1 This is ../.././bfd/doc/bfd.info, produced by makeinfo version 4.8 from
2 ../.././bfd/doc/bfd.texinfo.
5 * Bfd: (bfd). The Binary File Descriptor library.
8 This file documents the BFD library.
10 Copyright (C) 1991, 2000, 2001, 2003 Free Software Foundation, Inc.
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.1
14 or any later version published by the Free Software Foundation;
15 with no Invariant Sections, with no Front-Cover Texts, and with no
16 Back-Cover Texts. A copy of the license is included in the
17 section entitled "GNU Free Documentation License".
20 File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
22 This file documents the binary file descriptor library libbfd.
26 * Overview:: Overview of BFD
27 * BFD front end:: BFD front end
28 * BFD back ends:: BFD back ends
29 * GNU Free Documentation License:: GNU Free Documentation License
30 * BFD Index:: BFD Index
33 File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
38 BFD is a package which allows applications to use the same routines to
39 operate on object files whatever the object file format. A new object
40 file format can be supported simply by creating a new BFD back end and
41 adding it to the library.
43 BFD is split into two parts: the front end, and the back ends (one
44 for each object file format).
45 * The front end of BFD provides the interface to the user. It manages
46 memory and various canonical data structures. The front end also
47 decides which back end to use and when to call back end routines.
49 * The back ends provide BFD its view of the real world. Each back
50 end provides a set of calls which the BFD front end can use to
51 maintain its canonical form. The back ends also may keep around
52 information for their own use, for greater efficiency.
57 * How It Works:: How It Works
58 * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
61 File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
66 One spur behind BFD was the desire, on the part of the GNU 960 team at
67 Intel Oregon, for interoperability of applications on their COFF and
68 b.out file formats. Cygnus was providing GNU support for the team, and
69 was contracted to provide the required functionality.
71 The name came from a conversation David Wallace was having with
72 Richard Stallman about the library: RMS said that it would be quite
73 hard--David said "BFD". Stallman was right, but the name stuck.
75 At the same time, Ready Systems wanted much the same thing, but for
76 different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
79 BFD was first implemented by members of Cygnus Support; Steve
80 Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
81 Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
85 File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
90 To use the library, include `bfd.h' and link with `libbfd.a'.
92 BFD provides a common interface to the parts of an object file for a
95 When an application sucessfully opens a target file (object,
96 archive, or whatever), a pointer to an internal structure is returned.
97 This pointer points to a structure called `bfd', described in `bfd.h'.
98 Our convention is to call this pointer a BFD, and instances of it
99 within code `abfd'. All operations on the target object file are
100 applied as methods to the BFD. The mapping is defined within `bfd.h'
101 in a set of macros, all beginning with `bfd_' to reduce namespace
104 For example, this sequence does what you would probably expect:
105 return the number of sections in an object file attached to a BFD
110 unsigned int number_of_sections (abfd)
113 return bfd_count_sections (abfd);
116 The abstraction used within BFD is that an object file has:
120 * a number of sections containing raw data (*note Sections::),
122 * a set of relocations (*note Relocations::), and
124 * some symbol information (*note Symbols::).
125 Also, BFDs opened for archives have the additional attribute of an
126 index and contain subordinate BFDs. This approach is fine for a.out and
127 coff, but loses efficiency when applied to formats such as S-records and
131 File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
133 1.3 What BFD Version 2 Can Do
134 =============================
136 When an object file is opened, BFD subroutines automatically determine
137 the format of the input object file. They then build a descriptor in
138 memory with pointers to routines that will be used to access elements of
139 the object file's data structures.
141 As different information from the object files is required, BFD
142 reads from different sections of the file and processes them. For
143 example, a very common operation for the linker is processing symbol
144 tables. Each BFD back end provides a routine for converting between
145 the object file's representation of symbols and an internal canonical
146 format. When the linker asks for the symbol table of an object file, it
147 calls through a memory pointer to the routine from the relevant BFD
148 back end which reads and converts the table into a canonical form. The
149 linker then operates upon the canonical form. When the link is finished
150 and the linker writes the output file's symbol table, another BFD back
151 end routine is called to take the newly created symbol table and
152 convert it into the chosen output format.
156 * BFD information loss:: Information Loss
157 * Canonical format:: The BFD canonical object-file format
160 File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
162 1.3.1 Information Loss
163 ----------------------
165 _Information can be lost during output._ The output formats supported
166 by BFD do not provide identical facilities, and information which can
167 be described in one form has nowhere to go in another format. One
168 example of this is alignment information in `b.out'. There is nowhere
169 in an `a.out' format file to store alignment information on the
170 contained data, so when a file is linked from `b.out' and an `a.out'
171 image is produced, alignment information will not propagate to the
172 output file. (The linker will still use the alignment information
173 internally, so the link is performed correctly).
175 Another example is COFF section names. COFF files may contain an
176 unlimited number of sections, each one with a textual section name. If
177 the target of the link is a format which does not have many sections
178 (e.g., `a.out') or has sections without names (e.g., the Oasys format),
179 the link cannot be done simply. You can circumvent this problem by
180 describing the desired input-to-output section mapping with the linker
183 _Information can be lost during canonicalization._ The BFD internal
184 canonical form of the external formats is not exhaustive; there are
185 structures in input formats for which there is no direct representation
186 internally. This means that the BFD back ends cannot maintain all
187 possible data richness through the transformation between external to
188 internal and back to external formats.
190 This limitation is only a problem when an application reads one
191 format and writes another. Each BFD back end is responsible for
192 maintaining as much data as possible, and the internal BFD canonical
193 form has structures which are opaque to the BFD core, and exported only
194 to the back ends. When a file is read in one format, the canonical form
195 is generated for BFD and the application. At the same time, the back
196 end saves away any information which may otherwise be lost. If the data
197 is then written back in the same format, the back end routine will be
198 able to use the canonical form provided by the BFD core as well as the
199 information it prepared earlier. Since there is a great deal of
200 commonality between back ends, there is no information lost when
201 linking or copying big endian COFF to little endian COFF, or `a.out' to
202 `b.out'. When a mixture of formats is linked, the information is only
203 lost from the files whose format differs from the destination.
206 File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
208 1.3.2 The BFD canonical object-file format
209 ------------------------------------------
211 The greatest potential for loss of information occurs when there is the
212 least overlap between the information provided by the source format,
213 that stored by the canonical format, and that needed by the destination
214 format. A brief description of the canonical form may help you
215 understand which kinds of data you can count on preserving across
219 Information stored on a per-file basis includes target machine
220 architecture, particular implementation format type, a demand
221 pageable bit, and a write protected bit. Information like Unix
222 magic numbers is not stored here--only the magic numbers' meaning,
223 so a `ZMAGIC' file would have both the demand pageable bit and the
224 write protected text bit set. The byte order of the target is
225 stored on a per-file basis, so that big- and little-endian object
226 files may be used with one another.
229 Each section in the input file contains the name of the section,
230 the section's original address in the object file, size and
231 alignment information, various flags, and pointers into other BFD
235 Each symbol contains a pointer to the information for the object
236 file which originally defined it, its name, its value, and various
237 flag bits. When a BFD back end reads in a symbol table, it
238 relocates all symbols to make them relative to the base of the
239 section where they were defined. Doing this ensures that each
240 symbol points to its containing section. Each symbol also has a
241 varying amount of hidden private data for the BFD back end. Since
242 the symbol points to the original file, the private data format
243 for that symbol is accessible. `ld' can operate on a collection
244 of symbols of wildly different formats without problems.
246 Normal global and simple local symbols are maintained on output,
247 so an output file (no matter its format) will retain symbols
248 pointing to functions and to global, static, and common variables.
249 Some symbol information is not worth retaining; in `a.out', type
250 information is stored in the symbol table as long symbol names.
251 This information would be useless to most COFF debuggers; the
252 linker has command line switches to allow users to throw it away.
254 There is one word of type information within the symbol, so if the
255 format supports symbol type information within symbols (for
256 example, COFF, IEEE, Oasys) and the type is simple enough to fit
257 within one word (nearly everything but aggregates), the
258 information will be preserved.
261 Each canonical BFD relocation record contains a pointer to the
262 symbol to relocate to, the offset of the data to relocate, the
263 section the data is in, and a pointer to a relocation type
264 descriptor. Relocation is performed by passing messages through
265 the relocation type descriptor and the symbol pointer. Therefore,
266 relocations can be performed on output data using a relocation
267 method that is only available in one of the input formats. For
268 instance, Oasys provides a byte relocation format. A relocation
269 record requesting this relocation type would point indirectly to a
270 routine to perform this, so the relocation may be performed on a
271 byte being written to a 68k COFF file, even though 68k COFF has no
272 such relocation type.
275 Object formats can contain, for debugging purposes, some form of
276 mapping between symbols, source line numbers, and addresses in the
277 output file. These addresses have to be relocated along with the
278 symbol information. Each symbol with an associated list of line
279 number records points to the first record of the list. The head
280 of a line number list consists of a pointer to the symbol, which
281 allows finding out the address of the function whose line number
282 is being described. The rest of the list is made up of pairs:
283 offsets into the section and line numbers. Any format which can
284 simply derive this information can pass it successfully between
285 formats (COFF, IEEE and Oasys).
288 File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
296 A BFD has type `bfd'; objects of this type are the cornerstone of any
297 application using BFD. Using BFD consists of making references though
298 the BFD and to data in the BFD.
300 Here is the structure that defines the type `bfd'. It contains the
301 major data about the file and pointers to the rest of the data.
306 /* A unique identifier of the BFD */
309 /* The filename the application opened the BFD with. */
310 const char *filename;
312 /* A pointer to the target jump table. */
313 const struct bfd_target *xvec;
315 /* The IOSTREAM, and corresponding IO vector that provide access
316 to the file backing the BFD. */
318 const struct bfd_iovec *iovec;
320 /* Is the file descriptor being cached? That is, can it be closed as
321 needed, and re-opened when accessed later? */
322 bfd_boolean cacheable;
324 /* Marks whether there was a default target specified when the
325 BFD was opened. This is used to select which matching algorithm
326 to use to choose the back end. */
327 bfd_boolean target_defaulted;
329 /* The caching routines use these to maintain a
330 least-recently-used list of BFDs. */
331 struct bfd *lru_prev, *lru_next;
333 /* When a file is closed by the caching routines, BFD retains
334 state information on the file here... */
337 /* ... and here: (``once'' means at least once). */
338 bfd_boolean opened_once;
340 /* Set if we have a locally maintained mtime value, rather than
341 getting it from the file each time. */
342 bfd_boolean mtime_set;
344 /* File modified time, if mtime_set is TRUE. */
347 /* Reserved for an unimplemented file locking extension. */
350 /* The format which belongs to the BFD. (object, core, etc.) */
353 /* The direction with which the BFD was opened. */
363 /* Format_specific flags. */
366 /* Currently my_archive is tested before adding origin to
367 anything. I believe that this can become always an add of
368 origin, with origin set to 0 for non archive files. */
371 /* Remember when output has begun, to stop strange things
373 bfd_boolean output_has_begun;
375 /* A hash table for section names. */
376 struct bfd_hash_table section_htab;
378 /* Pointer to linked list of sections. */
379 struct bfd_section *sections;
381 /* The last section on the section list. */
382 struct bfd_section *section_last;
384 /* The number of sections. */
385 unsigned int section_count;
387 /* Stuff only useful for object files:
388 The start address. */
389 bfd_vma start_address;
391 /* Used for input and output. */
392 unsigned int symcount;
394 /* Symbol table for output BFD (with symcount entries). */
395 struct bfd_symbol **outsymbols;
397 /* Used for slurped dynamic symbol tables. */
398 unsigned int dynsymcount;
400 /* Pointer to structure which contains architecture information. */
401 const struct bfd_arch_info *arch_info;
403 /* Flag set if symbols from this BFD should not be exported. */
404 bfd_boolean no_export;
406 /* Stuff only useful for archives. */
408 struct bfd *my_archive; /* The containing archive BFD. */
409 struct bfd *next; /* The next BFD in the archive. */
410 struct bfd *archive_head; /* The first BFD in the archive. */
411 bfd_boolean has_armap;
413 /* A chain of BFD structures involved in a link. */
414 struct bfd *link_next;
416 /* A field used by _bfd_generic_link_add_archive_symbols. This will
417 be used only for archive elements. */
420 /* Used by the back end to hold private data. */
423 struct aout_data_struct *aout_data;
424 struct artdata *aout_ar_data;
425 struct _oasys_data *oasys_obj_data;
426 struct _oasys_ar_data *oasys_ar_data;
427 struct coff_tdata *coff_obj_data;
428 struct pe_tdata *pe_obj_data;
429 struct xcoff_tdata *xcoff_obj_data;
430 struct ecoff_tdata *ecoff_obj_data;
431 struct ieee_data_struct *ieee_data;
432 struct ieee_ar_data_struct *ieee_ar_data;
433 struct srec_data_struct *srec_data;
434 struct ihex_data_struct *ihex_data;
435 struct tekhex_data_struct *tekhex_data;
436 struct elf_obj_tdata *elf_obj_data;
437 struct nlm_obj_tdata *nlm_obj_data;
438 struct bout_data_struct *bout_data;
439 struct mmo_data_struct *mmo_data;
440 struct sun_core_struct *sun_core_data;
441 struct sco5_core_struct *sco5_core_data;
442 struct trad_core_struct *trad_core_data;
443 struct som_data_struct *som_data;
444 struct hpux_core_struct *hpux_core_data;
445 struct hppabsd_core_struct *hppabsd_core_data;
446 struct sgi_core_struct *sgi_core_data;
447 struct lynx_core_struct *lynx_core_data;
448 struct osf_core_struct *osf_core_data;
449 struct cisco_core_struct *cisco_core_data;
450 struct versados_data_struct *versados_data;
451 struct netbsd_core_struct *netbsd_core_data;
452 struct mach_o_data_struct *mach_o_data;
453 struct mach_o_fat_data_struct *mach_o_fat_data;
454 struct bfd_pef_data_struct *pef_data;
455 struct bfd_pef_xlib_data_struct *pef_xlib_data;
456 struct bfd_sym_data_struct *sym_data;
461 /* Used by the application to hold private data. */
464 /* Where all the allocated stuff under this BFD goes. This is a
465 struct objalloc *, but we use void * to avoid requiring the inclusion
473 Most BFD functions return nonzero on success (check their individual
474 documentation for precise semantics). On an error, they call
475 `bfd_set_error' to set an error condition that callers can check by
476 calling `bfd_get_error'. If that returns `bfd_error_system_call', then
479 The easiest way to report a BFD error to the user is to use
482 2.2.1 Type `bfd_error_type'
483 ---------------------------
485 The values returned by `bfd_get_error' are defined by the enumerated
486 type `bfd_error_type'.
489 typedef enum bfd_error
491 bfd_error_no_error = 0,
492 bfd_error_system_call,
493 bfd_error_invalid_target,
494 bfd_error_wrong_format,
495 bfd_error_wrong_object_format,
496 bfd_error_invalid_operation,
498 bfd_error_no_symbols,
500 bfd_error_no_more_archived_files,
501 bfd_error_malformed_archive,
502 bfd_error_file_not_recognized,
503 bfd_error_file_ambiguously_recognized,
504 bfd_error_no_contents,
505 bfd_error_nonrepresentable_section,
506 bfd_error_no_debug_section,
508 bfd_error_file_truncated,
509 bfd_error_file_too_big,
510 bfd_error_invalid_error_code
514 2.2.1.1 `bfd_get_error'
515 .......................
518 bfd_error_type bfd_get_error (void);
520 Return the current BFD error condition.
522 2.2.1.2 `bfd_set_error'
523 .......................
526 void bfd_set_error (bfd_error_type error_tag);
528 Set the BFD error condition to be ERROR_TAG.
534 const char *bfd_errmsg (bfd_error_type error_tag);
536 Return a string describing the error ERROR_TAG, or the system error if
537 ERROR_TAG is `bfd_error_system_call'.
543 void bfd_perror (const char *message);
545 Print to the standard error stream a string describing the last BFD
546 error that occurred, or the last system error if the last BFD error was
547 a system call failure. If MESSAGE is non-NULL and non-empty, the error
548 string printed is preceded by MESSAGE, a colon, and a space. It is
549 followed by a newline.
551 2.2.2 BFD error handler
552 -----------------------
554 Some BFD functions want to print messages describing the problem. They
555 call a BFD error handler function. This function may be overridden by
558 The BFD error handler acts like printf.
561 typedef void (*bfd_error_handler_type) (const char *, ...);
563 2.2.2.1 `bfd_set_error_handler'
564 ...............................
567 bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
569 Set the BFD error handler function. Returns the previous function.
571 2.2.2.2 `bfd_set_error_program_name'
572 ....................................
575 void bfd_set_error_program_name (const char *);
577 Set the program name to use when printing a BFD error. This is printed
578 before the error message followed by a colon and space. The string
579 must not be changed after it is passed to this function.
581 2.2.2.3 `bfd_get_error_handler'
582 ...............................
585 bfd_error_handler_type bfd_get_error_handler (void);
587 Return the BFD error handler function.
592 2.3.1 Miscellaneous functions
593 -----------------------------
595 2.3.1.1 `bfd_get_reloc_upper_bound'
596 ...................................
599 long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
601 Return the number of bytes required to store the relocation information
602 associated with section SECT attached to bfd ABFD. If an error occurs,
605 2.3.1.2 `bfd_canonicalize_reloc'
606 ................................
609 long bfd_canonicalize_reloc
610 (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
612 Call the back end associated with the open BFD ABFD and translate the
613 external form of the relocation information attached to SEC into the
614 internal canonical form. Place the table into memory at LOC, which has
615 been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
616 Returns the number of relocs, or -1 on error.
618 The SYMS table is also needed for horrible internal magic reasons.
620 2.3.1.3 `bfd_set_reloc'
621 .......................
625 (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
627 Set the relocation pointer and count within section SEC to the values
628 REL and COUNT. The argument ABFD is ignored.
630 2.3.1.4 `bfd_set_file_flags'
631 ............................
634 bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
636 Set the flag word in the BFD ABFD to the value FLAGS.
639 * `bfd_error_wrong_format' - The target bfd was not of object format.
641 * `bfd_error_invalid_operation' - The target bfd was open for
644 * `bfd_error_invalid_operation' - The flag word contained a bit
645 which was not applicable to the type of file. E.g., an attempt
646 was made to set the `D_PAGED' bit on a BFD format which does not
647 support demand paging.
649 2.3.1.5 `bfd_get_arch_size'
650 ...........................
653 int bfd_get_arch_size (bfd *abfd);
655 Returns the architecture address size, in bits, as determined by the
656 object file's format. For ELF, this information is included in the
660 Returns the arch size in bits if known, `-1' otherwise.
662 2.3.1.6 `bfd_get_sign_extend_vma'
663 .................................
666 int bfd_get_sign_extend_vma (bfd *abfd);
668 Indicates if the target architecture "naturally" sign extends an
669 address. Some architectures implicitly sign extend address values when
670 they are converted to types larger than the size of an address. For
671 instance, bfd_get_start_address() will return an address sign extended
672 to fill a bfd_vma when this is the case.
675 Returns `1' if the target architecture is known to sign extend
676 addresses, `0' if the target architecture is known to not sign extend
677 addresses, and `-1' otherwise.
679 2.3.1.7 `bfd_set_start_address'
680 ...............................
683 bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
685 Make VMA the entry point of output BFD ABFD.
688 Returns `TRUE' on success, `FALSE' otherwise.
690 2.3.1.8 `bfd_get_gp_size'
691 .........................
694 unsigned int bfd_get_gp_size (bfd *abfd);
696 Return the maximum size of objects to be optimized using the GP
697 register under MIPS ECOFF. This is typically set by the `-G' argument
698 to the compiler, assembler or linker.
700 2.3.1.9 `bfd_set_gp_size'
701 .........................
704 void bfd_set_gp_size (bfd *abfd, unsigned int i);
706 Set the maximum size of objects to be optimized using the GP register
707 under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
708 the compiler, assembler or linker.
710 2.3.1.10 `bfd_scan_vma'
711 .......................
714 bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
716 Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
717 integer, and return that integer. (Though without as many bells and
718 whistles as `strtoul'.) The expression is assumed to be unsigned
719 (i.e., positive). If given a BASE, it is used as the base for
720 conversion. A base of 0 causes the function to interpret the string in
721 hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
722 zero is found, otherwise in decimal.
724 If the value would overflow, the maximum `bfd_vma' value is returned.
726 2.3.1.11 `bfd_copy_private_header_data'
727 .......................................
730 bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
732 Copy private BFD header information from the BFD IBFD to the the BFD
733 OBFD. This copies information that may require sections to exist, but
734 does not require symbol tables. Return `true' on success, `false' on
735 error. Possible error returns are:
737 * `bfd_error_no_memory' - Not enough memory exists to create private
740 #define bfd_copy_private_header_data(ibfd, obfd) \
741 BFD_SEND (obfd, _bfd_copy_private_header_data, \
744 2.3.1.12 `bfd_copy_private_bfd_data'
745 ....................................
748 bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
750 Copy private BFD information from the BFD IBFD to the the BFD OBFD.
751 Return `TRUE' on success, `FALSE' on error. Possible error returns are:
753 * `bfd_error_no_memory' - Not enough memory exists to create private
756 #define bfd_copy_private_bfd_data(ibfd, obfd) \
757 BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
760 2.3.1.13 `bfd_merge_private_bfd_data'
761 .....................................
764 bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
766 Merge private BFD information from the BFD IBFD to the the output file
767 BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
768 Possible error returns are:
770 * `bfd_error_no_memory' - Not enough memory exists to create private
773 #define bfd_merge_private_bfd_data(ibfd, obfd) \
774 BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
777 2.3.1.14 `bfd_set_private_flags'
778 ................................
781 bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
783 Set private BFD flag information in the BFD ABFD. Return `TRUE' on
784 success, `FALSE' on error. Possible error returns are:
786 * `bfd_error_no_memory' - Not enough memory exists to create private
789 #define bfd_set_private_flags(abfd, flags) \
790 BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
792 2.3.1.15 `Other functions'
793 ..........................
796 The following functions exist but have not yet been documented.
797 #define bfd_sizeof_headers(abfd, reloc) \
798 BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, reloc))
800 #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
801 BFD_SEND (abfd, _bfd_find_nearest_line, \
802 (abfd, sec, syms, off, file, func, line))
804 #define bfd_find_line(abfd, syms, sym, file, line) \
805 BFD_SEND (abfd, _bfd_find_line, \
806 (abfd, syms, sym, file, line))
808 #define bfd_find_inliner_info(abfd, file, func, line) \
809 BFD_SEND (abfd, _bfd_find_inliner_info, \
810 (abfd, file, func, line))
812 #define bfd_debug_info_start(abfd) \
813 BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
815 #define bfd_debug_info_end(abfd) \
816 BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
818 #define bfd_debug_info_accumulate(abfd, section) \
819 BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
821 #define bfd_stat_arch_elt(abfd, stat) \
822 BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
824 #define bfd_update_armap_timestamp(abfd) \
825 BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
827 #define bfd_set_arch_mach(abfd, arch, mach)\
828 BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
830 #define bfd_relax_section(abfd, section, link_info, again) \
831 BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
833 #define bfd_gc_sections(abfd, link_info) \
834 BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
836 #define bfd_merge_sections(abfd, link_info) \
837 BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
839 #define bfd_is_group_section(abfd, sec) \
840 BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))
842 #define bfd_discard_group(abfd, sec) \
843 BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
845 #define bfd_link_hash_table_create(abfd) \
846 BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
848 #define bfd_link_hash_table_free(abfd, hash) \
849 BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
851 #define bfd_link_add_symbols(abfd, info) \
852 BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
854 #define bfd_link_just_syms(abfd, sec, info) \
855 BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
857 #define bfd_final_link(abfd, info) \
858 BFD_SEND (abfd, _bfd_final_link, (abfd, info))
860 #define bfd_free_cached_info(abfd) \
861 BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
863 #define bfd_get_dynamic_symtab_upper_bound(abfd) \
864 BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
866 #define bfd_print_private_bfd_data(abfd, file)\
867 BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
869 #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
870 BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
872 #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
873 BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
874 dyncount, dynsyms, ret))
876 #define bfd_get_dynamic_reloc_upper_bound(abfd) \
877 BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
879 #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
880 BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
882 extern bfd_byte *bfd_get_relocated_section_contents
883 (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
884 bfd_boolean, asymbol **);
886 2.3.1.16 `bfd_alt_mach_code'
887 ............................
890 bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
892 When more than one machine code number is available for the same
893 machine type, this function can be used to switch between the preferred
894 one (alternative == 0) and any others. Currently, only ELF supports
895 this feature, with up to two alternate machine codes.
902 const struct bfd_arch_info *arch_info;
903 struct bfd_section *sections;
904 struct bfd_section *section_last;
905 unsigned int section_count;
906 struct bfd_hash_table section_htab;
909 2.3.1.17 `bfd_preserve_save'
910 ............................
913 bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
915 When testing an object for compatibility with a particular target
916 back-end, the back-end object_p function needs to set up certain fields
917 in the bfd on successfully recognizing the object. This typically
918 happens in a piecemeal fashion, with failures possible at many points.
919 On failure, the bfd is supposed to be restored to its initial state,
920 which is virtually impossible. However, restoring a subset of the bfd
921 state works in practice. This function stores the subset and
922 reinitializes the bfd.
924 2.3.1.18 `bfd_preserve_restore'
925 ...............................
928 void bfd_preserve_restore (bfd *, struct bfd_preserve *);
930 This function restores bfd state saved by bfd_preserve_save. If MARKER
931 is non-NULL in struct bfd_preserve then that block and all subsequently
932 bfd_alloc'd memory is freed.
934 2.3.1.19 `bfd_preserve_finish'
935 ..............................
938 void bfd_preserve_finish (bfd *, struct bfd_preserve *);
940 This function should be called when the bfd state saved by
941 bfd_preserve_save is no longer needed. ie. when the back-end object_p
942 function returns with success.
944 2.3.1.20 `struct bfd_iovec'
945 ...........................
948 The `struct bfd_iovec' contains the internal file I/O class. Each
949 `BFD' has an instance of this class and all file I/O is routed through
950 it (it is assumed that the instance implements all methods listed
954 /* To avoid problems with macros, a "b" rather than "f"
955 prefix is prepended to each method name. */
956 /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
957 bytes starting at PTR. Return the number of bytes actually
958 transfered (a read past end-of-file returns less than NBYTES),
959 or -1 (setting `bfd_error') if an error occurs. */
960 file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
961 file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
963 /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'
964 if an error occurs. */
965 file_ptr (*btell) (struct bfd *abfd);
966 /* For the following, on successful completion a value of 0 is returned.
967 Otherwise, a value of -1 is returned (and `bfd_error' is set). */
968 int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
969 int (*bclose) (struct bfd *abfd);
970 int (*bflush) (struct bfd *abfd);
971 int (*bstat) (struct bfd *abfd, struct stat *sb);
974 2.3.1.21 `bfd_get_mtime'
975 ........................
978 long bfd_get_mtime (bfd *abfd);
980 Return the file modification time (as read from the file system, or
981 from the archive header for archive members).
983 2.3.1.22 `bfd_get_size'
984 .......................
987 long bfd_get_size (bfd *abfd);
989 Return the file size (as read from file system) for the file associated
992 The initial motivation for, and use of, this routine is not so we
993 can get the exact size of the object the BFD applies to, since that
994 might not be generally possible (archive members for example). It
995 would be ideal if someone could eventually modify it so that such
996 results were guaranteed.
998 Instead, we want to ask questions like "is this NNN byte sized
999 object I'm about to try read from file offset YYY reasonable?" As as
1000 example of where we might do this, some object formats use string
1001 tables for which the first `sizeof (long)' bytes of the table contain
1002 the size of the table itself, including the size bytes. If an
1003 application tries to read what it thinks is one of these string tables,
1004 without some way to validate the size, and for some reason the size is
1005 wrong (byte swapping error, wrong location for the string table, etc.),
1006 the only clue is likely to be a read error when it tries to read the
1007 table, or a "virtual memory exhausted" error when it tries to allocate
1008 15 bazillon bytes of space for the 15 bazillon byte table it is about
1009 to read. This function at least allows us to answer the question, "is
1010 the size reasonable?".
1024 * Opening and Closing::
1027 * Linker Functions::
1031 File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
1036 BFD keeps all of its internal structures in obstacks. There is one
1037 obstack per open BFD file, into which the current state is stored. When
1038 a BFD is closed, the obstack is deleted, and so everything which has
1039 been allocated by BFD for the closing file is thrown away.
1041 BFD does not free anything created by an application, but pointers
1042 into `bfd' structures become invalid on a `bfd_close'; for example,
1043 after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
1044 still around, since it has been allocated by the application, but the
1045 data that it pointed to are lost.
1047 The general rule is to not close a BFD until all operations dependent
1048 upon data from the BFD have been completed, or all the data from within
1049 the file has been copied. To help with the management of memory, there
1050 is a function (`bfd_alloc_size') which returns the number of bytes in
1051 obstacks associated with the supplied BFD. This could be used to select
1052 the greediest open BFD, close it to reclaim the memory, perform some
1053 operation and reopen the BFD again, to get a fresh copy of the data
1057 File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
1062 2.5.1 Initialization functions
1063 ------------------------------
1065 These are the functions that handle initializing a BFD.
1071 void bfd_init (void);
1073 This routine must be called before any other BFD function to initialize
1074 magical internal data structures.
1077 File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
1082 The raw data contained within a BFD is maintained through the section
1083 abstraction. A single BFD may have any number of sections. It keeps
1084 hold of them by pointing to the first; each one points to the next in
1087 Sections are supported in BFD in `section.c'.
1093 * typedef asection::
1094 * section prototypes::
1097 File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
1102 When a BFD is opened for reading, the section structures are created
1103 and attached to the BFD.
1105 Each section has a name which describes the section in the outside
1106 world--for example, `a.out' would contain at least three sections,
1107 called `.text', `.data' and `.bss'.
1109 Names need not be unique; for example a COFF file may have several
1110 sections named `.data'.
1112 Sometimes a BFD will contain more than the "natural" number of
1113 sections. A back end may attach other sections containing constructor
1114 data, or an application may add a section (using `bfd_make_section') to
1115 the sections attached to an already open BFD. For example, the linker
1116 creates an extra section `COMMON' for each input file's BFD to hold
1117 information about common storage.
1119 The raw data is not necessarily read in when the section descriptor
1120 is created. Some targets may leave the data in place until a
1121 `bfd_get_section_contents' call is made. Other back ends may read in
1122 all the data at once. For example, an S-record file has to be read
1123 once to determine the size of the data. An IEEE-695 file doesn't
1124 contain raw data in sections, but data and relocation expressions
1125 intermixed, so the data area has to be parsed to get out the data and
1129 File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
1131 2.6.2 Section output
1132 --------------------
1134 To write a new object style BFD, the various sections to be written
1135 have to be created. They are attached to the BFD in the same way as
1136 input sections; data is written to the sections using
1137 `bfd_set_section_contents'.
1139 Any program that creates or combines sections (e.g., the assembler
1140 and linker) must use the `asection' fields `output_section' and
1141 `output_offset' to indicate the file sections to which each section
1142 must be written. (If the section is being created from scratch,
1143 `output_section' should probably point to the section itself and
1144 `output_offset' should probably be zero.)
1146 The data to be written comes from input sections attached (via
1147 `output_section' pointers) to the output sections. The output section
1148 structure can be considered a filter for the input section: the output
1149 section determines the vma of the output data and the name, but the
1150 input section determines the offset into the output section of the data
1153 E.g., to create a section "O", starting at 0x100, 0x123 long,
1154 containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
1155 "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
1161 output_section -----------> section name "O"
1163 section name "B" | size 0x123
1164 output_offset 0x20 |
1166 output_section --------|
1171 The data within a section is stored in a "link_order". These are much
1172 like the fixups in `gas'. The link_order abstraction allows a section
1173 to grow and shrink within itself.
1175 A link_order knows how big it is, and which is the next link_order
1176 and where the raw data for it is; it also points to a list of
1177 relocations which apply to it.
1179 The link_order is used by the linker to perform relaxing on final
1180 code. The compiler creates code which is as big as necessary to make
1181 it work without relaxing, and the user can select whether to relax.
1182 Sometimes relaxing takes a lot of time. The linker runs around the
1183 relocations to see if any are attached to data which can be shrunk, if
1184 so it does it on a link_order by link_order basis.
1187 File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
1189 2.6.4 typedef asection
1190 ----------------------
1192 Here is the section structure:
1195 typedef struct bfd_section
1197 /* The name of the section; the name isn't a copy, the pointer is
1198 the same as that passed to bfd_make_section. */
1201 /* A unique sequence number. */
1204 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
1207 /* The next section in the list belonging to the BFD, or NULL. */
1208 struct bfd_section *next;
1210 /* The previous section in the list belonging to the BFD, or NULL. */
1211 struct bfd_section *prev;
1213 /* The field flags contains attributes of the section. Some
1214 flags are read in from the object file, and some are
1215 synthesized from other information. */
1218 #define SEC_NO_FLAGS 0x000
1220 /* Tells the OS to allocate space for this section when loading.
1221 This is clear for a section containing debug information only. */
1222 #define SEC_ALLOC 0x001
1224 /* Tells the OS to load the section from the file when loading.
