1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2005 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
37 #include "gdb_string.h"
40 #include "reggroups.h"
41 #include "arch-utils.h"
48 #include "alpha-tdep.h"
51 /* Return the name of the REGNO register.
53 An empty name corresponds to a register number that used to
54 be used for a virtual register. That virtual register has
55 been removed, but the index is still reserved to maintain
56 compatibility with existing remote alpha targets. */
59 alpha_register_name (int regno
)
61 static const char * const register_names
[] =
63 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
64 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
65 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
66 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
67 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
68 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
69 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
70 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
76 if (regno
>= (sizeof(register_names
) / sizeof(*register_names
)))
78 return register_names
[regno
];
82 alpha_cannot_fetch_register (int regno
)
84 return (regno
== ALPHA_ZERO_REGNUM
85 || strlen (alpha_register_name (regno
)) == 0);
89 alpha_cannot_store_register (int regno
)
91 return (regno
== ALPHA_ZERO_REGNUM
92 || strlen (alpha_register_name (regno
)) == 0);
96 alpha_register_type (struct gdbarch
*gdbarch
, int regno
)
98 if (regno
== ALPHA_SP_REGNUM
|| regno
== ALPHA_GP_REGNUM
)
99 return builtin_type_void_data_ptr
;
100 if (regno
== ALPHA_PC_REGNUM
)
101 return builtin_type_void_func_ptr
;
103 /* Don't need to worry about little vs big endian until
104 some jerk tries to port to alpha-unicosmk. */
105 if (regno
>= ALPHA_FP0_REGNUM
&& regno
< ALPHA_FP0_REGNUM
+ 31)
106 return builtin_type_ieee_double_little
;
108 return builtin_type_int64
;
111 /* Is REGNUM a member of REGGROUP? */
114 alpha_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
115 struct reggroup
*group
)
117 /* Filter out any registers eliminated, but whose regnum is
118 reserved for backward compatibility, e.g. the vfp. */
119 if (REGISTER_NAME (regnum
) == NULL
|| *REGISTER_NAME (regnum
) == '\0')
122 if (group
== all_reggroup
)
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum
== ALPHA_ZERO_REGNUM
)
132 /* All other registers are saved and restored. */
133 if (group
== save_reggroup
|| group
== restore_reggroup
)
136 /* All other groups are non-overlapping. */
138 /* Since this is really a PALcode memory slot... */
139 if (regnum
== ALPHA_UNIQUE_REGNUM
)
140 return group
== system_reggroup
;
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum
== ALPHA_FPCR_REGNUM
)
144 return group
== float_reggroup
;
146 if (regnum
>= ALPHA_FP0_REGNUM
&& regnum
< ALPHA_FP0_REGNUM
+ 31)
147 return group
== float_reggroup
;
149 return group
== general_reggroup
;
153 alpha_register_byte (int regno
)
158 /* The following represents exactly the conversion performed by
159 the LDS instruction. This applies to both single-precision
160 floating point and 32-bit integers. */
163 alpha_lds (void *out
, const void *in
)
165 ULONGEST mem
= extract_unsigned_integer (in
, 4);
166 ULONGEST frac
= (mem
>> 0) & 0x7fffff;
167 ULONGEST sign
= (mem
>> 31) & 1;
168 ULONGEST exp_msb
= (mem
>> 30) & 1;
169 ULONGEST exp_low
= (mem
>> 23) & 0x7f;
172 exp
= (exp_msb
<< 10) | exp_low
;
184 reg
= (sign
<< 63) | (exp
<< 52) | (frac
<< 29);
185 store_unsigned_integer (out
, 8, reg
);
188 /* Similarly, this represents exactly the conversion performed by
189 the STS instruction. */
192 alpha_sts (void *out
, const void *in
)
196 reg
= extract_unsigned_integer (in
, 8);
197 mem
= ((reg
>> 32) & 0xc0000000) | ((reg
>> 29) & 0x3fffffff);
198 store_unsigned_integer (out
, 4, mem
);
201 /* The alpha needs a conversion between register and memory format if the
202 register is a floating point register and memory format is float, as the
203 register format must be double or memory format is an integer with 4
204 bytes or less, as the representation of integers in floating point
205 registers is different. */
208 alpha_convert_register_p (int regno
, struct type
*type
)
210 return (regno
>= ALPHA_FP0_REGNUM
&& regno
< ALPHA_FP0_REGNUM
+ 31);
214 alpha_register_to_value (struct frame_info
*frame
, int regnum
,
215 struct type
*valtype
, gdb_byte
*out
)
217 char in
[MAX_REGISTER_SIZE
];
218 frame_register_read (frame
, regnum
, in
);
219 switch (TYPE_LENGTH (valtype
))
228 error (_("Cannot retrieve value from floating point register"));
233 alpha_value_to_register (struct frame_info
*frame
, int regnum
,
234 struct type
*valtype
, const gdb_byte
*in
)
236 char out
[MAX_REGISTER_SIZE
];
237 switch (TYPE_LENGTH (valtype
))
246 error (_("Cannot store value in floating point register"));
248 put_frame_register (frame
, regnum
, out
);
252 /* The alpha passes the first six arguments in the registers, the rest on
253 the stack. The register arguments are stored in ARG_REG_BUFFER, and
254 then moved into the register file; this simplifies the passing of a
255 large struct which extends from the registers to the stack, plus avoids
256 three ptrace invocations per word.
258 We don't bother tracking which register values should go in integer
259 regs or fp regs; we load the same values into both.
