No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gdb6 / gdb / c-exp.y
blob1955fc0adec1637483a4905928f052dfb30a90a4
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004, 2006
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* Parse a C expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result.
32 Note that malloc's and realloc's in this file are transformed to
33 xmalloc and xrealloc respectively by the same sed command in the
34 makefile that remaps any other malloc/realloc inserted by the parser
35 generator. Doing this with #defines and trying to control the interaction
36 with include files (<malloc.h> and <stdlib.h> for example) just became
37 too messy, particularly when such includes can be inserted at random
38 times by the parser generator. */
42 #include "defs.h"
43 #include "gdb_string.h"
44 #include <ctype.h>
45 #include "expression.h"
46 #include "value.h"
47 #include "parser-defs.h"
48 #include "language.h"
49 #include "c-lang.h"
50 #include "bfd.h" /* Required by objfiles.h. */
51 #include "symfile.h" /* Required by objfiles.h. */
52 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
53 #include "charset.h"
54 #include "block.h"
55 #include "cp-support.h"
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
58 as well as gratuitiously global symbol names, so we can have multiple
59 yacc generated parsers in gdb. Note that these are only the variables
60 produced by yacc. If other parser generators (bison, byacc, etc) produce
61 additional global names that conflict at link time, then those parser
62 generators need to be fixed instead of adding those names to this list. */
64 #define yymaxdepth c_maxdepth
65 #define yyparse c_parse
66 #define yylex c_lex
67 #define yyerror c_error
68 #define yylval c_lval
69 #define yychar c_char
70 #define yydebug c_debug
71 #define yypact c_pact
72 #define yyr1 c_r1
73 #define yyr2 c_r2
74 #define yydef c_def
75 #define yychk c_chk
76 #define yypgo c_pgo
77 #define yyact c_act
78 #define yyexca c_exca
79 #define yyerrflag c_errflag
80 #define yynerrs c_nerrs
81 #define yyps c_ps
82 #define yypv c_pv
83 #define yys c_s
84 #define yy_yys c_yys
85 #define yystate c_state
86 #define yytmp c_tmp
87 #define yyv c_v
88 #define yy_yyv c_yyv
89 #define yyval c_val
90 #define yylloc c_lloc
91 #define yyreds c_reds /* With YYDEBUG defined */
92 #define yytoks c_toks /* With YYDEBUG defined */
93 #define yyname c_name /* With YYDEBUG defined */
94 #define yyrule c_rule /* With YYDEBUG defined */
95 #define yylhs c_yylhs
96 #define yylen c_yylen
97 #define yydefred c_yydefred
98 #define yydgoto c_yydgoto
99 #define yysindex c_yysindex
100 #define yyrindex c_yyrindex
101 #define yygindex c_yygindex
102 #define yytable c_yytable
103 #define yycheck c_yycheck
105 #ifndef YYDEBUG
106 #define YYDEBUG 1 /* Default to yydebug support */
107 #endif
109 #define YYFPRINTF parser_fprintf
111 int yyparse (void);
113 static int yylex (void);
115 void yyerror (char *);
119 /* Although the yacc "value" of an expression is not used,
120 since the result is stored in the structure being created,
121 other node types do have values. */
123 %union
125 LONGEST lval;
126 struct {
127 LONGEST val;
128 struct type *type;
129 } typed_val_int;
130 struct {
131 DOUBLEST dval;
132 struct type *type;
133 } typed_val_float;
134 struct symbol *sym;
135 struct type *tval;
136 struct stoken sval;
137 struct ttype tsym;
138 struct symtoken ssym;
139 int voidval;
140 struct block *bval;
141 enum exp_opcode opcode;
142 struct internalvar *ivar;
144 struct type **tvec;
145 int *ivec;
149 /* YYSTYPE gets defined by %union */
150 static int parse_number (char *, int, int, YYSTYPE *);
153 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
154 %type <lval> rcurly
155 %type <tval> type typebase qualified_type
156 %type <tvec> nonempty_typelist
157 /* %type <bval> block */
159 /* Fancy type parsing. */
160 %type <voidval> func_mod direct_abs_decl abs_decl
161 %type <tval> ptype
162 %type <lval> array_mod
164 %token <typed_val_int> INT
165 %token <typed_val_float> FLOAT
167 /* Both NAME and TYPENAME tokens represent symbols in the input,
168 and both convey their data as strings.