1225 This is clear for a .bss section. */
1226 #define SEC_LOAD 0x002
1228 /* The section contains data still to be relocated, so there is
1229 some relocation information too. */
1230 #define SEC_RELOC 0x004
1232 /* A signal to the OS that the section contains read only data. */
1233 #define SEC_READONLY 0x008
1235 /* The section contains code only. */
1236 #define SEC_CODE 0x010
1238 /* The section contains data only. */
1239 #define SEC_DATA 0x020
1241 /* The section will reside in ROM. */
1242 #define SEC_ROM 0x040
1244 /* The section contains constructor information. This section
1245 type is used by the linker to create lists of constructors and
1246 destructors used by `g++'. When a back end sees a symbol
1247 which should be used in a constructor list, it creates a new
1248 section for the type of name (e.g., `__CTOR_LIST__'), attaches
1249 the symbol to it, and builds a relocation. To build the lists
1250 of constructors, all the linker has to do is catenate all the
1251 sections called `__CTOR_LIST__' and relocate the data
1252 contained within - exactly the operations it would peform on
1254 #define SEC_CONSTRUCTOR 0x080
1256 /* The section has contents - a data section could be
1257 `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
1258 `SEC_HAS_CONTENTS' */
1259 #define SEC_HAS_CONTENTS 0x100
1261 /* An instruction to the linker to not output the section
1262 even if it has information which would normally be written. */
1263 #define SEC_NEVER_LOAD 0x200
1265 /* The section contains thread local data. */
1266 #define SEC_THREAD_LOCAL 0x400
1268 /* The section has GOT references. This flag is only for the
1269 linker, and is currently only used by the elf32-hppa back end.
1270 It will be set if global offset table references were detected
1271 in this section, which indicate to the linker that the section
1272 contains PIC code, and must be handled specially when doing a
1274 #define SEC_HAS_GOT_REF 0x800
1276 /* The section contains common symbols (symbols may be defined
1277 multiple times, the value of a symbol is the amount of
1278 space it requires, and the largest symbol value is the one
1279 used). Most targets have exactly one of these (which we
1280 translate to bfd_com_section_ptr), but ECOFF has two. */
1281 #define SEC_IS_COMMON 0x1000
1283 /* The section contains only debugging information. For
1284 example, this is set for ELF .debug and .stab sections.
1285 strip tests this flag to see if a section can be
1287 #define SEC_DEBUGGING 0x2000
1289 /* The contents of this section are held in memory pointed to
1290 by the contents field. This is checked by bfd_get_section_contents,
1291 and the data is retrieved from memory if appropriate. */
1292 #define SEC_IN_MEMORY 0x4000
1294 /* The contents of this section are to be excluded by the
1295 linker for executable and shared objects unless those
1296 objects are to be further relocated. */
1297 #define SEC_EXCLUDE 0x8000
1299 /* The contents of this section are to be sorted based on the sum of
1300 the symbol and addend values specified by the associated relocation
1301 entries. Entries without associated relocation entries will be
1302 appended to the end of the section in an unspecified order. */
1303 #define SEC_SORT_ENTRIES 0x10000
1305 /* When linking, duplicate sections of the same name should be
1306 discarded, rather than being combined into a single section as
1307 is usually done. This is similar to how common symbols are
1308 handled. See SEC_LINK_DUPLICATES below. */
1309 #define SEC_LINK_ONCE 0x20000
1311 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
1312 should handle duplicate sections. */
1313 #define SEC_LINK_DUPLICATES 0x40000
1315 /* This value for SEC_LINK_DUPLICATES means that duplicate
1316 sections with the same name should simply be discarded. */
1317 #define SEC_LINK_DUPLICATES_DISCARD 0x0
1319 /* This value for SEC_LINK_DUPLICATES means that the linker
1320 should warn if there are any duplicate sections, although
1321 it should still only link one copy. */
1322 #define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
1324 /* This value for SEC_LINK_DUPLICATES means that the linker
1325 should warn if any duplicate sections are a different size. */
1326 #define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
1328 /* This value for SEC_LINK_DUPLICATES means that the linker
1329 should warn if any duplicate sections contain different
1331 #define SEC_LINK_DUPLICATES_SAME_CONTENTS \
1332 (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
1334 /* This section was created by the linker as part of dynamic
1335 relocation or other arcane processing. It is skipped when
1336 going through the first-pass output, trusting that someone
1337 else up the line will take care of it later. */
1338 #define SEC_LINKER_CREATED 0x200000
1340 /* This section should not be subject to garbage collection. */
1341 #define SEC_KEEP 0x400000
1343 /* This section contains "short" data, and should be placed
1345 #define SEC_SMALL_DATA 0x800000
1347 /* Attempt to merge identical entities in the section.
1348 Entity size is given in the entsize field. */
1349 #define SEC_MERGE 0x1000000
1351 /* If given with SEC_MERGE, entities to merge are zero terminated
1352 strings where entsize specifies character size instead of fixed
1354 #define SEC_STRINGS 0x2000000
1356 /* This section contains data about section groups. */
1357 #define SEC_GROUP 0x4000000
1359 /* The section is a COFF shared library section. This flag is
1360 only for the linker. If this type of section appears in
1361 the input file, the linker must copy it to the output file
1362 without changing the vma or size. FIXME: Although this
1363 was originally intended to be general, it really is COFF
1364 specific (and the flag was renamed to indicate this). It
1365 might be cleaner to have some more general mechanism to
1366 allow the back end to control what the linker does with
1368 #define SEC_COFF_SHARED_LIBRARY 0x10000000
1370 /* This section contains data which may be shared with other
1371 executables or shared objects. This is for COFF only. */
1372 #define SEC_COFF_SHARED 0x20000000
1374 /* When a section with this flag is being linked, then if the size of
1375 the input section is less than a page, it should not cross a page
1376 boundary. If the size of the input section is one page or more,
1377 it should be aligned on a page boundary. This is for TI
1379 #define SEC_TIC54X_BLOCK 0x40000000
1381 /* Conditionally link this section; do not link if there are no
1382 references found to any symbol in the section. This is for TI
1384 #define SEC_TIC54X_CLINK 0x80000000
1386 /* End of section flags. */
1388 /* Some internal packed boolean fields. */
1390 /* See the vma field. */
1391 unsigned int user_set_vma : 1;
1393 /* A mark flag used by some of the linker backends. */
1394 unsigned int linker_mark : 1;
1396 /* Another mark flag used by some of the linker backends. Set for
1397 output sections that have an input section. */
1398 unsigned int linker_has_input : 1;
1400 /* Mark flags used by some linker backends for garbage collection. */
1401 unsigned int gc_mark : 1;
1402 unsigned int gc_mark_from_eh : 1;
1404 /* The following flags are used by the ELF linker. */
1406 /* Mark sections which have been allocated to segments. */
1407 unsigned int segment_mark : 1;
1409 /* Type of sec_info information. */
1410 unsigned int sec_info_type:3;
1411 #define ELF_INFO_TYPE_NONE 0
1412 #define ELF_INFO_TYPE_STABS 1
1413 #define ELF_INFO_TYPE_MERGE 2
1414 #define ELF_INFO_TYPE_EH_FRAME 3
1415 #define ELF_INFO_TYPE_JUST_SYMS 4
1417 /* Nonzero if this section uses RELA relocations, rather than REL. */
1418 unsigned int use_rela_p:1;
1420 /* Bits used by various backends. The generic code doesn't touch
1423 /* Nonzero if this section has TLS related relocations. */
1424 unsigned int has_tls_reloc:1;
1426 /* Nonzero if this section has a gp reloc. */
1427 unsigned int has_gp_reloc:1;
1429 /* Nonzero if this section needs the relax finalize pass. */
1430 unsigned int need_finalize_relax:1;
1432 /* Whether relocations have been processed. */
1433 unsigned int reloc_done : 1;
1435 /* End of internal packed boolean fields. */
1437 /* The virtual memory address of the section - where it will be
1438 at run time. The symbols are relocated against this. The
1439 user_set_vma flag is maintained by bfd; if it's not set, the
1440 backend can assign addresses (for example, in `a.out', where
1441 the default address for `.data' is dependent on the specific
1442 target and various flags). */
1445 /* The load address of the section - where it would be in a
1446 rom image; really only used for writing section header
1450 /* The size of the section in octets, as it will be output.
1451 Contains a value even if the section has no contents (e.g., the
1455 /* For input sections, the original size on disk of the section, in
1456 octets. This field is used by the linker relaxation code. It is
1457 currently only set for sections where the linker relaxation scheme
1458 doesn't cache altered section and reloc contents (stabs, eh_frame,
1459 SEC_MERGE, some coff relaxing targets), and thus the original size
1460 needs to be kept to read the section multiple times.
1461 For output sections, rawsize holds the section size calculated on
1462 a previous linker relaxation pass. */
1463 bfd_size_type rawsize;
1465 /* If this section is going to be output, then this value is the
1466 offset in *bytes* into the output section of the first byte in the
1467 input section (byte ==> smallest addressable unit on the
1468 target). In most cases, if this was going to start at the
1469 100th octet (8-bit quantity) in the output section, this value
1470 would be 100. However, if the target byte size is 16 bits
1471 (bfd_octets_per_byte is "2"), this value would be 50. */
1472 bfd_vma output_offset;
1474 /* The output section through which to map on output. */
1475 struct bfd_section *output_section;
1477 /* The alignment requirement of the section, as an exponent of 2 -
1478 e.g., 3 aligns to 2^3 (or 8). */
1479 unsigned int alignment_power;
1481 /* If an input section, a pointer to a vector of relocation
1482 records for the data in this section. */
1483 struct reloc_cache_entry *relocation;
1485 /* If an output section, a pointer to a vector of pointers to
1486 relocation records for the data in this section. */
1487 struct reloc_cache_entry **orelocation;
1489 /* The number of relocation records in one of the above. */
1490 unsigned reloc_count;
1492 /* Information below is back end specific - and not always used
1495 /* File position of section data. */
1498 /* File position of relocation info. */
1499 file_ptr rel_filepos;
1501 /* File position of line data. */
1502 file_ptr line_filepos;
1504 /* Pointer to data for applications. */
1507 /* If the SEC_IN_MEMORY flag is set, this points to the actual
1509 unsigned char *contents;
1511 /* Attached line number information. */
1514 /* Number of line number records. */
1515 unsigned int lineno_count;
1517 /* Entity size for merging purposes. */
1518 unsigned int entsize;
1520 /* Points to the kept section if this section is a link-once section,
1521 and is discarded. */
1522 struct bfd_section *kept_section;
1524 /* When a section is being output, this value changes as more
1525 linenumbers are written out. */
1526 file_ptr moving_line_filepos;
1528 /* What the section number is in the target world. */
1533 /* If this is a constructor section then here is a list of the
1534 relocations created to relocate items within it. */
1535 struct relent_chain *constructor_chain;
1537 /* The BFD which owns the section. */
1540 /* A symbol which points at this section only. */
1541 struct bfd_symbol *symbol;
1542 struct bfd_symbol **symbol_ptr_ptr;
1544 /* Early in the link process, map_head and map_tail are used to build
1545 a list of input sections attached to an output section. Later,
1546 output sections use these fields for a list of bfd_link_order
1549 struct bfd_link_order *link_order;
1550 struct bfd_section *s;
1551 } map_head, map_tail;
1554 /* These sections are global, and are managed by BFD. The application
1555 and target back end are not permitted to change the values in
1556 these sections. New code should use the section_ptr macros rather
1557 than referring directly to the const sections. The const sections
1558 may eventually vanish. */
1559 #define BFD_ABS_SECTION_NAME "*ABS*"
1560 #define BFD_UND_SECTION_NAME "*UND*"
1561 #define BFD_COM_SECTION_NAME "*COM*"
1562 #define BFD_IND_SECTION_NAME "*IND*"
1564 /* The absolute section. */
1565 extern asection bfd_abs_section;
1566 #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
1567 #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
1568 /* Pointer to the undefined section. */
1569 extern asection bfd_und_section;
1570 #define bfd_und_section_ptr ((asection *) &bfd_und_section)
1571 #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
1572 /* Pointer to the common section. */
1573 extern asection bfd_com_section;
1574 #define bfd_com_section_ptr ((asection *) &bfd_com_section)
1575 /* Pointer to the indirect section. */
1576 extern asection bfd_ind_section;
1577 #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
1578 #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
1580 #define bfd_is_const_section(SEC) \
1581 ( ((SEC) == bfd_abs_section_ptr) \
1582 || ((SEC) == bfd_und_section_ptr) \
1583 || ((SEC) == bfd_com_section_ptr) \
1584 || ((SEC) == bfd_ind_section_ptr))
1586 /* Macros to handle insertion and deletion of a bfd's sections. These
1587 only handle the list pointers, ie. do not adjust section_count,
1588 target_index etc. */
1589 #define bfd_section_list_remove(ABFD, S) \
1593 asection *_next = _s->next; \
1594 asection *_prev = _s->prev; \
1596 _prev->next = _next; \
1598 (ABFD)->sections = _next; \
1600 _next->prev = _prev; \
1602 (ABFD)->section_last = _prev; \
1605 #define bfd_section_list_append(ABFD, S) \
1609 bfd *_abfd = ABFD; \
1611 if (_abfd->section_last) \
1613 _s->prev = _abfd->section_last; \
1614 _abfd->section_last->next = _s; \
1619 _abfd->sections = _s; \
1621 _abfd->section_last = _s; \
1624 #define bfd_section_list_prepend(ABFD, S) \
1628 bfd *_abfd = ABFD; \
1630 if (_abfd->sections) \
1632 _s->next = _abfd->sections; \
1633 _abfd->sections->prev = _s; \
1638 _abfd->section_last = _s; \
1640 _abfd->sections = _s; \
1643 #define bfd_section_list_insert_after(ABFD, A, S) \
1648 asection *_next = _a->next; \
1655 (ABFD)->section_last = _s; \
1658 #define bfd_section_list_insert_before(ABFD, B, S) \
1663 asection *_prev = _b->prev; \
1670 (ABFD)->sections = _s; \
1673 #define bfd_section_removed_from_list(ABFD, S) \
1674 ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
1676 #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
1677 /* name, id, index, next, prev, flags, user_set_vma, */ \
1678 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
1680 /* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, */ \
1683 /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \
1686 /* has_gp_reloc, need_finalize_relax, reloc_done, */ \
1689 /* vma, lma, size, rawsize */ \
1692 /* output_offset, output_section, alignment_power, */ \
1693 0, (struct bfd_section *) &SEC, 0, \
1695 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
1696 NULL, NULL, 0, 0, 0, \
1698 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
1699 0, NULL, NULL, NULL, 0, \
1701 /* entsize, kept_section, moving_line_filepos, */ \
1704 /* target_index, used_by_bfd, constructor_chain, owner, */ \
1705 0, NULL, NULL, NULL, \
1707 /* symbol, symbol_ptr_ptr, */ \
1708 (struct bfd_symbol *) SYM, &SEC.symbol, \
1710 /* map_head, map_tail */ \
1711 { NULL }, { NULL } \
1715 File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections
1717 2.6.5 Section prototypes
1718 ------------------------
1720 These are the functions exported by the section handling part of BFD.
1722 2.6.5.1 `bfd_section_list_clear'
1723 ................................
1726 void bfd_section_list_clear (bfd *);
1728 Clears the section list, and also resets the section count and hash
1731 2.6.5.2 `bfd_get_section_by_name'
1732 .................................
1735 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
1737 Run through ABFD and return the one of the `asection's whose name
1738 matches NAME, otherwise `NULL'. *Note Sections::, for more information.
1740 This should only be used in special cases; the normal way to process
1741 all sections of a given name is to use `bfd_map_over_sections' and
1742 `strcmp' on the name (or better yet, base it on the section flags or
1743 something else) for each section.
1745 2.6.5.3 `bfd_get_section_by_name_if'
1746 ....................................
1749 asection *bfd_get_section_by_name_if
1752 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1755 Call the provided function FUNC for each section attached to the BFD
1756 ABFD whose name matches NAME, passing OBJ as an argument. The function
1757 will be called as if by
1759 func (abfd, the_section, obj);
1761 It returns the first section for which FUNC returns true, otherwise
1764 2.6.5.4 `bfd_get_unique_section_name'
1765 .....................................
1768 char *bfd_get_unique_section_name
1769 (bfd *abfd, const char *templat, int *count);
1771 Invent a section name that is unique in ABFD by tacking a dot and a
1772 digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it
1773 specifies the first number tried as a suffix to generate a unique name.
1774 The value pointed to by COUNT will be incremented in this case.
1776 2.6.5.5 `bfd_make_section_old_way'
1777 ..................................
1780 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1782 Create a new empty section called NAME and attach it to the end of the
1783 chain of sections for the BFD ABFD. An attempt to create a section with
1784 a name which is already in use returns its pointer without changing the
1787 It has the funny name since this is the way it used to be before it
1790 Possible errors are:
1791 * `bfd_error_invalid_operation' - If output has already started for
1794 * `bfd_error_no_memory' - If memory allocation fails.
1796 2.6.5.6 `bfd_make_section_anyway_with_flags'
1797 ............................................
1800 asection *bfd_make_section_anyway_with_flags
1801 (bfd *abfd, const char *name, flagword flags);
1803 Create a new empty section called NAME and attach it to the end of the
1804 chain of sections for ABFD. Create a new section even if there is
1805 already a section with that name. Also set the attributes of the new
1806 section to the value FLAGS.
1808 Return `NULL' and set `bfd_error' on error; possible errors are:
1809 * `bfd_error_invalid_operation' - If output has already started for
1812 * `bfd_error_no_memory' - If memory allocation fails.
1814 2.6.5.7 `bfd_make_section_anyway'
1815 .................................
1818 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1820 Create a new empty section called NAME and attach it to the end of the
1821 chain of sections for ABFD. Create a new section even if there is
1822 already a section with that name.
1824 Return `NULL' and set `bfd_error' on error; possible errors are:
1825 * `bfd_error_invalid_operation' - If output has already started for
1828 * `bfd_error_no_memory' - If memory allocation fails.
1830 2.6.5.8 `bfd_make_section_with_flags'
1831 .....................................
1834 asection *bfd_make_section_with_flags
1835 (bfd *, const char *name, flagword flags);
1837 Like `bfd_make_section_anyway', but return `NULL' (without calling
1838 bfd_set_error ()) without changing the section chain if there is
1839 already a section named NAME. Also set the attributes of the new
1840 section to the value FLAGS. If there is an error, return `NULL' and set
1843 2.6.5.9 `bfd_make_section'
1844 ..........................
1847 asection *bfd_make_section (bfd *, const char *name);
1849 Like `bfd_make_section_anyway', but return `NULL' (without calling
1850 bfd_set_error ()) without changing the section chain if there is
1851 already a section named NAME. If there is an error, return `NULL' and
1854 2.6.5.10 `bfd_set_section_flags'
1855 ................................
1858 bfd_boolean bfd_set_section_flags
1859 (bfd *abfd, asection *sec, flagword flags);
1861 Set the attributes of the section SEC in the BFD ABFD to the value
1862 FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error
1865 * `bfd_error_invalid_operation' - The section cannot have one or
1866 more of the attributes requested. For example, a .bss section in
1867 `a.out' may not have the `SEC_HAS_CONTENTS' field set.
1869 2.6.5.11 `bfd_map_over_sections'
1870 ................................
1873 void bfd_map_over_sections
1875 void (*func) (bfd *abfd, asection *sect, void *obj),
1878 Call the provided function FUNC for each section attached to the BFD
1879 ABFD, passing OBJ as an argument. The function will be called as if by
1881 func (abfd, the_section, obj);
1883 This is the preferred method for iterating over sections; an
1884 alternative would be to use a loop:
1887 for (p = abfd->sections; p != NULL; p = p->next)
1890 2.6.5.12 `bfd_sections_find_if'
1891 ...............................
1894 asection *bfd_sections_find_if
1896 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1899 Call the provided function OPERATION for each section attached to the
1900 BFD ABFD, passing OBJ as an argument. The function will be called as if
1903 operation (abfd, the_section, obj);
1905 It returns the first section for which OPERATION returns true.
1907 2.6.5.13 `bfd_set_section_size'
1908 ...............................
1911 bfd_boolean bfd_set_section_size
1912 (bfd *abfd, asection *sec, bfd_size_type val);
1914 Set SEC to the size VAL. If the operation is ok, then `TRUE' is
1915 returned, else `FALSE'.
1917 Possible error returns:
1918 * `bfd_error_invalid_operation' - Writing has started to the BFD, so
1919 setting the size is invalid.
1921 2.6.5.14 `bfd_set_section_contents'
1922 ...................................
1925 bfd_boolean bfd_set_section_contents
1926 (bfd *abfd, asection *section, const void *data,
1927 file_ptr offset, bfd_size_type count);
1929 Sets the contents of the section SECTION in BFD ABFD to the data
1930 starting in memory at DATA. The data is written to the output section
1931 starting at offset OFFSET for COUNT octets.
1933 Normally `TRUE' is returned, else `FALSE'. Possible error returns
1935 * `bfd_error_no_contents' - The output section does not have the
1936 `SEC_HAS_CONTENTS' attribute, so nothing can be written to it.
1939 This routine is front end to the back end function
1940 `_bfd_set_section_contents'.
1942 2.6.5.15 `bfd_get_section_contents'
1943 ...................................
1946 bfd_boolean bfd_get_section_contents
1947 (bfd *abfd, asection *section, void *location, file_ptr offset,
1948 bfd_size_type count);
1950 Read data from SECTION in BFD ABFD into memory starting at LOCATION.
1951 The data is read at an offset of OFFSET from the start of the input
1952 section, and is read for COUNT bytes.
1954 If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set
1955 are requested or if the section does not have the `SEC_HAS_CONTENTS'
1956 flag set, then the LOCATION is filled with zeroes. If no errors occur,
1957 `TRUE' is returned, else `FALSE'.
1959 2.6.5.16 `bfd_malloc_and_get_section'
1960 .....................................
1963 bfd_boolean bfd_malloc_and_get_section
1964 (bfd *abfd, asection *section, bfd_byte **buf);
1966 Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by
1969 2.6.5.17 `bfd_copy_private_section_data'
1970 ........................................
1973 bfd_boolean bfd_copy_private_section_data
1974 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1976 Copy private section information from ISEC in the BFD IBFD to the
1977 section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on
1978 error. Possible error returns are:
1980 * `bfd_error_no_memory' - Not enough memory exists to create private
1983 #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1984 BFD_SEND (obfd, _bfd_copy_private_section_data, \
1985 (ibfd, isection, obfd, osection))
1987 2.6.5.18 `bfd_generic_is_group_section'
1988 .......................................
1991 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1993 Returns TRUE if SEC is a member of a group.
1995 2.6.5.19 `bfd_generic_discard_group'
1996 ....................................
1999 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
2001 Remove all members of GROUP from the output.
2004 File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end
2009 BFD tries to maintain as much symbol information as it can when it
2010 moves information from file to file. BFD passes information to
2011 applications though the `asymbol' structure. When the application
2012 requests the symbol table, BFD reads the table in the native form and
2013 translates parts of it into the internal format. To maintain more than
2014 the information passed to applications, some targets keep some
2015 information "behind the scenes" in a structure only the particular back
2016 end knows about. For example, the coff back end keeps the original
2017 symbol table structure as well as the canonical structure when a BFD is
2018 read in. On output, the coff back end can reconstruct the output symbol
2019 table so that no information is lost, even information unique to coff
2020 which BFD doesn't know or understand. If a coff symbol table were read,
2021 but were written through an a.out back end, all the coff specific
2022 information would be lost. The symbol table of a BFD is not necessarily
2023 read in until a canonicalize request is made. Then the BFD back end
2024 fills in a table provided by the application with pointers to the
2025 canonical information. To output symbols, the application provides BFD
2026 with a table of pointers to pointers to `asymbol's. This allows
2027 applications like the linker to output a symbol as it was read, since
2028 the "behind the scenes" information will be still available.
2036 * symbol handling functions::
2039 File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols
2041 2.7.1 Reading symbols
2042 ---------------------
2044 There are two stages to reading a symbol table from a BFD: allocating
2045 storage, and the actual reading process. This is an excerpt from an
2046 application which reads the symbol table:
2048 long storage_needed;
2049 asymbol **symbol_table;
2050 long number_of_symbols;
2053 storage_needed = bfd_get_symtab_upper_bound (abfd);
2055 if (storage_needed < 0)
2058 if (storage_needed == 0)
2061 symbol_table = xmalloc (storage_needed);
2064 bfd_canonicalize_symtab (abfd, symbol_table);
2066 if (number_of_symbols < 0)
2069 for (i = 0; i < number_of_symbols; i++)
2070 process_symbol (symbol_table[i]);
2072 All storage for the symbols themselves is in an objalloc connected
2073 to the BFD; it is freed when the BFD is closed.
2076 File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols
2078 2.7.2 Writing symbols
2079 ---------------------
2081 Writing of a symbol table is automatic when a BFD open for writing is
2082 closed. The application attaches a vector of pointers to pointers to
2083 symbols to the BFD being written, and fills in the symbol count. The
2084 close and cleanup code reads through the table provided and performs
2085 all the necessary operations. The BFD output code must always be
2086 provided with an "owned" symbol: one which has come from another BFD,
2087 or one which has been created using `bfd_make_empty_symbol'. Here is an
2088 example showing the creation of a symbol table with only one element:
2097 abfd = bfd_openw ("foo","a.out-sunos-big");
2098 bfd_set_format (abfd, bfd_object);
2099 new = bfd_make_empty_symbol (abfd);
2100 new->name = "dummy_symbol";
2101 new->section = bfd_make_section_old_way (abfd, ".text");
2102 new->flags = BSF_GLOBAL;
2103 new->value = 0x12345;
2108 bfd_set_symtab (abfd, ptrs, 1);
2115 00012345 A dummy_symbol
2117 Many formats cannot represent arbitrary symbol information; for
2118 instance, the `a.out' object format does not allow an arbitrary number
2119 of sections. A symbol pointing to a section which is not one of
2120 `.text', `.data' or `.bss' cannot be described.
2123 File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols
2128 Mini symbols provide read-only access to the symbol table. They use
2129 less memory space, but require more time to access. They can be useful
2130 for tools like nm or objdump, which may have to handle symbol tables of
2131 extremely large executables.
2133 The `bfd_read_minisymbols' function will read the symbols into
2134 memory in an internal form. It will return a `void *' pointer to a
2135 block of memory, a symbol count, and the size of each symbol. The
2136 pointer is allocated using `malloc', and should be freed by the caller
2137 when it is no longer needed.
2139 The function `bfd_minisymbol_to_symbol' will take a pointer to a
2140 minisymbol, and a pointer to a structure returned by
2141 `bfd_make_empty_symbol', and return a `asymbol' structure. The return
2142 value may or may not be the same as the value from
2143 `bfd_make_empty_symbol' which was passed in.
2146 File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols
2148 2.7.4 typedef asymbol
2149 ---------------------
2151 An `asymbol' has the form:
2154 typedef struct bfd_symbol
2156 /* A pointer to the BFD which owns the symbol. This information
2157 is necessary so that a back end can work out what additional
2158 information (invisible to the application writer) is carried
2161 This field is *almost* redundant, since you can use section->owner
2162 instead, except that some symbols point to the global sections
2163 bfd_{abs,com,und}_section. This could be fixed by making
2164 these globals be per-bfd (or per-target-flavor). FIXME. */
2165 struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
2167 /* The text of the symbol. The name is left alone, and not copied; the
2168 application may not alter it. */
2171 /* The value of the symbol. This really should be a union of a
2172 numeric value with a pointer, since some flags indicate that
2173 a pointer to another symbol is stored here. */
2176 /* Attributes of a symbol. */
2177 #define BSF_NO_FLAGS 0x00
2179 /* The symbol has local scope; `static' in `C'. The value
2180 is the offset into the section of the data. */
2181 #define BSF_LOCAL 0x01
2183 /* The symbol has global scope; initialized data in `C'. The
2184 value is the offset into the section of the data. */
2185 #define BSF_GLOBAL 0x02
2187 /* The symbol has global scope and is exported. The value is
2188 the offset into the section of the data. */
2189 #define BSF_EXPORT BSF_GLOBAL /* No real difference. */
2191 /* A normal C symbol would be one of:
2192 `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or
2195 /* The symbol is a debugging record. The value has an arbitrary
2196 meaning, unless BSF_DEBUGGING_RELOC is also set. */
2197 #define BSF_DEBUGGING 0x08
2199 /* The symbol denotes a function entry point. Used in ELF,
2200 perhaps others someday. */
2201 #define BSF_FUNCTION 0x10
2203 /* Used by the linker. */
2204 #define BSF_KEEP 0x20
2205 #define BSF_KEEP_G 0x40
2207 /* A weak global symbol, overridable without warnings by
2208 a regular global symbol of the same name. */
2209 #define BSF_WEAK 0x80
2211 /* This symbol was created to point to a section, e.g. ELF's
2212 STT_SECTION symbols. */
2213 #define BSF_SECTION_SYM 0x100
2215 /* The symbol used to be a common symbol, but now it is
2217 #define BSF_OLD_COMMON 0x200
2219 /* The default value for common data. */
2220 #define BFD_FORT_COMM_DEFAULT_VALUE 0
2222 /* In some files the type of a symbol sometimes alters its
2223 location in an output file - ie in coff a `ISFCN' symbol
2224 which is also `C_EXT' symbol appears where it was
2225 declared and not at the end of a section. This bit is set
2226 by the target BFD part to convey this information. */
2227 #define BSF_NOT_AT_END 0x400
2229 /* Signal that the symbol is the label of constructor section. */
2230 #define BSF_CONSTRUCTOR 0x800
2232 /* Signal that the symbol is a warning symbol. The name is a
2233 warning. The name of the next symbol is the one to warn about;
2234 if a reference is made to a symbol with the same name as the next
2235 symbol, a warning is issued by the linker. */
2236 #define BSF_WARNING 0x1000
2238 /* Signal that the symbol is indirect. This symbol is an indirect
2239 pointer to the symbol with the same name as the next symbol. */
2240 #define BSF_INDIRECT 0x2000
2242 /* BSF_FILE marks symbols that contain a file name. This is used
2243 for ELF STT_FILE symbols. */
2244 #define BSF_FILE 0x4000
2246 /* Symbol is from dynamic linking information. */
2247 #define BSF_DYNAMIC 0x8000
2249 /* The symbol denotes a data object. Used in ELF, and perhaps
2251 #define BSF_OBJECT 0x10000
2253 /* This symbol is a debugging symbol. The value is the offset
2254 into the section of the data. BSF_DEBUGGING should be set
2256 #define BSF_DEBUGGING_RELOC 0x20000
2258 /* This symbol is thread local. Used in ELF. */
2259 #define BSF_THREAD_LOCAL 0x40000
2263 /* A pointer to the section to which this symbol is
2264 relative. This will always be non NULL, there are special
2265 sections for undefined and absolute symbols. */
2266 struct bfd_section *section;
2268 /* Back end special data. */
2279 File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols
2281 2.7.5 Symbol handling functions
2282 -------------------------------
2284 2.7.5.1 `bfd_get_symtab_upper_bound'
2285 ....................................
2288 Return the number of bytes required to store a vector of pointers to
2289 `asymbols' for all the symbols in the BFD ABFD, including a terminal
2290 NULL pointer. If there are no symbols in the BFD, then return 0. If an
2291 error occurs, return -1.
2292 #define bfd_get_symtab_upper_bound(abfd) \
2293 BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
2295 2.7.5.2 `bfd_is_local_label'
2296 ............................
2299 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
2301 Return TRUE if the given symbol SYM in the BFD ABFD is a compiler
2302 generated local label, else return FALSE.
2304 2.7.5.3 `bfd_is_local_label_name'
2305 .................................
2308 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
2310 Return TRUE if a symbol with the name NAME in the BFD ABFD is a
2311 compiler generated local label, else return FALSE. This just checks
2312 whether the name has the form of a local label.
2313 #define bfd_is_local_label_name(abfd, name) \
2314 BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
2316 2.7.5.4 `bfd_is_target_special_symbol'
2317 ......................................
2320 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
2322 Return TRUE iff a symbol SYM in the BFD ABFD is something special to
2323 the particular target represented by the BFD. Such symbols should
2324 normally not be mentioned to the user.
2325 #define bfd_is_target_special_symbol(abfd, sym) \
2326 BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
2328 2.7.5.5 `bfd_canonicalize_symtab'
2329 .................................
2332 Read the symbols from the BFD ABFD, and fills in the vector LOCATION
2333 with pointers to the symbols and a trailing NULL. Return the actual
2334 number of symbol pointers, not including the NULL.
2335 #define bfd_canonicalize_symtab(abfd, location) \
2336 BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
2338 2.7.5.6 `bfd_set_symtab'
2339 ........................
2342 bfd_boolean bfd_set_symtab
2343 (bfd *abfd, asymbol **location, unsigned int count);
2345 Arrange that when the output BFD ABFD is closed, the table LOCATION of
2346 COUNT pointers to symbols will be written.
2348 2.7.5.7 `bfd_print_symbol_vandf'
2349 ................................
2352 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
2354 Print the value and flags of the SYMBOL supplied to the stream FILE.
2356 2.7.5.8 `bfd_make_empty_symbol'
2357 ...............................