261 If the called function is returning a structure, the address of the
262 structure to be returned is passed as a hidden first argument. */
265 alpha_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
266 struct regcache
*regcache
, CORE_ADDR bp_addr
,
267 int nargs
, struct value
**args
, CORE_ADDR sp
,
268 int struct_return
, CORE_ADDR struct_addr
)
271 int accumulate_size
= struct_return
? 8 : 0;
278 struct alpha_arg
*alpha_args
279 = (struct alpha_arg
*) alloca (nargs
* sizeof (struct alpha_arg
));
280 struct alpha_arg
*m_arg
;
281 char arg_reg_buffer
[ALPHA_REGISTER_SIZE
* ALPHA_NUM_ARG_REGS
];
282 int required_arg_regs
;
283 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
285 /* The ABI places the address of the called function in T12. */
286 regcache_cooked_write_signed (regcache
, ALPHA_T12_REGNUM
, func_addr
);
288 /* Set the return address register to point to the entry point
289 of the program, where a breakpoint lies in wait. */
290 regcache_cooked_write_signed (regcache
, ALPHA_RA_REGNUM
, bp_addr
);
292 /* Lay out the arguments in memory. */
293 for (i
= 0, m_arg
= alpha_args
; i
< nargs
; i
++, m_arg
++)
295 struct value
*arg
= args
[i
];
296 struct type
*arg_type
= check_typedef (value_type (arg
));
298 /* Cast argument to long if necessary as the compiler does it too. */
299 switch (TYPE_CODE (arg_type
))
304 case TYPE_CODE_RANGE
:
306 if (TYPE_LENGTH (arg_type
) == 4)
308 /* 32-bit values must be sign-extended to 64 bits
309 even if the base data type is unsigned. */
310 arg_type
= builtin_type_int32
;
311 arg
= value_cast (arg_type
, arg
);
313 if (TYPE_LENGTH (arg_type
) < ALPHA_REGISTER_SIZE
)
315 arg_type
= builtin_type_int64
;
316 arg
= value_cast (arg_type
, arg
);
321 /* "float" arguments loaded in registers must be passed in
322 register format, aka "double". */
323 if (accumulate_size
< sizeof (arg_reg_buffer
)
324 && TYPE_LENGTH (arg_type
) == 4)
326 arg_type
= builtin_type_ieee_double_little
;
327 arg
= value_cast (arg_type
, arg
);
329 /* Tru64 5.1 has a 128-bit long double, and passes this by
330 invisible reference. No one else uses this data type. */
331 else if (TYPE_LENGTH (arg_type
) == 16)
333 /* Allocate aligned storage. */
334 sp
= (sp
& -16) - 16;
336 /* Write the real data into the stack. */
337 write_memory (sp
, value_contents (arg
), 16);
339 /* Construct the indirection. */
340 arg_type
= lookup_pointer_type (arg_type
);
341 arg
= value_from_pointer (arg_type
, sp
);
345 case TYPE_CODE_COMPLEX
:
346 /* ??? The ABI says that complex values are passed as two
347 separate scalar values. This distinction only matters
348 for complex float. However, GCC does not implement this. */
350 /* Tru64 5.1 has a 128-bit long double, and passes this by
351 invisible reference. */
352 if (TYPE_LENGTH (arg_type
) == 32)
354 /* Allocate aligned storage. */
355 sp
= (sp
& -16) - 16;
357 /* Write the real data into the stack. */
358 write_memory (sp
, value_contents (arg
), 32);
360 /* Construct the indirection. */
361 arg_type
= lookup_pointer_type (arg_type
);
362 arg
= value_from_pointer (arg_type
, sp
);
369 m_arg
->len
= TYPE_LENGTH (arg_type
);
370 m_arg
->offset
= accumulate_size
;
371 accumulate_size
= (accumulate_size
+ m_arg
->len
+ 7) & ~7;
372 m_arg
->contents
= value_contents_writeable (arg
);
375 /* Determine required argument register loads, loading an argument register
376 is expensive as it uses three ptrace calls. */
377 required_arg_regs
= accumulate_size
/ 8;
378 if (required_arg_regs
> ALPHA_NUM_ARG_REGS
)
379 required_arg_regs
= ALPHA_NUM_ARG_REGS
;
381 /* Make room for the arguments on the stack. */
382 if (accumulate_size
< sizeof(arg_reg_buffer
))
385 accumulate_size
-= sizeof(arg_reg_buffer
);
386 sp
-= accumulate_size
;
388 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
391 /* `Push' arguments on the stack. */
392 for (i
= nargs
; m_arg
--, --i
>= 0;)
394 char *contents
= m_arg
->contents
;
395 int offset
= m_arg
->offset
;
396 int len
= m_arg
->len
;
398 /* Copy the bytes destined for registers into arg_reg_buffer. */
399 if (offset
< sizeof(arg_reg_buffer
))
401 if (offset
+ len
<= sizeof(arg_reg_buffer
))
403 memcpy (arg_reg_buffer
+ offset
, contents
, len
);
408 int tlen
= sizeof(arg_reg_buffer
) - offset
;
409 memcpy (arg_reg_buffer
+ offset
, contents
, tlen
);
416 /* Everything else goes to the stack. */
417 write_memory (sp
+ offset
- sizeof(arg_reg_buffer
), contents
, len
);
420 store_unsigned_integer (arg_reg_buffer
, ALPHA_REGISTER_SIZE
, struct_addr
);
422 /* Load the argument registers. */
423 for (i
= 0; i
< required_arg_regs
; i
++)
425 regcache_cooked_write (regcache
, ALPHA_A0_REGNUM
+ i
,
426 arg_reg_buffer
+ i
*ALPHA_REGISTER_SIZE
);
427 regcache_cooked_write (regcache
, ALPHA_FPA0_REGNUM
+ i
,
428 arg_reg_buffer
+ i
*ALPHA_REGISTER_SIZE
);
431 /* Finally, update the stack pointer. */
432 regcache_cooked_write_signed (regcache
, ALPHA_SP_REGNUM
, sp
);
437 /* Extract from REGCACHE the value about to be returned from a function
438 and copy it into VALBUF. */
441 alpha_extract_return_value (struct type
*valtype
, struct regcache
*regcache
,
444 int length
= TYPE_LENGTH (valtype
);
445 char raw_buffer
[ALPHA_REGISTER_SIZE
];
448 switch (TYPE_CODE (valtype
))
454 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, raw_buffer
);
455 alpha_sts (valbuf
, raw_buffer
);
459 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
463 regcache_cooked_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &l
);
464 read_memory (l
, valbuf
, 16);
