXPR:
600 op = TREE_OPERAND (stmt, 1);
601 if (TREE_CODE (op) == WITH_SIZE_EXPR)
602 stmt = op;
603 TREE_OPERAND (stmt, 1) = expr;
604 break;
606 case COND_EXPR:
607 if (!is_gimple_condexpr (expr))
608 return false;
609 COND_EXPR_COND (stmt) = expr;
610 break;
611 case SWITCH_EXPR:
612 SWITCH_COND (stmt) = expr;
613 break;
614 case GOTO_EXPR:
615 GOTO_DESTINATION (stmt) = expr;
616 break;
617 case LABEL_EXPR:
618 LABEL_EXPR_LABEL (stmt) = expr;
619 break;
621 default:
622 /* Replace the whole statement with EXPR. If EXPR has no side
623 effects, then replace *STMT_P with an empty statement. */
624 ann = stmt_ann (stmt);
625 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
626 (*stmt_p)->common.ann = (tree_ann_t) ann;
628 if (in_ssa_p
629 && TREE_SIDE_EFFECTS (expr))
631 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
632 replacement. */
633 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
635 if (TREE_CODE (var) == SSA_NAME)
636 SSA_NAME_DEF_STMT (var) = *stmt_p;
639 break;
642 return true;
646 /* Entry point to the propagation engine.
648 VISIT_STMT is called for every statement visited.
649 VISIT_PHI is called for every PHI node visited. */
651 void
652 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
653 ssa_prop_visit_phi_fn visit_phi)
655 ssa_prop_visit_stmt = visit_stmt;
656 ssa_prop_visit_phi = visit_phi;
658 ssa_prop_init ();
660 /* Iterate until the worklists are empty. */
661 while (!cfg_blocks_empty_p ()
662 || VEC_length (tree, interesting_ssa_edges) > 0
663 || VEC_length (tree, varying_ssa_edges) > 0)
665 if (!cfg_blocks_empty_p ())
667 /* Pull the next block to simulate off the worklist. */
668 basic_block dest_block = cfg_blocks_get ();
669 simulate_block (dest_block);
672 /* In order to move things to varying as quickly as
673 possible,process the VARYING_SSA_EDGES worklist first. */
674 process_ssa_edge_worklist (&varying_ssa_edges);
676 /* Now process the INTERESTING_SSA_EDGES worklist. */
677 process_ssa_edge_worklist (&interesting_ssa_edges);
680 ssa_prop_fini ();
684 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
686 tree
687 first_vdef (tree stmt)
689 ssa_op_iter iter;
690 tree op;
692 /* Simply return the first operand we arrive at. */
693 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
694 return (op);
696 gcc_unreachable ();
700 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
701 is a non-volatile pointer dereference, a structure reference or a
702 reference to a single _DECL. Ignore volatile memory references
703 because they are not interesting for the optimizers. */
705 bool
706 stmt_makes_single_load (tree stmt)
708 tree rhs;
710 if (TREE_CODE (stmt) != MODIFY_EXPR)
711 return false;
713 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
714 return false;
716 rhs = TREE_OPERAND (stmt, 1);
717 STRIP_NOPS (rhs);
719 return (!TREE_THIS_VOLATILE (rhs)
720 && (DECL_P (rhs)
721 || REFERENCE_CLASS_P (rhs)));
725 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
726 is a non-volatile pointer dereference, a structure reference or a
727 reference to a single _DECL. Ignore volatile memory references
728 because they are not interesting for the optimizers. */
730 bool
731 stmt_makes_single_store (tree stmt)
733 tree lhs;
735 if (TREE_CODE (stmt) != MODIFY_EXPR)
736 return false;
738 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
739 return false;
741 lhs = TREE_OPERAND (stmt, 0);
742 STRIP_NOPS (lhs);
744 return (!TREE_THIS_VOLATILE (lhs)
745 && (DECL_P (lhs)
746 || REFERENCE_CLASS_P (lhs)));