169 But a TYPENAME is a string that happens to be defined as a typedef
170 or builtin type name (such as int or char)
171 and a NAME is any other symbol.
172 Contexts where this distinction is not important can use the
173 nonterminal "name", which matches either NAME or TYPENAME. */
175 %token <sval> STRING
176 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
177 %token <tsym> TYPENAME
178 %type <sval> name
179 %type <ssym> name_not_typename
180 %type <tsym> typename
182 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
183 but which would parse as a valid number in the current input radix.
184 E.g. "c" when input_radix==16. Depending on the parse, it will be
185 turned into a name or into a number. */
187 %token <ssym> NAME_OR_INT
189 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
190 %token TEMPLATE
191 %token ERROR
193 /* Special type cases, put in to allow the parser to distinguish different
194 legal basetypes. */
195 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
197 %token <voidval> VARIABLE
199 %token <opcode> ASSIGN_MODIFY
201 /* C++ */
202 %token TRUEKEYWORD
203 %token FALSEKEYWORD
206 %left ','
207 %left ABOVE_COMMA
208 %right '=' ASSIGN_MODIFY
209 %right '?'
210 %left OROR
211 %left ANDAND
212 %left '|'
213 %left '^'
214 %left '&'
215 %left EQUAL NOTEQUAL
216 %left '<' '>' LEQ GEQ
217 %left LSH RSH
218 %left '@'
219 %left '+' '-'
220 %left '*' '/' '%'
221 %right UNARY INCREMENT DECREMENT
222 %right ARROW '.' '[' '('
223 %token <ssym> BLOCKNAME
224 %token <bval> FILENAME
225 %type <bval> block
226 %left COLONCOLON
231 start : exp1
232 | type_exp
235 type_exp: type
236 { write_exp_elt_opcode(OP_TYPE);
237 write_exp_elt_type($1);
238 write_exp_elt_opcode(OP_TYPE);}
241 /* Expressions, including the comma operator. */
242 exp1 : exp
243 | exp1 ',' exp
244 { write_exp_elt_opcode (BINOP_COMMA); }
247 /* Expressions, not including the comma operator. */
248 exp : '*' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_IND); }
252 exp : '&' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_ADDR); }
256 exp : '-' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_NEG); }
260 exp : '+' exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_PLUS); }
264 exp : '!' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
268 exp : '~' exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
272 exp : INCREMENT exp %prec UNARY
273 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
276 exp : DECREMENT exp %prec UNARY
277 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
280 exp : exp INCREMENT %prec UNARY
281 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
284 exp : exp DECREMENT %prec UNARY
285 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
288 exp : SIZEOF exp %prec UNARY
289 { write_exp_elt_opcode (UNOP_SIZEOF); }
292 exp : exp ARROW name
293 { write_exp_elt_opcode (STRUCTOP_PTR);
294 write_exp_string ($3);
295 write_exp_elt_opcode (STRUCTOP_PTR); }
298 exp : exp ARROW qualified_name
299 { /* exp->type::name becomes exp->*(&type::name) */
300 /* Note: this doesn't work if name is a
301 static member! FIXME */
302 write_exp_elt_opcode (UNOP_ADDR);
303 write_exp_elt_opcode (STRUCTOP_MPTR); }
306 exp : exp ARROW '*' exp
307 { write_exp_elt_opcode (STRUCTOP_MPTR); }
310 exp : exp '.' name
311 { write_exp_elt_opcode (STRUCTOP_STRUCT);
312 write_exp_string ($3);
313 write_exp_elt_opcode (STRUCTOP_STRUCT); }
316 exp : exp '.' qualified_name
317 { /* exp.type::name becomes exp.*(&type::name) */
318 /* Note: this doesn't work if name is a
319 static member! FIXME */
320 write_exp_elt_opcode (UNOP_ADDR);
321 write_exp_elt_opcode (STRUCTOP_MEMBER); }
324 exp : exp '.' '*' exp
325 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
328 exp : exp '[' exp1 ']'
329 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
332 exp : exp '('
333 /* This is to save the value of arglist_len