468 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
472 case TYPE_CODE_COMPLEX
:
476 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
477 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
481 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
482 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
+1,
487 regcache_cooked_read_signed (regcache
, ALPHA_V0_REGNUM
, &l
);
488 read_memory (l
, valbuf
, 32);
492 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
497 /* Assume everything else degenerates to an integer. */
498 regcache_cooked_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &l
);
499 store_unsigned_integer (valbuf
, length
, l
);
504 /* Extract from REGCACHE the address of a structure about to be returned
508 alpha_extract_struct_value_address (struct regcache
*regcache
)
511 regcache_cooked_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &addr
);
515 /* Insert the given value into REGCACHE as if it was being
516 returned by a function. */
519 alpha_store_return_value (struct type
*valtype
, struct regcache
*regcache
,
520 const gdb_byte
*valbuf
)
522 int length
= TYPE_LENGTH (valtype
);
523 char raw_buffer
[ALPHA_REGISTER_SIZE
];
526 switch (TYPE_CODE (valtype
))
532 alpha_lds (raw_buffer
, valbuf
);
533 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, raw_buffer
);
537 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
541 /* FIXME: 128-bit long doubles are returned like structures:
542 by writing into indirect storage provided by the caller
543 as the first argument. */
544 error (_("Cannot set a 128-bit long double return value."));
547 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
551 case TYPE_CODE_COMPLEX
:
555 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
556 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
560 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
561 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
+1,
562 (const char *)valbuf
+ 8);
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
569 error (_("Cannot set a 128-bit long double return value."));
572 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
577 /* Assume everything else degenerates to an integer. */
578 /* 32-bit values must be sign-extended to 64 bits
579 even if the base data type is unsigned. */
581 valtype
= builtin_type_int32
;
582 l
= unpack_long (valtype
, valbuf
);
583 regcache_cooked_write_unsigned (regcache
, ALPHA_V0_REGNUM
, l
);
589 static const unsigned char *
590 alpha_breakpoint_from_pc (CORE_ADDR
*pcptr
, int *lenptr
)
592 static const unsigned char alpha_breakpoint
[] =
593 { 0x80, 0, 0, 0 }; /* call_pal bpt */
595 *lenptr
= sizeof(alpha_breakpoint
);
596 return (alpha_breakpoint
);
600 /* This returns the PC of the first insn after the prologue.
601 If we can't find the prologue, then return 0. */
604 alpha_after_prologue (CORE_ADDR pc
)
606 struct symtab_and_line sal
;
607 CORE_ADDR func_addr
, func_end
;
609 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
612 sal
= find_pc_line (func_addr
, 0);
613 if (sal
.end
< func_end
)
616 /* The line after the prologue is after the end of the function. In this
617 case, tell the caller to find the prologue the hard way. */
621 /* Read an instruction from memory at PC, looking through breakpoints. */
624 alpha_read_insn (CORE_ADDR pc
)
629 status
= deprecated_read_memory_nobpt (pc
, buf
, 4);
631 memory_error (status
, pc
);
632 return extract_unsigned_integer (buf
, 4);
635 /* To skip prologues, I use this predicate. Returns either PC itself
636 if the code at PC does not look like a function prologue; otherwise
637 returns an address that (if we're lucky) follows the prologue. If
638 LENIENT, then we must skip everything which is involved in setting
639 up the frame (it's OK to skip more, just so long as we don't skip
640 anything which might clobber the registers which are being saved. */
643 alpha_skip_prologue (CORE_ADDR pc
)
647 CORE_ADDR post_prologue_pc
;
650 /* Silently return the unaltered pc upon memory errors.
651 This could happen on OSF/1 if decode_line_1 tries to skip the
652 prologue for quickstarted shared library functions when the
653 shared library is not yet mapped in.
654 Reading target memory is slow over serial lines, so we perform
655 this check only if the target has shared libraries (which all
656 Alpha targets do). */
657 if (target_read_memory (pc
, buf
, 4))
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
664 post_prologue_pc
= alpha_after_prologue (pc
);
665 if (post_prologue_pc
!= 0)
666 return max (pc
, post_prologue_pc
);
668 /* Can't determine prologue from the symbol table, need to examine
671 /* Skip the typical prologue instructions. These are the stack adjustment
672 instruction and the instructions that save registers on the stack
673 or in the gcc frame. */
674 for (offset
= 0; offset
< 100; offset
+= 4)
676 inst
= alpha_read_insn (pc
+ offset
);
678 if ((inst
& 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
680 if ((inst
& 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
682 if ((inst
& 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
684 if ((inst
& 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
687 if (((inst
& 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
688 || (inst
& 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
689 && (inst
& 0x03e00000) != 0x03e00000) /* reg != $zero */
692 if (inst
== 0x47de040f) /* bis sp,sp,fp */
694 if (inst
== 0x47fe040f) /* bis zero,sp,fp */
703 /* Figure out where the longjmp will land.