750 /* If STMT makes a single memory load and all the virtual use operands
751 have the same value in array VALUES, return it. Otherwise, return
752 NULL. */
754 prop_value_t *
755 get_value_loaded_by (tree stmt, prop_value_t *values)
757 ssa_op_iter i;
758 tree vuse;
759 prop_value_t *prev_val = NULL;
760 prop_value_t *val = NULL;
762 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
764 val = &values[SSA_NAME_VERSION (vuse)];
765 if (prev_val && prev_val->value != val->value)
766 return NULL;
767 prev_val = val;
770 return val;
774 /* Propagation statistics. */
775 struct prop_stats_d
777 long num_const_prop;
778 long num_copy_prop;
779 long num_pred_folded;
782 static struct prop_stats_d prop_stats;
784 /* Replace USE references in statement STMT with the values stored in
785 PROP_VALUE. Return true if at least one reference was replaced. If
786 REPLACED_ADDRESSES_P is given, it will be set to true if an address
787 constant was replaced. */
789 bool
790 replace_uses_in (tree stmt, bool *replaced_addresses_p,
791 prop_value_t *prop_value)
793 bool replaced = false;
794 use_operand_p use;
795 ssa_op_iter iter;
797 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
799 tree tuse = USE_FROM_PTR (use);
800 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
802 if (val == tuse || val == NULL_TREE)
803 continue;
805 if (TREE_CODE (stmt) == ASM_EXPR
806 && !may_propagate_copy_into_asm (tuse))
807 continue;
809 if (!may_propagate_copy (tuse, val))
810 continue;
812 if (TREE_CODE (val) != SSA_NAME)
813 prop_stats.num_const_prop++;
814 else
815 prop_stats.num_copy_prop++;
817 propagate_value (use, val);
819 replaced = true;
820 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
821 *replaced_addresses_p = true;
824 return replaced;
828 /* Replace the VUSE references in statement STMT with the values
829 stored in PROP_VALUE. Return true if a reference was replaced. If
830 REPLACED_ADDRESSES_P is given, it will be set to true if an address
831 constant was replaced.
833 Replacing VUSE operands is slightly more complex than replacing
834 regular USEs. We are only interested in two types of replacements
835 here:
837 1- If the value to be replaced is a constant or an SSA name for a
838 GIMPLE register, then we are making a copy/constant propagation
839 from a memory store. For instance,
841 # a_3 = V_MAY_DEF <a_2>
842 a.b = x_1;
844 # VUSE <a_3>
845 y_4 = a.b;
847 This replacement is only possible iff STMT is an assignment
848 whose RHS is identical to the LHS of the statement that created
849 the VUSE(s) that we are replacing. Otherwise, we may do the
850 wrong replacement:
852 # a_3 = V_MAY_DEF <a_2>
853 # b_5 = V_MAY_DEF <b_4>
854 *p = 10;
856 # VUSE <b_5>
857 x_8 = b;
859 Even though 'b_5' acquires the value '10' during propagation,
860 there is no way for the propagator to tell whether the
861 replacement is correct in every reached use, because values are
862 computed at definition sites. Therefore, when doing final
863 substitution of propagated values, we have to check each use
864 site. Since the RHS of STMT ('b') is different from the LHS of
865 the originating statement ('*p'), we cannot replace 'b' with
866 '10'.
868 Similarly, when merging values from PHI node arguments,
869 propagators need to take care not to merge the same values
870 stored in different locations:
872 if (...)
873 # a_3 = V_MAY_DEF <a_2>
874 a.b = 3;
875 else
876 # a_4 = V_MAY_DEF <a_2>
877 a.c = 3;
878 # a_5 = PHI <a_3, a_4>
880 It would be wrong to propagate '3' into 'a_5' because that
881 operation merges two stores to different memory locations.