2360 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2363 This routine is necessary because each back end has private
2364 information surrounding the `asymbol'. Building your own `asymbol' and
2365 pointing to it will not create the private information, and will cause
2367 #define bfd_make_empty_symbol(abfd) \
2368 BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
2370 2.7.5.9 `_bfd_generic_make_empty_symbol'
2371 ........................................
2374 asymbol *_bfd_generic_make_empty_symbol (bfd *);
2376 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2377 to it. Used by core file routines, binary back-end and anywhere else
2378 where no private info is needed.
2380 2.7.5.10 `bfd_make_debug_symbol'
2381 ................................
2384 Create a new `asymbol' structure for the BFD ABFD, to be used as a
2385 debugging symbol. Further details of its use have yet to be worked out.
2386 #define bfd_make_debug_symbol(abfd,ptr,size) \
2387 BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
2389 2.7.5.11 `bfd_decode_symclass'
2390 ..............................
2393 Return a character corresponding to the symbol class of SYMBOL, or '?'
2394 for an unknown class.
2397 int bfd_decode_symclass (asymbol *symbol);
2399 2.7.5.12 `bfd_is_undefined_symclass'
2400 ....................................
2403 Returns non-zero if the class symbol returned by bfd_decode_symclass
2404 represents an undefined symbol. Returns zero otherwise.
2407 bfd_boolean bfd_is_undefined_symclass (int symclass);
2409 2.7.5.13 `bfd_symbol_info'
2410 ..........................
2413 Fill in the basic info about symbol that nm needs. Additional info may
2414 be added by the back-ends after calling this function.
2417 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
2419 2.7.5.14 `bfd_copy_private_symbol_data'
2420 .......................................
2423 bfd_boolean bfd_copy_private_symbol_data
2424 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
2426 Copy private symbol information from ISYM in the BFD IBFD to the symbol
2427 OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.
2428 Possible error returns are:
2430 * `bfd_error_no_memory' - Not enough memory exists to create private
2433 #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
2434 BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
2435 (ibfd, isymbol, obfd, osymbol))
2438 File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end
2444 An archive (or library) is just another BFD. It has a symbol table,
2445 although there's not much a user program will do with it.
2447 The big difference between an archive BFD and an ordinary BFD is
2448 that the archive doesn't have sections. Instead it has a chain of BFDs
2449 that are considered its contents. These BFDs can be manipulated like
2450 any other. The BFDs contained in an archive opened for reading will
2451 all be opened for reading. You may put either input or output BFDs
2452 into an archive opened for output; they will be handled correctly when
2453 the archive is closed.
2455 Use `bfd_openr_next_archived_file' to step through the contents of
2456 an archive opened for input. You don't have to read the entire archive
2457 if you don't want to! Read it until you find what you want.
2459 Archive contents of output BFDs are chained through the `next'
2460 pointer in a BFD. The first one is findable through the `archive_head'
2461 slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A
2462 given BFD may be in only one open output archive at a time.
2464 As expected, the BFD archive code is more general than the archive
2465 code of any given environment. BFD archives may contain files of
2466 different formats (e.g., a.out and coff) and even different
2467 architectures. You may even place archives recursively into archives!
2469 This can cause unexpected confusion, since some archive formats are
2470 more expressive than others. For instance, Intel COFF archives can
2471 preserve long filenames; SunOS a.out archives cannot. If you move a
2472 file from the first to the second format and back again, the filename
2473 may be truncated. Likewise, different a.out environments have different
2474 conventions as to how they truncate filenames, whether they preserve
2475 directory names in filenames, etc. When interoperating with native
2476 tools, be sure your files are homogeneous.
2478 Beware: most of these formats do not react well to the presence of
2479 spaces in filenames. We do the best we can, but can't always handle
2480 this case due to restrictions in the format of archives. Many Unix
2481 utilities are braindead in regards to spaces and such in filenames
2482 anyway, so this shouldn't be much of a restriction.
2484 Archives are supported in BFD in `archive.c'.
2486 2.8.1 Archive functions
2487 -----------------------
2489 2.8.1.1 `bfd_get_next_mapent'
2490 .............................
2493 symindex bfd_get_next_mapent
2494 (bfd *abfd, symindex previous, carsym **sym);
2496 Step through archive ABFD's symbol table (if it has one). Successively
2497 update SYM with the next symbol's information, returning that symbol's
2498 (internal) index into the symbol table.
2500 Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first
2501 one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.
2503 A `carsym' is a canonical archive symbol. The only user-visible
2504 element is its name, a null-terminated string.
2506 2.8.1.2 `bfd_set_archive_head'
2507 ..............................
2510 bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
2512 Set the head of the chain of BFDs contained in the archive OUTPUT to
2515 2.8.1.3 `bfd_openr_next_archived_file'
2516 ......................................
2519 bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
2521 Provided a BFD, ARCHIVE, containing an archive and NULL, open an input
2522 BFD on the first contained element and returns that. Subsequent calls
2523 should pass the archive and the previous return value to return a
2524 created BFD to the next contained element. NULL is returned when there
2528 File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end
2533 A format is a BFD concept of high level file contents type. The formats
2534 supported by BFD are:
2537 The BFD may contain data, symbols, relocations and debug info.
2540 The BFD contains other BFDs and an optional index.
2543 The BFD contains the result of an executable core dump.
2545 2.9.1 File format functions
2546 ---------------------------
2548 2.9.1.1 `bfd_check_format'
2549 ..........................
2552 bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
2554 Verify if the file attached to the BFD ABFD is compatible with the
2555 format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').
2557 If the BFD has been set to a specific target before the call, only
2558 the named target and format combination is checked. If the target has
2559 not been set, or has been set to `default', then all the known target
2560 backends is interrogated to determine a match. If the default target
2561 matches, it is used. If not, exactly one target must recognize the
2562 file, or an error results.
2564 The function returns `TRUE' on success, otherwise `FALSE' with one
2565 of the following error codes:
2567 * `bfd_error_invalid_operation' - if `format' is not one of
2568 `bfd_object', `bfd_archive' or `bfd_core'.
2570 * `bfd_error_system_call' - if an error occured during a read - even
2571 some file mismatches can cause bfd_error_system_calls.
2573 * `file_not_recognised' - none of the backends recognised the file
2576 * `bfd_error_file_ambiguously_recognized' - more than one backend
2577 recognised the file format.
2579 2.9.1.2 `bfd_check_format_matches'
2580 ..................................
2583 bfd_boolean bfd_check_format_matches
2584 (bfd *abfd, bfd_format format, char ***matching);
2586 Like `bfd_check_format', except when it returns FALSE with `bfd_errno'
2587 set to `bfd_error_file_ambiguously_recognized'. In that case, if
2588 MATCHING is not NULL, it will be filled in with a NULL-terminated list
2589 of the names of the formats that matched, allocated with `malloc'.
2590 Then the user may choose a format and try again.
2592 When done with the list that MATCHING points to, the caller should
2595 2.9.1.3 `bfd_set_format'
2596 ........................
2599 bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
2601 This function sets the file format of the BFD ABFD to the format
2602 FORMAT. If the target set in the BFD does not support the format
2603 requested, the format is invalid, or the BFD is not open for writing,
2604 then an error occurs.
2606 2.9.1.4 `bfd_format_string'
2607 ...........................
2610 const char *bfd_format_string (bfd_format format);
2612 Return a pointer to a const string `invalid', `object', `archive',
2613 `core', or `unknown', depending upon the value of FORMAT.
2616 File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end
2621 BFD maintains relocations in much the same way it maintains symbols:
2622 they are left alone until required, then read in en-masse and
2623 translated into an internal form. A common routine
2624 `bfd_perform_relocation' acts upon the canonical form to do the fixup.
2626 Relocations are maintained on a per section basis, while symbols are
2627 maintained on a per BFD basis.
2629 All that a back end has to do to fit the BFD interface is to create
2630 a `struct reloc_cache_entry' for each relocation in a particular
2631 section, and fill in the right bits of the structures.
2639 File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations
2641 2.10.1 typedef arelent
2642 ----------------------
2644 This is the structure of a relocation entry:
2647 typedef enum bfd_reloc_status
2649 /* No errors detected. */
2652 /* The relocation was performed, but there was an overflow. */
2655 /* The address to relocate was not within the section supplied. */
2656 bfd_reloc_outofrange,
2658 /* Used by special functions. */
2661 /* Unsupported relocation size requested. */
2662 bfd_reloc_notsupported,
2667 /* The symbol to relocate against was undefined. */
2668 bfd_reloc_undefined,
2670 /* The relocation was performed, but may not be ok - presently
2671 generated only when linking i960 coff files with i960 b.out
2672 symbols. If this type is returned, the error_message argument
2673 to bfd_perform_relocation will be set. */
2676 bfd_reloc_status_type;
2679 typedef struct reloc_cache_entry
2681 /* A pointer into the canonical table of pointers. */
2682 struct bfd_symbol **sym_ptr_ptr;
2684 /* offset in section. */
2685 bfd_size_type address;
2687 /* addend for relocation value. */
2690 /* Pointer to how to perform the required relocation. */
2691 reloc_howto_type *howto;
2696 Here is a description of each of the fields within an `arelent':
2699 The symbol table pointer points to a pointer to the symbol
2700 associated with the relocation request. It is the pointer into the
2701 table returned by the back end's `canonicalize_symtab' action. *Note
2702 Symbols::. The symbol is referenced through a pointer to a pointer so
2703 that tools like the linker can fix up all the symbols of the same name
2704 by modifying only one pointer. The relocation routine looks in the
2705 symbol and uses the base of the section the symbol is attached to and
2706 the value of the symbol as the initial relocation offset. If the symbol
2707 pointer is zero, then the section provided is looked up.
2710 The `address' field gives the offset in bytes from the base of the
2711 section data which owns the relocation record to the first byte of
2712 relocatable information. The actual data relocated will be relative to
2713 this point; for example, a relocation type which modifies the bottom
2714 two bytes of a four byte word would not touch the first byte pointed to
2715 in a big endian world.
2718 The `addend' is a value provided by the back end to be added (!) to
2719 the relocation offset. Its interpretation is dependent upon the howto.
2720 For example, on the 68k the code:
2725 return foo[0x12345678];
2728 Could be compiled into:
2736 This could create a reloc pointing to `foo', but leave the offset in
2737 the data, something like:
2739 RELOCATION RECORDS FOR [.text]:
2743 00000000 4e56 fffc ; linkw fp,#-4
2744 00000004 1039 1234 5678 ; moveb @#12345678,d0
2745 0000000a 49c0 ; extbl d0
2746 0000000c 4e5e ; unlk fp
2749 Using coff and an 88k, some instructions don't have enough space in
2750 them to represent the full address range, and pointers have to be
2751 loaded in two parts. So you'd get something like:
2753 or.u r13,r0,hi16(_foo+0x12345678)
2754 ld.b r2,r13,lo16(_foo+0x12345678)
2757 This should create two relocs, both pointing to `_foo', and with
2758 0x12340000 in their addend field. The data would consist of:
2760 RELOCATION RECORDS FOR [.text]:
2762 00000002 HVRT16 _foo+0x12340000
2763 00000006 LVRT16 _foo+0x12340000
2765 00000000 5da05678 ; or.u r13,r0,0x5678
2766 00000004 1c4d5678 ; ld.b r2,r13,0x5678
2767 00000008 f400c001 ; jmp r1
2769 The relocation routine digs out the value from the data, adds it to
2770 the addend to get the original offset, and then adds the value of
2771 `_foo'. Note that all 32 bits have to be kept around somewhere, to cope
2772 with carry from bit 15 to bit 16.
2774 One further example is the sparc and the a.out format. The sparc has
2775 a similar problem to the 88k, in that some instructions don't have room
2776 for an entire offset, but on the sparc the parts are created in odd
2777 sized lumps. The designers of the a.out format chose to not use the
2778 data within the section for storing part of the offset; all the offset
2779 is kept within the reloc. Anything in the data should be ignored.
2782 sethi %hi(_foo+0x12345678),%g2
2783 ldsb [%g2+%lo(_foo+0x12345678)],%i0
2787 Both relocs contain a pointer to `foo', and the offsets contain junk.
2789 RELOCATION RECORDS FOR [.text]:
2791 00000004 HI22 _foo+0x12345678
2792 00000008 LO10 _foo+0x12345678
2794 00000000 9de3bf90 ; save %sp,-112,%sp
2795 00000004 05000000 ; sethi %hi(_foo+0),%g2
2796 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
2797 0000000c 81c7e008 ; ret
2798 00000010 81e80000 ; restore
2801 The `howto' field can be imagined as a relocation instruction. It is
2802 a pointer to a structure which contains information on what to do with
2803 all of the other information in the reloc record and data section. A
2804 back end would normally have a relocation instruction set and turn
2805 relocations into pointers to the correct structure on input - but it
2806 would be possible to create each howto field on demand.
2808 2.10.1.1 `enum complain_overflow'
2809 .................................
2811 Indicates what sort of overflow checking should be done when performing
2815 enum complain_overflow
2817 /* Do not complain on overflow. */
2818 complain_overflow_dont,
2820 /* Complain if the value overflows when considered as a signed
2821 number one bit larger than the field. ie. A bitfield of N bits
2822 is allowed to represent -2**n to 2**n-1. */
2823 complain_overflow_bitfield,
2825 /* Complain if the value overflows when considered as a signed
2827 complain_overflow_signed,
2829 /* Complain if the value overflows when considered as an
2831 complain_overflow_unsigned
2834 2.10.1.2 `reloc_howto_type'
2835 ...........................
2837 The `reloc_howto_type' is a structure which contains all the
2838 information that libbfd needs to know to tie up a back end's data.
2840 struct bfd_symbol; /* Forward declaration. */
2842 struct reloc_howto_struct
2844 /* The type field has mainly a documentary use - the back end can
2845 do what it wants with it, though normally the back end's
2846 external idea of what a reloc number is stored
2847 in this field. For example, a PC relative word relocation
2848 in a coff environment has the type 023 - because that's
2849 what the outside world calls a R_PCRWORD reloc. */
2852 /* The value the final relocation is shifted right by. This drops
2853 unwanted data from the relocation. */
2854 unsigned int rightshift;
2856 /* The size of the item to be relocated. This is *not* a
2857 power-of-two measure. To get the number of bytes operated
2858 on by a type of relocation, use bfd_get_reloc_size. */
2861 /* The number of bits in the item to be relocated. This is used
2862 when doing overflow checking. */
2863 unsigned int bitsize;
2865 /* Notes that the relocation is relative to the location in the
2866 data section of the addend. The relocation function will
2867 subtract from the relocation value the address of the location
2869 bfd_boolean pc_relative;
2871 /* The bit position of the reloc value in the destination.
2872 The relocated value is left shifted by this amount. */
2873 unsigned int bitpos;
2875 /* What type of overflow error should be checked for when
2877 enum complain_overflow complain_on_overflow;
2879 /* If this field is non null, then the supplied function is
2880 called rather than the normal function. This allows really
2881 strange relocation methods to be accommodated (e.g., i960 callj
2883 bfd_reloc_status_type (*special_function)
2884 (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
2887 /* The textual name of the relocation type. */
2890 /* Some formats record a relocation addend in the section contents
2891 rather than with the relocation. For ELF formats this is the
2892 distinction between USE_REL and USE_RELA (though the code checks
2893 for USE_REL == 1/0). The value of this field is TRUE if the
2894 addend is recorded with the section contents; when performing a
2895 partial link (ld -r) the section contents (the data) will be
2896 modified. The value of this field is FALSE if addends are
2897 recorded with the relocation (in arelent.addend); when performing
2898 a partial link the relocation will be modified.
2899 All relocations for all ELF USE_RELA targets should set this field
2900 to FALSE (values of TRUE should be looked on with suspicion).
2901 However, the converse is not true: not all relocations of all ELF
2902 USE_REL targets set this field to TRUE. Why this is so is peculiar
2903 to each particular target. For relocs that aren't used in partial
2904 links (e.g. GOT stuff) it doesn't matter what this is set to. */
2905 bfd_boolean partial_inplace;
2907 /* src_mask selects the part of the instruction (or data) to be used
2908 in the relocation sum. If the target relocations don't have an
2909 addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
2910 dst_mask to extract the addend from the section contents. If
2911 relocations do have an addend in the reloc, eg. ELF USE_RELA, this
2912 field should be zero. Non-zero values for ELF USE_RELA targets are
2913 bogus as in those cases the value in the dst_mask part of the
2914 section contents should be treated as garbage. */
2917 /* dst_mask selects which parts of the instruction (or data) are
2918 replaced with a relocated value. */
2921 /* When some formats create PC relative instructions, they leave
2922 the value of the pc of the place being relocated in the offset
2923 slot of the instruction, so that a PC relative relocation can
2924 be made just by adding in an ordinary offset (e.g., sun3 a.out).
2925 Some formats leave the displacement part of an instruction
2926 empty (e.g., m88k bcs); this flag signals the fact. */
2927 bfd_boolean pcrel_offset;
2930 2.10.1.3 `The HOWTO Macro'
2931 ..........................
2934 The HOWTO define is horrible and will go away.
2935 #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
2936 { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
2939 And will be replaced with the totally magic way. But for the moment, we
2940 are compatible, so do it this way.
2941 #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
2942 HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
2943 NAME, FALSE, 0, 0, IN)
2946 This is used to fill in an empty howto entry in an array.
2947 #define EMPTY_HOWTO(C) \
2948 HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
2949 NULL, FALSE, 0, 0, FALSE)
2952 Helper routine to turn a symbol into a relocation value.
2953 #define HOWTO_PREPARE(relocation, symbol) \
2955 if (symbol != NULL) \
2957 if (bfd_is_com_section (symbol->section)) \
2963 relocation = symbol->value; \
2968 2.10.1.4 `bfd_get_reloc_size'
2969 .............................
2972 unsigned int bfd_get_reloc_size (reloc_howto_type *);
2974 For a reloc_howto_type that operates on a fixed number of bytes, this
2975 returns the number of bytes operated on.
2977 2.10.1.5 `arelent_chain'
2978 ........................
2981 How relocs are tied together in an `asection':
2982 typedef struct relent_chain
2985 struct relent_chain *next;
2989 2.10.1.6 `bfd_check_overflow'
2990 .............................
2993 bfd_reloc_status_type bfd_check_overflow
2994 (enum complain_overflow how,
2995 unsigned int bitsize,
2996 unsigned int rightshift,
2997 unsigned int addrsize,
2998 bfd_vma relocation);
3000 Perform overflow checking on RELOCATION which has BITSIZE significant
3001 bits and will be shifted right by RIGHTSHIFT bits, on a machine with
3002 addresses containing ADDRSIZE significant bits. The result is either of
3003 `bfd_reloc_ok' or `bfd_reloc_overflow'.
3005 2.10.1.7 `bfd_perform_relocation'
3006 .................................
3009 bfd_reloc_status_type bfd_perform_relocation
3011 arelent *reloc_entry,
3013 asection *input_section,
3015 char **error_message);
3017 If OUTPUT_BFD is supplied to this function, the generated image will be
3018 relocatable; the relocations are copied to the output file after they
3019 have been changed to reflect the new state of the world. There are two
3020 ways of reflecting the results of partial linkage in an output file: by
3021 modifying the output data in place, and by modifying the relocation
3022 record. Some native formats (e.g., basic a.out and basic coff) have no
3023 way of specifying an addend in the relocation type, so the addend has
3024 to go in the output data. This is no big deal since in these formats
3025 the output data slot will always be big enough for the addend. Complex
3026 reloc types with addends were invented to solve just this problem. The
3027 ERROR_MESSAGE argument is set to an error message if this return
3028 `bfd_reloc_dangerous'.
3030 2.10.1.8 `bfd_install_relocation'
3031 .................................
3034 bfd_reloc_status_type bfd_install_relocation
3036 arelent *reloc_entry,
3037 void *data, bfd_vma data_start,
3038 asection *input_section,
3039 char **error_message);
3041 This looks remarkably like `bfd_perform_relocation', except it does not
3042 expect that the section contents have been filled in. I.e., it's
3043 suitable for use when creating, rather than applying a relocation.
3045 For now, this function should be considered reserved for the
3049 File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations
3051 2.10.2 The howto manager
3052 ------------------------
3054 When an application wants to create a relocation, but doesn't know what
3055 the target machine might call it, it can find out by using this bit of
3058 2.10.2.1 `bfd_reloc_code_type'
3059 ..............................
3062 The insides of a reloc code. The idea is that, eventually, there will
3063 be one enumerator for every type of relocation we ever do. Pass one of
3064 these values to `bfd_reloc_type_lookup', and it'll return a howto
3067 This does mean that the application must determine the correct
3068 enumerator value; you can't get a howto pointer from a random set of
3071 Here are the possible values for `enum bfd_reloc_code_real':
3080 Basic absolute relocations of N bits.
3082 -- : BFD_RELOC_64_PCREL
3083 -- : BFD_RELOC_32_PCREL
3084 -- : BFD_RELOC_24_PCREL
3085 -- : BFD_RELOC_16_PCREL
3086 -- : BFD_RELOC_12_PCREL
3087 -- : BFD_RELOC_8_PCREL
3088 PC-relative relocations. Sometimes these are relative to the
3089 address of the relocation itself; sometimes they are relative to
3090 the start of the section containing the relocation. It depends on
3091 the specific target.
3093 The 24-bit relocation is used in some Intel 960 configurations.
3095 -- : BFD_RELOC_32_SECREL
3096 Section relative relocations. Some targets need this for DWARF2.
3098 -- : BFD_RELOC_32_GOT_PCREL
3099 -- : BFD_RELOC_16_GOT_PCREL
3100 -- : BFD_RELOC_8_GOT_PCREL
3101 -- : BFD_RELOC_32_GOTOFF
3102 -- : BFD_RELOC_16_GOTOFF
3103 -- : BFD_RELOC_LO16_GOTOFF
3104 -- : BFD_RELOC_HI16_GOTOFF
3105 -- : BFD_RELOC_HI16_S_GOTOFF
3106 -- : BFD_RELOC_8_GOTOFF
3107 -- : BFD_RELOC_64_PLT_PCREL
3108 -- : BFD_RELOC_32_PLT_PCREL
3109 -- : BFD_RELOC_24_PLT_PCREL
3110 -- : BFD_RELOC_16_PLT_PCREL
3111 -- : BFD_RELOC_8_PLT_PCREL
3112 -- : BFD_RELOC_64_PLTOFF
3113 -- : BFD_RELOC_32_PLTOFF
3114 -- : BFD_RELOC_16_PLTOFF
3115 -- : BFD_RELOC_LO16_PLTOFF
3116 -- : BFD_RELOC_HI16_PLTOFF
3117 -- : BFD_RELOC_HI16_S_PLTOFF
3118 -- : BFD_RELOC_8_PLTOFF
3121 -- : BFD_RELOC_68K_GLOB_DAT
3122 -- : BFD_RELOC_68K_JMP_SLOT
3123 -- : BFD_RELOC_68K_RELATIVE
3124 Relocations used by 68K ELF.
3126 -- : BFD_RELOC_32_BASEREL
3127 -- : BFD_RELOC_16_BASEREL
3128 -- : BFD_RELOC_LO16_BASEREL
3129 -- : BFD_RELOC_HI16_BASEREL
3130 -- : BFD_RELOC_HI16_S_BASEREL
3131 -- : BFD_RELOC_8_BASEREL
3133 Linkage-table relative.
3135 -- : BFD_RELOC_8_FFnn
3136 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
3138 -- : BFD_RELOC_32_PCREL_S2
3139 -- : BFD_RELOC_16_PCREL_S2
3140 -- : BFD_RELOC_23_PCREL_S2
3141 These PC-relative relocations are stored as word displacements -
3142 i.e., byte displacements shifted right two bits. The 30-bit word
3143 displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the
3144 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
3145 signed 16-bit displacement is used on the MIPS, and the 23-bit
3146 displacement is used on the Alpha.
3150 High 22 bits and low 10 bits of 32-bit value, placed into lower
3151 bits of the target word. These are used on the SPARC.
3153 -- : BFD_RELOC_GPREL16
3154 -- : BFD_RELOC_GPREL32
3155 For systems that allocate a Global Pointer register, these are
3156 displacements off that register. These relocation types are
3157 handled specially, because the value the register will have is
3158 decided relatively late.
3160 -- : BFD_RELOC_I960_CALLJ
3161 Reloc types used for i960/b.out.
3164 -- : BFD_RELOC_SPARC_WDISP22
3165 -- : BFD_RELOC_SPARC22
3166 -- : BFD_RELOC_SPARC13
3167 -- : BFD_RELOC_SPARC_GOT10
3168 -- : BFD_RELOC_SPARC_GOT13
3169 -- : BFD_RELOC_SPARC_GOT22
3170 -- : BFD_RELOC_SPARC_PC10
3171 -- : BFD_RELOC_SPARC_PC22
3172 -- : BFD_RELOC_SPARC_WPLT30
3173 -- : BFD_RELOC_SPARC_COPY
3174 -- : BFD_RELOC_SPARC_GLOB_DAT
3175 -- : BFD_RELOC_SPARC_JMP_SLOT
3176 -- : BFD_RELOC_SPARC_RELATIVE
3177 -- : BFD_RELOC_SPARC_UA16
3178 -- : BFD_RELOC_SPARC_UA32
3179 -- : BFD_RELOC_SPARC_UA64
3180 SPARC ELF relocations. There is probably some overlap with other
3181 relocation types already defined.
3183 -- : BFD_RELOC_SPARC_BASE13
3184 -- : BFD_RELOC_SPARC_BASE22
3185 I think these are specific to SPARC a.out (e.g., Sun 4).
3187 -- : BFD_RELOC_SPARC_64
3188 -- : BFD_RELOC_SPARC_10
3189 -- : BFD_RELOC_SPARC_11
3190 -- : BFD_RELOC_SPARC_OLO10
3191 -- : BFD_RELOC_SPARC_HH22
3192 -- : BFD_RELOC_SPARC_HM10
3193 -- : BFD_RELOC_SPARC_LM22
3194 -- : BFD_RELOC_SPARC_PC_HH22
3195 -- : BFD_RELOC_SPARC_PC_HM10
3196 -- : BFD_RELOC_SPARC_PC_LM22
3197 -- : BFD_RELOC_SPARC_WDISP16
3198 -- : BFD_RELOC_SPARC_WDISP19
3199 -- : BFD_RELOC_SPARC_7
3200 -- : BFD_RELOC_SPARC_6
3201 -- : BFD_RELOC_SPARC_5
3202 -- : BFD_RELOC_SPARC_DISP64
3203 -- : BFD_RELOC_SPARC_PLT32
3204 -- : BFD_RELOC_SPARC_PLT64
3205 -- : BFD_RELOC_SPARC_HIX22
3206 -- : BFD_RELOC_SPARC_LOX10
3207 -- : BFD_RELOC_SPARC_H44
3208 -- : BFD_RELOC_SPARC_M44
3209 -- : BFD_RELOC_SPARC_L44
3210 -- : BFD_RELOC_SPARC_REGISTER
3213 -- : BFD_RELOC_SPARC_REV32
3214 SPARC little endian relocation
3216 -- : BFD_RELOC_SPARC_TLS_GD_HI22
3217 -- : BFD_RELOC_SPARC_TLS_GD_LO10
3218 -- : BFD_RELOC_SPARC_TLS_GD_ADD
3219 -- : BFD_RELOC_SPARC_TLS_GD_CALL
3220 -- : BFD_RELOC_SPARC_TLS_LDM_HI22
3221 -- : BFD_RELOC_SPARC_TLS_LDM_LO10
3222 -- : BFD_RELOC_SPARC_TLS_LDM_ADD
3223 -- : BFD_RELOC_SPARC_TLS_LDM_CALL
3224 -- : BFD_RELOC_SPARC_TLS_LDO_HIX22
3225 -- : BFD_RELOC_SPARC_TLS_LDO_LOX10
3226 -- : BFD_RELOC_SPARC_TLS_LDO_ADD
3227 -- : BFD_RELOC_SPARC_TLS_IE_HI22
3228 -- : BFD_RELOC_SPARC_TLS_IE_LO10
3229 -- : BFD_RELOC_SPARC_TLS_IE_LD
3230 -- : BFD_RELOC_SPARC_TLS_IE_LDX
3231 -- : BFD_RELOC_SPARC_TLS_IE_ADD
3232 -- : BFD_RELOC_SPARC_TLS_LE_HIX22
3233 -- : BFD_RELOC_SPARC_TLS_LE_LOX10
3234 -- : BFD_RELOC_SPARC_TLS_DTPMOD32
3235 -- : BFD_RELOC_SPARC_TLS_DTPMOD64
3236 -- : BFD_RELOC_SPARC_TLS_DTPOFF32
3237 -- : BFD_RELOC_SPARC_TLS_DTPOFF64
3238 -- : BFD_RELOC_SPARC_TLS_TPOFF32
3239 -- : BFD_RELOC_SPARC_TLS_TPOFF64
3240 SPARC TLS relocations
3242 -- : BFD_RELOC_ALPHA_GPDISP_HI16
3243 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
3244 "addend" in some special way. For GPDISP_HI16 ("gpdisp")
3245 relocations, the symbol is ignored when writing; when reading, it
3246 will be the absolute section symbol. The addend is the
3247 displacement in bytes of the "lda" instruction from the "ldah"
3248 instruction (which is at the address of this reloc).
3250 -- : BFD_RELOC_ALPHA_GPDISP_LO16
3251 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
3252 with GPDISP_HI16 relocs. The addend is ignored when writing the
3253 relocations out, and is filled in with the file's GP value on
3254 reading, for convenience.
3256 -- : BFD_RELOC_ALPHA_GPDISP
3257 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
3258 relocation except that there is no accompanying GPDISP_LO16
3261 -- : BFD_RELOC_ALPHA_LITERAL
3262 -- : BFD_RELOC_ALPHA_ELF_LITERAL
3263 -- : BFD_RELOC_ALPHA_LITUSE
3264 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
3265 the assembler turns it into a LDQ instruction to load the address
3266 of the symbol, and then fills in a register in the real
3269 The LITERAL reloc, at the LDQ instruction, refers to the .lita
3270 section symbol. The addend is ignored when writing, but is filled
3271 in with the file's GP value on reading, for convenience, as with
3272 the GPDISP_LO16 reloc.
3274 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and
3275 GPDISP_LO16. It should refer to the symbol to be referenced, as
3276 with 16_GOTOFF, but it generates output not based on the position
3277 within the .got section, but relative to the GP value chosen for
3278 the file during the final link stage.
3280 The LITUSE reloc, on the instruction using the loaded address,
3281 gives information to the linker that it might be able to use to
3282 optimize away some literal section references. The symbol is
3283 ignored (read as the absolute section symbol), and the "addend"
3284 indicates the type of instruction using the register: 1 - "memory"
3285 fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target
3288 -- : BFD_RELOC_ALPHA_HINT
3289 The HINT relocation indicates a value that should be filled into
3290 the "hint" field of a jmp/jsr/ret instruction, for possible branch-
3291 prediction logic which may be provided on some processors.
3293 -- : BFD_RELOC_ALPHA_LINKAGE
3294 The LINKAGE relocation outputs a linkage pair in the object file,
3295 which is filled by the linker.
3297 -- : BFD_RELOC_ALPHA_CODEADDR
3298 The CODEADDR relocation outputs a STO_CA in the object file, which
3299 is filled by the linker.
3301 -- : BFD_RELOC_ALPHA_GPREL_HI16
3302 -- : BFD_RELOC_ALPHA_GPREL_LO16
3303 The GPREL_HI/LO relocations together form a 32-bit offset from the
3306 -- : BFD_RELOC_ALPHA_BRSGP
3307 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
3308 share a common GP, and the target address is adjusted for
3309 STO_ALPHA_STD_GPLOAD.
3311 -- : BFD_RELOC_ALPHA_TLSGD
3312 -- : BFD_RELOC_ALPHA_TLSLDM
3313 -- : BFD_RELOC_ALPHA_DTPMOD64
3314 -- : BFD_RELOC_ALPHA_GOTDTPREL16
3315 -- : BFD_RELOC_ALPHA_DTPREL64
3316 -- : BFD_RELOC_ALPHA_DTPREL_HI16
3317 -- : BFD_RELOC_ALPHA_DTPREL_LO16
3318 -- : BFD_RELOC_ALPHA_DTPREL16
3319 -- : BFD_RELOC_ALPHA_GOTTPREL16
3320 -- : BFD_RELOC_ALPHA_TPREL64
3321 -- : BFD_RELOC_ALPHA_TPREL_HI16
3322 -- : BFD_RELOC_ALPHA_TPREL_LO16
3323 -- : BFD_RELOC_ALPHA_TPREL16
3324 Alpha thread-local storage relocations.
3326 -- : BFD_RELOC_MIPS_JMP
3327 Bits 27..2 of the relocation address shifted right 2 bits; simple
3330 -- : BFD_RELOC_MIPS16_JMP
3331 The MIPS16 jump instruction.
3333 -- : BFD_RELOC_MIPS16_GPREL
3334 MIPS16 GP relative reloc.
3337 High 16 bits of 32-bit value; simple reloc.
3339 -- : BFD_RELOC_HI16_S
3340 High 16 bits of 32-bit value but the low 16 bits will be sign
3341 extended and added to form the final result. If the low 16 bits
3342 form a negative number, we need to add one to the high value to
3343 compensate for the borrow when the low bits are added.