704 We expect the first arg to be a pointer to the jmp_buf structure from
705 which we extract the PC (JB_PC) that we will land at. The PC is copied
706 into the "pc". This routine returns true on success. */
709 alpha_get_longjmp_target (CORE_ADDR
*pc
)
711 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
713 char raw_buffer
[ALPHA_REGISTER_SIZE
];
715 jb_addr
= read_register (ALPHA_A0_REGNUM
);
717 if (target_read_memory (jb_addr
+ (tdep
->jb_pc
* tdep
->jb_elt_size
),
718 raw_buffer
, tdep
->jb_elt_size
))
721 *pc
= extract_unsigned_integer (raw_buffer
, tdep
->jb_elt_size
);
726 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
727 describe the location and shape of the sigcontext structure. After
728 that, all registers are in memory, so it's easy. */
729 /* ??? Shouldn't we be able to do this generically, rather than with
730 OSABI data specific to Alpha? */
732 struct alpha_sigtramp_unwind_cache
734 CORE_ADDR sigcontext_addr
;
737 static struct alpha_sigtramp_unwind_cache
*
738 alpha_sigtramp_frame_unwind_cache (struct frame_info
*next_frame
,
739 void **this_prologue_cache
)
741 struct alpha_sigtramp_unwind_cache
*info
;
742 struct gdbarch_tdep
*tdep
;
744 if (*this_prologue_cache
)
745 return *this_prologue_cache
;
747 info
= FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache
);
748 *this_prologue_cache
= info
;
750 tdep
= gdbarch_tdep (current_gdbarch
);
751 info
->sigcontext_addr
= tdep
->sigcontext_addr (next_frame
);
756 /* Return the address of REGNUM in a sigtramp frame. Since this is
757 all arithmetic, it doesn't seem worthwhile to cache it. */
760 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr
, int regnum
)
762 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
764 if (regnum
>= 0 && regnum
< 32)
765 return sigcontext_addr
+ tdep
->sc_regs_offset
+ regnum
* 8;
766 else if (regnum
>= ALPHA_FP0_REGNUM
&& regnum
< ALPHA_FP0_REGNUM
+ 32)
767 return sigcontext_addr
+ tdep
->sc_fpregs_offset
+ regnum
* 8;
768 else if (regnum
== ALPHA_PC_REGNUM
)
769 return sigcontext_addr
+ tdep
->sc_pc_offset
;
774 /* Given a GDB frame, determine the address of the calling function's
775 frame. This will be used to create a new GDB frame struct. */
778 alpha_sigtramp_frame_this_id (struct frame_info
*next_frame
,
779 void **this_prologue_cache
,
780 struct frame_id
*this_id
)
782 struct alpha_sigtramp_unwind_cache
*info
783 = alpha_sigtramp_frame_unwind_cache (next_frame
, this_prologue_cache
);
784 struct gdbarch_tdep
*tdep
;
785 CORE_ADDR stack_addr
, code_addr
;
787 /* If the OSABI couldn't locate the sigcontext, give up. */
788 if (info
->sigcontext_addr
== 0)
791 /* If we have dynamic signal trampolines, find their start.
792 If we do not, then we must assume there is a symbol record
793 that can provide the start address. */
794 tdep
= gdbarch_tdep (current_gdbarch
);
795 if (tdep
->dynamic_sigtramp_offset
)
798 code_addr
= frame_pc_unwind (next_frame
);
799 offset
= tdep
->dynamic_sigtramp_offset (code_addr
);
806 code_addr
= frame_func_unwind (next_frame
);
808 /* The stack address is trivially read from the sigcontext. */
809 stack_addr
= alpha_sigtramp_register_address (info
->sigcontext_addr
,
811 stack_addr
= get_frame_memory_unsigned (next_frame
, stack_addr
,
812 ALPHA_REGISTER_SIZE
);
814 *this_id
= frame_id_build (stack_addr
, code_addr
);
817 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
820 alpha_sigtramp_frame_prev_register (struct frame_info
*next_frame
,
821 void **this_prologue_cache
,
822 int regnum
, int *optimizedp
,
823 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
824 int *realnump
, gdb_byte
*bufferp
)
826 struct alpha_sigtramp_unwind_cache
*info
827 = alpha_sigtramp_frame_unwind_cache (next_frame
, this_prologue_cache
);
830 if (info
->sigcontext_addr
!= 0)
832 /* All integer and fp registers are stored in memory. */
833 addr
= alpha_sigtramp_register_address (info
->sigcontext_addr
, regnum
);
837 *lvalp
= lval_memory
;
841 get_frame_memory (next_frame
, addr
, bufferp
, ALPHA_REGISTER_SIZE
);
846 /* This extra register may actually be in the sigcontext, but our
847 current description of it in alpha_sigtramp_frame_unwind_cache
848 doesn't include it. Too bad. Fall back on whatever's in the
850 frame_register (next_frame
, regnum
, optimizedp
, lvalp
, addrp
,
854 static const struct frame_unwind alpha_sigtramp_frame_unwind
= {
856 alpha_sigtramp_frame_this_id
,
857 alpha_sigtramp_frame_prev_register
860 static const struct frame_unwind
*
861 alpha_sigtramp_frame_sniffer (struct frame_info
*next_frame
)
863 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
866 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
867 look at tramp-frame.h and other simplier per-architecture
868 sigtramp unwinders. */
870 /* We shouldn't even bother to try if the OSABI didn't register a
871 sigcontext_addr handler or pc_in_sigtramp hander. */
872 if (gdbarch_tdep (current_gdbarch
)->sigcontext_addr
== NULL
)
874 if (gdbarch_tdep (current_gdbarch
)->pc_in_sigtramp
== NULL
)
877 /* Otherwise we should be in a signal frame. */
878 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
879 if (gdbarch_tdep (current_gdbarch
)->pc_in_sigtramp (pc
, name
))
880 return &alpha_sigtramp_frame_unwind
;
885 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
886 something about the traditional layout of alpha stack frames. */
888 struct alpha_heuristic_unwind_cache
890 CORE_ADDR
*saved_regs
;
896 /* Heuristic_proc_start may hunt through the text section for a long
897 time across a 2400 baud serial line. Allows the user to limit this
899 static unsigned int heuristic_fence_post
= 0;
901 /* Attempt to locate the start of the function containing PC. We assume that