334 being accumulated by an outer function call. */
335 { start_arglist (); }
336 arglist ')' %prec ARROW
337 { write_exp_elt_opcode (OP_FUNCALL);
338 write_exp_elt_longcst ((LONGEST) end_arglist ());
339 write_exp_elt_opcode (OP_FUNCALL); }
342 lcurly : '{'
343 { start_arglist (); }
346 arglist :
349 arglist : exp
350 { arglist_len = 1; }
353 arglist : arglist ',' exp %prec ABOVE_COMMA
354 { arglist_len++; }
357 rcurly : '}'
358 { $$ = end_arglist () - 1; }
360 exp : lcurly arglist rcurly %prec ARROW
361 { write_exp_elt_opcode (OP_ARRAY);
362 write_exp_elt_longcst ((LONGEST) 0);
363 write_exp_elt_longcst ((LONGEST) $3);
364 write_exp_elt_opcode (OP_ARRAY); }
367 exp : lcurly type rcurly exp %prec UNARY
368 { write_exp_elt_opcode (UNOP_MEMVAL);
369 write_exp_elt_type ($2);
370 write_exp_elt_opcode (UNOP_MEMVAL); }
373 exp : '(' type ')' exp %prec UNARY
374 { write_exp_elt_opcode (UNOP_CAST);
375 write_exp_elt_type ($2);
376 write_exp_elt_opcode (UNOP_CAST); }
379 exp : '(' exp1 ')'
383 /* Binary operators in order of decreasing precedence. */
385 exp : exp '@' exp
386 { write_exp_elt_opcode (BINOP_REPEAT); }
389 exp : exp '*' exp
390 { write_exp_elt_opcode (BINOP_MUL); }
393 exp : exp '/' exp
394 { write_exp_elt_opcode (BINOP_DIV); }
397 exp : exp '%' exp
398 { write_exp_elt_opcode (BINOP_REM); }
401 exp : exp '+' exp
402 { write_exp_elt_opcode (BINOP_ADD); }
405 exp : exp '-' exp
406 { write_exp_elt_opcode (BINOP_SUB); }
409 exp : exp LSH exp
410 { write_exp_elt_opcode (BINOP_LSH); }
413 exp : exp RSH exp
414 { write_exp_elt_opcode (BINOP_RSH); }
417 exp : exp EQUAL exp
418 { write_exp_elt_opcode (BINOP_EQUAL); }
421 exp : exp NOTEQUAL exp
422 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
425 exp : exp LEQ exp
426 { write_exp_elt_opcode (BINOP_LEQ); }
429 exp : exp GEQ exp
430 { write_exp_elt_opcode (BINOP_GEQ); }
433 exp : exp '<' exp
434 { write_exp_elt_opcode (BINOP_LESS); }
437 exp : exp '>' exp
438 { write_exp_elt_opcode (BINOP_GTR); }
441 exp : exp '&' exp
442 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
445 exp : exp '^' exp
446 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
449 exp : exp '|' exp
450 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
453 exp : exp ANDAND exp
454 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
457 exp : exp OROR exp
458 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
461 exp : exp '?' exp ':' exp %prec '?'
462 { write_exp_elt_opcode (TERNOP_COND); }
465 exp : exp '=' exp
466 { write_exp_elt_opcode (BINOP_ASSIGN); }
469 exp : exp ASSIGN_MODIFY exp
470 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
471 write_exp_elt_opcode ($2);
472 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
475 exp : INT
476 { write_exp_elt_opcode (OP_LONG);
477 write_exp_elt_type ($1.type);
478 write_exp_elt_longcst ((LONGEST)($1.val));
479 write_exp_elt_opcode (OP_LONG); }
482 exp : NAME_OR_INT
483 { YYSTYPE val;
484 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
485 write_exp_elt_opcode (OP_LONG);
486 write_exp_elt_type (val.typed_val_int.type);
487 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
488 write_exp_elt_opcode (OP_LONG);
493 exp : FLOAT
494 { write_exp_elt_opcode (OP_DOUBLE);
495 write_exp_elt_type ($1.type);
496 write_exp_elt_dblcst ($1.dval);
497 write_exp_elt_opcode (OP_DOUBLE); }
500 exp : variable
503 exp : VARIABLE
504 /* Already written by write_dollar_variable. */
507 exp : SIZEOF '(' type ')' %prec UNARY
508 { write_exp_elt_opcode (OP_LONG);
509 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_int);
510 CHECK_TYPEDEF ($3);
511 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
512 write_exp_elt_opcode (OP_LONG); }
515 exp : STRING
516 { /* C strings are converted into array constants with
517 an explicit null byte added at the end. Thus
518 the array upper bound is the string length.