3348 -- : BFD_RELOC_HI16_PCREL
3349 High 16 bits of 32-bit pc-relative value
3351 -- : BFD_RELOC_HI16_S_PCREL
3352 High 16 bits of 32-bit pc-relative value, adjusted
3354 -- : BFD_RELOC_LO16_PCREL
3355 Low 16 bits of pc-relative value
3357 -- : BFD_RELOC_MIPS16_HI16
3358 MIPS16 high 16 bits of 32-bit value.
3360 -- : BFD_RELOC_MIPS16_HI16_S
3361 MIPS16 high 16 bits of 32-bit value but the low 16 bits will be
3362 sign extended and added to form the final result. If the low 16
3363 bits form a negative number, we need to add one to the high value
3364 to compensate for the borrow when the low bits are added.
3366 -- : BFD_RELOC_MIPS16_LO16
3369 -- : BFD_RELOC_MIPS_LITERAL
3370 Relocation against a MIPS literal section.
3372 -- : BFD_RELOC_MIPS_GOT16
3373 -- : BFD_RELOC_MIPS_CALL16
3374 -- : BFD_RELOC_MIPS_GOT_HI16
3375 -- : BFD_RELOC_MIPS_GOT_LO16
3376 -- : BFD_RELOC_MIPS_CALL_HI16
3377 -- : BFD_RELOC_MIPS_CALL_LO16
3378 -- : BFD_RELOC_MIPS_SUB
3379 -- : BFD_RELOC_MIPS_GOT_PAGE
3380 -- : BFD_RELOC_MIPS_GOT_OFST
3381 -- : BFD_RELOC_MIPS_GOT_DISP
3382 -- : BFD_RELOC_MIPS_SHIFT5
3383 -- : BFD_RELOC_MIPS_SHIFT6
3384 -- : BFD_RELOC_MIPS_INSERT_A
3385 -- : BFD_RELOC_MIPS_INSERT_B
3386 -- : BFD_RELOC_MIPS_DELETE
3387 -- : BFD_RELOC_MIPS_HIGHEST
3388 -- : BFD_RELOC_MIPS_HIGHER
3389 -- : BFD_RELOC_MIPS_SCN_DISP
3390 -- : BFD_RELOC_MIPS_REL16
3391 -- : BFD_RELOC_MIPS_RELGOT
3392 -- : BFD_RELOC_MIPS_JALR
3393 -- : BFD_RELOC_MIPS_TLS_DTPMOD32
3394 -- : BFD_RELOC_MIPS_TLS_DTPREL32
3395 -- : BFD_RELOC_MIPS_TLS_DTPMOD64
3396 -- : BFD_RELOC_MIPS_TLS_DTPREL64
3397 -- : BFD_RELOC_MIPS_TLS_GD
3398 -- : BFD_RELOC_MIPS_TLS_LDM
3399 -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16
3400 -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16
3401 -- : BFD_RELOC_MIPS_TLS_GOTTPREL
3402 -- : BFD_RELOC_MIPS_TLS_TPREL32
3403 -- : BFD_RELOC_MIPS_TLS_TPREL64
3404 -- : BFD_RELOC_MIPS_TLS_TPREL_HI16
3405 -- : BFD_RELOC_MIPS_TLS_TPREL_LO16
3406 MIPS ELF relocations.
3408 -- : BFD_RELOC_MIPS_COPY
3409 -- : BFD_RELOC_MIPS_JUMP_SLOT
3410 MIPS ELF relocations (VxWorks extensions).
3412 -- : BFD_RELOC_FRV_LABEL16
3413 -- : BFD_RELOC_FRV_LABEL24
3414 -- : BFD_RELOC_FRV_LO16
3415 -- : BFD_RELOC_FRV_HI16
3416 -- : BFD_RELOC_FRV_GPREL12
3417 -- : BFD_RELOC_FRV_GPRELU12
3418 -- : BFD_RELOC_FRV_GPREL32
3419 -- : BFD_RELOC_FRV_GPRELHI
3420 -- : BFD_RELOC_FRV_GPRELLO
3421 -- : BFD_RELOC_FRV_GOT12
3422 -- : BFD_RELOC_FRV_GOTHI
3423 -- : BFD_RELOC_FRV_GOTLO
3424 -- : BFD_RELOC_FRV_FUNCDESC
3425 -- : BFD_RELOC_FRV_FUNCDESC_GOT12
3426 -- : BFD_RELOC_FRV_FUNCDESC_GOTHI
3427 -- : BFD_RELOC_FRV_FUNCDESC_GOTLO
3428 -- : BFD_RELOC_FRV_FUNCDESC_VALUE
3429 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12
3430 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
3431 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
3432 -- : BFD_RELOC_FRV_GOTOFF12
3433 -- : BFD_RELOC_FRV_GOTOFFHI
3434 -- : BFD_RELOC_FRV_GOTOFFLO
3435 -- : BFD_RELOC_FRV_GETTLSOFF
3436 -- : BFD_RELOC_FRV_TLSDESC_VALUE
3437 -- : BFD_RELOC_FRV_GOTTLSDESC12
3438 -- : BFD_RELOC_FRV_GOTTLSDESCHI
3439 -- : BFD_RELOC_FRV_GOTTLSDESCLO
3440 -- : BFD_RELOC_FRV_TLSMOFF12
3441 -- : BFD_RELOC_FRV_TLSMOFFHI
3442 -- : BFD_RELOC_FRV_TLSMOFFLO
3443 -- : BFD_RELOC_FRV_GOTTLSOFF12
3444 -- : BFD_RELOC_FRV_GOTTLSOFFHI
3445 -- : BFD_RELOC_FRV_GOTTLSOFFLO
3446 -- : BFD_RELOC_FRV_TLSOFF
3447 -- : BFD_RELOC_FRV_TLSDESC_RELAX
3448 -- : BFD_RELOC_FRV_GETTLSOFF_RELAX
3449 -- : BFD_RELOC_FRV_TLSOFF_RELAX
3450 -- : BFD_RELOC_FRV_TLSMOFF
3451 Fujitsu Frv Relocations.
3453 -- : BFD_RELOC_MN10300_GOTOFF24
3454 This is a 24bit GOT-relative reloc for the mn10300.
3456 -- : BFD_RELOC_MN10300_GOT32
3457 This is a 32bit GOT-relative reloc for the mn10300, offset by two
3458 bytes in the instruction.
3460 -- : BFD_RELOC_MN10300_GOT24
3461 This is a 24bit GOT-relative reloc for the mn10300, offset by two
3462 bytes in the instruction.
3464 -- : BFD_RELOC_MN10300_GOT16
3465 This is a 16bit GOT-relative reloc for the mn10300, offset by two
3466 bytes in the instruction.
3468 -- : BFD_RELOC_MN10300_COPY
3469 Copy symbol at runtime.
3471 -- : BFD_RELOC_MN10300_GLOB_DAT
3474 -- : BFD_RELOC_MN10300_JMP_SLOT
3477 -- : BFD_RELOC_MN10300_RELATIVE
3478 Adjust by program base.
3480 -- : BFD_RELOC_386_GOT32
3481 -- : BFD_RELOC_386_PLT32
3482 -- : BFD_RELOC_386_COPY
3483 -- : BFD_RELOC_386_GLOB_DAT
3484 -- : BFD_RELOC_386_JUMP_SLOT
3485 -- : BFD_RELOC_386_RELATIVE
3486 -- : BFD_RELOC_386_GOTOFF
3487 -- : BFD_RELOC_386_GOTPC
3488 -- : BFD_RELOC_386_TLS_TPOFF
3489 -- : BFD_RELOC_386_TLS_IE
3490 -- : BFD_RELOC_386_TLS_GOTIE
3491 -- : BFD_RELOC_386_TLS_LE
3492 -- : BFD_RELOC_386_TLS_GD
3493 -- : BFD_RELOC_386_TLS_LDM
3494 -- : BFD_RELOC_386_TLS_LDO_32
3495 -- : BFD_RELOC_386_TLS_IE_32
3496 -- : BFD_RELOC_386_TLS_LE_32
3497 -- : BFD_RELOC_386_TLS_DTPMOD32
3498 -- : BFD_RELOC_386_TLS_DTPOFF32
3499 -- : BFD_RELOC_386_TLS_TPOFF32
3500 -- : BFD_RELOC_386_TLS_GOTDESC
3501 -- : BFD_RELOC_386_TLS_DESC_CALL
3502 -- : BFD_RELOC_386_TLS_DESC
3503 i386/elf relocations
3505 -- : BFD_RELOC_X86_64_GOT32
3506 -- : BFD_RELOC_X86_64_PLT32
3507 -- : BFD_RELOC_X86_64_COPY
3508 -- : BFD_RELOC_X86_64_GLOB_DAT
3509 -- : BFD_RELOC_X86_64_JUMP_SLOT
3510 -- : BFD_RELOC_X86_64_RELATIVE
3511 -- : BFD_RELOC_X86_64_GOTPCREL
3512 -- : BFD_RELOC_X86_64_32S
3513 -- : BFD_RELOC_X86_64_DTPMOD64
3514 -- : BFD_RELOC_X86_64_DTPOFF64
3515 -- : BFD_RELOC_X86_64_TPOFF64
3516 -- : BFD_RELOC_X86_64_TLSGD
3517 -- : BFD_RELOC_X86_64_TLSLD
3518 -- : BFD_RELOC_X86_64_DTPOFF32
3519 -- : BFD_RELOC_X86_64_GOTTPOFF
3520 -- : BFD_RELOC_X86_64_TPOFF32
3521 -- : BFD_RELOC_X86_64_GOTOFF64
3522 -- : BFD_RELOC_X86_64_GOTPC32
3523 -- : BFD_RELOC_X86_64_GOT64
3524 -- : BFD_RELOC_X86_64_GOTPCREL64
3525 -- : BFD_RELOC_X86_64_GOTPC64
3526 -- : BFD_RELOC_X86_64_GOTPLT64
3527 -- : BFD_RELOC_X86_64_PLTOFF64
3528 -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC
3529 -- : BFD_RELOC_X86_64_TLSDESC_CALL
3530 -- : BFD_RELOC_X86_64_TLSDESC
3531 x86-64/elf relocations
3533 -- : BFD_RELOC_NS32K_IMM_8
3534 -- : BFD_RELOC_NS32K_IMM_16
3535 -- : BFD_RELOC_NS32K_IMM_32
3536 -- : BFD_RELOC_NS32K_IMM_8_PCREL
3537 -- : BFD_RELOC_NS32K_IMM_16_PCREL
3538 -- : BFD_RELOC_NS32K_IMM_32_PCREL
3539 -- : BFD_RELOC_NS32K_DISP_8
3540 -- : BFD_RELOC_NS32K_DISP_16
3541 -- : BFD_RELOC_NS32K_DISP_32
3542 -- : BFD_RELOC_NS32K_DISP_8_PCREL
3543 -- : BFD_RELOC_NS32K_DISP_16_PCREL
3544 -- : BFD_RELOC_NS32K_DISP_32_PCREL
3547 -- : BFD_RELOC_PDP11_DISP_8_PCREL
3548 -- : BFD_RELOC_PDP11_DISP_6_PCREL
3551 -- : BFD_RELOC_PJ_CODE_HI16
3552 -- : BFD_RELOC_PJ_CODE_LO16
3553 -- : BFD_RELOC_PJ_CODE_DIR16
3554 -- : BFD_RELOC_PJ_CODE_DIR32
3555 -- : BFD_RELOC_PJ_CODE_REL16
3556 -- : BFD_RELOC_PJ_CODE_REL32
3557 Picojava relocs. Not all of these appear in object files.
3559 -- : BFD_RELOC_PPC_B26
3560 -- : BFD_RELOC_PPC_BA26
3561 -- : BFD_RELOC_PPC_TOC16
3562 -- : BFD_RELOC_PPC_B16
3563 -- : BFD_RELOC_PPC_B16_BRTAKEN
3564 -- : BFD_RELOC_PPC_B16_BRNTAKEN
3565 -- : BFD_RELOC_PPC_BA16
3566 -- : BFD_RELOC_PPC_BA16_BRTAKEN
3567 -- : BFD_RELOC_PPC_BA16_BRNTAKEN
3568 -- : BFD_RELOC_PPC_COPY
3569 -- : BFD_RELOC_PPC_GLOB_DAT
3570 -- : BFD_RELOC_PPC_JMP_SLOT
3571 -- : BFD_RELOC_PPC_RELATIVE
3572 -- : BFD_RELOC_PPC_LOCAL24PC
3573 -- : BFD_RELOC_PPC_EMB_NADDR32
3574 -- : BFD_RELOC_PPC_EMB_NADDR16
3575 -- : BFD_RELOC_PPC_EMB_NADDR16_LO
3576 -- : BFD_RELOC_PPC_EMB_NADDR16_HI
3577 -- : BFD_RELOC_PPC_EMB_NADDR16_HA
3578 -- : BFD_RELOC_PPC_EMB_SDAI16
3579 -- : BFD_RELOC_PPC_EMB_SDA2I16
3580 -- : BFD_RELOC_PPC_EMB_SDA2REL
3581 -- : BFD_RELOC_PPC_EMB_SDA21
3582 -- : BFD_RELOC_PPC_EMB_MRKREF
3583 -- : BFD_RELOC_PPC_EMB_RELSEC16
3584 -- : BFD_RELOC_PPC_EMB_RELST_LO
3585 -- : BFD_RELOC_PPC_EMB_RELST_HI
3586 -- : BFD_RELOC_PPC_EMB_RELST_HA
3587 -- : BFD_RELOC_PPC_EMB_BIT_FLD
3588 -- : BFD_RELOC_PPC_EMB_RELSDA
3589 -- : BFD_RELOC_PPC64_HIGHER
3590 -- : BFD_RELOC_PPC64_HIGHER_S
3591 -- : BFD_RELOC_PPC64_HIGHEST
3592 -- : BFD_RELOC_PPC64_HIGHEST_S
3593 -- : BFD_RELOC_PPC64_TOC16_LO
3594 -- : BFD_RELOC_PPC64_TOC16_HI
3595 -- : BFD_RELOC_PPC64_TOC16_HA
3596 -- : BFD_RELOC_PPC64_TOC
3597 -- : BFD_RELOC_PPC64_PLTGOT16
3598 -- : BFD_RELOC_PPC64_PLTGOT16_LO
3599 -- : BFD_RELOC_PPC64_PLTGOT16_HI
3600 -- : BFD_RELOC_PPC64_PLTGOT16_HA
3601 -- : BFD_RELOC_PPC64_ADDR16_DS
3602 -- : BFD_RELOC_PPC64_ADDR16_LO_DS
3603 -- : BFD_RELOC_PPC64_GOT16_DS
3604 -- : BFD_RELOC_PPC64_GOT16_LO_DS
3605 -- : BFD_RELOC_PPC64_PLT16_LO_DS
3606 -- : BFD_RELOC_PPC64_SECTOFF_DS
3607 -- : BFD_RELOC_PPC64_SECTOFF_LO_DS
3608 -- : BFD_RELOC_PPC64_TOC16_DS
3609 -- : BFD_RELOC_PPC64_TOC16_LO_DS
3610 -- : BFD_RELOC_PPC64_PLTGOT16_DS
3611 -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS
3612 Power(rs6000) and PowerPC relocations.
3614 -- : BFD_RELOC_PPC_TLS
3615 -- : BFD_RELOC_PPC_DTPMOD
3616 -- : BFD_RELOC_PPC_TPREL16
3617 -- : BFD_RELOC_PPC_TPREL16_LO
3618 -- : BFD_RELOC_PPC_TPREL16_HI
3619 -- : BFD_RELOC_PPC_TPREL16_HA
3620 -- : BFD_RELOC_PPC_TPREL
3621 -- : BFD_RELOC_PPC_DTPREL16
3622 -- : BFD_RELOC_PPC_DTPREL16_LO
3623 -- : BFD_RELOC_PPC_DTPREL16_HI
3624 -- : BFD_RELOC_PPC_DTPREL16_HA
3625 -- : BFD_RELOC_PPC_DTPREL
3626 -- : BFD_RELOC_PPC_GOT_TLSGD16
3627 -- : BFD_RELOC_PPC_GOT_TLSGD16_LO
3628 -- : BFD_RELOC_PPC_GOT_TLSGD16_HI
3629 -- : BFD_RELOC_PPC_GOT_TLSGD16_HA
3630 -- : BFD_RELOC_PPC_GOT_TLSLD16
3631 -- : BFD_RELOC_PPC_GOT_TLSLD16_LO
3632 -- : BFD_RELOC_PPC_GOT_TLSLD16_HI
3633 -- : BFD_RELOC_PPC_GOT_TLSLD16_HA
3634 -- : BFD_RELOC_PPC_GOT_TPREL16
3635 -- : BFD_RELOC_PPC_GOT_TPREL16_LO
3636 -- : BFD_RELOC_PPC_GOT_TPREL16_HI
3637 -- : BFD_RELOC_PPC_GOT_TPREL16_HA
3638 -- : BFD_RELOC_PPC_GOT_DTPREL16
3639 -- : BFD_RELOC_PPC_GOT_DTPREL16_LO
3640 -- : BFD_RELOC_PPC_GOT_DTPREL16_HI
3641 -- : BFD_RELOC_PPC_GOT_DTPREL16_HA
3642 -- : BFD_RELOC_PPC64_TPREL16_DS
3643 -- : BFD_RELOC_PPC64_TPREL16_LO_DS
3644 -- : BFD_RELOC_PPC64_TPREL16_HIGHER
3645 -- : BFD_RELOC_PPC64_TPREL16_HIGHERA
3646 -- : BFD_RELOC_PPC64_TPREL16_HIGHEST
3647 -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA
3648 -- : BFD_RELOC_PPC64_DTPREL16_DS
3649 -- : BFD_RELOC_PPC64_DTPREL16_LO_DS
3650 -- : BFD_RELOC_PPC64_DTPREL16_HIGHER
3651 -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA
3652 -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST
3653 -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA
3654 PowerPC and PowerPC64 thread-local storage relocations.
3656 -- : BFD_RELOC_I370_D12
3657 IBM 370/390 relocations
3660 The type of reloc used to build a constructor table - at the moment
3661 probably a 32 bit wide absolute relocation, but the target can
3662 choose. It generally does map to one of the other relocation
3665 -- : BFD_RELOC_ARM_PCREL_BRANCH
3666 ARM 26 bit pc-relative branch. The lowest two bits must be zero
3667 and are not stored in the instruction.
3669 -- : BFD_RELOC_ARM_PCREL_BLX
3670 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
3671 not stored in the instruction. The 2nd lowest bit comes from a 1
3672 bit field in the instruction.
3674 -- : BFD_RELOC_THUMB_PCREL_BLX
3675 Thumb 22 bit pc-relative branch. The lowest bit must be zero and
3676 is not stored in the instruction. The 2nd lowest bit comes from a
3677 1 bit field in the instruction.
3679 -- : BFD_RELOC_ARM_PCREL_CALL
3680 ARM 26-bit pc-relative branch for an unconditional BL or BLX
3683 -- : BFD_RELOC_ARM_PCREL_JUMP
3684 ARM 26-bit pc-relative branch for B or conditional BL instruction.
3686 -- : BFD_RELOC_THUMB_PCREL_BRANCH7
3687 -- : BFD_RELOC_THUMB_PCREL_BRANCH9
3688 -- : BFD_RELOC_THUMB_PCREL_BRANCH12
3689 -- : BFD_RELOC_THUMB_PCREL_BRANCH20
3690 -- : BFD_RELOC_THUMB_PCREL_BRANCH23
3691 -- : BFD_RELOC_THUMB_PCREL_BRANCH25
3692 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The
3693 lowest bit must be zero and is not stored in the instruction.
3694 Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an
3695 "nn" one smaller in all cases. Note further that BRANCH23
3696 corresponds to R_ARM_THM_CALL.
3698 -- : BFD_RELOC_ARM_OFFSET_IMM
3699 12-bit immediate offset, used in ARM-format ldr and str
3702 -- : BFD_RELOC_ARM_THUMB_OFFSET
3703 5-bit immediate offset, used in Thumb-format ldr and str
3706 -- : BFD_RELOC_ARM_TARGET1
3707 Pc-relative or absolute relocation depending on target. Used for
3708 entries in .init_array sections.
3710 -- : BFD_RELOC_ARM_ROSEGREL32
3711 Read-only segment base relative address.
3713 -- : BFD_RELOC_ARM_SBREL32
3714 Data segment base relative address.
3716 -- : BFD_RELOC_ARM_TARGET2
3717 This reloc is used for references to RTTI data from exception
3718 handling tables. The actual definition depends on the target. It
3719 may be a pc-relative or some form of GOT-indirect relocation.
3721 -- : BFD_RELOC_ARM_PREL31
3722 31-bit PC relative address.
3724 -- : BFD_RELOC_ARM_MOVW
3725 -- : BFD_RELOC_ARM_MOVT
3726 -- : BFD_RELOC_ARM_MOVW_PCREL
3727 -- : BFD_RELOC_ARM_MOVT_PCREL
3728 -- : BFD_RELOC_ARM_THUMB_MOVW
3729 -- : BFD_RELOC_ARM_THUMB_MOVT
3730 -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL
3731 -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL
3732 Low and High halfword relocations for MOVW and MOVT instructions.
3734 -- : BFD_RELOC_ARM_JUMP_SLOT
3735 -- : BFD_RELOC_ARM_GLOB_DAT
3736 -- : BFD_RELOC_ARM_GOT32
3737 -- : BFD_RELOC_ARM_PLT32
3738 -- : BFD_RELOC_ARM_RELATIVE
3739 -- : BFD_RELOC_ARM_GOTOFF
3740 -- : BFD_RELOC_ARM_GOTPC
3741 Relocations for setting up GOTs and PLTs for shared libraries.
3743 -- : BFD_RELOC_ARM_TLS_GD32
3744 -- : BFD_RELOC_ARM_TLS_LDO32
3745 -- : BFD_RELOC_ARM_TLS_LDM32
3746 -- : BFD_RELOC_ARM_TLS_DTPOFF32
3747 -- : BFD_RELOC_ARM_TLS_DTPMOD32
3748 -- : BFD_RELOC_ARM_TLS_TPOFF32
3749 -- : BFD_RELOC_ARM_TLS_IE32
3750 -- : BFD_RELOC_ARM_TLS_LE32
3751 ARM thread-local storage relocations.
3753 -- : BFD_RELOC_ARM_IMMEDIATE
3754 -- : BFD_RELOC_ARM_ADRL_IMMEDIATE
3755 -- : BFD_RELOC_ARM_T32_IMMEDIATE
3756 -- : BFD_RELOC_ARM_T32_IMM12
3757 -- : BFD_RELOC_ARM_T32_ADD_PC12
3758 -- : BFD_RELOC_ARM_SHIFT_IMM
3759 -- : BFD_RELOC_ARM_SMC
3760 -- : BFD_RELOC_ARM_SWI
3761 -- : BFD_RELOC_ARM_MULTI
3762 -- : BFD_RELOC_ARM_CP_OFF_IMM
3763 -- : BFD_RELOC_ARM_CP_OFF_IMM_S2
3764 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM
3765 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
3766 -- : BFD_RELOC_ARM_ADR_IMM
3767 -- : BFD_RELOC_ARM_LDR_IMM
3768 -- : BFD_RELOC_ARM_LITERAL
3769 -- : BFD_RELOC_ARM_IN_POOL
3770 -- : BFD_RELOC_ARM_OFFSET_IMM8
3771 -- : BFD_RELOC_ARM_T32_OFFSET_U8
3772 -- : BFD_RELOC_ARM_T32_OFFSET_IMM
3773 -- : BFD_RELOC_ARM_HWLITERAL
3774 -- : BFD_RELOC_ARM_THUMB_ADD
3775 -- : BFD_RELOC_ARM_THUMB_IMM
3776 -- : BFD_RELOC_ARM_THUMB_SHIFT
3777 These relocs are only used within the ARM assembler. They are not
3778 (at present) written to any object files.
3780 -- : BFD_RELOC_SH_PCDISP8BY2
3781 -- : BFD_RELOC_SH_PCDISP12BY2
3782 -- : BFD_RELOC_SH_IMM3
3783 -- : BFD_RELOC_SH_IMM3U
3784 -- : BFD_RELOC_SH_DISP12
3785 -- : BFD_RELOC_SH_DISP12BY2
3786 -- : BFD_RELOC_SH_DISP12BY4
3787 -- : BFD_RELOC_SH_DISP12BY8
3788 -- : BFD_RELOC_SH_DISP20
3789 -- : BFD_RELOC_SH_DISP20BY8
3790 -- : BFD_RELOC_SH_IMM4
3791 -- : BFD_RELOC_SH_IMM4BY2
3792 -- : BFD_RELOC_SH_IMM4BY4
3793 -- : BFD_RELOC_SH_IMM8
3794 -- : BFD_RELOC_SH_IMM8BY2
3795 -- : BFD_RELOC_SH_IMM8BY4
3796 -- : BFD_RELOC_SH_PCRELIMM8BY2
3797 -- : BFD_RELOC_SH_PCRELIMM8BY4
3798 -- : BFD_RELOC_SH_SWITCH16
3799 -- : BFD_RELOC_SH_SWITCH32
3800 -- : BFD_RELOC_SH_USES
3801 -- : BFD_RELOC_SH_COUNT
3802 -- : BFD_RELOC_SH_ALIGN
3803 -- : BFD_RELOC_SH_CODE
3804 -- : BFD_RELOC_SH_DATA
3805 -- : BFD_RELOC_SH_LABEL
3806 -- : BFD_RELOC_SH_LOOP_START
3807 -- : BFD_RELOC_SH_LOOP_END
3808 -- : BFD_RELOC_SH_COPY
3809 -- : BFD_RELOC_SH_GLOB_DAT
3810 -- : BFD_RELOC_SH_JMP_SLOT
3811 -- : BFD_RELOC_SH_RELATIVE
3812 -- : BFD_RELOC_SH_GOTPC
3813 -- : BFD_RELOC_SH_GOT_LOW16
3814 -- : BFD_RELOC_SH_GOT_MEDLOW16
3815 -- : BFD_RELOC_SH_GOT_MEDHI16
3816 -- : BFD_RELOC_SH_GOT_HI16
3817 -- : BFD_RELOC_SH_GOTPLT_LOW16
3818 -- : BFD_RELOC_SH_GOTPLT_MEDLOW16
3819 -- : BFD_RELOC_SH_GOTPLT_MEDHI16
3820 -- : BFD_RELOC_SH_GOTPLT_HI16
3821 -- : BFD_RELOC_SH_PLT_LOW16
3822 -- : BFD_RELOC_SH_PLT_MEDLOW16
3823 -- : BFD_RELOC_SH_PLT_MEDHI16
3824 -- : BFD_RELOC_SH_PLT_HI16
3825 -- : BFD_RELOC_SH_GOTOFF_LOW16
3826 -- : BFD_RELOC_SH_GOTOFF_MEDLOW16
3827 -- : BFD_RELOC_SH_GOTOFF_MEDHI16
3828 -- : BFD_RELOC_SH_GOTOFF_HI16
3829 -- : BFD_RELOC_SH_GOTPC_LOW16
3830 -- : BFD_RELOC_SH_GOTPC_MEDLOW16
3831 -- : BFD_RELOC_SH_GOTPC_MEDHI16
3832 -- : BFD_RELOC_SH_GOTPC_HI16
3833 -- : BFD_RELOC_SH_COPY64
3834 -- : BFD_RELOC_SH_GLOB_DAT64
3835 -- : BFD_RELOC_SH_JMP_SLOT64
3836 -- : BFD_RELOC_SH_RELATIVE64
3837 -- : BFD_RELOC_SH_GOT10BY4
3838 -- : BFD_RELOC_SH_GOT10BY8
3839 -- : BFD_RELOC_SH_GOTPLT10BY4
3840 -- : BFD_RELOC_SH_GOTPLT10BY8
3841 -- : BFD_RELOC_SH_GOTPLT32
3842 -- : BFD_RELOC_SH_SHMEDIA_CODE
3843 -- : BFD_RELOC_SH_IMMU5
3844 -- : BFD_RELOC_SH_IMMS6
3845 -- : BFD_RELOC_SH_IMMS6BY32
3846 -- : BFD_RELOC_SH_IMMU6
3847 -- : BFD_RELOC_SH_IMMS10
3848 -- : BFD_RELOC_SH_IMMS10BY2
3849 -- : BFD_RELOC_SH_IMMS10BY4
3850 -- : BFD_RELOC_SH_IMMS10BY8
3851 -- : BFD_RELOC_SH_IMMS16
3852 -- : BFD_RELOC_SH_IMMU16
3853 -- : BFD_RELOC_SH_IMM_LOW16
3854 -- : BFD_RELOC_SH_IMM_LOW16_PCREL
3855 -- : BFD_RELOC_SH_IMM_MEDLOW16
3856 -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL
3857 -- : BFD_RELOC_SH_IMM_MEDHI16
3858 -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL
3859 -- : BFD_RELOC_SH_IMM_HI16
3860 -- : BFD_RELOC_SH_IMM_HI16_PCREL
3861 -- : BFD_RELOC_SH_PT_16
3862 -- : BFD_RELOC_SH_TLS_GD_32
3863 -- : BFD_RELOC_SH_TLS_LD_32
3864 -- : BFD_RELOC_SH_TLS_LDO_32
3865 -- : BFD_RELOC_SH_TLS_IE_32
3866 -- : BFD_RELOC_SH_TLS_LE_32
3867 -- : BFD_RELOC_SH_TLS_DTPMOD32
3868 -- : BFD_RELOC_SH_TLS_DTPOFF32
3869 -- : BFD_RELOC_SH_TLS_TPOFF32
3870 Renesas / SuperH SH relocs. Not all of these appear in object
3873 -- : BFD_RELOC_ARC_B22_PCREL
3874 ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two
3875 bits must be zero and are not stored in the instruction. The high
3876 20 bits are installed in bits 26 through 7 of the instruction.
3878 -- : BFD_RELOC_ARC_B26
3879 ARC 26 bit absolute branch. The lowest two bits must be zero and
3880 are not stored in the instruction. The high 24 bits are installed
3881 in bits 23 through 0.
3883 -- : BFD_RELOC_BFIN_16_IMM
3884 ADI Blackfin 16 bit immediate absolute reloc.
3886 -- : BFD_RELOC_BFIN_16_HIGH
3887 ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
3889 -- : BFD_RELOC_BFIN_4_PCREL
3890 ADI Blackfin 'a' part of LSETUP.
3892 -- : BFD_RELOC_BFIN_5_PCREL
3895 -- : BFD_RELOC_BFIN_16_LOW
3896 ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
3898 -- : BFD_RELOC_BFIN_10_PCREL
3901 -- : BFD_RELOC_BFIN_11_PCREL
3902 ADI Blackfin 'b' part of LSETUP.
3904 -- : BFD_RELOC_BFIN_12_PCREL_JUMP
3907 -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S
3908 ADI Blackfin Short jump, pcrel.
3910 -- : BFD_RELOC_BFIN_24_PCREL_CALL_X
3911 ADI Blackfin Call.x not implemented.
3913 -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L
3914 ADI Blackfin Long Jump pcrel.
3916 -- : BFD_RELOC_BFIN_GOT17M4
3917 -- : BFD_RELOC_BFIN_GOTHI
3918 -- : BFD_RELOC_BFIN_GOTLO
3919 -- : BFD_RELOC_BFIN_FUNCDESC
3920 -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4
3921 -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI
3922 -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO
3923 -- : BFD_RELOC_BFIN_FUNCDESC_VALUE
3924 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
3925 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
3926 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
3927 -- : BFD_RELOC_BFIN_GOTOFF17M4
3928 -- : BFD_RELOC_BFIN_GOTOFFHI
3929 -- : BFD_RELOC_BFIN_GOTOFFLO
3930 ADI Blackfin FD-PIC relocations.
3932 -- : BFD_RELOC_BFIN_GOT
3933 ADI Blackfin GOT relocation.
3935 -- : BFD_RELOC_BFIN_PLTPC
3936 ADI Blackfin PLTPC relocation.
3938 -- : BFD_ARELOC_BFIN_PUSH
3939 ADI Blackfin arithmetic relocation.
3941 -- : BFD_ARELOC_BFIN_CONST
3942 ADI Blackfin arithmetic relocation.
3944 -- : BFD_ARELOC_BFIN_ADD
3945 ADI Blackfin arithmetic relocation.
3947 -- : BFD_ARELOC_BFIN_SUB
3948 ADI Blackfin arithmetic relocation.
3950 -- : BFD_ARELOC_BFIN_MULT
3951 ADI Blackfin arithmetic relocation.
3953 -- : BFD_ARELOC_BFIN_DIV
3954 ADI Blackfin arithmetic relocation.
3956 -- : BFD_ARELOC_BFIN_MOD
3957 ADI Blackfin arithmetic relocation.
3959 -- : BFD_ARELOC_BFIN_LSHIFT
3960 ADI Blackfin arithmetic relocation.
3962 -- : BFD_ARELOC_BFIN_RSHIFT
3963 ADI Blackfin arithmetic relocation.
3965 -- : BFD_ARELOC_BFIN_AND
3966 ADI Blackfin arithmetic relocation.
3968 -- : BFD_ARELOC_BFIN_OR
3969 ADI Blackfin arithmetic relocation.
3971 -- : BFD_ARELOC_BFIN_XOR
3972 ADI Blackfin arithmetic relocation.
3974 -- : BFD_ARELOC_BFIN_LAND
3975 ADI Blackfin arithmetic relocation.
3977 -- : BFD_ARELOC_BFIN_LOR
3978 ADI Blackfin arithmetic relocation.
3980 -- : BFD_ARELOC_BFIN_LEN
3981 ADI Blackfin arithmetic relocation.
3983 -- : BFD_ARELOC_BFIN_NEG
3984 ADI Blackfin arithmetic relocation.
3986 -- : BFD_ARELOC_BFIN_COMP
3987 ADI Blackfin arithmetic relocation.
3989 -- : BFD_ARELOC_BFIN_PAGE
3990 ADI Blackfin arithmetic relocation.
3992 -- : BFD_ARELOC_BFIN_HWPAGE
3993 ADI Blackfin arithmetic relocation.
3995 -- : BFD_ARELOC_BFIN_ADDR
3996 ADI Blackfin arithmetic relocation.
3998 -- : BFD_RELOC_D10V_10_PCREL_R
3999 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4000 bits assumed to be 0.