902 the previous function ends with an about_to_return insn. Not foolproof by
903 any means, since gcc is happy to put the epilogue in the middle of a
904 function. But we're guessing anyway... */
907 alpha_heuristic_proc_start (CORE_ADDR pc
)
909 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
910 CORE_ADDR last_non_nop
= pc
;
911 CORE_ADDR fence
= pc
- heuristic_fence_post
;
912 CORE_ADDR orig_pc
= pc
;
918 /* First see if we can find the start of the function from minimal
919 symbol information. This can succeed with a binary that doesn't
920 have debug info, but hasn't been stripped. */
921 func
= get_pc_function_start (pc
);
925 if (heuristic_fence_post
== UINT_MAX
926 || fence
< tdep
->vm_min_address
)
927 fence
= tdep
->vm_min_address
;
929 /* Search back for previous return; also stop at a 0, which might be
930 seen for instance before the start of a code section. Don't include
931 nops, since this usually indicates padding between functions. */
932 for (pc
-= 4; pc
>= fence
; pc
-= 4)
934 unsigned int insn
= alpha_read_insn (pc
);
937 case 0: /* invalid insn */
938 case 0x6bfa8001: /* ret $31,($26),1 */
941 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
942 case 0x47ff041f: /* nop: bis $31,$31,$31 */
951 /* It's not clear to me why we reach this point when stopping quietly,
952 but with this test, at least we don't print out warnings for every
953 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
954 if (stop_soon
== NO_STOP_QUIETLY
)
956 static int blurb_printed
= 0;
958 if (fence
== tdep
->vm_min_address
)
959 warning (_("Hit beginning of text section without finding \
960 enclosing function for address 0x%s"), paddr_nz (orig_pc
));
962 warning (_("Hit heuristic-fence-post without finding \
963 enclosing function for address 0x%s"), paddr_nz (orig_pc
));
967 printf_filtered (_("\
968 This warning occurs if you are debugging a function without any symbols\n\
969 (for example, in a stripped executable). In that case, you may wish to\n\
970 increase the size of the search with the `set heuristic-fence-post' command.\n\
972 Otherwise, you told GDB there was a function where there isn't one, or\n\
973 (more likely) you have encountered a bug in GDB.\n"));
981 static struct alpha_heuristic_unwind_cache
*
982 alpha_heuristic_frame_unwind_cache (struct frame_info
*next_frame
,
983 void **this_prologue_cache
,
986 struct alpha_heuristic_unwind_cache
*info
;
988 CORE_ADDR limit_pc
, cur_pc
;
989 int frame_reg
, frame_size
, return_reg
, reg
;
991 if (*this_prologue_cache
)
992 return *this_prologue_cache
;
994 info
= FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache
);
995 *this_prologue_cache
= info
;
996 info
->saved_regs
= frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS
);
998 limit_pc
= frame_pc_unwind (next_frame
);
1000 start_pc
= alpha_heuristic_proc_start (limit_pc
);
1001 info
->start_pc
= start_pc
;
1003 frame_reg
= ALPHA_SP_REGNUM
;
1007 /* If we've identified a likely place to start, do code scanning. */
1010 /* Limit the forward search to 50 instructions. */
1011 if (start_pc
+ 200 < limit_pc
)
1012 limit_pc
= start_pc
+ 200;
1014 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= 4)
1016 unsigned int word
= alpha_read_insn (cur_pc
);
1018 if ((word
& 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1022 /* Consider only the first stack allocation instruction
1023 to contain the static size of the frame. */
1024 if (frame_size
== 0)
1025 frame_size
= (-word
) & 0xffff;
1029 /* Exit loop if a positive stack adjustment is found, which
1030 usually means that the stack cleanup code in the function
1031 epilogue is reached. */
1035 else if ((word
& 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1037 reg
= (word
& 0x03e00000) >> 21;
1039 /* Ignore this instruction if we have already encountered
1040 an instruction saving the same register earlier in the
1041 function code. The current instruction does not tell
1042 us where the original value upon function entry is saved.
1043 All it says is that the function we are scanning reused
1044 that register for some computation of its own, and is now
1045 saving its result. */
1046 if (info
->saved_regs
[reg
])
1052 /* Do not compute the address where the register was saved yet,
1053 because we don't know yet if the offset will need to be
1054 relative to $sp or $fp (we can not compute the address
1055 relative to $sp if $sp is updated during the execution of
1056 the current subroutine, for instance when doing some alloca).
1057 So just store the offset for the moment, and compute the
1058 address later when we know whether this frame has a frame
1060 /* Hack: temporarily add one, so that the offset is non-zero
1061 and we can tell which registers have save offsets below. */
1062 info
->saved_regs
[reg
] = (word
& 0xffff) + 1;
1064 /* Starting with OSF/1-3.2C, the system libraries are shipped
1065 without local symbols, but they still contain procedure
1066 descriptors without a symbol reference. GDB is currently
1067 unable to find these procedure descriptors and uses
1068 heuristic_proc_desc instead.
1069 As some low level compiler support routines (__div*, __add*)
1070 use a non-standard return address register, we have to
1071 add some heuristics to determine the return address register,
1072 or stepping over these routines will fail.
1073 Usually the return address register is the first register
1074 saved on the stack, but assembler optimization might
1075 rearrange the register saves.
1076 So we recognize only a few registers (t7, t9, ra) within
1077 the procedure prologue as valid return address registers.
1078 If we encounter a return instruction, we extract the
1079 the return address register from it.