519 There is no such thing in C as a completely empty
520 string. */
521 char *sp = $1.ptr; int count = $1.length;
522 while (count-- > 0)
524 write_exp_elt_opcode (OP_LONG);
525 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
526 write_exp_elt_longcst ((LONGEST)(*sp++));
527 write_exp_elt_opcode (OP_LONG);
529 write_exp_elt_opcode (OP_LONG);
530 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
531 write_exp_elt_longcst ((LONGEST)'\0');
532 write_exp_elt_opcode (OP_LONG);
533 write_exp_elt_opcode (OP_ARRAY);
534 write_exp_elt_longcst ((LONGEST) 0);
535 write_exp_elt_longcst ((LONGEST) ($1.length));
536 write_exp_elt_opcode (OP_ARRAY); }
539 /* C++. */
540 exp : TRUEKEYWORD
541 { write_exp_elt_opcode (OP_LONG);
542 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
543 write_exp_elt_longcst ((LONGEST) 1);
544 write_exp_elt_opcode (OP_LONG); }
547 exp : FALSEKEYWORD
548 { write_exp_elt_opcode (OP_LONG);
549 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
550 write_exp_elt_longcst ((LONGEST) 0);
551 write_exp_elt_opcode (OP_LONG); }
554 /* end of C++. */
556 block : BLOCKNAME
558 if ($1.sym)
559 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
560 else
561 error ("No file or function \"%s\".",
562 copy_name ($1.stoken));
564 | FILENAME
566 $$ = $1;
570 block : block COLONCOLON name
571 { struct symbol *tem
572 = lookup_symbol (copy_name ($3), $1,
573 VAR_DOMAIN, (int *) NULL,
574 (struct symtab **) NULL);
575 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
576 error ("No function \"%s\" in specified context.",
577 copy_name ($3));
578 $$ = SYMBOL_BLOCK_VALUE (tem); }
581 variable: block COLONCOLON name
582 { struct symbol *sym;
583 sym = lookup_symbol (copy_name ($3), $1,
584 VAR_DOMAIN, (int *) NULL,
585 (struct symtab **) NULL);
586 if (sym == 0)
587 error ("No symbol \"%s\" in specified context.",
588 copy_name ($3));
590 write_exp_elt_opcode (OP_VAR_VALUE);
591 /* block_found is set by lookup_symbol. */
592 write_exp_elt_block (block_found);
593 write_exp_elt_sym (sym);
594 write_exp_elt_opcode (OP_VAR_VALUE); }
597 qualified_name: typebase COLONCOLON name
599 struct type *type = $1;
600 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
601 && TYPE_CODE (type) != TYPE_CODE_UNION
602 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
603 error ("`%s' is not defined as an aggregate type.",
604 TYPE_NAME (type));
606 write_exp_elt_opcode (OP_SCOPE);
607 write_exp_elt_type (type);
608 write_exp_string ($3);
609 write_exp_elt_opcode (OP_SCOPE);
611 | typebase COLONCOLON '~' name
613 struct type *type = $1;
614 struct stoken tmp_token;
615 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
616 && TYPE_CODE (type) != TYPE_CODE_UNION
617 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
618 error ("`%s' is not defined as an aggregate type.",
619 TYPE_NAME (type));
621 tmp_token.ptr = (char*) alloca ($4.length + 2);
622 tmp_token.length = $4.length + 1;
623 tmp_token.ptr[0] = '~';
624 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
625 tmp_token.ptr[tmp_token.length] = 0;
627 /* Check for valid destructor name. */
628 destructor_name_p (tmp_token.ptr, type);
629 write_exp_elt_opcode (OP_SCOPE);
630 write_exp_elt_type (type);
631 write_exp_string (tmp_token);
632 write_exp_elt_opcode (OP_SCOPE);
636 variable: qualified_name
637 | COLONCOLON name
639 char *name = copy_name ($2);
640 struct symbol *sym;
641 struct minimal_symbol *msymbol;
643 sym =
644 lookup_symbol (name, (const struct block *) NULL,
645 VAR_DOMAIN, (int *) NULL,
646 (struct symtab **) NULL);
647 if (sym)
649 write_exp_elt_opcode (OP_VAR_VALUE);
650 write_exp_elt_block (NULL);
651 write_exp_elt_sym (sym);
652 write_exp_elt_opcode (OP_VAR_VALUE);
653 break;
656 msymbol = lookup_minimal_symbol (name, NULL, NULL);
657 if (msymbol != NULL)
659 write_exp_msymbol (msymbol,