4002 -- : BFD_RELOC_D10V_10_PCREL_L
4003 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4004 bits assumed to be 0. This is the same as the previous reloc
4005 except it is in the left container, i.e., shifted left 15 bits.
4007 -- : BFD_RELOC_D10V_18
4008 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4010 -- : BFD_RELOC_D10V_18_PCREL
4011 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4013 -- : BFD_RELOC_D30V_6
4014 Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
4016 -- : BFD_RELOC_D30V_9_PCREL
4017 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4020 -- : BFD_RELOC_D30V_9_PCREL_R
4021 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4022 be 0. Same as the previous reloc but on the right side of the
4025 -- : BFD_RELOC_D30V_15
4026 This is a 12-bit absolute reloc with the right 3 bitsassumed to be
4029 -- : BFD_RELOC_D30V_15_PCREL
4030 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4033 -- : BFD_RELOC_D30V_15_PCREL_R
4034 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4035 to be 0. Same as the previous reloc but on the right side of the
4038 -- : BFD_RELOC_D30V_21
4039 This is an 18-bit absolute reloc with the right 3 bits assumed to
4042 -- : BFD_RELOC_D30V_21_PCREL
4043 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4046 -- : BFD_RELOC_D30V_21_PCREL_R
4047 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4048 to be 0. Same as the previous reloc but on the right side of the
4051 -- : BFD_RELOC_D30V_32
4052 This is a 32-bit absolute reloc.
4054 -- : BFD_RELOC_D30V_32_PCREL
4055 This is a 32-bit pc-relative reloc.
4057 -- : BFD_RELOC_DLX_HI16_S
4060 -- : BFD_RELOC_DLX_LO16
4063 -- : BFD_RELOC_DLX_JMP26
4066 -- : BFD_RELOC_M32C_HI8
4067 -- : BFD_RELOC_M32C_RL_JUMP
4068 -- : BFD_RELOC_M32C_RL_1ADDR
4069 -- : BFD_RELOC_M32C_RL_2ADDR
4070 Renesas M16C/M32C Relocations.
4072 -- : BFD_RELOC_M32R_24
4073 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit
4076 -- : BFD_RELOC_M32R_10_PCREL
4077 This is a 10-bit pc-relative reloc with the right 2 bits assumed
4080 -- : BFD_RELOC_M32R_18_PCREL
4081 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4083 -- : BFD_RELOC_M32R_26_PCREL
4084 This is a 26-bit reloc with the right 2 bits assumed to be 0.
4086 -- : BFD_RELOC_M32R_HI16_ULO
4087 This is a 16-bit reloc containing the high 16 bits of an address
4088 used when the lower 16 bits are treated as unsigned.
4090 -- : BFD_RELOC_M32R_HI16_SLO
4091 This is a 16-bit reloc containing the high 16 bits of an address
4092 used when the lower 16 bits are treated as signed.
4094 -- : BFD_RELOC_M32R_LO16
4095 This is a 16-bit reloc containing the lower 16 bits of an address.
4097 -- : BFD_RELOC_M32R_SDA16
4098 This is a 16-bit reloc containing the small data area offset for
4099 use in add3, load, and store instructions.
4101 -- : BFD_RELOC_M32R_GOT24
4102 -- : BFD_RELOC_M32R_26_PLTREL
4103 -- : BFD_RELOC_M32R_COPY
4104 -- : BFD_RELOC_M32R_GLOB_DAT
4105 -- : BFD_RELOC_M32R_JMP_SLOT
4106 -- : BFD_RELOC_M32R_RELATIVE
4107 -- : BFD_RELOC_M32R_GOTOFF
4108 -- : BFD_RELOC_M32R_GOTOFF_HI_ULO
4109 -- : BFD_RELOC_M32R_GOTOFF_HI_SLO
4110 -- : BFD_RELOC_M32R_GOTOFF_LO
4111 -- : BFD_RELOC_M32R_GOTPC24
4112 -- : BFD_RELOC_M32R_GOT16_HI_ULO
4113 -- : BFD_RELOC_M32R_GOT16_HI_SLO
4114 -- : BFD_RELOC_M32R_GOT16_LO
4115 -- : BFD_RELOC_M32R_GOTPC_HI_ULO
4116 -- : BFD_RELOC_M32R_GOTPC_HI_SLO
4117 -- : BFD_RELOC_M32R_GOTPC_LO
4120 -- : BFD_RELOC_V850_9_PCREL
4121 This is a 9-bit reloc
4123 -- : BFD_RELOC_V850_22_PCREL
4124 This is a 22-bit reloc
4126 -- : BFD_RELOC_V850_SDA_16_16_OFFSET
4127 This is a 16 bit offset from the short data area pointer.
4129 -- : BFD_RELOC_V850_SDA_15_16_OFFSET
4130 This is a 16 bit offset (of which only 15 bits are used) from the
4131 short data area pointer.
4133 -- : BFD_RELOC_V850_ZDA_16_16_OFFSET
4134 This is a 16 bit offset from the zero data area pointer.
4136 -- : BFD_RELOC_V850_ZDA_15_16_OFFSET
4137 This is a 16 bit offset (of which only 15 bits are used) from the
4138 zero data area pointer.
4140 -- : BFD_RELOC_V850_TDA_6_8_OFFSET
4141 This is an 8 bit offset (of which only 6 bits are used) from the
4142 tiny data area pointer.
4144 -- : BFD_RELOC_V850_TDA_7_8_OFFSET
4145 This is an 8bit offset (of which only 7 bits are used) from the
4146 tiny data area pointer.
4148 -- : BFD_RELOC_V850_TDA_7_7_OFFSET
4149 This is a 7 bit offset from the tiny data area pointer.
4151 -- : BFD_RELOC_V850_TDA_16_16_OFFSET
4152 This is a 16 bit offset from the tiny data area pointer.
4154 -- : BFD_RELOC_V850_TDA_4_5_OFFSET
4155 This is a 5 bit offset (of which only 4 bits are used) from the
4156 tiny data area pointer.
4158 -- : BFD_RELOC_V850_TDA_4_4_OFFSET
4159 This is a 4 bit offset from the tiny data area pointer.
4161 -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
4162 This is a 16 bit offset from the short data area pointer, with the
4163 bits placed non-contiguously in the instruction.
4165 -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
4166 This is a 16 bit offset from the zero data area pointer, with the
4167 bits placed non-contiguously in the instruction.
4169 -- : BFD_RELOC_V850_CALLT_6_7_OFFSET
4170 This is a 6 bit offset from the call table base pointer.
4172 -- : BFD_RELOC_V850_CALLT_16_16_OFFSET
4173 This is a 16 bit offset from the call table base pointer.
4175 -- : BFD_RELOC_V850_LONGCALL
4176 Used for relaxing indirect function calls.
4178 -- : BFD_RELOC_V850_LONGJUMP
4179 Used for relaxing indirect jumps.
4181 -- : BFD_RELOC_V850_ALIGN
4182 Used to maintain alignment whilst relaxing.
4184 -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET
4185 This is a variation of BFD_RELOC_LO16 that can be used in v850e
4188 -- : BFD_RELOC_MN10300_32_PCREL
4189 This is a 32bit pcrel reloc for the mn10300, offset by two bytes
4192 -- : BFD_RELOC_MN10300_16_PCREL
4193 This is a 16bit pcrel reloc for the mn10300, offset by two bytes
4196 -- : BFD_RELOC_TIC30_LDP
4197 This is a 8bit DP reloc for the tms320c30, where the most
4198 significant 8 bits of a 24 bit word are placed into the least
4199 significant 8 bits of the opcode.
4201 -- : BFD_RELOC_TIC54X_PARTLS7
4202 This is a 7bit reloc for the tms320c54x, where the least
4203 significant 7 bits of a 16 bit word are placed into the least
4204 significant 7 bits of the opcode.
4206 -- : BFD_RELOC_TIC54X_PARTMS9
4207 This is a 9bit DP reloc for the tms320c54x, where the most
4208 significant 9 bits of a 16 bit word are placed into the least
4209 significant 9 bits of the opcode.
4211 -- : BFD_RELOC_TIC54X_23
4212 This is an extended address 23-bit reloc for the tms320c54x.
4214 -- : BFD_RELOC_TIC54X_16_OF_23
4215 This is a 16-bit reloc for the tms320c54x, where the least
4216 significant 16 bits of a 23-bit extended address are placed into
4219 -- : BFD_RELOC_TIC54X_MS7_OF_23
4220 This is a reloc for the tms320c54x, where the most significant 7
4221 bits of a 23-bit extended address are placed into the opcode.
4223 -- : BFD_RELOC_FR30_48
4224 This is a 48 bit reloc for the FR30 that stores 32 bits.
4226 -- : BFD_RELOC_FR30_20
4227 This is a 32 bit reloc for the FR30 that stores 20 bits split up
4230 -- : BFD_RELOC_FR30_6_IN_4
4231 This is a 16 bit reloc for the FR30 that stores a 6 bit word
4234 -- : BFD_RELOC_FR30_8_IN_8
4235 This is a 16 bit reloc for the FR30 that stores an 8 bit byte
4238 -- : BFD_RELOC_FR30_9_IN_8
4239 This is a 16 bit reloc for the FR30 that stores a 9 bit short
4242 -- : BFD_RELOC_FR30_10_IN_8
4243 This is a 16 bit reloc for the FR30 that stores a 10 bit word
4246 -- : BFD_RELOC_FR30_9_PCREL
4247 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
4248 short offset into 8 bits.
4250 -- : BFD_RELOC_FR30_12_PCREL
4251 This is a 16 bit reloc for the FR30 that stores a 12 bit pc
4252 relative short offset into 11 bits.
4254 -- : BFD_RELOC_MCORE_PCREL_IMM8BY4
4255 -- : BFD_RELOC_MCORE_PCREL_IMM11BY2
4256 -- : BFD_RELOC_MCORE_PCREL_IMM4BY2
4257 -- : BFD_RELOC_MCORE_PCREL_32
4258 -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
4259 -- : BFD_RELOC_MCORE_RVA
4260 Motorola Mcore relocations.
4262 -- : BFD_RELOC_MMIX_GETA
4263 -- : BFD_RELOC_MMIX_GETA_1
4264 -- : BFD_RELOC_MMIX_GETA_2
4265 -- : BFD_RELOC_MMIX_GETA_3
4266 These are relocations for the GETA instruction.
4268 -- : BFD_RELOC_MMIX_CBRANCH
4269 -- : BFD_RELOC_MMIX_CBRANCH_J
4270 -- : BFD_RELOC_MMIX_CBRANCH_1
4271 -- : BFD_RELOC_MMIX_CBRANCH_2
4272 -- : BFD_RELOC_MMIX_CBRANCH_3
4273 These are relocations for a conditional branch instruction.
4275 -- : BFD_RELOC_MMIX_PUSHJ
4276 -- : BFD_RELOC_MMIX_PUSHJ_1
4277 -- : BFD_RELOC_MMIX_PUSHJ_2
4278 -- : BFD_RELOC_MMIX_PUSHJ_3
4279 -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE
4280 These are relocations for the PUSHJ instruction.
4282 -- : BFD_RELOC_MMIX_JMP
4283 -- : BFD_RELOC_MMIX_JMP_1
4284 -- : BFD_RELOC_MMIX_JMP_2
4285 -- : BFD_RELOC_MMIX_JMP_3
4286 These are relocations for the JMP instruction.
4288 -- : BFD_RELOC_MMIX_ADDR19
4289 This is a relocation for a relative address as in a GETA
4290 instruction or a branch.
4292 -- : BFD_RELOC_MMIX_ADDR27
4293 This is a relocation for a relative address as in a JMP
4296 -- : BFD_RELOC_MMIX_REG_OR_BYTE
4297 This is a relocation for an instruction field that may be a general
4298 register or a value 0..255.
4300 -- : BFD_RELOC_MMIX_REG
4301 This is a relocation for an instruction field that may be a general
4304 -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET
4305 This is a relocation for two instruction fields holding a register
4306 and an offset, the equivalent of the relocation.
4308 -- : BFD_RELOC_MMIX_LOCAL
4309 This relocation is an assertion that the expression is not
4310 allocated as a global register. It does not modify contents.
4312 -- : BFD_RELOC_AVR_7_PCREL
4313 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
4314 short offset into 7 bits.
4316 -- : BFD_RELOC_AVR_13_PCREL
4317 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
4318 short offset into 12 bits.
4320 -- : BFD_RELOC_AVR_16_PM
4321 This is a 16 bit reloc for the AVR that stores 17 bit value
4322 (usually program memory address) into 16 bits.
4324 -- : BFD_RELOC_AVR_LO8_LDI
4325 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4326 data memory address) into 8 bit immediate value of LDI insn.
4328 -- : BFD_RELOC_AVR_HI8_LDI
4329 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4330 bit of data memory address) into 8 bit immediate value of LDI insn.
4332 -- : BFD_RELOC_AVR_HH8_LDI
4333 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4334 high 8 bit of program memory address) into 8 bit immediate value
4337 -- : BFD_RELOC_AVR_MS8_LDI
4338 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4339 high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.
4341 -- : BFD_RELOC_AVR_LO8_LDI_NEG
4342 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4343 (usually data memory address) into 8 bit immediate value of SUBI
4346 -- : BFD_RELOC_AVR_HI8_LDI_NEG
4347 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4348 (high 8 bit of data memory address) into 8 bit immediate value of
4351 -- : BFD_RELOC_AVR_HH8_LDI_NEG
4352 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4353 (most high 8 bit of program memory address) into 8 bit immediate
4354 value of LDI or SUBI insn.
4356 -- : BFD_RELOC_AVR_MS8_LDI_NEG
4357 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4358 (msb of 32 bit value) into 8 bit immediate value of LDI insn.
4360 -- : BFD_RELOC_AVR_LO8_LDI_PM
4361 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4362 command address) into 8 bit immediate value of LDI insn.
4364 -- : BFD_RELOC_AVR_HI8_LDI_PM
4365 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4366 bit of command address) into 8 bit immediate value of LDI insn.
4368 -- : BFD_RELOC_AVR_HH8_LDI_PM
4369 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4370 high 8 bit of command address) into 8 bit immediate value of LDI
4373 -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG
4374 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4375 (usually command address) into 8 bit immediate value of SUBI insn.
4377 -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG
4378 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4379 (high 8 bit of 16 bit command address) into 8 bit immediate value
4382 -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG
4383 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4384 (high 6 bit of 22 bit command address) into 8 bit immediate value
4387 -- : BFD_RELOC_AVR_CALL
4388 This is a 32 bit reloc for the AVR that stores 23 bit value into
4391 -- : BFD_RELOC_AVR_LDI
4392 This is a 16 bit reloc for the AVR that stores all needed bits for
4393 absolute addressing with ldi with overflow check to linktime
4395 -- : BFD_RELOC_AVR_6
4396 This is a 6 bit reloc for the AVR that stores offset for ldd/std
4399 -- : BFD_RELOC_AVR_6_ADIW
4400 This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw
4403 -- : BFD_RELOC_390_12
4406 -- : BFD_RELOC_390_GOT12
4409 -- : BFD_RELOC_390_PLT32
4410 32 bit PC relative PLT address.
4412 -- : BFD_RELOC_390_COPY
4413 Copy symbol at runtime.
4415 -- : BFD_RELOC_390_GLOB_DAT
4418 -- : BFD_RELOC_390_JMP_SLOT
4421 -- : BFD_RELOC_390_RELATIVE
4422 Adjust by program base.
4424 -- : BFD_RELOC_390_GOTPC
4425 32 bit PC relative offset to GOT.
4427 -- : BFD_RELOC_390_GOT16
4430 -- : BFD_RELOC_390_PC16DBL
4431 PC relative 16 bit shifted by 1.
4433 -- : BFD_RELOC_390_PLT16DBL
4434 16 bit PC rel. PLT shifted by 1.
4436 -- : BFD_RELOC_390_PC32DBL
4437 PC relative 32 bit shifted by 1.
4439 -- : BFD_RELOC_390_PLT32DBL
4440 32 bit PC rel. PLT shifted by 1.
4442 -- : BFD_RELOC_390_GOTPCDBL
4443 32 bit PC rel. GOT shifted by 1.
4445 -- : BFD_RELOC_390_GOT64
4448 -- : BFD_RELOC_390_PLT64
4449 64 bit PC relative PLT address.
4451 -- : BFD_RELOC_390_GOTENT
4452 32 bit rel. offset to GOT entry.
4454 -- : BFD_RELOC_390_GOTOFF64
4455 64 bit offset to GOT.
4457 -- : BFD_RELOC_390_GOTPLT12
4458 12-bit offset to symbol-entry within GOT, with PLT handling.
4460 -- : BFD_RELOC_390_GOTPLT16
4461 16-bit offset to symbol-entry within GOT, with PLT handling.
4463 -- : BFD_RELOC_390_GOTPLT32
4464 32-bit offset to symbol-entry within GOT, with PLT handling.
4466 -- : BFD_RELOC_390_GOTPLT64
4467 64-bit offset to symbol-entry within GOT, with PLT handling.
4469 -- : BFD_RELOC_390_GOTPLTENT
4470 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
4472 -- : BFD_RELOC_390_PLTOFF16
4473 16-bit rel. offset from the GOT to a PLT entry.
4475 -- : BFD_RELOC_390_PLTOFF32
4476 32-bit rel. offset from the GOT to a PLT entry.
4478 -- : BFD_RELOC_390_PLTOFF64
4479 64-bit rel. offset from the GOT to a PLT entry.
4481 -- : BFD_RELOC_390_TLS_LOAD
4482 -- : BFD_RELOC_390_TLS_GDCALL
4483 -- : BFD_RELOC_390_TLS_LDCALL
4484 -- : BFD_RELOC_390_TLS_GD32
4485 -- : BFD_RELOC_390_TLS_GD64
4486 -- : BFD_RELOC_390_TLS_GOTIE12
4487 -- : BFD_RELOC_390_TLS_GOTIE32
4488 -- : BFD_RELOC_390_TLS_GOTIE64
4489 -- : BFD_RELOC_390_TLS_LDM32
4490 -- : BFD_RELOC_390_TLS_LDM64
4491 -- : BFD_RELOC_390_TLS_IE32
4492 -- : BFD_RELOC_390_TLS_IE64
4493 -- : BFD_RELOC_390_TLS_IEENT
4494 -- : BFD_RELOC_390_TLS_LE32
4495 -- : BFD_RELOC_390_TLS_LE64
4496 -- : BFD_RELOC_390_TLS_LDO32
4497 -- : BFD_RELOC_390_TLS_LDO64
4498 -- : BFD_RELOC_390_TLS_DTPMOD
4499 -- : BFD_RELOC_390_TLS_DTPOFF
4500 -- : BFD_RELOC_390_TLS_TPOFF
4501 s390 tls relocations.
4503 -- : BFD_RELOC_390_20
4504 -- : BFD_RELOC_390_GOT20
4505 -- : BFD_RELOC_390_GOTPLT20
4506 -- : BFD_RELOC_390_TLS_GOTIE20
4507 Long displacement extension.
4509 -- : BFD_RELOC_IP2K_FR9
4510 Scenix IP2K - 9-bit register number / data address
4512 -- : BFD_RELOC_IP2K_BANK
4513 Scenix IP2K - 4-bit register/data bank number
4515 -- : BFD_RELOC_IP2K_ADDR16CJP
4516 Scenix IP2K - low 13 bits of instruction word address
4518 -- : BFD_RELOC_IP2K_PAGE3
4519 Scenix IP2K - high 3 bits of instruction word address
4521 -- : BFD_RELOC_IP2K_LO8DATA
4522 -- : BFD_RELOC_IP2K_HI8DATA
4523 -- : BFD_RELOC_IP2K_EX8DATA
4524 Scenix IP2K - ext/low/high 8 bits of data address
4526 -- : BFD_RELOC_IP2K_LO8INSN
4527 -- : BFD_RELOC_IP2K_HI8INSN
4528 Scenix IP2K - low/high 8 bits of instruction word address
4530 -- : BFD_RELOC_IP2K_PC_SKIP
4531 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
4533 -- : BFD_RELOC_IP2K_TEXT
4534 Scenix IP2K - 16 bit word address in text section.
4536 -- : BFD_RELOC_IP2K_FR_OFFSET
4537 Scenix IP2K - 7-bit sp or dp offset
4539 -- : BFD_RELOC_VPE4KMATH_DATA
4540 -- : BFD_RELOC_VPE4KMATH_INSN
4541 Scenix VPE4K coprocessor - data/insn-space addressing
4543 -- : BFD_RELOC_VTABLE_INHERIT
4544 -- : BFD_RELOC_VTABLE_ENTRY
4545 These two relocations are used by the linker to determine which of
4546 the entries in a C++ virtual function table are actually used.
4547 When the -gc-sections option is given, the linker will zero out
4548 the entries that are not used, so that the code for those
4549 functions need not be included in the output.
4551 VTABLE_INHERIT is a zero-space relocation used to describe to the
4552 linker the inheritance tree of a C++ virtual function table. The
4553 relocation's symbol should be the parent class' vtable, and the
4554 relocation should be located at the child vtable.
4556 VTABLE_ENTRY is a zero-space relocation that describes the use of a
4557 virtual function table entry. The reloc's symbol should refer to
4558 the table of the class mentioned in the code. Off of that base,
4559 an offset describes the entry that is being used. For Rela hosts,
4560 this offset is stored in the reloc's addend. For Rel hosts, we
4561 are forced to put this offset in the reloc's section offset.
4563 -- : BFD_RELOC_IA64_IMM14
4564 -- : BFD_RELOC_IA64_IMM22
4565 -- : BFD_RELOC_IA64_IMM64
4566 -- : BFD_RELOC_IA64_DIR32MSB
4567 -- : BFD_RELOC_IA64_DIR32LSB
4568 -- : BFD_RELOC_IA64_DIR64MSB
4569 -- : BFD_RELOC_IA64_DIR64LSB
4570 -- : BFD_RELOC_IA64_GPREL22
4571 -- : BFD_RELOC_IA64_GPREL64I
4572 -- : BFD_RELOC_IA64_GPREL32MSB
4573 -- : BFD_RELOC_IA64_GPREL32LSB
4574 -- : BFD_RELOC_IA64_GPREL64MSB
4575 -- : BFD_RELOC_IA64_GPREL64LSB
4576 -- : BFD_RELOC_IA64_LTOFF22
4577 -- : BFD_RELOC_IA64_LTOFF64I
4578 -- : BFD_RELOC_IA64_PLTOFF22
4579 -- : BFD_RELOC_IA64_PLTOFF64I
4580 -- : BFD_RELOC_IA64_PLTOFF64MSB
4581 -- : BFD_RELOC_IA64_PLTOFF64LSB
4582 -- : BFD_RELOC_IA64_FPTR64I
4583 -- : BFD_RELOC_IA64_FPTR32MSB
4584 -- : BFD_RELOC_IA64_FPTR32LSB
4585 -- : BFD_RELOC_IA64_FPTR64MSB
4586 -- : BFD_RELOC_IA64_FPTR64LSB
4587 -- : BFD_RELOC_IA64_PCREL21B
4588 -- : BFD_RELOC_IA64_PCREL21BI
4589 -- : BFD_RELOC_IA64_PCREL21M
4590 -- : BFD_RELOC_IA64_PCREL21F
4591 -- : BFD_RELOC_IA64_PCREL22
4592 -- : BFD_RELOC_IA64_PCREL60B
4593 -- : BFD_RELOC_IA64_PCREL64I
4594 -- : BFD_RELOC_IA64_PCREL32MSB
4595 -- : BFD_RELOC_IA64_PCREL32LSB
4596 -- : BFD_RELOC_IA64_PCREL64MSB
4597 -- : BFD_RELOC_IA64_PCREL64LSB
4598 -- : BFD_RELOC_IA64_LTOFF_FPTR22
4599 -- : BFD_RELOC_IA64_LTOFF_FPTR64I
4600 -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB
4601 -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB
4602 -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB
4603 -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB
4604 -- : BFD_RELOC_IA64_SEGREL32MSB
4605 -- : BFD_RELOC_IA64_SEGREL32LSB
4606 -- : BFD_RELOC_IA64_SEGREL64MSB
4607 -- : BFD_RELOC_IA64_SEGREL64LSB
4608 -- : BFD_RELOC_IA64_SECREL32MSB
4609 -- : BFD_RELOC_IA64_SECREL32LSB
4610 -- : BFD_RELOC_IA64_SECREL64MSB
4611 -- : BFD_RELOC_IA64_SECREL64LSB
4612 -- : BFD_RELOC_IA64_REL32MSB
4613 -- : BFD_RELOC_IA64_REL32LSB
4614 -- : BFD_RELOC_IA64_REL64MSB
4615 -- : BFD_RELOC_IA64_REL64LSB
4616 -- : BFD_RELOC_IA64_LTV32MSB
4617 -- : BFD_RELOC_IA64_LTV32LSB
4618 -- : BFD_RELOC_IA64_LTV64MSB
4619 -- : BFD_RELOC_IA64_LTV64LSB
4620 -- : BFD_RELOC_IA64_IPLTMSB
4621 -- : BFD_RELOC_IA64_IPLTLSB
4622 -- : BFD_RELOC_IA64_COPY
4623 -- : BFD_RELOC_IA64_LTOFF22X
4624 -- : BFD_RELOC_IA64_LDXMOV
4625 -- : BFD_RELOC_IA64_TPREL14
4626 -- : BFD_RELOC_IA64_TPREL22
4627 -- : BFD_RELOC_IA64_TPREL64I
4628 -- : BFD_RELOC_IA64_TPREL64MSB
4629 -- : BFD_RELOC_IA64_TPREL64LSB
4630 -- : BFD_RELOC_IA64_LTOFF_TPREL22
4631 -- : BFD_RELOC_IA64_DTPMOD64MSB
4632 -- : BFD_RELOC_IA64_DTPMOD64LSB
4633 -- : BFD_RELOC_IA64_LTOFF_DTPMOD22
4634 -- : BFD_RELOC_IA64_DTPREL14
4635 -- : BFD_RELOC_IA64_DTPREL22
4636 -- : BFD_RELOC_IA64_DTPREL64I
4637 -- : BFD_RELOC_IA64_DTPREL32MSB
4638 -- : BFD_RELOC_IA64_DTPREL32LSB
4639 -- : BFD_RELOC_IA64_DTPREL64MSB
4640 -- : BFD_RELOC_IA64_DTPREL64LSB
4641 -- : BFD_RELOC_IA64_LTOFF_DTPREL22
4642 Intel IA64 Relocations.
4644 -- : BFD_RELOC_M68HC11_HI8
4645 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute
4648 -- : BFD_RELOC_M68HC11_LO8
4649 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute
4652 -- : BFD_RELOC_M68HC11_3B
4653 Motorola 68HC11 reloc. This is the 3 bit of a value.
4655 -- : BFD_RELOC_M68HC11_RL_JUMP
4656 Motorola 68HC11 reloc. This reloc marks the beginning of a
4657 jump/call instruction. It is used for linker relaxation to
4658 correctly identify beginning of instruction and change some
4659 branches to use PC-relative addressing mode.
4661 -- : BFD_RELOC_M68HC11_RL_GROUP
4662 Motorola 68HC11 reloc. This reloc marks a group of several
4663 instructions that gcc generates and for which the linker
4664 relaxation pass can modify and/or remove some of them.
4666 -- : BFD_RELOC_M68HC11_LO16
4667 Motorola 68HC11 reloc. This is the 16-bit lower part of an
4668 address. It is used for 'call' instruction to specify the symbol
4669 address without any special transformation (due to memory bank
4672 -- : BFD_RELOC_M68HC11_PAGE
4673 Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the
4674 page number of an address. It is used by 'call' instruction to
4675 specify the page number of the symbol.
4677 -- : BFD_RELOC_M68HC11_24
4678 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the
4679 address with a 16-bit value and a 8-bit page number. The symbol
4680 address is transformed to follow the 16K memory bank of 68HC12
4681 (seen as mapped in the window).
4683 -- : BFD_RELOC_M68HC12_5B
4684 Motorola 68HC12 reloc. This is the 5 bits of a value.
4686 -- : BFD_RELOC_16C_NUM08
4687 -- : BFD_RELOC_16C_NUM08_C
4688 -- : BFD_RELOC_16C_NUM16
4689 -- : BFD_RELOC_16C_NUM16_C
4690 -- : BFD_RELOC_16C_NUM32
4691 -- : BFD_RELOC_16C_NUM32_C
4692 -- : BFD_RELOC_16C_DISP04
4693 -- : BFD_RELOC_16C_DISP04_C
4694 -- : BFD_RELOC_16C_DISP08
4695 -- : BFD_RELOC_16C_DISP08_C
4696 -- : BFD_RELOC_16C_DISP16
4697 -- : BFD_RELOC_16C_DISP16_C
4698 -- : BFD_RELOC_16C_DISP24
4699 -- : BFD_RELOC_16C_DISP24_C
4700 -- : BFD_RELOC_16C_DISP24a
4701 -- : BFD_RELOC_16C_DISP24a_C
4702 -- : BFD_RELOC_16C_REG04
4703 -- : BFD_RELOC_16C_REG04_C
4704 -- : BFD_RELOC_16C_REG04a
4705 -- : BFD_RELOC_16C_REG04a_C
4706 -- : BFD_RELOC_16C_REG14
4707 -- : BFD_RELOC_16C_REG14_C
4708 -- : BFD_RELOC_16C_REG16
4709 -- : BFD_RELOC_16C_REG16_C
4710 -- : BFD_RELOC_16C_REG20
4711 -- : BFD_RELOC_16C_REG20_C
4712 -- : BFD_RELOC_16C_ABS20
4713 -- : BFD_RELOC_16C_ABS20_C
4714 -- : BFD_RELOC_16C_ABS24
4715 -- : BFD_RELOC_16C_ABS24_C
4716 -- : BFD_RELOC_16C_IMM04
4717 -- : BFD_RELOC_16C_IMM04_C
4718 -- : BFD_RELOC_16C_IMM16
4719 -- : BFD_RELOC_16C_IMM16_C
4720 -- : BFD_RELOC_16C_IMM20
4721 -- : BFD_RELOC_16C_IMM20_C
4722 -- : BFD_RELOC_16C_IMM24
4723 -- : BFD_RELOC_16C_IMM24_C
4724 -- : BFD_RELOC_16C_IMM32
4725 -- : BFD_RELOC_16C_IMM32_C
4726 NS CR16C Relocations.
4728 -- : BFD_RELOC_CRX_REL4
4729 -- : BFD_RELOC_CRX_REL8
4730 -- : BFD_RELOC_CRX_REL8_CMP
4731 -- : BFD_RELOC_CRX_REL16
4732 -- : BFD_RELOC_CRX_REL24
4733 -- : BFD_RELOC_CRX_REL32
4734 -- : BFD_RELOC_CRX_REGREL12
4735 -- : BFD_RELOC_CRX_REGREL22
4736 -- : BFD_RELOC_CRX_REGREL28
4737 -- : BFD_RELOC_CRX_REGREL32
4738 -- : BFD_RELOC_CRX_ABS16
4739 -- : BFD_RELOC_CRX_ABS32
4740 -- : BFD_RELOC_CRX_NUM8
4741 -- : BFD_RELOC_CRX_NUM16
4742 -- : BFD_RELOC_CRX_NUM32
4743 -- : BFD_RELOC_CRX_IMM16
4744 -- : BFD_RELOC_CRX_IMM32
4745 -- : BFD_RELOC_CRX_SWITCH8
4746 -- : BFD_RELOC_CRX_SWITCH16
4747 -- : BFD_RELOC_CRX_SWITCH32
4750 -- : BFD_RELOC_CRIS_BDISP8
4751 -- : BFD_RELOC_CRIS_UNSIGNED_5
4752 -- : BFD_RELOC_CRIS_SIGNED_6
4753 -- : BFD_RELOC_CRIS_UNSIGNED_6
4754 -- : BFD_RELOC_CRIS_SIGNED_8
4755 -- : BFD_RELOC_CRIS_UNSIGNED_8
4756 -- : BFD_RELOC_CRIS_SIGNED_16
4757 -- : BFD_RELOC_CRIS_UNSIGNED_16
4758 -- : BFD_RELOC_CRIS_LAPCQ_OFFSET
4759 -- : BFD_RELOC_CRIS_UNSIGNED_4
4760 These relocs are only used within the CRIS assembler. They are not
4761 (at present) written to any object files.