884 2- If the value to be replaced is an SSA name for a virtual
885 register, then we simply replace each VUSE operand with its
886 value from PROP_VALUE. This is the same replacement done by
887 replace_uses_in. */
889 static bool
890 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
891 prop_value_t *prop_value)
893 bool replaced = false;
894 ssa_op_iter iter;
895 use_operand_p vuse;
897 if (stmt_makes_single_load (stmt))
899 /* If STMT is an assignment whose RHS is a single memory load,
900 see if we are trying to propagate a constant or a GIMPLE
901 register (case #1 above). */
902 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
903 tree rhs = TREE_OPERAND (stmt, 1);
905 if (val
906 && val->value
907 && (is_gimple_reg (val->value)
908 || is_gimple_min_invariant (val->value))
909 && simple_cst_equal (rhs, val->mem_ref) == 1)
912 /* If we are replacing a constant address, inform our
913 caller. */
914 if (TREE_CODE (val->value) != SSA_NAME
915 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
916 && replaced_addresses_p)
917 *replaced_addresses_p = true;
919 /* We can only perform the substitution if the load is done
920 from the same memory location as the original store.
921 Since we already know that there are no intervening
922 stores between DEF_STMT and STMT, we only need to check
923 that the RHS of STMT is the same as the memory reference
924 propagated together with the value. */
925 TREE_OPERAND (stmt, 1) = val->value;
927 if (TREE_CODE (val->value) != SSA_NAME)
928 prop_stats.num_const_prop++;
929 else
930 prop_stats.num_copy_prop++;
932 /* Since we have replaced the whole RHS of STMT, there
933 is no point in checking the other VUSEs, as they will
934 all have the same value. */
935 return true;
939 /* Otherwise, the values for every VUSE operand must be other
940 SSA_NAMEs that can be propagated into STMT. */
941 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
943 tree var = USE_FROM_PTR (vuse);
944 tree val = prop_value[SSA_NAME_VERSION (var)].value;
946 if (val == NULL_TREE || var == val)
947 continue;
949 /* Constants and copies propagated between real and virtual
950 operands are only possible in the cases handled above. They
951 should be ignored in any other context. */
952 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
953 continue;
955 propagate_value (vuse, val);
956 prop_stats.num_copy_prop++;
957 replaced = true;
960 return replaced;
964 /* Replace propagated values into all the arguments for PHI using the
965 values from PROP_VALUE. */
967 static void
968 replace_phi_args_in (tree phi, prop_value_t *prop_value)
970 int i;
971 bool replaced = false;
972 tree prev_phi = NULL;
974 if (dump_file && (dump_flags & TDF_DETAILS))
975 prev_phi = unshare_expr (phi);
977 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
979 tree arg = PHI_ARG_DEF (phi, i);
981 if (TREE_CODE (arg) == SSA_NAME)
983 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
985 if (val && val != arg && may_propagate_copy (arg, val))
987 if (TREE_CODE (val) != SSA_NAME)
988 prop_stats.num_const_prop++;
989 else
990 prop_stats.num_copy_prop++;
992 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
993 replaced = true;
995 /* If we propagated a copy and this argument flows
996 through an abnormal edge, update the replacement
997 accordingly. */
998 if (TREE_CODE (val) == SSA_NAME
999 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1000 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1005 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1007 fprintf (dump_file, "Folded PHI node: ");
1008 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1009 fprintf (dump_file, " into: ");
1010 print_generic_stmt (dump_file, phi, TDF_SLIM);
1011 fprintf (dump_file, "\n");
1016 /* If STMT has a predicate whose value can be computed using the value
1017 range information computed by VRP, compute its value and return true.
1018 Otherwise, return false. */
1020 static bool
1021 fold_predicate_in (tree stmt)
1023 tree *pred_p = NULL;
1024 bool modify_expr_p = false;
1025 tree val;
1027 if (TREE_CODE (stmt) == MODIFY_EXPR
1028 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1030 modify_expr_p = true;
1031 pred_p = &TREE_OPERAND (stmt, 1);
1033 else if (TREE_CODE (stmt) == COND_EXPR)
1034 pred_p = &COND_EXPR_COND (stmt);
1035 else
1036 return false;
1038 val = vrp_evaluate_conditional (*pred_p, true);
1039 if (val)
1041 if (modify_expr_p)
1042 val = fold_convert (TREE_TYPE (*pred_p), val);
1044 if (dump_file)
1046 fprintf (dump_file, "Folding predicate ");
1047 print_generic_expr (dump_file, *pred_p, 0);
1048 fprintf (dump_file, " to ");
1049 print_generic_expr (dump_file, val, 0);
1050 fprintf (dump_file, "\n");
1053 prop_stats.num_pred_folded++;
1054 *pred_p = val;
1055 return true;
1058 return false;
1062 /* Perform final substitution and folding of propagated values.