1081 FIXME: Rewriting GDB to access the procedure descriptors,
1082 e.g. via the minimal symbol table, might obviate this hack. */
1083 if (return_reg
== -1
1084 && cur_pc
< (start_pc
+ 80)
1085 && (reg
== ALPHA_T7_REGNUM
1086 || reg
== ALPHA_T9_REGNUM
1087 || reg
== ALPHA_RA_REGNUM
))
1090 else if ((word
& 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1091 return_reg
= (word
>> 16) & 0x1f;
1092 else if (word
== 0x47de040f) /* bis sp,sp,fp */
1093 frame_reg
= ALPHA_GCC_FP_REGNUM
;
1094 else if (word
== 0x47fe040f) /* bis zero,sp,fp */
1095 frame_reg
= ALPHA_GCC_FP_REGNUM
;
1098 /* If we haven't found a valid return address register yet, keep
1099 searching in the procedure prologue. */
1100 if (return_reg
== -1)
1102 while (cur_pc
< (limit_pc
+ 80) && cur_pc
< (start_pc
+ 80))
1104 unsigned int word
= alpha_read_insn (cur_pc
);
1106 if ((word
& 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1108 reg
= (word
& 0x03e00000) >> 21;
1109 if (reg
== ALPHA_T7_REGNUM
1110 || reg
== ALPHA_T9_REGNUM
1111 || reg
== ALPHA_RA_REGNUM
)
1117 else if ((word
& 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1119 return_reg
= (word
>> 16) & 0x1f;
1128 /* Failing that, do default to the customary RA. */
1129 if (return_reg
== -1)
1130 return_reg
= ALPHA_RA_REGNUM
;
1131 info
->return_reg
= return_reg
;
1133 frame_unwind_unsigned_register (next_frame
, frame_reg
, &val
);
1134 info
->vfp
= val
+ frame_size
;
1136 /* Convert offsets to absolute addresses. See above about adding
1137 one to the offsets to make all detected offsets non-zero. */
1138 for (reg
= 0; reg
< ALPHA_NUM_REGS
; ++reg
)
1139 if (info
->saved_regs
[reg
])
1140 info
->saved_regs
[reg
] += val
- 1;
1145 /* Given a GDB frame, determine the address of the calling function's
1146 frame. This will be used to create a new GDB frame struct. */
1149 alpha_heuristic_frame_this_id (struct frame_info
*next_frame
,
1150 void **this_prologue_cache
,
1151 struct frame_id
*this_id
)
1153 struct alpha_heuristic_unwind_cache
*info
1154 = alpha_heuristic_frame_unwind_cache (next_frame
, this_prologue_cache
, 0);
1156 *this_id
= frame_id_build (info
->vfp
, info
->start_pc
);
1159 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1162 alpha_heuristic_frame_prev_register (struct frame_info
*next_frame
,
1163 void **this_prologue_cache
,
1164 int regnum
, int *optimizedp
,
1165 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1166 int *realnump
, gdb_byte
*bufferp
)
1168 struct alpha_heuristic_unwind_cache
*info
1169 = alpha_heuristic_frame_unwind_cache (next_frame
, this_prologue_cache
, 0);
1171 /* The PC of the previous frame is stored in the link register of
1172 the current frame. Frob regnum so that we pull the value from
1173 the correct place. */
1174 if (regnum
== ALPHA_PC_REGNUM
)
1175 regnum
= info
->return_reg
;
1177 /* For all registers known to be saved in the current frame,
1178 do the obvious and pull the value out. */
1179 if (info
->saved_regs
[regnum
])
1182 *lvalp
= lval_memory
;
1183 *addrp
= info
->saved_regs
[regnum
];
1185 if (bufferp
!= NULL
)
1186 get_frame_memory (next_frame
, *addrp
, bufferp
, ALPHA_REGISTER_SIZE
);
1190 /* The stack pointer of the previous frame is computed by popping
1191 the current stack frame. */
1192 if (regnum
== ALPHA_SP_REGNUM
)
1198 if (bufferp
!= NULL
)
1199 store_unsigned_integer (bufferp
, ALPHA_REGISTER_SIZE
, info
->vfp
);
1203 /* Otherwise assume the next frame has the same register value. */
1204 frame_register_unwind (next_frame
, regnum
, optimizedp
, lvalp
, addrp
,
1208 static const struct frame_unwind alpha_heuristic_frame_unwind
= {
1210 alpha_heuristic_frame_this_id
,
1211 alpha_heuristic_frame_prev_register
1214 static const struct frame_unwind
*
1215 alpha_heuristic_frame_sniffer (struct frame_info
*next_frame
)
1217 return &alpha_heuristic_frame_unwind
;
1221 alpha_heuristic_frame_base_address (struct frame_info
*next_frame
,
1222 void **this_prologue_cache
)
1224 struct alpha_heuristic_unwind_cache
*info
1225 = alpha_heuristic_frame_unwind_cache (next_frame
, this_prologue_cache
, 0);
1230 static const struct frame_base alpha_heuristic_frame_base
= {
1231 &alpha_heuristic_frame_unwind
,
1232 alpha_heuristic_frame_base_address
,
1233 alpha_heuristic_frame_base_address
,
1234 alpha_heuristic_frame_base_address
1237 /* Just like reinit_frame_cache, but with the right arguments to be
1238 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1241 reinit_frame_cache_sfunc (char *args
, int from_tty
, struct cmd_list_element
*c
)
1243 reinit_frame_cache ();
1247 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1248 dummy frame. The frame ID's base needs to match the TOS value
1249 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1252 static struct frame_id
1253 alpha_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1256 frame_unwind_unsigned_register (next_frame
, ALPHA_SP_REGNUM
, &base
);
1257 return frame_id_build (base
, frame_pc_unwind (next_frame
));
1261 alpha_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1264 frame_unwind_unsigned_register (next_frame
, ALPHA_PC_REGNUM
, &pc
);
1269 /* Helper routines for alpha*-nat.c files to move register sets to and
1270 from core files. The UNIQUE pointer is allowed to be NULL, as most