4763 -- : BFD_RELOC_CRIS_COPY
4764 -- : BFD_RELOC_CRIS_GLOB_DAT
4765 -- : BFD_RELOC_CRIS_JUMP_SLOT
4766 -- : BFD_RELOC_CRIS_RELATIVE
4767 Relocs used in ELF shared libraries for CRIS.
4769 -- : BFD_RELOC_CRIS_32_GOT
4770 32-bit offset to symbol-entry within GOT.
4772 -- : BFD_RELOC_CRIS_16_GOT
4773 16-bit offset to symbol-entry within GOT.
4775 -- : BFD_RELOC_CRIS_32_GOTPLT
4776 32-bit offset to symbol-entry within GOT, with PLT handling.
4778 -- : BFD_RELOC_CRIS_16_GOTPLT
4779 16-bit offset to symbol-entry within GOT, with PLT handling.
4781 -- : BFD_RELOC_CRIS_32_GOTREL
4782 32-bit offset to symbol, relative to GOT.
4784 -- : BFD_RELOC_CRIS_32_PLT_GOTREL
4785 32-bit offset to symbol with PLT entry, relative to GOT.
4787 -- : BFD_RELOC_CRIS_32_PLT_PCREL
4788 32-bit offset to symbol with PLT entry, relative to this
4791 -- : BFD_RELOC_860_COPY
4792 -- : BFD_RELOC_860_GLOB_DAT
4793 -- : BFD_RELOC_860_JUMP_SLOT
4794 -- : BFD_RELOC_860_RELATIVE
4795 -- : BFD_RELOC_860_PC26
4796 -- : BFD_RELOC_860_PLT26
4797 -- : BFD_RELOC_860_PC16
4798 -- : BFD_RELOC_860_LOW0
4799 -- : BFD_RELOC_860_SPLIT0
4800 -- : BFD_RELOC_860_LOW1
4801 -- : BFD_RELOC_860_SPLIT1
4802 -- : BFD_RELOC_860_LOW2
4803 -- : BFD_RELOC_860_SPLIT2
4804 -- : BFD_RELOC_860_LOW3
4805 -- : BFD_RELOC_860_LOGOT0
4806 -- : BFD_RELOC_860_SPGOT0
4807 -- : BFD_RELOC_860_LOGOT1
4808 -- : BFD_RELOC_860_SPGOT1
4809 -- : BFD_RELOC_860_LOGOTOFF0
4810 -- : BFD_RELOC_860_SPGOTOFF0
4811 -- : BFD_RELOC_860_LOGOTOFF1
4812 -- : BFD_RELOC_860_SPGOTOFF1
4813 -- : BFD_RELOC_860_LOGOTOFF2
4814 -- : BFD_RELOC_860_LOGOTOFF3
4815 -- : BFD_RELOC_860_LOPC
4816 -- : BFD_RELOC_860_HIGHADJ
4817 -- : BFD_RELOC_860_HAGOT
4818 -- : BFD_RELOC_860_HAGOTOFF
4819 -- : BFD_RELOC_860_HAPC
4820 -- : BFD_RELOC_860_HIGH
4821 -- : BFD_RELOC_860_HIGOT
4822 -- : BFD_RELOC_860_HIGOTOFF
4823 Intel i860 Relocations.
4825 -- : BFD_RELOC_OPENRISC_ABS_26
4826 -- : BFD_RELOC_OPENRISC_REL_26
4827 OpenRISC Relocations.
4829 -- : BFD_RELOC_H8_DIR16A8
4830 -- : BFD_RELOC_H8_DIR16R8
4831 -- : BFD_RELOC_H8_DIR24A8
4832 -- : BFD_RELOC_H8_DIR24R8
4833 -- : BFD_RELOC_H8_DIR32A16
4836 -- : BFD_RELOC_XSTORMY16_REL_12
4837 -- : BFD_RELOC_XSTORMY16_12
4838 -- : BFD_RELOC_XSTORMY16_24
4839 -- : BFD_RELOC_XSTORMY16_FPTR16
4840 Sony Xstormy16 Relocations.
4842 -- : BFD_RELOC_XC16X_PAG
4843 -- : BFD_RELOC_XC16X_POF
4844 -- : BFD_RELOC_XC16X_SEG
4845 -- : BFD_RELOC_XC16X_SOF
4846 Infineon Relocations.
4848 -- : BFD_RELOC_VAX_GLOB_DAT
4849 -- : BFD_RELOC_VAX_JMP_SLOT
4850 -- : BFD_RELOC_VAX_RELATIVE
4851 Relocations used by VAX ELF.
4853 -- : BFD_RELOC_MT_PC16
4854 Morpho MT - 16 bit immediate relocation.
4856 -- : BFD_RELOC_MT_HI16
4857 Morpho MT - Hi 16 bits of an address.
4859 -- : BFD_RELOC_MT_LO16
4860 Morpho MT - Low 16 bits of an address.
4862 -- : BFD_RELOC_MT_GNU_VTINHERIT
4863 Morpho MT - Used to tell the linker which vtable entries are used.
4865 -- : BFD_RELOC_MT_GNU_VTENTRY
4866 Morpho MT - Used to tell the linker which vtable entries are used.
4868 -- : BFD_RELOC_MT_PCINSN8
4869 Morpho MT - 8 bit immediate relocation.
4871 -- : BFD_RELOC_MSP430_10_PCREL
4872 -- : BFD_RELOC_MSP430_16_PCREL
4873 -- : BFD_RELOC_MSP430_16
4874 -- : BFD_RELOC_MSP430_16_PCREL_BYTE
4875 -- : BFD_RELOC_MSP430_16_BYTE
4876 -- : BFD_RELOC_MSP430_2X_PCREL
4877 -- : BFD_RELOC_MSP430_RL_PCREL
4878 msp430 specific relocation codes
4880 -- : BFD_RELOC_IQ2000_OFFSET_16
4881 -- : BFD_RELOC_IQ2000_OFFSET_21
4882 -- : BFD_RELOC_IQ2000_UHI16
4885 -- : BFD_RELOC_XTENSA_RTLD
4886 Special Xtensa relocation used only by PLT entries in ELF shared
4887 objects to indicate that the runtime linker should set the value
4888 to one of its own internal functions or data structures.
4890 -- : BFD_RELOC_XTENSA_GLOB_DAT
4891 -- : BFD_RELOC_XTENSA_JMP_SLOT
4892 -- : BFD_RELOC_XTENSA_RELATIVE
4893 Xtensa relocations for ELF shared objects.
4895 -- : BFD_RELOC_XTENSA_PLT
4896 Xtensa relocation used in ELF object files for symbols that may
4897 require PLT entries. Otherwise, this is just a generic 32-bit
4900 -- : BFD_RELOC_XTENSA_DIFF8
4901 -- : BFD_RELOC_XTENSA_DIFF16
4902 -- : BFD_RELOC_XTENSA_DIFF32
4903 Xtensa relocations to mark the difference of two local symbols.
4904 These are only needed to support linker relaxation and can be
4905 ignored when not relaxing. The field is set to the value of the
4906 difference assuming no relaxation. The relocation encodes the
4907 position of the first symbol so the linker can determine whether
4908 to adjust the field value.
4910 -- : BFD_RELOC_XTENSA_SLOT0_OP
4911 -- : BFD_RELOC_XTENSA_SLOT1_OP
4912 -- : BFD_RELOC_XTENSA_SLOT2_OP
4913 -- : BFD_RELOC_XTENSA_SLOT3_OP
4914 -- : BFD_RELOC_XTENSA_SLOT4_OP
4915 -- : BFD_RELOC_XTENSA_SLOT5_OP
4916 -- : BFD_RELOC_XTENSA_SLOT6_OP
4917 -- : BFD_RELOC_XTENSA_SLOT7_OP
4918 -- : BFD_RELOC_XTENSA_SLOT8_OP
4919 -- : BFD_RELOC_XTENSA_SLOT9_OP
4920 -- : BFD_RELOC_XTENSA_SLOT10_OP
4921 -- : BFD_RELOC_XTENSA_SLOT11_OP
4922 -- : BFD_RELOC_XTENSA_SLOT12_OP
4923 -- : BFD_RELOC_XTENSA_SLOT13_OP
4924 -- : BFD_RELOC_XTENSA_SLOT14_OP
4925 Generic Xtensa relocations for instruction operands. Only the slot
4926 number is encoded in the relocation. The relocation applies to the
4927 last PC-relative immediate operand, or if there are no PC-relative
4928 immediates, to the last immediate operand.
4930 -- : BFD_RELOC_XTENSA_SLOT0_ALT
4931 -- : BFD_RELOC_XTENSA_SLOT1_ALT
4932 -- : BFD_RELOC_XTENSA_SLOT2_ALT
4933 -- : BFD_RELOC_XTENSA_SLOT3_ALT
4934 -- : BFD_RELOC_XTENSA_SLOT4_ALT
4935 -- : BFD_RELOC_XTENSA_SLOT5_ALT
4936 -- : BFD_RELOC_XTENSA_SLOT6_ALT
4937 -- : BFD_RELOC_XTENSA_SLOT7_ALT
4938 -- : BFD_RELOC_XTENSA_SLOT8_ALT
4939 -- : BFD_RELOC_XTENSA_SLOT9_ALT
4940 -- : BFD_RELOC_XTENSA_SLOT10_ALT
4941 -- : BFD_RELOC_XTENSA_SLOT11_ALT
4942 -- : BFD_RELOC_XTENSA_SLOT12_ALT
4943 -- : BFD_RELOC_XTENSA_SLOT13_ALT
4944 -- : BFD_RELOC_XTENSA_SLOT14_ALT
4945 Alternate Xtensa relocations. Only the slot is encoded in the
4946 relocation. The meaning of these relocations is opcode-specific.
4948 -- : BFD_RELOC_XTENSA_OP0
4949 -- : BFD_RELOC_XTENSA_OP1
4950 -- : BFD_RELOC_XTENSA_OP2
4951 Xtensa relocations for backward compatibility. These have all been
4952 replaced by BFD_RELOC_XTENSA_SLOT0_OP.
4954 -- : BFD_RELOC_XTENSA_ASM_EXPAND
4955 Xtensa relocation to mark that the assembler expanded the
4956 instructions from an original target. The expansion size is
4957 encoded in the reloc size.
4959 -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY
4960 Xtensa relocation to mark that the linker should simplify
4961 assembler-expanded instructions. This is commonly used internally
4962 by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
4964 -- : BFD_RELOC_Z80_DISP8
4965 8 bit signed offset in (ix+d) or (iy+d).
4967 -- : BFD_RELOC_Z8K_DISP7
4970 -- : BFD_RELOC_Z8K_CALLR
4973 -- : BFD_RELOC_Z8K_IMM4L
4977 typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
4979 2.10.2.2 `bfd_reloc_type_lookup'
4980 ................................
4983 reloc_howto_type *bfd_reloc_type_lookup
4984 (bfd *abfd, bfd_reloc_code_real_type code);
4986 Return a pointer to a howto structure which, when invoked, will perform
4987 the relocation CODE on data from the architecture noted.
4989 2.10.2.3 `bfd_default_reloc_type_lookup'
4990 ........................................
4993 reloc_howto_type *bfd_default_reloc_type_lookup
4994 (bfd *abfd, bfd_reloc_code_real_type code);
4996 Provides a default relocation lookup routine for any architecture.
4998 2.10.2.4 `bfd_get_reloc_code_name'
4999 ..................................
5002 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
5004 Provides a printable name for the supplied relocation code. Useful
5005 mainly for printing error messages.
5007 2.10.2.5 `bfd_generic_relax_section'
5008 ....................................
5011 bfd_boolean bfd_generic_relax_section
5014 struct bfd_link_info *,
5017 Provides default handling for relaxing for back ends which don't do
5020 2.10.2.6 `bfd_generic_gc_sections'
5021 ..................................
5024 bfd_boolean bfd_generic_gc_sections
5025 (bfd *, struct bfd_link_info *);
5027 Provides default handling for relaxing for back ends which don't do
5028 section gc - i.e., does nothing.
5030 2.10.2.7 `bfd_generic_merge_sections'
5031 .....................................
5034 bfd_boolean bfd_generic_merge_sections
5035 (bfd *, struct bfd_link_info *);
5037 Provides default handling for SEC_MERGE section merging for back ends
5038 which don't have SEC_MERGE support - i.e., does nothing.
5040 2.10.2.8 `bfd_generic_get_relocated_section_contents'
5041 .....................................................
5044 bfd_byte *bfd_generic_get_relocated_section_contents
5046 struct bfd_link_info *link_info,
5047 struct bfd_link_order *link_order,
5049 bfd_boolean relocatable,
5052 Provides default handling of relocation effort for back ends which
5053 can't be bothered to do it efficiently.
5056 File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end
5061 2.11.1 Core file functions
5062 --------------------------
5065 These are functions pertaining to core files.
5067 2.11.1.1 `bfd_core_file_failing_command'
5068 ........................................
5071 const char *bfd_core_file_failing_command (bfd *abfd);
5073 Return a read-only string explaining which program was running when it
5074 failed and produced the core file ABFD.
5076 2.11.1.2 `bfd_core_file_failing_signal'
5077 .......................................
5080 int bfd_core_file_failing_signal (bfd *abfd);
5082 Returns the signal number which caused the core dump which generated
5083 the file the BFD ABFD is attached to.
5085 2.11.1.3 `core_file_matches_executable_p'
5086 .........................................
5089 bfd_boolean core_file_matches_executable_p
5090 (bfd *core_bfd, bfd *exec_bfd);
5092 Return `TRUE' if the core file attached to CORE_BFD was generated by a
5093 run of the executable file attached to EXEC_BFD, `FALSE' otherwise.
5095 2.11.1.4 `generic_core_file_matches_executable_p'
5096 .................................................
5099 bfd_boolean generic_core_file_matches_executable_p
5100 (bfd *core_bfd, bfd *exec_bfd);
5102 Return TRUE if the core file attached to CORE_BFD was generated by a
5103 run of the executable file attached to EXEC_BFD. The match is based on
5104 executable basenames only.
5106 Note: When not able to determine the core file failing command or
5107 the executable name, we still return TRUE even though we're not sure
5108 that core file and executable match. This is to avoid generating a
5109 false warning in situations where we really don't know whether they
5113 File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end
5119 Each port of BFD to a different machine requires the creation of a
5120 target back end. All the back end provides to the root part of BFD is a
5121 structure containing pointers to functions which perform certain low
5122 level operations on files. BFD translates the applications's requests
5123 through a pointer into calls to the back end routines.
5125 When a file is opened with `bfd_openr', its format and target are
5126 unknown. BFD uses various mechanisms to determine how to interpret the
5127 file. The operations performed are:
5129 * Create a BFD by calling the internal routine `_bfd_new_bfd', then
5130 call `bfd_find_target' with the target string supplied to
5131 `bfd_openr' and the new BFD pointer.
5133 * If a null target string was provided to `bfd_find_target', look up
5134 the environment variable `GNUTARGET' and use that as the target
5137 * If the target string is still `NULL', or the target string is
5138 `default', then use the first item in the target vector as the
5139 target type, and set `target_defaulted' in the BFD to cause
5140 `bfd_check_format' to loop through all the targets. *Note
5141 bfd_target::. *Note Formats::.
5143 * Otherwise, inspect the elements in the target vector one by one,
5144 until a match on target name is found. When found, use it.
5146 * Otherwise return the error `bfd_error_invalid_target' to
5149 * `bfd_openr' attempts to open the file using `bfd_open_file', and
5151 Once the BFD has been opened and the target selected, the file
5152 format may be determined. This is done by calling `bfd_check_format' on
5153 the BFD with a suggested format. If `target_defaulted' has been set,
5154 each possible target type is tried to see if it recognizes the
5155 specified format. `bfd_check_format' returns `TRUE' when the caller
5163 File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets
5169 This structure contains everything that BFD knows about a target. It
5170 includes things like its byte order, name, and which routines to call
5171 to do various operations.
5173 Every BFD points to a target structure with its `xvec' member.
5175 The macros below are used to dispatch to functions through the
5176 `bfd_target' vector. They are used in a number of macros further down
5177 in `bfd.h', and are also used when calling various routines by hand
5178 inside the BFD implementation. The ARGLIST argument must be
5179 parenthesized; it contains all the arguments to the called function.
5181 They make the documentation (more) unpleasant to read, so if someone
5182 wants to fix this and not break the above, please do.
5183 #define BFD_SEND(bfd, message, arglist) \
5184 ((*((bfd)->xvec->message)) arglist)
5186 #ifdef DEBUG_BFD_SEND
5188 #define BFD_SEND(bfd, message, arglist) \
5189 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5190 ((*((bfd)->xvec->message)) arglist) : \
5191 (bfd_assert (__FILE__,__LINE__), NULL))
5193 For operations which index on the BFD format:
5194 #define BFD_SEND_FMT(bfd, message, arglist) \
5195 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)
5197 #ifdef DEBUG_BFD_SEND
5199 #define BFD_SEND_FMT(bfd, message, arglist) \
5200 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5201 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
5202 (bfd_assert (__FILE__,__LINE__), NULL))
5204 This is the structure which defines the type of BFD this is. The
5205 `xvec' member of the struct `bfd' itself points here. Each module that
5206 implements access to a different target under BFD, defines one of these.
5208 FIXME, these names should be rationalised with the names of the
5209 entry points which call them. Too bad we can't have one macro to define
5213 bfd_target_unknown_flavour,
5214 bfd_target_aout_flavour,
5215 bfd_target_coff_flavour,
5216 bfd_target_ecoff_flavour,
5217 bfd_target_xcoff_flavour,
5218 bfd_target_elf_flavour,
5219 bfd_target_ieee_flavour,
5220 bfd_target_nlm_flavour,
5221 bfd_target_oasys_flavour,
5222 bfd_target_tekhex_flavour,
5223 bfd_target_srec_flavour,
5224 bfd_target_ihex_flavour,
5225 bfd_target_som_flavour,
5226 bfd_target_os9k_flavour,
5227 bfd_target_versados_flavour,
5228 bfd_target_msdos_flavour,
5229 bfd_target_ovax_flavour,
5230 bfd_target_evax_flavour,
5231 bfd_target_mmo_flavour,
5232 bfd_target_mach_o_flavour,
5233 bfd_target_pef_flavour,
5234 bfd_target_pef_xlib_flavour,
5235 bfd_target_sym_flavour
5238 enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
5240 /* Forward declaration. */
5241 typedef struct bfd_link_info _bfd_link_info;
5243 typedef struct bfd_target
5245 /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
5248 /* The "flavour" of a back end is a general indication about
5249 the contents of a file. */
5250 enum bfd_flavour flavour;
5252 /* The order of bytes within the data area of a file. */
5253 enum bfd_endian byteorder;
5255 /* The order of bytes within the header parts of a file. */
5256 enum bfd_endian header_byteorder;
5258 /* A mask of all the flags which an executable may have set -
5259 from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */
5260 flagword object_flags;
5262 /* A mask of all the flags which a section may have set - from
5263 the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */
5264 flagword section_flags;
5266 /* The character normally found at the front of a symbol.
5267 (if any), perhaps `_'. */
5268 char symbol_leading_char;
5270 /* The pad character for file names within an archive header. */
5273 /* The maximum number of characters in an archive header. */
5274 unsigned short ar_max_namelen;
5276 /* Entries for byte swapping for data. These are different from the
5277 other entry points, since they don't take a BFD as the first argument.
5278 Certain other handlers could do the same. */
5279 bfd_uint64_t (*bfd_getx64) (const void *);
5280 bfd_int64_t (*bfd_getx_signed_64) (const void *);
5281 void (*bfd_putx64) (bfd_uint64_t, void *);
5282 bfd_vma (*bfd_getx32) (const void *);
5283 bfd_signed_vma (*bfd_getx_signed_32) (const void *);
5284 void (*bfd_putx32) (bfd_vma, void *);
5285 bfd_vma (*bfd_getx16) (const void *);
5286 bfd_signed_vma (*bfd_getx_signed_16) (const void *);
5287 void (*bfd_putx16) (bfd_vma, void *);
5289 /* Byte swapping for the headers. */
5290 bfd_uint64_t (*bfd_h_getx64) (const void *);
5291 bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
5292 void (*bfd_h_putx64) (bfd_uint64_t, void *);
5293 bfd_vma (*bfd_h_getx32) (const void *);
5294 bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
5295 void (*bfd_h_putx32) (bfd_vma, void *);
5296 bfd_vma (*bfd_h_getx16) (const void *);
5297 bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
5298 void (*bfd_h_putx16) (bfd_vma, void *);
5300 /* Format dependent routines: these are vectors of entry points
5301 within the target vector structure, one for each format to check. */
5303 /* Check the format of a file being read. Return a `bfd_target *' or zero. */
5304 const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);
5306 /* Set the format of a file being written. */
5307 bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);
5309 /* Write cached information into a file being written, at `bfd_close'. */
5310 bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);
5311 The general target vector. These vectors are initialized using the
5312 BFD_JUMP_TABLE macros.
5314 /* Generic entry points. */
5315 #define BFD_JUMP_TABLE_GENERIC(NAME) \
5316 NAME##_close_and_cleanup, \
5317 NAME##_bfd_free_cached_info, \
5318 NAME##_new_section_hook, \
5319 NAME##_get_section_contents, \
5320 NAME##_get_section_contents_in_window
5322 /* Called when the BFD is being closed to do any necessary cleanup. */
5323 bfd_boolean (*_close_and_cleanup) (bfd *);
5324 /* Ask the BFD to free all cached information. */
5325 bfd_boolean (*_bfd_free_cached_info) (bfd *);
5326 /* Called when a new section is created. */
5327 bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
5328 /* Read the contents of a section. */
5329 bfd_boolean (*_bfd_get_section_contents)
5330 (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
5331 bfd_boolean (*_bfd_get_section_contents_in_window)
5332 (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);
5334 /* Entry points to copy private data. */
5335 #define BFD_JUMP_TABLE_COPY(NAME) \
5336 NAME##_bfd_copy_private_bfd_data, \
5337 NAME##_bfd_merge_private_bfd_data, \
5338 _bfd_generic_init_private_section_data, \
5339 NAME##_bfd_copy_private_section_data, \
5340 NAME##_bfd_copy_private_symbol_data, \
5341 NAME##_bfd_copy_private_header_data, \
5342 NAME##_bfd_set_private_flags, \
5343 NAME##_bfd_print_private_bfd_data
5345 /* Called to copy BFD general private data from one object file
5347 bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
5348 /* Called to merge BFD general private data from one object file
5349 to a common output file when linking. */
5350 bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
5351 /* Called to initialize BFD private section data from one object file
5353 #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
5354 BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
5355 bfd_boolean (*_bfd_init_private_section_data)
5356 (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
5357 /* Called to copy BFD private section data from one object file
5359 bfd_boolean (*_bfd_copy_private_section_data)
5360 (bfd *, sec_ptr, bfd *, sec_ptr);
5361 /* Called to copy BFD private symbol data from one symbol
5363 bfd_boolean (*_bfd_copy_private_symbol_data)
5364 (bfd *, asymbol *, bfd *, asymbol *);
5365 /* Called to copy BFD private header data from one object file
5367 bfd_boolean (*_bfd_copy_private_header_data)
5369 /* Called to set private backend flags. */
5370 bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);
5372 /* Called to print private BFD data. */
5373 bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);
5375 /* Core file entry points. */
5376 #define BFD_JUMP_TABLE_CORE(NAME) \
5377 NAME##_core_file_failing_command, \
5378 NAME##_core_file_failing_signal, \
5379 NAME##_core_file_matches_executable_p
5381 char * (*_core_file_failing_command) (bfd *);
5382 int (*_core_file_failing_signal) (bfd *);
5383 bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
5385 /* Archive entry points. */
5386 #define BFD_JUMP_TABLE_ARCHIVE(NAME) \
5387 NAME##_slurp_armap, \
5388 NAME##_slurp_extended_name_table, \
5389 NAME##_construct_extended_name_table, \
5390 NAME##_truncate_arname, \
5391 NAME##_write_armap, \
5392 NAME##_read_ar_hdr, \
5393 NAME##_openr_next_archived_file, \
5394 NAME##_get_elt_at_index, \
5395 NAME##_generic_stat_arch_elt, \
5396 NAME##_update_armap_timestamp
5398 bfd_boolean (*_bfd_slurp_armap) (bfd *);
5399 bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
5400 bfd_boolean (*_bfd_construct_extended_name_table)
5401 (bfd *, char **, bfd_size_type *, const char **);
5402 void (*_bfd_truncate_arname) (bfd *, const char *, char *);
5403 bfd_boolean (*write_armap)
5404 (bfd *, unsigned int, struct orl *, unsigned int, int);
5405 void * (*_bfd_read_ar_hdr_fn) (bfd *);
5406 bfd * (*openr_next_archived_file) (bfd *, bfd *);
5407 #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
5408 bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
5409 int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
5410 bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);
5412 /* Entry points used for symbols. */
5413 #define BFD_JUMP_TABLE_SYMBOLS(NAME) \
5414 NAME##_get_symtab_upper_bound, \
5415 NAME##_canonicalize_symtab, \
5416 NAME##_make_empty_symbol, \
5417 NAME##_print_symbol, \
5418 NAME##_get_symbol_info, \
5419 NAME##_bfd_is_local_label_name, \
5420 NAME##_bfd_is_target_special_symbol, \
5421 NAME##_get_lineno, \
5422 NAME##_find_nearest_line, \
5423 _bfd_generic_find_line, \
5424 NAME##_find_inliner_info, \
5425 NAME##_bfd_make_debug_symbol, \
5426 NAME##_read_minisymbols, \
5427 NAME##_minisymbol_to_symbol
5429 long (*_bfd_get_symtab_upper_bound) (bfd *);
5430 long (*_bfd_canonicalize_symtab)
5431 (bfd *, struct bfd_symbol **);
5433 (*_bfd_make_empty_symbol) (bfd *);
5434 void (*_bfd_print_symbol)
5435 (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
5436 #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
5437 void (*_bfd_get_symbol_info)
5438 (bfd *, struct bfd_symbol *, symbol_info *);
5439 #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
5440 bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
5441 bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
5442 alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
5443 bfd_boolean (*_bfd_find_nearest_line)
5444 (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
5445 const char **, const char **, unsigned int *);
5446 bfd_boolean (*_bfd_find_line)
5447 (bfd *, struct bfd_symbol **, struct bfd_symbol *,
5448 const char **, unsigned int *);
5449 bfd_boolean (*_bfd_find_inliner_info)
5450 (bfd *, const char **, const char **, unsigned int *);
5451 /* Back-door to allow format-aware applications to create debug symbols
5452 while using BFD for everything else. Currently used by the assembler
5453 when creating COFF files. */
5454 asymbol * (*_bfd_make_debug_symbol)
5455 (bfd *, void *, unsigned long size);
5456 #define bfd_read_minisymbols(b, d, m, s) \
5457 BFD_SEND (b, _read_minisymbols, (b, d, m, s))
5458 long (*_read_minisymbols)
5459 (bfd *, bfd_boolean, void **, unsigned int *);
5460 #define bfd_minisymbol_to_symbol(b, d, m, f) \
5461 BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
5462 asymbol * (*_minisymbol_to_symbol)
5463 (bfd *, bfd_boolean, const void *, asymbol *);
5465 /* Routines for relocs. */
5466 #define BFD_JUMP_TABLE_RELOCS(NAME) \
5467 NAME##_get_reloc_upper_bound, \
5468 NAME##_canonicalize_reloc, \
5469 NAME##_bfd_reloc_type_lookup
5471 long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
5472 long (*_bfd_canonicalize_reloc)
5473 (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
5474 /* See documentation on reloc types. */
5476 (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
5478 /* Routines used when writing an object file. */
5479 #define BFD_JUMP_TABLE_WRITE(NAME) \
5480 NAME##_set_arch_mach, \
5481 NAME##_set_section_contents
5483 bfd_boolean (*_bfd_set_arch_mach)
5484 (bfd *, enum bfd_architecture, unsigned long);
5485 bfd_boolean (*_bfd_set_section_contents)
5486 (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);
5488 /* Routines used by the linker. */
5489 #define BFD_JUMP_TABLE_LINK(NAME) \
5490 NAME##_sizeof_headers, \
5491 NAME##_bfd_get_relocated_section_contents, \
5492 NAME##_bfd_relax_section, \
5493 NAME##_bfd_link_hash_table_create, \
5494 NAME##_bfd_link_hash_table_free, \
5495 NAME##_bfd_link_add_symbols, \
5496 NAME##_bfd_link_just_syms, \
5497 NAME##_bfd_final_link, \
5498 NAME##_bfd_link_split_section, \
5499 NAME##_bfd_gc_sections, \
5500 NAME##_bfd_merge_sections, \
5501 NAME##_bfd_is_group_section, \
5502 NAME##_bfd_discard_group, \
5503 NAME##_section_already_linked \
5505 int (*_bfd_sizeof_headers) (bfd *, bfd_boolean);
5506 bfd_byte * (*_bfd_get_relocated_section_contents)
5507 (bfd *, struct bfd_link_info *, struct bfd_link_order *,
5508 bfd_byte *, bfd_boolean, struct bfd_symbol **);
5510 bfd_boolean (*_bfd_relax_section)
5511 (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);
5513 /* Create a hash table for the linker. Different backends store
5514 different information in this table. */
5515 struct bfd_link_hash_table *
5516 (*_bfd_link_hash_table_create) (bfd *);
5518 /* Release the memory associated with the linker hash table. */
5519 void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);
5521 /* Add symbols from this object file into the hash table. */
5522 bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);
5524 /* Indicate that we are only retrieving symbol values from this section. */
5525 void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);
5527 /* Do a link based on the link_order structures attached to each
5528 section of the BFD. */
5529 bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);
5531 /* Should this section be split up into smaller pieces during linking. */
5532 bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);
5534 /* Remove sections that are not referenced from the output. */
5535 bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);
5537 /* Attempt to merge SEC_MERGE sections. */
5538 bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);
5540 /* Is this section a member of a group? */
5541 bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);
5543 /* Discard members of a group. */
5544 bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);
5546 /* Check if SEC has been already linked during a reloceatable or
5548 void (*_section_already_linked) (bfd *, struct bfd_section *);
5550 /* Routines to handle dynamic symbols and relocs. */
5551 #define BFD_JUMP_TABLE_DYNAMIC(NAME) \
5552 NAME##_get_dynamic_symtab_upper_bound, \
5553 NAME##_canonicalize_dynamic_symtab, \
5554 NAME##_get_synthetic_symtab, \
5555 NAME##_get_dynamic_reloc_upper_bound, \
5556 NAME##_canonicalize_dynamic_reloc
5558 /* Get the amount of memory required to hold the dynamic symbols. */
5559 long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
5560 /* Read in the dynamic symbols. */
5561 long (*_bfd_canonicalize_dynamic_symtab)
5562 (bfd *, struct bfd_symbol **);
5563 /* Create synthetized symbols. */
5564 long (*_bfd_get_synthetic_symtab)
5565 (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
5566 struct bfd_symbol **);
5567 /* Get the amount of memory required to hold the dynamic relocs. */
5568 long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
5569 /* Read in the dynamic relocs. */
5570 long (*_bfd_canonicalize_dynamic_reloc)
5571 (bfd *, arelent **, struct bfd_symbol **);
5572 A pointer to an alternative bfd_target in case the current one is not
5573 satisfactory. This can happen when the target cpu supports both big
5574 and little endian code, and target chosen by the linker has the wrong
5575 endianness. The function open_output() in ld/ldlang.c uses this field
5576 to find an alternative output format that is suitable.
5577 /* Opposite endian version of this target. */
5578 const struct bfd_target * alternative_target;
5580 /* Data for use by back-end routines, which isn't
5581 generic enough to belong in this structure. */
5582 const void *backend_data;
5586 2.12.1.1 `bfd_set_default_target'
5587 .................................
5590 bfd_boolean bfd_set_default_target (const char *name);
5592 Set the default target vector to use when recognizing a BFD. This
5593 takes the name of the target, which may be a BFD target name or a
5594 configuration triplet.
5596 2.12.1.2 `bfd_find_target'
5597 ..........................
5600 const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
5602 Return a pointer to the transfer vector for the object target named
5603 TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the
5604 environment variable `GNUTARGET'; if that is null or not defined, then
5605 choose the first entry in the target list. Passing in the string
5606 "default" or setting the environment variable to "default" will cause
5607 the first entry in the target list to be returned, and
5608 "target_defaulted" will be set in the BFD. This causes
5609 `bfd_check_format' to loop over all the targets to find the one that
5610 matches the file being read.
5612 2.12.1.3 `bfd_target_list'
5613 ..........................
5616 const char ** bfd_target_list (void);
5618 Return a freshly malloced NULL-terminated vector of the names of all
5619 the valid BFD targets. Do not modify the names.
5621 2.12.1.4 `bfd_seach_for_target'
5622 ...............................