1064 PROP_VALUE[I] contains the single value that should be substituted
1065 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1066 substituted.
1068 If USE_RANGES_P is true, statements that contain predicate
1069 expressions are evaluated with a call to vrp_evaluate_conditional.
1070 This will only give meaningful results when called from tree-vrp.c
1071 (the information used by vrp_evaluate_conditional is built by the
1072 VRP pass). */
1074 void
1075 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1077 basic_block bb;
1079 if (prop_value == NULL && !use_ranges_p)
1080 return;
1082 if (dump_file && (dump_flags & TDF_DETAILS))
1083 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1085 memset (&prop_stats, 0, sizeof (prop_stats));
1087 /* Substitute values in every statement of every basic block. */
1088 FOR_EACH_BB (bb)
1090 block_stmt_iterator i;
1091 tree phi;
1093 /* Propagate known values into PHI nodes. */
1094 if (prop_value)
1095 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1096 replace_phi_args_in (phi, prop_value);
1098 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1100 bool replaced_address, did_replace;
1101 tree prev_stmt = NULL;
1102 tree stmt = bsi_stmt (i);
1104 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1105 range information for names and they are discarded
1106 afterwards. */
1107 if (TREE_CODE (stmt) == MODIFY_EXPR
1108 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1109 continue;
1111 /* Replace the statement with its folded version and mark it
1112 folded. */
1113 did_replace = false;
1114 replaced_address = false;
1115 if (dump_file && (dump_flags & TDF_DETAILS))
1116 prev_stmt = unshare_expr (stmt);
1118 /* If we have range information, see if we can fold
1119 predicate expressions. */
1120 if (use_ranges_p)
1122 did_replace = fold_predicate_in (stmt);
1124 /* Some statements may be simplified using ranges. For
1125 example, division may be replaced by shifts, modulo
1126 replaced with bitwise and, etc. */
1127 simplify_stmt_using_ranges (stmt);
1130 if (prop_value)
1132 /* Only replace real uses if we couldn't fold the
1133 statement using value range information (value range
1134 information is not collected on virtuals, so we only
1135 need to check this for real uses). */
1136 if (!did_replace)
1137 did_replace |= replace_uses_in (stmt, &replaced_address,
1138 prop_value);
1140 did_replace |= replace_vuses_in (stmt, &replaced_address,
1141 prop_value);
1144 /* If we made a replacement, fold and cleanup the statement. */
1145 if (did_replace)
1147 tree old_stmt = stmt;
1148 tree rhs;
1150 fold_stmt (bsi_stmt_ptr (i));
1151 stmt = bsi_stmt (i);
1153 /* If we folded a builtin function, we'll likely
1154 need to rename VDEFs. */
1155 mark_new_vars_to_rename (stmt);
1157 /* If we cleaned up EH information from the statement,
1158 remove EH edges. */
1159 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1160 tree_purge_dead_eh_edges (bb);
1162 rhs = get_rhs (stmt);
1163 if (TREE_CODE (rhs) == ADDR_EXPR)
1164 recompute_tree_invarant_for_addr_expr (rhs);
1166 if (dump_file && (dump_flags & TDF_DETAILS))
1168 fprintf (dump_file, "Folded statement: ");
1169 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1170 fprintf (dump_file, " into: ");
1171 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1172 fprintf (dump_file, "\n");
1178 if (dump_file && (dump_flags & TDF_STATS))
1180 fprintf (dump_file, "Constants propagated: %6ld\n",
1181 prop_stats.num_const_prop);
1182 fprintf (dump_file, "Copies propagated: %6ld\n",
1183 prop_stats.num_copy_prop);
1184 fprintf (dump_file, "Predicates folded: %6ld\n",
1185 prop_stats.num_pred_folded);
1189 #include "gt-tree-ssa-propagate.h"