660 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
661 builtin_type (current_gdbarch)->builtin_int);
663 else
664 if (!have_full_symbols () && !have_partial_symbols ())
665 error ("No symbol table is loaded. Use the \"file\" command.");
666 else
667 error ("No symbol \"%s\" in current context.", name);
671 variable: name_not_typename
672 { struct symbol *sym = $1.sym;
674 if (sym)
676 if (symbol_read_needs_frame (sym))
678 if (innermost_block == 0 ||
679 contained_in (block_found,
680 innermost_block))
681 innermost_block = block_found;
684 write_exp_elt_opcode (OP_VAR_VALUE);
685 /* We want to use the selected frame, not
686 another more inner frame which happens to
687 be in the same block. */
688 write_exp_elt_block (NULL);
689 write_exp_elt_sym (sym);
690 write_exp_elt_opcode (OP_VAR_VALUE);
692 else if ($1.is_a_field_of_this)
694 /* C++: it hangs off of `this'. Must
695 not inadvertently convert from a method call
696 to data ref. */
697 if (innermost_block == 0 ||
698 contained_in (block_found, innermost_block))
699 innermost_block = block_found;
700 write_exp_elt_opcode (OP_THIS);
701 write_exp_elt_opcode (OP_THIS);
702 write_exp_elt_opcode (STRUCTOP_PTR);
703 write_exp_string ($1.stoken);
704 write_exp_elt_opcode (STRUCTOP_PTR);
706 else
708 struct minimal_symbol *msymbol;
709 char *arg = copy_name ($1.stoken);
711 msymbol =
712 lookup_minimal_symbol (arg, NULL, NULL);
713 if (msymbol != NULL)
715 write_exp_msymbol (msymbol,
716 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
717 builtin_type (current_gdbarch)->builtin_int);
719 else if (!have_full_symbols () && !have_partial_symbols ())
720 error ("No symbol table is loaded. Use the \"file\" command.");
721 else
722 error ("No symbol \"%s\" in current context.",
723 copy_name ($1.stoken));
728 space_identifier : '@' NAME
729 { push_type_address_space (copy_name ($2.stoken));
730 push_type (tp_space_identifier);
734 const_or_volatile: const_or_volatile_noopt
738 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
741 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
742 | const_or_volatile_noopt
745 const_or_volatile_or_space_identifier:
746 const_or_volatile_or_space_identifier_noopt
750 abs_decl: '*'
751 { push_type (tp_pointer); $$ = 0; }
752 | '*' abs_decl
753 { push_type (tp_pointer); $$ = $2; }
754 | '&'
755 { push_type (tp_reference); $$ = 0; }
756 | '&' abs_decl
757 { push_type (tp_reference); $$ = $2; }
758 | direct_abs_decl
761 direct_abs_decl: '(' abs_decl ')'
762 { $$ = $2; }
763 | direct_abs_decl array_mod
765 push_type_int ($2);
766 push_type (tp_array);
768 | array_mod
770 push_type_int ($1);
771 push_type (tp_array);
772 $$ = 0;
775 | direct_abs_decl func_mod
776 { push_type (tp_function); }
777 | func_mod
778 { push_type (tp_function); }
781 array_mod: '[' ']'
782 { $$ = -1; }
783 | '[' INT ']'
784 { $$ = $2.val; }
787 func_mod: '(' ')'
788 { $$ = 0; }
789 | '(' nonempty_typelist ')'
790 { free ($2); $$ = 0; }
793 /* We used to try to recognize more pointer to member types here, but
794 that didn't work (shift/reduce conflicts meant that these rules never
795 got executed). The problem is that
796 int (foo::bar::baz::bizzle)
797 is a function type but
798 int (foo::bar::baz::bizzle::*)
799 is a pointer to member type. Stroustrup loses again! */
801 type : ptype
802 | typebase COLONCOLON '*'
803 { $$ = lookup_member_type (builtin_type (current_gdbarch)->builtin_int, $1); }
806 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
807 : TYPENAME
808 { $$ = $1.type; }
809 | INT_KEYWORD
810 { $$ = builtin_type (current_gdbarch)->builtin_int; }
811 | LONG
812 { $$ = builtin_type (current_gdbarch)->builtin_long; }
813 | SHORT
814 { $$ = builtin_type (current_gdbarch)->builtin_short; }
815 | LONG INT_KEYWORD
816 { $$ = builtin_type (current_gdbarch)->builtin_long; }
817 | LONG SIGNED_KEYWORD INT_KEYWORD
818 { $$ = builtin_type (current_gdbarch)->builtin_long; }