5625 const bfd_target *bfd_search_for_target
5626 (int (*search_func) (const bfd_target *, void *),
5629 Return a pointer to the first transfer vector in the list of transfer
5630 vectors maintained by BFD that produces a non-zero result when passed
5631 to the function SEARCH_FUNC. The parameter DATA is passed, unexamined,
5632 to the search function.
5635 File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end
5640 BFD keeps one atom in a BFD describing the architecture of the data
5641 attached to the BFD: a pointer to a `bfd_arch_info_type'.
5643 Pointers to structures can be requested independently of a BFD so
5644 that an architecture's information can be interrogated without access
5647 The architecture information is provided by each architecture
5648 package. The set of default architectures is selected by the macro
5649 `SELECT_ARCHITECTURES'. This is normally set up in the
5650 `config/TARGET.mt' file of your choice. If the name is not defined,
5651 then all the architectures supported are included.
5653 When BFD starts up, all the architectures are called with an
5654 initialize method. It is up to the architecture back end to insert as
5655 many items into the list of architectures as it wants to; generally
5656 this would be one for each machine and one for the default case (an
5657 item with a machine field of 0).
5659 BFD's idea of an architecture is implemented in `archures.c'.
5661 2.13.1 bfd_architecture
5662 -----------------------
5665 This enum gives the object file's CPU architecture, in a global
5666 sense--i.e., what processor family does it belong to? Another field
5667 indicates which processor within the family is in use. The machine
5668 gives a number which distinguishes different versions of the
5669 architecture, containing, for example, 2 and 3 for Intel i960 KA and
5670 i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
5671 enum bfd_architecture
5673 bfd_arch_unknown, /* File arch not known. */
5674 bfd_arch_obscure, /* Arch known, not one of these. */
5675 bfd_arch_m68k, /* Motorola 68xxx */
5676 #define bfd_mach_m68000 1
5677 #define bfd_mach_m68008 2
5678 #define bfd_mach_m68010 3
5679 #define bfd_mach_m68020 4
5680 #define bfd_mach_m68030 5
5681 #define bfd_mach_m68040 6
5682 #define bfd_mach_m68060 7
5683 #define bfd_mach_cpu32 8
5684 #define bfd_mach_mcf_isa_a_nodiv 9
5685 #define bfd_mach_mcf_isa_a 10
5686 #define bfd_mach_mcf_isa_a_mac 11
5687 #define bfd_mach_mcf_isa_a_emac 12
5688 #define bfd_mach_mcf_isa_aplus 13
5689 #define bfd_mach_mcf_isa_aplus_mac 14
5690 #define bfd_mach_mcf_isa_aplus_emac 15
5691 #define bfd_mach_mcf_isa_b_nousp 16
5692 #define bfd_mach_mcf_isa_b_nousp_mac 17
5693 #define bfd_mach_mcf_isa_b_nousp_emac 18
5694 #define bfd_mach_mcf_isa_b 19
5695 #define bfd_mach_mcf_isa_b_mac 20
5696 #define bfd_mach_mcf_isa_b_emac 21
5697 #define bfd_mach_mcf_isa_b_float 22
5698 #define bfd_mach_mcf_isa_b_float_mac 23
5699 #define bfd_mach_mcf_isa_b_float_emac 24
5700 bfd_arch_vax, /* DEC Vax */
5701 bfd_arch_i960, /* Intel 960 */
5702 /* The order of the following is important.
5703 lower number indicates a machine type that
5704 only accepts a subset of the instructions
5705 available to machines with higher numbers.
5706 The exception is the "ca", which is
5707 incompatible with all other machines except
5710 #define bfd_mach_i960_core 1
5711 #define bfd_mach_i960_ka_sa 2
5712 #define bfd_mach_i960_kb_sb 3
5713 #define bfd_mach_i960_mc 4
5714 #define bfd_mach_i960_xa 5
5715 #define bfd_mach_i960_ca 6
5716 #define bfd_mach_i960_jx 7
5717 #define bfd_mach_i960_hx 8
5719 bfd_arch_or32, /* OpenRISC 32 */
5721 bfd_arch_sparc, /* SPARC */
5722 #define bfd_mach_sparc 1
5723 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
5724 #define bfd_mach_sparc_sparclet 2
5725 #define bfd_mach_sparc_sparclite 3
5726 #define bfd_mach_sparc_v8plus 4
5727 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
5728 #define bfd_mach_sparc_sparclite_le 6
5729 #define bfd_mach_sparc_v9 7
5730 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
5731 #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
5732 #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
5733 /* Nonzero if MACH has the v9 instruction set. */
5734 #define bfd_mach_sparc_v9_p(mach) \
5735 ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
5736 && (mach) != bfd_mach_sparc_sparclite_le)
5737 /* Nonzero if MACH is a 64 bit sparc architecture. */
5738 #define bfd_mach_sparc_64bit_p(mach) \
5739 ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
5740 bfd_arch_mips, /* MIPS Rxxxx */
5741 #define bfd_mach_mips3000 3000
5742 #define bfd_mach_mips3900 3900
5743 #define bfd_mach_mips4000 4000
5744 #define bfd_mach_mips4010 4010
5745 #define bfd_mach_mips4100 4100
5746 #define bfd_mach_mips4111 4111
5747 #define bfd_mach_mips4120 4120
5748 #define bfd_mach_mips4300 4300
5749 #define bfd_mach_mips4400 4400
5750 #define bfd_mach_mips4600 4600
5751 #define bfd_mach_mips4650 4650
5752 #define bfd_mach_mips5000 5000
5753 #define bfd_mach_mips5400 5400
5754 #define bfd_mach_mips5500 5500
5755 #define bfd_mach_mips6000 6000
5756 #define bfd_mach_mips7000 7000
5757 #define bfd_mach_mips8000 8000
5758 #define bfd_mach_mips9000 9000
5759 #define bfd_mach_mips10000 10000
5760 #define bfd_mach_mips12000 12000
5761 #define bfd_mach_mips16 16
5762 #define bfd_mach_mips5 5
5763 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */
5764 #define bfd_mach_mipsisa32 32
5765 #define bfd_mach_mipsisa32r2 33
5766 #define bfd_mach_mipsisa64 64
5767 #define bfd_mach_mipsisa64r2 65
5768 bfd_arch_i386, /* Intel 386 */
5769 #define bfd_mach_i386_i386 1
5770 #define bfd_mach_i386_i8086 2
5771 #define bfd_mach_i386_i386_intel_syntax 3
5772 #define bfd_mach_x86_64 64
5773 #define bfd_mach_x86_64_intel_syntax 65
5774 bfd_arch_we32k, /* AT&T WE32xxx */
5775 bfd_arch_tahoe, /* CCI/Harris Tahoe */
5776 bfd_arch_i860, /* Intel 860 */
5777 bfd_arch_i370, /* IBM 360/370 Mainframes */
5778 bfd_arch_romp, /* IBM ROMP PC/RT */
5779 bfd_arch_convex, /* Convex */
5780 bfd_arch_m88k, /* Motorola 88xxx */
5781 bfd_arch_m98k, /* Motorola 98xxx */
5782 bfd_arch_pyramid, /* Pyramid Technology */
5783 bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */
5784 #define bfd_mach_h8300 1
5785 #define bfd_mach_h8300h 2
5786 #define bfd_mach_h8300s 3
5787 #define bfd_mach_h8300hn 4
5788 #define bfd_mach_h8300sn 5
5789 #define bfd_mach_h8300sx 6
5790 #define bfd_mach_h8300sxn 7
5791 bfd_arch_pdp11, /* DEC PDP-11 */
5792 bfd_arch_powerpc, /* PowerPC */
5793 #define bfd_mach_ppc 32
5794 #define bfd_mach_ppc64 64
5795 #define bfd_mach_ppc_403 403
5796 #define bfd_mach_ppc_403gc 4030
5797 #define bfd_mach_ppc_505 505
5798 #define bfd_mach_ppc_601 601
5799 #define bfd_mach_ppc_602 602
5800 #define bfd_mach_ppc_603 603
5801 #define bfd_mach_ppc_ec603e 6031
5802 #define bfd_mach_ppc_604 604
5803 #define bfd_mach_ppc_620 620
5804 #define bfd_mach_ppc_630 630
5805 #define bfd_mach_ppc_750 750
5806 #define bfd_mach_ppc_860 860
5807 #define bfd_mach_ppc_a35 35
5808 #define bfd_mach_ppc_rs64ii 642
5809 #define bfd_mach_ppc_rs64iii 643
5810 #define bfd_mach_ppc_7400 7400
5811 #define bfd_mach_ppc_e500 500
5812 bfd_arch_rs6000, /* IBM RS/6000 */
5813 #define bfd_mach_rs6k 6000
5814 #define bfd_mach_rs6k_rs1 6001
5815 #define bfd_mach_rs6k_rsc 6003
5816 #define bfd_mach_rs6k_rs2 6002
5817 bfd_arch_hppa, /* HP PA RISC */
5818 #define bfd_mach_hppa10 10
5819 #define bfd_mach_hppa11 11
5820 #define bfd_mach_hppa20 20
5821 #define bfd_mach_hppa20w 25
5822 bfd_arch_d10v, /* Mitsubishi D10V */
5823 #define bfd_mach_d10v 1
5824 #define bfd_mach_d10v_ts2 2
5825 #define bfd_mach_d10v_ts3 3
5826 bfd_arch_d30v, /* Mitsubishi D30V */
5827 bfd_arch_dlx, /* DLX */
5828 bfd_arch_m68hc11, /* Motorola 68HC11 */
5829 bfd_arch_m68hc12, /* Motorola 68HC12 */
5830 #define bfd_mach_m6812_default 0
5831 #define bfd_mach_m6812 1
5832 #define bfd_mach_m6812s 2
5833 bfd_arch_z8k, /* Zilog Z8000 */
5834 #define bfd_mach_z8001 1
5835 #define bfd_mach_z8002 2
5836 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
5837 bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */
5838 #define bfd_mach_sh 1
5839 #define bfd_mach_sh2 0x20
5840 #define bfd_mach_sh_dsp 0x2d
5841 #define bfd_mach_sh2a 0x2a
5842 #define bfd_mach_sh2a_nofpu 0x2b
5843 #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
5844 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
5845 #define bfd_mach_sh2a_or_sh4 0x2a3
5846 #define bfd_mach_sh2a_or_sh3e 0x2a4
5847 #define bfd_mach_sh2e 0x2e
5848 #define bfd_mach_sh3 0x30
5849 #define bfd_mach_sh3_nommu 0x31
5850 #define bfd_mach_sh3_dsp 0x3d
5851 #define bfd_mach_sh3e 0x3e
5852 #define bfd_mach_sh4 0x40
5853 #define bfd_mach_sh4_nofpu 0x41
5854 #define bfd_mach_sh4_nommu_nofpu 0x42
5855 #define bfd_mach_sh4a 0x4a
5856 #define bfd_mach_sh4a_nofpu 0x4b
5857 #define bfd_mach_sh4al_dsp 0x4d
5858 #define bfd_mach_sh5 0x50
5859 bfd_arch_alpha, /* Dec Alpha */
5860 #define bfd_mach_alpha_ev4 0x10
5861 #define bfd_mach_alpha_ev5 0x20
5862 #define bfd_mach_alpha_ev6 0x30
5863 bfd_arch_arm, /* Advanced Risc Machines ARM. */
5864 #define bfd_mach_arm_unknown 0
5865 #define bfd_mach_arm_2 1
5866 #define bfd_mach_arm_2a 2
5867 #define bfd_mach_arm_3 3
5868 #define bfd_mach_arm_3M 4
5869 #define bfd_mach_arm_4 5
5870 #define bfd_mach_arm_4T 6
5871 #define bfd_mach_arm_5 7
5872 #define bfd_mach_arm_5T 8
5873 #define bfd_mach_arm_5TE 9
5874 #define bfd_mach_arm_XScale 10
5875 #define bfd_mach_arm_ep9312 11
5876 #define bfd_mach_arm_iWMMXt 12
5877 bfd_arch_ns32k, /* National Semiconductors ns32000 */
5878 bfd_arch_w65, /* WDC 65816 */
5879 bfd_arch_tic30, /* Texas Instruments TMS320C30 */
5880 bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */
5881 #define bfd_mach_tic3x 30
5882 #define bfd_mach_tic4x 40
5883 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
5884 bfd_arch_tic80, /* TI TMS320c80 (MVP) */
5885 bfd_arch_v850, /* NEC V850 */
5886 #define bfd_mach_v850 1
5887 #define bfd_mach_v850e 'E'
5888 #define bfd_mach_v850e1 '1'
5889 bfd_arch_arc, /* ARC Cores */
5890 #define bfd_mach_arc_5 5
5891 #define bfd_mach_arc_6 6
5892 #define bfd_mach_arc_7 7
5893 #define bfd_mach_arc_8 8
5894 bfd_arch_m32c, /* Renesas M16C/M32C. */
5895 #define bfd_mach_m16c 0x75
5896 #define bfd_mach_m32c 0x78
5897 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */
5898 #define bfd_mach_m32r 1 /* For backwards compatibility. */
5899 #define bfd_mach_m32rx 'x'
5900 #define bfd_mach_m32r2 '2'
5901 bfd_arch_mn10200, /* Matsushita MN10200 */
5902 bfd_arch_mn10300, /* Matsushita MN10300 */
5903 #define bfd_mach_mn10300 300
5904 #define bfd_mach_am33 330
5905 #define bfd_mach_am33_2 332
5907 #define bfd_mach_fr30 0x46523330
5909 #define bfd_mach_frv 1
5910 #define bfd_mach_frvsimple 2
5911 #define bfd_mach_fr300 300
5912 #define bfd_mach_fr400 400
5913 #define bfd_mach_fr450 450
5914 #define bfd_mach_frvtomcat 499 /* fr500 prototype */
5915 #define bfd_mach_fr500 500
5916 #define bfd_mach_fr550 550
5918 bfd_arch_ia64, /* HP/Intel ia64 */
5919 #define bfd_mach_ia64_elf64 64
5920 #define bfd_mach_ia64_elf32 32
5921 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */
5922 #define bfd_mach_ip2022 1
5923 #define bfd_mach_ip2022ext 2
5924 bfd_arch_iq2000, /* Vitesse IQ2000. */
5925 #define bfd_mach_iq2000 1
5926 #define bfd_mach_iq10 2
5928 #define bfd_mach_ms1 1
5929 #define bfd_mach_mrisc2 2
5930 #define bfd_mach_ms2 3
5932 bfd_arch_avr, /* Atmel AVR microcontrollers. */
5933 #define bfd_mach_avr1 1
5934 #define bfd_mach_avr2 2
5935 #define bfd_mach_avr3 3
5936 #define bfd_mach_avr4 4
5937 #define bfd_mach_avr5 5
5938 bfd_arch_bfin, /* ADI Blackfin */
5939 #define bfd_mach_bfin 1
5940 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */
5941 #define bfd_mach_cr16c 1
5942 bfd_arch_crx, /* National Semiconductor CRX. */
5943 #define bfd_mach_crx 1
5944 bfd_arch_cris, /* Axis CRIS */
5945 #define bfd_mach_cris_v0_v10 255
5946 #define bfd_mach_cris_v32 32
5947 #define bfd_mach_cris_v10_v32 1032
5948 bfd_arch_s390, /* IBM s390 */
5949 #define bfd_mach_s390_31 31
5950 #define bfd_mach_s390_64 64
5951 bfd_arch_openrisc, /* OpenRISC */
5952 bfd_arch_mmix, /* Donald Knuth's educational processor. */
5954 #define bfd_mach_xstormy16 1
5955 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */
5956 #define bfd_mach_msp11 11
5957 #define bfd_mach_msp110 110
5958 #define bfd_mach_msp12 12
5959 #define bfd_mach_msp13 13
5960 #define bfd_mach_msp14 14
5961 #define bfd_mach_msp15 15
5962 #define bfd_mach_msp16 16
5963 #define bfd_mach_msp21 21
5964 #define bfd_mach_msp31 31
5965 #define bfd_mach_msp32 32
5966 #define bfd_mach_msp33 33
5967 #define bfd_mach_msp41 41
5968 #define bfd_mach_msp42 42
5969 #define bfd_mach_msp43 43
5970 #define bfd_mach_msp44 44
5971 bfd_arch_xc16x, /* Infineon's XC16X Series. */
5972 #define bfd_mach_xc16x 1
5973 #define bfd_mach_xc16xl 2
5974 #define bfd_mach_xc16xs 3
5975 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */
5976 #define bfd_mach_xtensa 1
5977 bfd_arch_maxq, /* Dallas MAXQ 10/20 */
5978 #define bfd_mach_maxq10 10
5979 #define bfd_mach_maxq20 20
5981 #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
5982 #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
5983 #define bfd_mach_z80full 7 /* All undocumented instructions. */
5984 #define bfd_mach_r800 11 /* R800: successor with multiplication. */
5988 2.13.2 bfd_arch_info
5989 --------------------
5992 This structure contains information on architectures for use within BFD.
5994 typedef struct bfd_arch_info
5997 int bits_per_address;
5999 enum bfd_architecture arch;
6001 const char *arch_name;
6002 const char *printable_name;
6003 unsigned int section_align_power;
6004 /* TRUE if this is the default machine for the architecture.
6005 The default arch should be the first entry for an arch so that
6006 all the entries for that arch can be accessed via `next'. */
6007 bfd_boolean the_default;
6008 const struct bfd_arch_info * (*compatible)
6009 (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
6011 bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
6013 const struct bfd_arch_info *next;
6017 2.13.2.1 `bfd_printable_name'
6018 .............................
6021 const char *bfd_printable_name (bfd *abfd);
6023 Return a printable string representing the architecture and machine
6024 from the pointer to the architecture info structure.
6026 2.13.2.2 `bfd_scan_arch'
6027 ........................
6030 const bfd_arch_info_type *bfd_scan_arch (const char *string);
6032 Figure out if BFD supports any cpu which could be described with the
6033 name STRING. Return a pointer to an `arch_info' structure if a machine
6034 is found, otherwise NULL.
6036 2.13.2.3 `bfd_arch_list'
6037 ........................
6040 const char **bfd_arch_list (void);
6042 Return a freshly malloced NULL-terminated vector of the names of all
6043 the valid BFD architectures. Do not modify the names.
6045 2.13.2.4 `bfd_arch_get_compatible'
6046 ..................................
6049 const bfd_arch_info_type *bfd_arch_get_compatible
6050 (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
6052 Determine whether two BFDs' architectures and machine types are
6053 compatible. Calculates the lowest common denominator between the two
6054 architectures and machine types implied by the BFDs and returns a
6055 pointer to an `arch_info' structure describing the compatible machine.
6057 2.13.2.5 `bfd_default_arch_struct'
6058 ..................................
6061 The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which
6062 has been initialized to a fairly generic state. A BFD starts life by
6063 pointing to this structure, until the correct back end has determined
6064 the real architecture of the file.
6065 extern const bfd_arch_info_type bfd_default_arch_struct;
6067 2.13.2.6 `bfd_set_arch_info'
6068 ............................
6071 void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
6073 Set the architecture info of ABFD to ARG.
6075 2.13.2.7 `bfd_default_set_arch_mach'
6076 ....................................
6079 bfd_boolean bfd_default_set_arch_mach
6080 (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
6082 Set the architecture and machine type in BFD ABFD to ARCH and MACH.
6083 Find the correct pointer to a structure and insert it into the
6084 `arch_info' pointer.
6086 2.13.2.8 `bfd_get_arch'
6087 .......................
6090 enum bfd_architecture bfd_get_arch (bfd *abfd);
6092 Return the enumerated type which describes the BFD ABFD's architecture.
6094 2.13.2.9 `bfd_get_mach'
6095 .......................
6098 unsigned long bfd_get_mach (bfd *abfd);
6100 Return the long type which describes the BFD ABFD's machine.
6102 2.13.2.10 `bfd_arch_bits_per_byte'
6103 ..................................
6106 unsigned int bfd_arch_bits_per_byte (bfd *abfd);
6108 Return the number of bits in one of the BFD ABFD's architecture's bytes.
6110 2.13.2.11 `bfd_arch_bits_per_address'
6111 .....................................
6114 unsigned int bfd_arch_bits_per_address (bfd *abfd);
6116 Return the number of bits in one of the BFD ABFD's architecture's
6119 2.13.2.12 `bfd_default_compatible'
6120 ..................................
6123 const bfd_arch_info_type *bfd_default_compatible
6124 (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
6126 The default function for testing for compatibility.
6128 2.13.2.13 `bfd_default_scan'
6129 ............................
6132 bfd_boolean bfd_default_scan
6133 (const struct bfd_arch_info *info, const char *string);
6135 The default function for working out whether this is an architecture
6136 hit and a machine hit.
6138 2.13.2.14 `bfd_get_arch_info'
6139 .............................
6142 const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
6144 Return the architecture info struct in ABFD.
6146 2.13.2.15 `bfd_lookup_arch'
6147 ...........................
6150 const bfd_arch_info_type *bfd_lookup_arch
6151 (enum bfd_architecture arch, unsigned long machine);
6153 Look for the architecture info structure which matches the arguments
6154 ARCH and MACHINE. A machine of 0 matches the machine/architecture
6155 structure which marks itself as the default.
6157 2.13.2.16 `bfd_printable_arch_mach'
6158 ...................................
6161 const char *bfd_printable_arch_mach
6162 (enum bfd_architecture arch, unsigned long machine);
6164 Return a printable string representing the architecture and machine
6167 This routine is depreciated.
6169 2.13.2.17 `bfd_octets_per_byte'
6170 ...............................
6173 unsigned int bfd_octets_per_byte (bfd *abfd);
6175 Return the number of octets (8-bit quantities) per target byte (minimum
6176 addressable unit). In most cases, this will be one, but some DSP
6177 targets have 16, 32, or even 48 bits per byte.
6179 2.13.2.18 `bfd_arch_mach_octets_per_byte'
6180 .........................................
6183 unsigned int bfd_arch_mach_octets_per_byte
6184 (enum bfd_architecture arch, unsigned long machine);
6186 See bfd_octets_per_byte.
6188 This routine is provided for those cases where a bfd * is not
6192 File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end
6194 2.14 Opening and closing BFDs
6195 =============================
6197 2.14.1 Functions for opening and closing
6198 ----------------------------------------
6200 2.14.1.1 `bfd_fopen'
6201 ....................
6204 bfd *bfd_fopen (const char *filename, const char *target,
6205 const char *mode, int fd);
6207 Open the file FILENAME with the target TARGET. Return a pointer to the
6208 created BFD. If FD is not -1, then `fdopen' is used to open the file;
6209 otherwise, `fopen' is used. MODE is passed directly to `fopen' or
6212 Calls `bfd_find_target', so TARGET is interpreted as by that
6215 The new BFD is marked as cacheable iff FD is -1.
6217 If `NULL' is returned then an error has occured. Possible errors
6218 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6221 2.14.1.2 `bfd_openr'
6222 ....................
6225 bfd *bfd_openr (const char *filename, const char *target);
6227 Open the file FILENAME (using `fopen') with the target TARGET. Return
6228 a pointer to the created BFD.
6230 Calls `bfd_find_target', so TARGET is interpreted as by that
6233 If `NULL' is returned then an error has occured. Possible errors
6234 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6237 2.14.1.3 `bfd_fdopenr'
6238 ......................
6241 bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
6243 `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It
6244 opens a BFD on a file already described by the FD supplied.
6246 When the file is later `bfd_close'd, the file descriptor will be
6247 closed. If the caller desires that this file descriptor be cached by
6248 BFD (opened as needed, closed as needed to free descriptors for other
6249 opens), with the supplied FD used as an initial file descriptor (but
6250 subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the
6251 returned BFD. The default is to assume no caching; the file descriptor
6252 will remain open until `bfd_close', and will not be affected by BFD
6253 operations on other files.
6255 Possible errors are `bfd_error_no_memory',
6256 `bfd_error_invalid_target' and `bfd_error_system_call'.
6258 2.14.1.4 `bfd_openstreamr'
6259 ..........................
6262 bfd *bfd_openstreamr (const char *, const char *, void *);
6264 Open a BFD for read access on an existing stdio stream. When the BFD
6265 is passed to `bfd_close', the stream will be closed.
6267 2.14.1.5 `bfd_openr_iovec'
6268 ..........................
6271 bfd *bfd_openr_iovec (const char *filename, const char *target,
6272 void *(*open) (struct bfd *nbfd,
6273 void *open_closure),
6275 file_ptr (*pread) (struct bfd *nbfd,
6280 int (*close) (struct bfd *nbfd,
6283 Create and return a BFD backed by a read-only STREAM. The STREAM is
6284 created using OPEN, accessed using PREAD and destroyed using CLOSE.
6286 Calls `bfd_find_target', so TARGET is interpreted as by that
6289 Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to
6290 obtain the read-only stream backing the BFD. OPEN either succeeds
6291 returning the non-`NULL' STREAM, or fails returning `NULL' (setting
6294 Calls PREAD to request NBYTES of data from STREAM starting at OFFSET
6295 (e.g., via a call to `bfd_read'). PREAD either succeeds returning the
6296 number of bytes read (which can be less than NBYTES when end-of-file),
6297 or fails returning -1 (setting `bfd_error').
6299 Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE
6300 either succeeds returning 0, or fails returning -1 (setting
6303 If `bfd_openr_iovec' returns `NULL' then an error has occurred.
6304 Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'
6305 and `bfd_error_system_call'.
6307 2.14.1.6 `bfd_openw'
6308 ....................
6311 bfd *bfd_openw (const char *filename, const char *target);
6313 Create a BFD, associated with file FILENAME, using the file format
6314 TARGET, and return a pointer to it.
6316 Possible errors are `bfd_error_system_call', `bfd_error_no_memory',
6317 `bfd_error_invalid_target'.
6319 2.14.1.7 `bfd_close'
6320 ....................
6323 bfd_boolean bfd_close (bfd *abfd);
6325 Close a BFD. If the BFD was open for writing, then pending operations
6326 are completed and the file written out and closed. If the created file
6327 is executable, then `chmod' is called to mark it as such.
6329 All memory attached to the BFD is released.
6331 The file descriptor associated with the BFD is closed (even if it
6332 was passed in to BFD by `bfd_fdopenr').
6335 `TRUE' is returned if all is ok, otherwise `FALSE'.
6337 2.14.1.8 `bfd_close_all_done'
6338 .............................
6341 bfd_boolean bfd_close_all_done (bfd *);
6343 Close a BFD. Differs from `bfd_close' since it does not complete any
6344 pending operations. This routine would be used if the application had
6345 just used BFD for swapping and didn't want to use any of the writing
6348 If the created file is executable, then `chmod' is called to mark it
6351 All memory attached to the BFD is released.
6354 `TRUE' is returned if all is ok, otherwise `FALSE'.
6356 2.14.1.9 `bfd_create'
6357 .....................
6360 bfd *bfd_create (const char *filename, bfd *templ);
6362 Create a new BFD in the manner of `bfd_openw', but without opening a
6363 file. The new BFD takes the target from the target used by TEMPLATE.
6364 The format is always set to `bfd_object'.
6366 2.14.1.10 `bfd_make_writable'
6367 .............................
6370 bfd_boolean bfd_make_writable (bfd *abfd);
6372 Takes a BFD as created by `bfd_create' and converts it into one like as
6373 returned by `bfd_openw'. It does this by converting the BFD to
6374 BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on
6378 `TRUE' is returned if all is ok, otherwise `FALSE'.
6380 2.14.1.11 `bfd_make_readable'
6381 .............................
6384 bfd_boolean bfd_make_readable (bfd *abfd);
6386 Takes a BFD as created by `bfd_create' and `bfd_make_writable' and
6387 converts it into one like as returned by `bfd_openr'. It does this by
6388 writing the contents out to the memory buffer, then reversing the
6392 `TRUE' is returned if all is ok, otherwise `FALSE'.
6394 2.14.1.12 `bfd_alloc'
6395 .....................
6398 void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
6400 Allocate a block of WANTED bytes of memory attached to `abfd' and
6401 return a pointer to it.
6403 2.14.1.13 `bfd_alloc2'
6404 ......................
6407 void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6409 Allocate a block of NMEMB elements of SIZE bytes each of memory
6410 attached to `abfd' and return a pointer to it.
6412 2.14.1.14 `bfd_zalloc'
6413 ......................
6416 void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
6418 Allocate a block of WANTED bytes of zeroed memory attached to `abfd'
6419 and return a pointer to it.
6421 2.14.1.15 `bfd_zalloc2'
6422 .......................
6425 void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6427 Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory
6428 attached to `abfd' and return a pointer to it.
6430 2.14.1.16 `bfd_calc_gnu_debuglink_crc32'
6431 ........................................
6434 unsigned long bfd_calc_gnu_debuglink_crc32
6435 (unsigned long crc, const unsigned char *buf, bfd_size_type len);
6437 Computes a CRC value as used in the .gnu_debuglink section. Advances
6438 the previously computed CRC value by computing and adding in the crc32
6439 for LEN bytes of BUF.
6442 Return the updated CRC32 value.
6444 2.14.1.17 `get_debug_link_info'
6445 ...............................
6448 char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
6450 fetch the filename and CRC32 value for any separate debuginfo
6451 associated with ABFD. Return NULL if no such info found, otherwise
6452 return filename and update CRC32_OUT.
6454 2.14.1.18 `separate_debug_file_exists'
6455 ......................................
6458 bfd_boolean separate_debug_file_exists
6459 (char *name, unsigned long crc32);
6461 Checks to see if NAME is a file and if its contents match CRC32.
6463 2.14.1.19 `find_separate_debug_file'
6464 ....................................
6467 char *find_separate_debug_file (bfd *abfd);
6469 Searches ABFD for a reference to separate debugging information, scans
6470 various locations in the filesystem, including the file tree rooted at
6471 DEBUG_FILE_DIRECTORY, and returns a filename of such debugging
6472 information if the file is found and has matching CRC32. Returns NULL
6473 if no reference to debugging file exists, or file cannot be found.
6475 2.14.1.20 `bfd_follow_gnu_debuglink'
6476 ....................................
6479 char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
6481 Takes a BFD and searches it for a .gnu_debuglink section. If this
6482 section is found, it examines the section for the name and checksum of
6483 a '.debug' file containing auxiliary debugging information. It then
6484 searches the filesystem for this .debug file in some standard
6485 locations, including the directory tree rooted at DIR, and if found
6486 returns the full filename.
6488 If DIR is NULL, it will search a default path configured into libbfd
6489 at build time. [XXX this feature is not currently implemented].
6492 `NULL' on any errors or failure to locate the .debug file, otherwise a
6493 pointer to a heap-allocated string containing the filename. The caller
6494 is responsible for freeing this string.
6496 2.14.1.21 `bfd_create_gnu_debuglink_section'
6497 ............................................
6500 struct bfd_section *bfd_create_gnu_debuglink_section
6501 (bfd *abfd, const char *filename);
6503 Takes a BFD and adds a .gnu_debuglink section to it. The section is
6504 sized to be big enough to contain a link to the specified FILENAME.
6507 A pointer to the new section is returned if all is ok. Otherwise
6508 `NULL' is returned and bfd_error is set.
6510 2.14.1.22 `bfd_fill_in_gnu_debuglink_section'
6511 .............................................
6514 bfd_boolean bfd_fill_in_gnu_debuglink_section
6515 (bfd *abfd, struct bfd_section *sect, const char *filename);
6517 Takes a BFD and containing a .gnu_debuglink section SECT and fills in
6518 the contents of the section to contain a link to the specified
6519 FILENAME. The filename should be relative to the current directory.
6522 `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and
6526 File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end
6528 2.15 Implementation details
6529 ===========================
6531 2.15.1 Internal functions
6532 -------------------------
6535 These routines are used within BFD. They are not intended for export,
6536 but are documented here for completeness.
6538 2.15.1.1 `bfd_write_bigendian_4byte_int'
6539 ........................................
6542 bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
6544 Write a 4 byte integer I to the output BFD ABFD, in big endian order
6545 regardless of what else is going on. This is useful in archives.
6547 2.15.1.2 `bfd_put_size'
6548 .......................
6550 2.15.1.3 `bfd_get_size'
6551 .......................
6554 These macros as used for reading and writing raw data in sections; each
6555 access (except for bytes) is vectored through the target format of the
6556 BFD and mangled accordingly. The mangling performs any necessary endian
6557 translations and removes alignment restrictions. Note that types
6558 accepted and returned by these macros are identical so they can be
6559 swapped around in macros--for example, `libaout.h' defines `GET_WORD'
6560 to either `bfd_get_32' or `bfd_get_64'.