1271 targets don't supply this value in their core files. */
1274 alpha_supply_int_regs (struct regcache
*regcache
, int regno
,
1275 const void *r0_r30
, const void *pc
, const void *unique
)
1277 const gdb_byte
*regs
= r0_r30
;
1280 for (i
= 0; i
< 31; ++i
)
1281 if (regno
== i
|| regno
== -1)
1282 regcache_raw_supply (regcache
, i
, regs
+ i
* 8);
1284 if (regno
== ALPHA_ZERO_REGNUM
|| regno
== -1)
1285 regcache_raw_supply (regcache
, ALPHA_ZERO_REGNUM
, NULL
);
1287 if (regno
== ALPHA_PC_REGNUM
|| regno
== -1)
1288 regcache_raw_supply (regcache
, ALPHA_PC_REGNUM
, pc
);
1290 if (regno
== ALPHA_UNIQUE_REGNUM
|| regno
== -1)
1291 regcache_raw_supply (regcache
, ALPHA_UNIQUE_REGNUM
, unique
);
1295 alpha_fill_int_regs (const struct regcache
*regcache
,
1296 int regno
, void *r0_r30
, void *pc
, void *unique
)
1298 gdb_byte
*regs
= r0_r30
;
1301 for (i
= 0; i
< 31; ++i
)
1302 if (regno
== i
|| regno
== -1)
1303 regcache_raw_collect (regcache
, i
, regs
+ i
* 8);
1305 if (regno
== ALPHA_PC_REGNUM
|| regno
== -1)
1306 regcache_raw_collect (regcache
, ALPHA_PC_REGNUM
, pc
);
1308 if (unique
&& (regno
== ALPHA_UNIQUE_REGNUM
|| regno
== -1))
1309 regcache_raw_collect (regcache
, ALPHA_UNIQUE_REGNUM
, unique
);
1313 alpha_supply_fp_regs (struct regcache
*regcache
, int regno
,
1314 const void *f0_f30
, const void *fpcr
)
1316 const gdb_byte
*regs
= f0_f30
;
1319 for (i
= ALPHA_FP0_REGNUM
; i
< ALPHA_FP0_REGNUM
+ 31; ++i
)
1320 if (regno
== i
|| regno
== -1)
1321 regcache_raw_supply (regcache
, i
,
1322 regs
+ (i
- ALPHA_FP0_REGNUM
) * 8);
1324 if (regno
== ALPHA_FPCR_REGNUM
|| regno
== -1)
1325 regcache_raw_supply (regcache
, ALPHA_FPCR_REGNUM
, fpcr
);
1329 alpha_fill_fp_regs (const struct regcache
*regcache
,
1330 int regno
, void *f0_f30
, void *fpcr
)
1332 gdb_byte
*regs
= f0_f30
;
1335 for (i
= ALPHA_FP0_REGNUM
; i
< ALPHA_FP0_REGNUM
+ 31; ++i
)
1336 if (regno
== i
|| regno
== -1)
1337 regcache_raw_collect (regcache
, i
,
1338 regs
+ (i
- ALPHA_FP0_REGNUM
) * 8);
1340 if (regno
== ALPHA_FPCR_REGNUM
|| regno
== -1)
1341 regcache_raw_collect (regcache
, ALPHA_FPCR_REGNUM
, fpcr
);
1346 /* Return nonzero if the G_floating register value in REG is equal to
1347 zero for FP control instructions. */
1350 fp_register_zero_p (LONGEST reg
)
1352 /* Check that all bits except the sign bit are zero. */
1353 const LONGEST zero_mask
= ((LONGEST
) 1 << 63) ^ -1;
1355 return ((reg
& zero_mask
) == 0);
1358 /* Return the value of the sign bit for the G_floating register
1359 value held in REG. */
1362 fp_register_sign_bit (LONGEST reg
)
1364 const LONGEST sign_mask
= (LONGEST
) 1 << 63;
1366 return ((reg
& sign_mask
) != 0);
1369 /* alpha_software_single_step() is called just before we want to resume
1370 the inferior, if we want to single-step it but there is no hardware
1371 or kernel single-step support (NetBSD on Alpha, for example). We find
1372 the target of the coming instruction and breakpoint it.
1374 single_step is also called just after the inferior stops. If we had
1375 set up a simulated single-step, we undo our damage. */
1378 alpha_next_pc (CORE_ADDR pc
)
1387 insn
= alpha_read_insn (pc
);
1389 /* Opcode is top 6 bits. */
1390 op
= (insn
>> 26) & 0x3f;
1394 /* Jump format: target PC is:
1396 return (read_register ((insn
>> 16) & 0x1f) & ~3);
1399 if ((op
& 0x30) == 0x30)
1401 /* Branch format: target PC is:
1402 (new PC) + (4 * sext(displacement)) */
1403 if (op
== 0x30 || /* BR */
1404 op
== 0x34) /* BSR */
1407 offset
= (insn
& 0x001fffff);
1408 if (offset
& 0x00100000)
1409 offset
|= 0xffe00000;
1411 return (pc
+ 4 + offset
);
1414 /* Need to determine if branch is taken; read RA. */
1415 regno
= (insn
>> 21) & 0x1f;
1418 case 0x31: /* FBEQ */
1419 case 0x36: /* FBGE */
1420 case 0x37: /* FBGT */
1421 case 0x33: /* FBLE */
1422 case 0x32: /* FBLT */
1423 case 0x35: /* FBNE */
1424 regno
+= FP0_REGNUM
;
1427 regcache_cooked_read (current_regcache
, regno
, reg
);
1428 rav
= extract_signed_integer (reg
, 8);
1432 case 0x38: /* BLBC */
1436 case 0x3c: /* BLBS */
1440 case 0x39: /* BEQ */
1444 case 0x3d: /* BNE */
1448 case 0x3a: /* BLT */
1452 case 0x3b: /* BLE */
1456 case 0x3f: /* BGT */
1460 case 0x3e: /* BGE */
1465 /* Floating point branches. */
1467 case 0x31: /* FBEQ */
1468 if (fp_register_zero_p (rav
))
1471 case 0x36: /* FBGE */
1472 if (fp_register_sign_bit (rav
) == 0 || fp_register_zero_p (rav
))
1475 case 0x37: /* FBGT */
1476 if (fp_register_sign_bit (rav
) == 0 && ! fp_register_zero_p (rav
))
1479 case 0x33: /* FBLE */
1480 if (fp_register_sign_bit (rav
) == 1 || fp_register_zero_p (rav
))
1483 case 0x32: /* FBLT */
1484 if (fp_register_sign_bit (rav
) == 1 && ! fp_register_zero_p (rav
))
1487 case 0x35: /* FBNE */
1488 if (! fp_register_zero_p (rav
))
1494 /* Not a branch or branch not taken; target PC is:
1500 alpha_software_single_step (enum target_signal sig
, int insert_breakpoints_p
)
1502 static CORE_ADDR next_pc
;
1505 if (insert_breakpoints_p
)
1508 next_pc
= alpha_next_pc (pc
);
1510 insert_single_step_breakpoint (next_pc
);
1514 remove_single_step_breakpoints ();
1520 /* Initialize the current architecture based on INFO. If possible, re-use an
1521 architecture from ARCHES, which is a list of architectures already created
1522 during this debugging session.