819 | LONG SIGNED_KEYWORD
820 { $$ = builtin_type (current_gdbarch)->builtin_long; }
821 | SIGNED_KEYWORD LONG INT_KEYWORD
822 { $$ = builtin_type (current_gdbarch)->builtin_long; }
823 | UNSIGNED LONG INT_KEYWORD
824 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
825 | LONG UNSIGNED INT_KEYWORD
826 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
827 | LONG UNSIGNED
828 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
829 | LONG LONG
830 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
831 | LONG LONG INT_KEYWORD
832 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
833 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
834 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
835 | LONG LONG SIGNED_KEYWORD
836 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
837 | SIGNED_KEYWORD LONG LONG
838 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
839 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
840 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
841 | UNSIGNED LONG LONG
842 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
843 | UNSIGNED LONG LONG INT_KEYWORD
844 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
845 | LONG LONG UNSIGNED
846 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
847 | LONG LONG UNSIGNED INT_KEYWORD
848 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
849 | SHORT INT_KEYWORD
850 { $$ = builtin_type (current_gdbarch)->builtin_short; }
851 | SHORT SIGNED_KEYWORD INT_KEYWORD
852 { $$ = builtin_type (current_gdbarch)->builtin_short; }
853 | SHORT SIGNED_KEYWORD
854 { $$ = builtin_type (current_gdbarch)->builtin_short; }
855 | UNSIGNED SHORT INT_KEYWORD
856 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
857 | SHORT UNSIGNED
858 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
859 | SHORT UNSIGNED INT_KEYWORD
860 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
861 | DOUBLE_KEYWORD
862 { $$ = builtin_type (current_gdbarch)->builtin_double; }
863 | LONG DOUBLE_KEYWORD
864 { $$ = builtin_type (current_gdbarch)->builtin_long_double; }
865 | STRUCT name
866 { $$ = lookup_struct (copy_name ($2),
867 expression_context_block); }
868 | CLASS name
869 { $$ = lookup_struct (copy_name ($2),
870 expression_context_block); }
871 | UNION name
872 { $$ = lookup_union (copy_name ($2),
873 expression_context_block); }
874 | ENUM name
875 { $$ = lookup_enum (copy_name ($2),
876 expression_context_block); }
877 | UNSIGNED typename
878 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
879 | UNSIGNED
880 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_int; }
881 | SIGNED_KEYWORD typename
882 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
883 | SIGNED_KEYWORD
884 { $$ = builtin_type (current_gdbarch)->builtin_int; }
885 /* It appears that this rule for templates is never
886 reduced; template recognition happens by lookahead
887 in the token processing code in yylex. */
888 | TEMPLATE name '<' type '>'
889 { $$ = lookup_template_type(copy_name($2), $4,
890 expression_context_block);
892 | const_or_volatile_or_space_identifier_noopt typebase
893 { $$ = follow_types ($2); }
894 | typebase const_or_volatile_or_space_identifier_noopt
895 { $$ = follow_types ($1); }
896 | qualified_type
899 /* FIXME: carlton/2003-09-25: This next bit leads to lots of
900 reduce-reduce conflicts, because the parser doesn't know whether or
901 not to use qualified_name or qualified_type: the rules are
902 identical. If the parser is parsing 'A::B::x', then, when it sees
903 the second '::', it knows that the expression to the left of it has
904 to be a type, so it uses qualified_type. But if it is parsing just
905 'A::B', then it doesn't have any way of knowing which rule to use,
906 so there's a reduce-reduce conflict; it picks qualified_name, since
907 that occurs earlier in this file than qualified_type.