6562 In the put routines, VAL must be a `bfd_vma'. If we are on a system
6563 without prototypes, the caller is responsible for making sure that is
6564 true, with a cast if necessary. We don't cast them in the macro
6565 definitions because that would prevent `lint' or `gcc -Wall' from
6566 detecting sins such as passing a pointer. To detect calling these with
6567 less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit
6570 /* Byte swapping macros for user section data. */
6572 #define bfd_put_8(abfd, val, ptr) \
6573 ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
6574 #define bfd_put_signed_8 \
6576 #define bfd_get_8(abfd, ptr) \
6577 (*(unsigned char *) (ptr) & 0xff)
6578 #define bfd_get_signed_8(abfd, ptr) \
6579 (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
6581 #define bfd_put_16(abfd, val, ptr) \
6582 BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
6583 #define bfd_put_signed_16 \
6585 #define bfd_get_16(abfd, ptr) \
6586 BFD_SEND (abfd, bfd_getx16, (ptr))
6587 #define bfd_get_signed_16(abfd, ptr) \
6588 BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
6590 #define bfd_put_32(abfd, val, ptr) \
6591 BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
6592 #define bfd_put_signed_32 \
6594 #define bfd_get_32(abfd, ptr) \
6595 BFD_SEND (abfd, bfd_getx32, (ptr))
6596 #define bfd_get_signed_32(abfd, ptr) \
6597 BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
6599 #define bfd_put_64(abfd, val, ptr) \
6600 BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
6601 #define bfd_put_signed_64 \
6603 #define bfd_get_64(abfd, ptr) \
6604 BFD_SEND (abfd, bfd_getx64, (ptr))
6605 #define bfd_get_signed_64(abfd, ptr) \
6606 BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
6608 #define bfd_get(bits, abfd, ptr) \
6609 ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
6610 : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
6611 : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
6612 : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
6613 : (abort (), (bfd_vma) - 1))
6615 #define bfd_put(bits, abfd, val, ptr) \
6616 ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
6617 : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
6618 : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
6619 : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
6620 : (abort (), (void) 0))
6622 2.15.1.4 `bfd_h_put_size'
6623 .........................
6626 These macros have the same function as their `bfd_get_x' brethren,
6627 except that they are used for removing information for the header
6628 records of object files. Believe it or not, some object files keep
6629 their header records in big endian order and their data in little
6632 /* Byte swapping macros for file header data. */
6634 #define bfd_h_put_8(abfd, val, ptr) \
6635 bfd_put_8 (abfd, val, ptr)
6636 #define bfd_h_put_signed_8(abfd, val, ptr) \
6637 bfd_put_8 (abfd, val, ptr)
6638 #define bfd_h_get_8(abfd, ptr) \
6639 bfd_get_8 (abfd, ptr)
6640 #define bfd_h_get_signed_8(abfd, ptr) \
6641 bfd_get_signed_8 (abfd, ptr)
6643 #define bfd_h_put_16(abfd, val, ptr) \
6644 BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
6645 #define bfd_h_put_signed_16 \
6647 #define bfd_h_get_16(abfd, ptr) \
6648 BFD_SEND (abfd, bfd_h_getx16, (ptr))
6649 #define bfd_h_get_signed_16(abfd, ptr) \
6650 BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
6652 #define bfd_h_put_32(abfd, val, ptr) \
6653 BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
6654 #define bfd_h_put_signed_32 \
6656 #define bfd_h_get_32(abfd, ptr) \
6657 BFD_SEND (abfd, bfd_h_getx32, (ptr))
6658 #define bfd_h_get_signed_32(abfd, ptr) \
6659 BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
6661 #define bfd_h_put_64(abfd, val, ptr) \
6662 BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
6663 #define bfd_h_put_signed_64 \
6665 #define bfd_h_get_64(abfd, ptr) \
6666 BFD_SEND (abfd, bfd_h_getx64, (ptr))
6667 #define bfd_h_get_signed_64(abfd, ptr) \
6668 BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
6670 /* Aliases for the above, which should eventually go away. */
6672 #define H_PUT_64 bfd_h_put_64
6673 #define H_PUT_32 bfd_h_put_32
6674 #define H_PUT_16 bfd_h_put_16
6675 #define H_PUT_8 bfd_h_put_8
6676 #define H_PUT_S64 bfd_h_put_signed_64
6677 #define H_PUT_S32 bfd_h_put_signed_32
6678 #define H_PUT_S16 bfd_h_put_signed_16
6679 #define H_PUT_S8 bfd_h_put_signed_8
6680 #define H_GET_64 bfd_h_get_64
6681 #define H_GET_32 bfd_h_get_32
6682 #define H_GET_16 bfd_h_get_16
6683 #define H_GET_8 bfd_h_get_8
6684 #define H_GET_S64 bfd_h_get_signed_64
6685 #define H_GET_S32 bfd_h_get_signed_32
6686 #define H_GET_S16 bfd_h_get_signed_16
6687 #define H_GET_S8 bfd_h_get_signed_8
6693 unsigned int bfd_log2 (bfd_vma x);
6695 Return the log base 2 of the value supplied, rounded up. E.g., an X of
6696 1025 returns 11. A X of 0 returns 0.
6699 File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end
6704 The file caching mechanism is embedded within BFD and allows the
6705 application to open as many BFDs as it wants without regard to the
6706 underlying operating system's file descriptor limit (often as low as 20
6707 open files). The module in `cache.c' maintains a least recently used
6708 list of `BFD_CACHE_MAX_OPEN' files, and exports the name
6709 `bfd_cache_lookup', which runs around and makes sure that the required
6710 BFD is open. If not, then it chooses a file to close, closes it and
6711 opens the one wanted, returning its file handle.
6713 2.16.1 Caching functions
6714 ------------------------
6716 2.16.1.1 `bfd_cache_init'
6717 .........................
6720 bfd_boolean bfd_cache_init (bfd *abfd);
6722 Add a newly opened BFD to the cache.
6724 2.16.1.2 `bfd_cache_close'
6725 ..........................
6728 bfd_boolean bfd_cache_close (bfd *abfd);
6730 Remove the BFD ABFD from the cache. If the attached file is open, then
6734 `FALSE' is returned if closing the file fails, `TRUE' is returned if
6737 2.16.1.3 `bfd_cache_close_all'
6738 ..............................
6741 bfd_boolean bfd_cache_close_all (void);
6743 Remove all BFDs from the cache. If the attached file is open, then
6747 `FALSE' is returned if closing one of the file fails, `TRUE' is
6748 returned if all is well.
6750 2.16.1.4 `bfd_open_file'
6751 ........................
6754 FILE* bfd_open_file (bfd *abfd);
6756 Call the OS to open a file for ABFD. Return the `FILE *' (possibly
6757 `NULL') that results from this operation. Set up the BFD so that
6758 future accesses know the file is open. If the `FILE *' returned is
6759 `NULL', then it won't have been put in the cache, so it won't have to
6763 File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end
6765 2.17 Linker Functions
6766 =====================
6768 The linker uses three special entry points in the BFD target vector.
6769 It is not necessary to write special routines for these entry points
6770 when creating a new BFD back end, since generic versions are provided.
6771 However, writing them can speed up linking and make it use
6772 significantly less runtime memory.
6774 The first routine creates a hash table used by the other routines.
6775 The second routine adds the symbols from an object file to the hash
6776 table. The third routine takes all the object files and links them
6777 together to create the output file. These routines are designed so
6778 that the linker proper does not need to know anything about the symbols
6779 in the object files that it is linking. The linker merely arranges the
6780 sections as directed by the linker script and lets BFD handle the
6781 details of symbols and relocs.
6783 The second routine and third routines are passed a pointer to a
6784 `struct bfd_link_info' structure (defined in `bfdlink.h') which holds
6785 information relevant to the link, including the linker hash table
6786 (which was created by the first routine) and a set of callback
6787 functions to the linker proper.
6789 The generic linker routines are in `linker.c', and use the header
6790 file `genlink.h'. As of this writing, the only back ends which have
6791 implemented versions of these routines are a.out (in `aoutx.h') and
6792 ECOFF (in `ecoff.c'). The a.out routines are used as examples
6793 throughout this section.
6797 * Creating a Linker Hash Table::
6798 * Adding Symbols to the Hash Table::
6799 * Performing the Final Link::
6802 File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions
6804 2.17.1 Creating a linker hash table
6805 -----------------------------------
6807 The linker routines must create a hash table, which must be derived
6808 from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash
6809 Tables::, for information on how to create a derived hash table. This
6810 entry point is called using the target vector of the linker output file.
6812 The `_bfd_link_hash_table_create' entry point must allocate and
6813 initialize an instance of the desired hash table. If the back end does
6814 not require any additional information to be stored with the entries in
6815 the hash table, the entry point may simply create a `struct
6816 bfd_link_hash_table'. Most likely, however, some additional
6817 information will be needed.
6819 For example, with each entry in the hash table the a.out linker
6820 keeps the index the symbol has in the final output file (this index
6821 number is used so that when doing a relocatable link the symbol index
6822 used in the output file can be quickly filled in when copying over a
6823 reloc). The a.out linker code defines the required structures and
6824 functions for a hash table derived from `struct bfd_link_hash_table'.
6825 The a.out linker hash table is created by the function
6826 `NAME(aout,link_hash_table_create)'; it simply allocates space for the
6827 hash table, initializes it, and returns a pointer to it.
6829 When writing the linker routines for a new back end, you will
6830 generally not know exactly which fields will be required until you have
6831 finished. You should simply create a new hash table which defines no
6832 additional fields, and then simply add fields as they become necessary.
6835 File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions
6837 2.17.2 Adding symbols to the hash table
6838 ---------------------------------------
6840 The linker proper will call the `_bfd_link_add_symbols' entry point for
6841 each object file or archive which is to be linked (typically these are
6842 the files named on the command line, but some may also come from the
6843 linker script). The entry point is responsible for examining the file.
6844 For an object file, BFD must add any relevant symbol information to
6845 the hash table. For an archive, BFD must determine which elements of
6846 the archive should be used and adding them to the link.
6848 The a.out version of this entry point is
6849 `NAME(aout,link_add_symbols)'.
6853 * Differing file formats::
6854 * Adding symbols from an object file::
6855 * Adding symbols from an archive::
6858 File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table
6860 2.17.2.1 Differing file formats
6861 ...............................
6863 Normally all the files involved in a link will be of the same format,
6864 but it is also possible to link together different format object files,
6865 and the back end must support that. The `_bfd_link_add_symbols' entry
6866 point is called via the target vector of the file to be added. This
6867 has an important consequence: the function may not assume that the hash
6868 table is the type created by the corresponding
6869 `_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols'
6870 function can assume about the hash table is that it is derived from
6871 `struct bfd_link_hash_table'.
6873 Sometimes the `_bfd_link_add_symbols' function must store some
6874 information in the hash table entry to be used by the `_bfd_final_link'
6875 function. In such a case the `creator' field of the hash table must be
6876 checked to make sure that the hash table was created by an object file
6879 The `_bfd_final_link' routine must be prepared to handle a hash
6880 entry without any extra information added by the
6881 `_bfd_link_add_symbols' function. A hash entry without extra
6882 information will also occur when the linker script directs the linker
6883 to create a symbol. Note that, regardless of how a hash table entry is
6884 added, all the fields will be initialized to some sort of null value by
6885 the hash table entry initialization function.
6887 See `ecoff_link_add_externals' for an example of how to check the
6888 `creator' field before saving information (in this case, the ECOFF
6889 external symbol debugging information) in a hash table entry.
6892 File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table
6894 2.17.2.2 Adding symbols from an object file
6895 ...........................................
6897 When the `_bfd_link_add_symbols' routine is passed an object file, it
6898 must add all externally visible symbols in that object file to the hash
6899 table. The actual work of adding the symbol to the hash table is
6900 normally handled by the function `_bfd_generic_link_add_one_symbol'.
6901 The `_bfd_link_add_symbols' routine is responsible for reading all the
6902 symbols from the object file and passing the correct information to
6903 `_bfd_generic_link_add_one_symbol'.
6905 The `_bfd_link_add_symbols' routine should not use
6906 `bfd_canonicalize_symtab' to read the symbols. The point of providing
6907 this routine is to avoid the overhead of converting the symbols into
6908 generic `asymbol' structures.
6910 `_bfd_generic_link_add_one_symbol' handles the details of combining
6911 common symbols, warning about multiple definitions, and so forth. It
6912 takes arguments which describe the symbol to add, notably symbol flags,
6913 a section, and an offset. The symbol flags include such things as
6914 `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object
6915 file, or something like `bfd_und_section_ptr' for an undefined symbol
6916 or `bfd_com_section_ptr' for a common symbol.
6918 If the `_bfd_final_link' routine is also going to need to read the
6919 symbol information, the `_bfd_link_add_symbols' routine should save it
6920 somewhere attached to the object file BFD. However, the information
6921 should only be saved if the `keep_memory' field of the `info' argument
6922 is TRUE, so that the `-no-keep-memory' linker switch is effective.
6924 The a.out function which adds symbols from an object file is
6925 `aout_link_add_object_symbols', and most of the interesting work is in
6926 `aout_link_add_symbols'. The latter saves pointers to the hash tables
6927 entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol
6928 number, so that the `_bfd_final_link' routine does not have to call the
6929 hash table lookup routine to locate the entry.
6932 File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table
6934 2.17.2.3 Adding symbols from an archive
6935 .......................................
6937 When the `_bfd_link_add_symbols' routine is passed an archive, it must
6938 look through the symbols defined by the archive and decide which
6939 elements of the archive should be included in the link. For each such
6940 element it must call the `add_archive_element' linker callback, and it
6941 must add the symbols from the object file to the linker hash table.
6943 In most cases the work of looking through the symbols in the archive
6944 should be done by the `_bfd_generic_link_add_archive_symbols' function.
6945 This function builds a hash table from the archive symbol table and
6946 looks through the list of undefined symbols to see which elements
6947 should be included. `_bfd_generic_link_add_archive_symbols' is passed
6948 a function to call to make the final decision about adding an archive
6949 element to the link and to do the actual work of adding the symbols to
6950 the linker hash table.
6952 The function passed to `_bfd_generic_link_add_archive_symbols' must
6953 read the symbols of the archive element and decide whether the archive
6954 element should be included in the link. If the element is to be
6955 included, the `add_archive_element' linker callback routine must be
6956 called with the element as an argument, and the elements symbols must
6957 be added to the linker hash table just as though the element had itself
6958 been passed to the `_bfd_link_add_symbols' function.
6960 When the a.out `_bfd_link_add_symbols' function receives an archive,
6961 it calls `_bfd_generic_link_add_archive_symbols' passing
6962 `aout_link_check_archive_element' as the function argument.
6963 `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.
6964 If the latter decides to add the element (an element is only added if
6965 it provides a real, non-common, definition for a previously undefined
6966 or common symbol) it calls the `add_archive_element' callback and then
6967 `aout_link_check_archive_element' calls `aout_link_add_symbols' to
6968 actually add the symbols to the linker hash table.
6970 The ECOFF back end is unusual in that it does not normally call
6971 `_bfd_generic_link_add_archive_symbols', because ECOFF archives already
6972 contain a hash table of symbols. The ECOFF back end searches the
6973 archive itself to avoid the overhead of creating a new hash table.
6976 File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions
6978 2.17.3 Performing the final link
6979 --------------------------------
6981 When all the input files have been processed, the linker calls the
6982 `_bfd_final_link' entry point of the output BFD. This routine is
6983 responsible for producing the final output file, which has several
6984 aspects. It must relocate the contents of the input sections and copy
6985 the data into the output sections. It must build an output symbol
6986 table including any local symbols from the input files and the global
6987 symbols from the hash table. When producing relocatable output, it must
6988 modify the input relocs and write them into the output file. There may
6989 also be object format dependent work to be done.
6991 The linker will also call the `write_object_contents' entry point
6992 when the BFD is closed. The two entry points must work together in
6993 order to produce the correct output file.
6995 The details of how this works are inevitably dependent upon the
6996 specific object file format. The a.out `_bfd_final_link' routine is
6997 `NAME(aout,final_link)'.
7001 * Information provided by the linker::
7002 * Relocating the section contents::
7003 * Writing the symbol table::
7006 File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link
7008 2.17.3.1 Information provided by the linker
7009 ...........................................
7011 Before the linker calls the `_bfd_final_link' entry point, it sets up
7012 some data structures for the function to use.
7014 The `input_bfds' field of the `bfd_link_info' structure will point
7015 to a list of all the input files included in the link. These files are
7016 linked through the `link_next' field of the `bfd' structure.
7018 Each section in the output file will have a list of `link_order'
7019 structures attached to the `map_head.link_order' field (the
7020 `link_order' structure is defined in `bfdlink.h'). These structures
7021 describe how to create the contents of the output section in terms of
7022 the contents of various input sections, fill constants, and,
7023 eventually, other types of information. They also describe relocs that
7024 must be created by the BFD backend, but do not correspond to any input
7025 file; this is used to support -Ur, which builds constructors while
7026 generating a relocatable object file.
7029 File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link
7031 2.17.3.2 Relocating the section contents
7032 ........................................
7034 The `_bfd_final_link' function should look through the `link_order'
7035 structures attached to each section of the output file. Each
7036 `link_order' structure should either be handled specially, or it should
7037 be passed to the function `_bfd_default_link_order' which will do the
7038 right thing (`_bfd_default_link_order' is defined in `linker.c').
7040 For efficiency, a `link_order' of type `bfd_indirect_link_order'
7041 whose associated section belongs to a BFD of the same format as the
7042 output BFD must be handled specially. This type of `link_order'
7043 describes part of an output section in terms of a section belonging to
7044 one of the input files. The `_bfd_final_link' function should read the
7045 contents of the section and any associated relocs, apply the relocs to
7046 the section contents, and write out the modified section contents. If
7047 performing a relocatable link, the relocs themselves must also be
7048 modified and written out.
7050 The functions `_bfd_relocate_contents' and
7051 `_bfd_final_link_relocate' provide some general support for performing
7052 the actual relocations, notably overflow checking. Their arguments
7053 include information about the symbol the relocation is against and a
7054 `reloc_howto_type' argument which describes the relocation to perform.
7055 These functions are defined in `reloc.c'.
7057 The a.out function which handles reading, relocating, and writing
7058 section contents is `aout_link_input_section'. The actual relocation
7059 is done in `aout_link_input_section_std' and
7060 `aout_link_input_section_ext'.
7063 File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link
7065 2.17.3.3 Writing the symbol table
7066 .................................
7068 The `_bfd_final_link' function must gather all the symbols in the input
7069 files and write them out. It must also write out all the symbols in
7070 the global hash table. This must be controlled by the `strip' and
7071 `discard' fields of the `bfd_link_info' structure.
7073 The local symbols of the input files will not have been entered into
7074 the linker hash table. The `_bfd_final_link' routine must consider
7075 each input file and include the symbols in the output file. It may be
7076 convenient to do this when looking through the `link_order' structures,
7077 or it may be done by stepping through the `input_bfds' list.
7079 The `_bfd_final_link' routine must also traverse the global hash
7080 table to gather all the externally visible symbols. It is possible
7081 that most of the externally visible symbols may be written out when
7082 considering the symbols of each input file, but it is still necessary
7083 to traverse the hash table since the linker script may have defined
7084 some symbols that are not in any of the input files.
7086 The `strip' field of the `bfd_link_info' structure controls which
7087 symbols are written out. The possible values are listed in
7088 `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field
7089 of the `bfd_link_info' structure is a hash table of symbols to keep;
7090 each symbol should be looked up in this hash table, and only symbols
7091 which are present should be included in the output file.
7093 If the `strip' field of the `bfd_link_info' structure permits local
7094 symbols to be written out, the `discard' field is used to further
7095 controls which local symbols are included in the output file. If the
7096 value is `discard_l', then all local symbols which begin with a certain
7097 prefix are discarded; this is controlled by the
7098 `bfd_is_local_label_name' entry point.
7100 The a.out backend handles symbols by calling
7101 `aout_link_write_symbols' on each input BFD and then traversing the
7102 global hash table with the function `aout_link_write_other_symbol'. It
7103 builds a string table while writing out the symbols, which is written
7104 to the output file at the end of `NAME(aout,final_link)'.
7106 2.17.3.4 `bfd_link_split_section'
7107 .................................
7110 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
7112 Return nonzero if SEC should be split during a reloceatable or final
7114 #define bfd_link_split_section(abfd, sec) \
7115 BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
7117 2.17.3.5 `bfd_section_already_linked'
7118 .....................................
7121 void bfd_section_already_linked (bfd *abfd, asection *sec);
7123 Check if SEC has been already linked during a reloceatable or final
7125 #define bfd_section_already_linked(abfd, sec) \
7126 BFD_SEND (abfd, _section_already_linked, (abfd, sec))
7129 File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end
7134 BFD provides a simple set of hash table functions. Routines are
7135 provided to initialize a hash table, to free a hash table, to look up a
7136 string in a hash table and optionally create an entry for it, and to
7137 traverse a hash table. There is currently no routine to delete an
7138 string from a hash table.
7140 The basic hash table does not permit any data to be stored with a
7141 string. However, a hash table is designed to present a base class from
7142 which other types of hash tables may be derived. These derived types
7143 may store additional information with the string. Hash tables were
7144 implemented in this way, rather than simply providing a data pointer in
7145 a hash table entry, because they were designed for use by the linker
7146 back ends. The linker may create thousands of hash table entries, and
7147 the overhead of allocating private data and storing and following
7148 pointers becomes noticeable.
7150 The basic hash table code is in `hash.c'.
7154 * Creating and Freeing a Hash Table::
7155 * Looking Up or Entering a String::
7156 * Traversing a Hash Table::
7157 * Deriving a New Hash Table Type::
7160 File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables
7162 2.18.1 Creating and freeing a hash table
7163 ----------------------------------------
7165 To create a hash table, create an instance of a `struct bfd_hash_table'
7166 (defined in `bfd.h') and call `bfd_hash_table_init' (if you know
7167 approximately how many entries you will need, the function
7168 `bfd_hash_table_init_n', which takes a SIZE argument, may be used).
7169 `bfd_hash_table_init' returns `FALSE' if some sort of error occurs.
7171 The function `bfd_hash_table_init' take as an argument a function to
7172 use to create new entries. For a basic hash table, use the function
7173 `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why
7174 you would want to use a different value for this argument.
7176 `bfd_hash_table_init' will create an objalloc which will be used to
7177 allocate new entries. You may allocate memory on this objalloc using
7178 `bfd_hash_allocate'.
7180 Use `bfd_hash_table_free' to free up all the memory that has been
7181 allocated for a hash table. This will not free up the `struct
7182 bfd_hash_table' itself, which you must provide.
7184 Use `bfd_hash_set_default_size' to set the default size of hash
7188 File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables
7190 2.18.2 Looking up or entering a string
7191 --------------------------------------
7193 The function `bfd_hash_lookup' is used both to look up a string in the
7194 hash table and to create a new entry.
7196 If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a
7197 string. If the string is found, it will returns a pointer to a `struct
7198 bfd_hash_entry'. If the string is not found in the table
7199 `bfd_hash_lookup' will return `NULL'. You should not modify any of the
7200 fields in the returns `struct bfd_hash_entry'.
7202 If the CREATE argument is `TRUE', the string will be entered into
7203 the hash table if it is not already there. Either way a pointer to a
7204 `struct bfd_hash_entry' will be returned, either to the existing
7205 structure or to a newly created one. In this case, a `NULL' return
7206 means that an error occurred.
7208 If the CREATE argument is `TRUE', and a new entry is created, the
7209 COPY argument is used to decide whether to copy the string onto the
7210 hash table objalloc or not. If COPY is passed as `FALSE', you must be
7211 careful not to deallocate or modify the string as long as the hash table
7215 File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables
7217 2.18.3 Traversing a hash table
7218 ------------------------------
7220 The function `bfd_hash_traverse' may be used to traverse a hash table,
7221 calling a function on each element. The traversal is done in a random
7224 `bfd_hash_traverse' takes as arguments a function and a generic
7225 `void *' pointer. The function is called with a hash table entry (a
7226 `struct bfd_hash_entry *') and the generic pointer passed to
7227 `bfd_hash_traverse'. The function must return a `boolean' value, which
7228 indicates whether to continue traversing the hash table. If the
7229 function returns `FALSE', `bfd_hash_traverse' will stop the traversal
7230 and return immediately.
7233 File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables
7235 2.18.4 Deriving a new hash table type
7236 -------------------------------------
7238 Many uses of hash tables want to store additional information which
7239 each entry in the hash table. Some also find it convenient to store
7240 additional information with the hash table itself. This may be done
7241 using a derived hash table.
7243 Since C is not an object oriented language, creating a derived hash
7244 table requires sticking together some boilerplate routines with a few
7245 differences specific to the type of hash table you want to create.
7247 An example of a derived hash table is the linker hash table. The
7248 structures for this are defined in `bfdlink.h'. The functions are in
7251 You may also derive a hash table from an already derived hash table.
7252 For example, the a.out linker backend code uses a hash table derived
7253 from the linker hash table.
7257 * Define the Derived Structures::
7258 * Write the Derived Creation Routine::
7259 * Write Other Derived Routines::
7262 File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type
7264 2.18.4.1 Define the derived structures
7265 ......................................
7267 You must define a structure for an entry in the hash table, and a
7268 structure for the hash table itself.
7270 The first field in the structure for an entry in the hash table must
7271 be of the type used for an entry in the hash table you are deriving
7272 from. If you are deriving from a basic hash table this is `struct
7273 bfd_hash_entry', which is defined in `bfd.h'. The first field in the
7274 structure for the hash table itself must be of the type of the hash
7275 table you are deriving from itself. If you are deriving from a basic
7276 hash table, this is `struct bfd_hash_table'.
7278 For example, the linker hash table defines `struct
7279 bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of
7280 type `struct bfd_hash_entry'. Similarly, the first field in `struct
7281 bfd_link_hash_table', `table', is of type `struct bfd_hash_table'.
7284 File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type
7286 2.18.4.2 Write the derived creation routine
7287 ...........................................
7289 You must write a routine which will create and initialize an entry in
7290 the hash table. This routine is passed as the function argument to
7291 `bfd_hash_table_init'.
7293 In order to permit other hash tables to be derived from the hash
7294 table you are creating, this routine must be written in a standard way.
7296 The first argument to the creation routine is a pointer to a hash
7297 table entry. This may be `NULL', in which case the routine should
7298 allocate the right amount of space. Otherwise the space has already
7299 been allocated by a hash table type derived from this one.
7301 After allocating space, the creation routine must call the creation
7302 routine of the hash table type it is derived from, passing in a pointer
7303 to the space it just allocated. This will initialize any fields used
7304 by the base hash table.
7306 Finally the creation routine must initialize any local fields for
7307 the new hash table type.
7309 Here is a boilerplate example of a creation routine. FUNCTION_NAME
7310 is the name of the routine. ENTRY_TYPE is the type of an entry in the
7311 hash table you are creating. BASE_NEWFUNC is the name of the creation
7312 routine of the hash table type your hash table is derived from.
7314 struct bfd_hash_entry *
7315 FUNCTION_NAME (struct bfd_hash_entry *entry,
7316 struct bfd_hash_table *table,
7319 struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;
7321 /* Allocate the structure if it has not already been allocated by a
7325 ret = bfd_hash_allocate (table, sizeof (* ret));
7330 /* Call the allocation method of the base class. */
7331 ret = ((ENTRY_TYPE *)
7332 BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));
7334 /* Initialize the local fields here. */
7336 return (struct bfd_hash_entry *) ret;
7339 The creation routine for the linker hash table, which is in `linker.c',
7340 looks just like this example. FUNCTION_NAME is
7341 `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.
7342 BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic
7345 `_bfd_link_hash_newfunc' also initializes the local fields in a
7346 linker hash table entry: `type', `written' and `next'.
7349 File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type
7351 2.18.4.3 Write other derived routines
7352 .....................................
7354 You will want to write other routines for your new hash table, as well.
7356 You will want an initialization routine which calls the
7357 initialization routine of the hash table you are deriving from and
7358 initializes any other local fields. For the linker hash table, this is
7359 `_bfd_link_hash_table_init' in `linker.c'.
7361 You will want a lookup routine which calls the lookup routine of the
7362 hash table you are deriving from and casts the result. The linker hash
7363 table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an
7364 additional argument which it uses to decide how to return the looked up
7367 You may want a traversal routine. This should just call the
7368 traversal routine of the hash table you are deriving from with
7369 appropriate casts. The linker hash table uses `bfd_link_hash_traverse'
7372 These routines may simply be defined as macros. For example, the
7373 a.out backend linker hash table, which is derived from the linker hash
7374 table, uses macros for the lookup and traversal routines. These are
7375 `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.
7378 File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top
7385 * What to Put Where::
7386 * aout :: a.out backends
7387 * coff :: coff backends
7388 * elf :: elf backends
7389 * mmo :: mmo backend
7392 File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends
7394 All of BFD lives in one directory.
7397 File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends
7403 BFD supports a number of different flavours of a.out format, though the
7404 major differences are only the sizes of the structures on disk, and the
7405 shape of the relocation information.
7407 The support is split into a basic support file `aoutx.h' and other
7408 files which derive functions from the base. One derivation file is
7409 `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions
7410 support for sun3, sun4, 386 and 29k a.out files, to create a target
7411 jump vector for a specific target.
7413 This information is further split out into more specific files for
7414 each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for
7415 the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out
7418 The base file `aoutx.h' defines general mechanisms for reading and
7419 writing records to and from disk and various other methods which BFD
7420 requires. It is included by `aout32.c' and `aout64.c' to form the names
7421 `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.
7423 As an example, this is what goes on to make the back end for a sun4,
7426 #define ARCH_SIZE 32
7429 Which exports names:
7432 aout_32_canonicalize_reloc
7433 aout_32_find_nearest_line
7435 aout_32_get_reloc_upper_bound
7440 #define TARGET_NAME "a.out-sunos-big"
7441 #define VECNAME sunos_big_vec
7444 requires all the names from `aout32.c', and produces the jump vector
7448 The file `host-aout.c' is a special case. It is for a large set of
7449 hosts that use "more or less standard" a.out files, and for which
7450 cross-debugging is not interesting. It uses the standard 32-bit a.out
7451 support routines, but determines the file offsets and addresses of the
7452 text, data, and BSS sections, the machine architecture and machine
7453 type, and the entry point address, in a host-dependent manner. Once
7454 these values have been determined, generic code is used to handle the
7457 When porting it to run on a new system, you must supply:
7461 HOST_MACHINE_ARCH (optional)
7462 HOST_MACHINE_MACHINE (optional)
7463 HOST_TEXT_START_ADDR
7466 in the file `../include/sys/h-XXX.h' (for your host). These values,
7467 plus the structures and macros defined in `a.out.h' on your host
7468 system, will produce a BFD target that will access ordinary a.out files
7469 on your host. To configure a new machine to use `host-aout.c', specify:
7471 TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
7472 TDEPFILES= host-aout.o trad-core.o
7474 in the `config/XXX.mt' file, and modify `configure.in' to use the
7475 `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration
7482 The file `aoutx.h' provides for both the _standard_ and _extended_
7483 forms of a.out relocation records.
7485 The standard records contain only an address, a symbol index, and a
7486 type field. The extended records (used on 29ks and sparcs) also have a
7487 full integer for an addend.
7489 3.1.2 Internal entry points
7490 ---------------------------
7493 `aoutx.h' exports several routines for accessing the contents of an
7494 a.out file, which are gathered and exported in turn by various format
7495 specific files (eg sunos.c).
7497 3.1.2.1 `aout_SIZE_swap_exec_header_in'
7498 .......................................
7501 void aout_SIZE_swap_exec_header_in,
7503 struct external_exec *bytes,
7504 struct internal_exec *execp);
7506 Swap the information in an executable header RAW_BYTES taken from a raw
7507 byte stream memory image into the internal exec header structure EXECP.
7509 3.1.2.2 `aout_SIZE_swap_exec_header_out'
7510 ........................................
7513 void aout_SIZE_swap_exec_header_out
7515 struct internal_exec *execp,
7516 struct external_exec *raw_bytes);
7518 Swap the information in an internal exec header structure EXECP into
7519 the buffer RAW_BYTES ready for writing to disk.
7521 3.1.2.3 `aout_SIZE_some_aout_object_p'
7522 ......................................
7525 const bfd_target *aout_SIZE_some_aout_object_p
7527 struct internal_exec *execp,
7528 const bfd_target *(*callback_to_real_object_p) (bfd *));
7530 Some a.out variant thinks that the file open in ABFD checking is an
7531 a.out file. Do some more checking, and set up for access if it really
7532 is. Call back to the calling environment's "finish up" function just
7533 before returning, to handle any last-minute setup.
7535 3.1.2.4 `aout_SIZE_mkobject'
7536 ............................
7539 bfd_boolean aout_SIZE_mkobject, (bfd *abfd);
7541 Initialize BFD ABFD for use with a.out files.
7543 3.1.2.5 `aout_SIZE_machine_type'
7544 ................................
7547 enum machine_type aout_SIZE_machine_type
7548 (enum bfd_architecture arch,
7549 unsigned long machine,
7550 bfd_boolean *unknown);
7552 Keep track of machine architecture and machine type for a.out's. Return
7553 the `machine_type' for a particular architecture and machine, or
7554 `M_UNKNOWN' if that exact architecture and machine can't be represented
7557 If the architecture is understood, machine type 0 (default) is
7560 3.1.2.6 `aout_SIZE_set_arch_mach'
7561 .................................
7564 bfd_boolean aout_SIZE_set_arch_mach,
7566 enum bfd_architecture arch,
7567 unsigned long machine);
7569 Set the architecture and the machine of the BFD ABFD to the values ARCH
7570 and MACHINE. Verify that ABFD's format can support the architecture
7573 3.1.2.7 `aout_SIZE_new_section_hook'
7574 ....................................
7577 bfd_boolean aout_SIZE_new_section_hook,
7581 Called by the BFD in response to a `bfd_make_section' request.