1524 Called e.g. at program startup, when reading a core file, and when reading
1527 static struct gdbarch
*
1528 alpha_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1530 struct gdbarch_tdep
*tdep
;
1531 struct gdbarch
*gdbarch
;
1533 /* Try to determine the ABI of the object we are loading. */
1534 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
1536 /* If it's an ECOFF file, assume it's OSF/1. */
1537 if (bfd_get_flavour (info
.abfd
) == bfd_target_ecoff_flavour
)
1538 info
.osabi
= GDB_OSABI_OSF1
;
1541 /* Find a candidate among extant architectures. */
1542 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1544 return arches
->gdbarch
;
1546 tdep
= xmalloc (sizeof (struct gdbarch_tdep
));
1547 gdbarch
= gdbarch_alloc (&info
, tdep
);
1549 /* Lowest text address. This is used by heuristic_proc_start()
1550 to decide when to stop looking. */
1551 tdep
->vm_min_address
= (CORE_ADDR
) 0x120000000LL
;
1553 tdep
->dynamic_sigtramp_offset
= NULL
;
1554 tdep
->sigcontext_addr
= NULL
;
1555 tdep
->sc_pc_offset
= 2 * 8;
1556 tdep
->sc_regs_offset
= 4 * 8;
1557 tdep
->sc_fpregs_offset
= tdep
->sc_regs_offset
+ 32 * 8 + 8;
1559 tdep
->jb_pc
= -1; /* longjmp support not enabled by default */
1562 set_gdbarch_short_bit (gdbarch
, 16);
1563 set_gdbarch_int_bit (gdbarch
, 32);
1564 set_gdbarch_long_bit (gdbarch
, 64);
1565 set_gdbarch_long_long_bit (gdbarch
, 64);
1566 set_gdbarch_float_bit (gdbarch
, 32);
1567 set_gdbarch_double_bit (gdbarch
, 64);
1568 set_gdbarch_long_double_bit (gdbarch
, 64);
1569 set_gdbarch_ptr_bit (gdbarch
, 64);
1572 set_gdbarch_num_regs (gdbarch
, ALPHA_NUM_REGS
);
1573 set_gdbarch_sp_regnum (gdbarch
, ALPHA_SP_REGNUM
);
1574 set_gdbarch_pc_regnum (gdbarch
, ALPHA_PC_REGNUM
);
1575 set_gdbarch_fp0_regnum (gdbarch
, ALPHA_FP0_REGNUM
);
1577 set_gdbarch_register_name (gdbarch
, alpha_register_name
);
1578 set_gdbarch_deprecated_register_byte (gdbarch
, alpha_register_byte
);
1579 set_gdbarch_register_type (gdbarch
, alpha_register_type
);
1581 set_gdbarch_cannot_fetch_register (gdbarch
, alpha_cannot_fetch_register
);
1582 set_gdbarch_cannot_store_register (gdbarch
, alpha_cannot_store_register
);
1584 set_gdbarch_convert_register_p (gdbarch
, alpha_convert_register_p
);
1585 set_gdbarch_register_to_value (gdbarch
, alpha_register_to_value
);
1586 set_gdbarch_value_to_register (gdbarch
, alpha_value_to_register
);
1588 set_gdbarch_register_reggroup_p (gdbarch
, alpha_register_reggroup_p
);
1590 /* Prologue heuristics. */
1591 set_gdbarch_skip_prologue (gdbarch
, alpha_skip_prologue
);
1594 set_gdbarch_print_insn (gdbarch
, print_insn_alpha
);
1598 set_gdbarch_deprecated_use_struct_convention (gdbarch
, always_use_struct_convention
);
1599 set_gdbarch_extract_return_value (gdbarch
, alpha_extract_return_value
);
1600 set_gdbarch_store_return_value (gdbarch
, alpha_store_return_value
);
1601 set_gdbarch_deprecated_extract_struct_value_address (gdbarch
, alpha_extract_struct_value_address
);
1603 /* Settings for calling functions in the inferior. */
1604 set_gdbarch_push_dummy_call (gdbarch
, alpha_push_dummy_call
);
1606 /* Methods for saving / extracting a dummy frame's ID. */
1607 set_gdbarch_unwind_dummy_id (gdbarch
, alpha_unwind_dummy_id
);
1609 /* Return the unwound PC value. */
1610 set_gdbarch_unwind_pc (gdbarch
, alpha_unwind_pc
);
1612 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1613 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
1615 set_gdbarch_breakpoint_from_pc (gdbarch
, alpha_breakpoint_from_pc
);
1616 set_gdbarch_decr_pc_after_break (gdbarch
, 4);
1617 set_gdbarch_cannot_step_breakpoint (gdbarch
, 1);
1619 /* Hook in ABI-specific overrides, if they have been registered. */
1620 gdbarch_init_osabi (info
, gdbarch
);
1622 /* Now that we have tuned the configuration, set a few final things
1623 based on what the OS ABI has told us. */
1625 if (tdep
->jb_pc
>= 0)
1626 set_gdbarch_get_longjmp_target (gdbarch
, alpha_get_longjmp_target
);
1628 frame_unwind_append_sniffer (gdbarch
, alpha_sigtramp_frame_sniffer
);
1629 frame_unwind_append_sniffer (gdbarch
, alpha_heuristic_frame_sniffer
);
1631 frame_base_set_default (gdbarch
, &alpha_heuristic_frame_base
);
1637 alpha_dwarf2_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1639 frame_unwind_append_sniffer (gdbarch
, dwarf2_frame_sniffer
);
1640 frame_base_append_sniffer (gdbarch
, dwarf2_frame_base_sniffer
);
1643 extern initialize_file_ftype _initialize_alpha_tdep
; /* -Wmissing-prototypes */
1646 _initialize_alpha_tdep (void)
1648 struct cmd_list_element
*c
;
1650 gdbarch_register (bfd_arch_alpha
, alpha_gdbarch_init
, NULL
);
1652 /* Let the user set the fence post for heuristic_proc_start. */
1654 /* We really would like to have both "0" and "unlimited" work, but
1655 command.c doesn't deal with that. So make it a var_zinteger
1656 because the user can always use "999999" or some such for unlimited. */
1657 /* We need to throw away the frame cache when we set this, since it
1658 might change our ability to get backtraces. */
1659 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support
,
1660 &heuristic_fence_post
, _("\
1661 Set the distance searched for the start of a function."), _("\
1662 Show the distance searched for the start of a function."), _("\
1663 If you are debugging a stripped executable, GDB needs to search through the\n\
1664 program for the start of a function. This command sets the distance of the\n\
1665 search. The only need to set it is when debugging a stripped executable."),
1666 reinit_frame_cache_sfunc
,
1667 NULL
, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1668 &setlist
, &showlist
);