909 There's no good way to fix this with the grammar as it stands; as
910 far as I can tell, some of the problems arise from ambiguities that
911 GDB introduces ('start' can be either an expression or a type), but
912 some of it is inherent to the nature of C++ (you want to treat the
913 input "(FOO)" fairly differently depending on whether FOO is an
914 expression or a type, and if FOO is a complex expression, this can
915 be hard to determine at the right time). Fortunately, it works
916 pretty well in most cases. For example, if you do 'ptype A::B',
917 where A::B is a nested type, then the parser will mistakenly
918 misidentify it as an expression; but evaluate_subexp will get
919 called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
920 will work out anyways. But there are situations where the parser
921 will get confused: the most common one that I've run into is when
922 you want to do
924 print *((A::B *) x)"
926 where the parser doesn't realize that A::B has to be a type until
927 it hits the first right paren, at which point it's too late. (The
928 workaround is to type "print *(('A::B' *) x)" instead.) (And
929 another solution is to fix our symbol-handling code so that the
930 user never wants to type something like that in the first place,
931 because we get all the types right without the user's help!)
933 Perhaps we could fix this by making the lexer smarter. Some of
934 this functionality used to be in the lexer, but in a way that
935 worked even less well than the current solution: that attempt
936 involved having the parser sometimes handle '::' and having the
937 lexer sometimes handle it, and without a clear division of
938 responsibility, it quickly degenerated into a big mess. Probably
939 the eventual correct solution will give more of a role to the lexer
940 (ideally via code that is shared between the lexer and
941 decode_line_1), but I'm not holding my breath waiting for somebody
942 to get around to cleaning this up... */
944 qualified_type: typebase COLONCOLON name
946 struct type *type = $1;
947 struct type *new_type;
948 char *ncopy = alloca ($3.length + 1);
950 memcpy (ncopy, $3.ptr, $3.length);
951 ncopy[$3.length] = '\0';
953 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
954 && TYPE_CODE (type) != TYPE_CODE_UNION
955 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
956 error ("`%s' is not defined as an aggregate type.",
957 TYPE_NAME (type));
959 new_type = cp_lookup_nested_type (type, ncopy,
960 expression_context_block);
961 if (new_type == NULL)
962 error ("No type \"%s\" within class or namespace \"%s\".",
963 ncopy, TYPE_NAME (type));
965 $$ = new_type;
969 typename: TYPENAME
970 | INT_KEYWORD
972 $$.stoken.ptr = "int";
973 $$.stoken.length = 3;
974 $$.type = builtin_type (current_gdbarch)->builtin_int;
976 | LONG
978 $$.stoken.ptr = "long";
979 $$.stoken.length = 4;
980 $$.type = builtin_type (current_gdbarch)->builtin_long;
982 | SHORT
984 $$.stoken.ptr = "short";
985 $$.stoken.length = 5;
986 $$.type = builtin_type (current_gdbarch)->builtin_short;
990 nonempty_typelist
991 : type
992 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
993 $<ivec>$[0] = 1; /* Number of types in vector */
994 $$[1] = $1;
996 | nonempty_typelist ',' type
997 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
998 $$ = (struct type **) realloc ((char *) $1, len);
999 $$[$<ivec>$[0]] = $3;
1003 ptype : typebase
1004 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1005 { $$ = follow_types ($1); }
1008 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1009 | VOLATILE_KEYWORD CONST_KEYWORD
1012 const_or_volatile_noopt: const_and_volatile
1013 { push_type (tp_const);
1014 push_type (tp_volatile);
1016 | CONST_KEYWORD
1017 { push_type (tp_const); }
1018 | VOLATILE_KEYWORD
1019 { push_type (tp_volatile); }
1022 name : NAME { $$ = $1.stoken; }
1023 | BLOCKNAME { $$ = $1.stoken; }
1024 | TYPENAME { $$ = $1.stoken; }
1025 | NAME_OR_INT { $$ = $1.stoken; }
1028 name_not_typename : NAME
1029 | BLOCKNAME
1030 /* These would be useful if name_not_typename was useful, but it is just
1031 a fake for "variable", so these cause reduce/reduce conflicts because
1032 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1033 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1034 context where only a name could occur, this might be useful.
1035 | NAME_OR_INT
1041 /* Take care of parsing a number (anything that starts with a digit).
1042 Set yylval and return the token type; update lexptr.
1043 LEN is the number of characters in it. */
1045 /*** Needs some error checking for the float case ***/
1047 static int
1048 parse_number (p, len, parsed_float, putithere)
1049 char *p;
1050 int len;
1051 int parsed_float;
1052 YYSTYPE *putithere;
1054 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1055 here, and we do kind of silly things like cast to unsigned. */
1056 LONGEST n = 0;
1057 LONGEST prevn = 0;
1058 ULONGEST un;
1060 int i = 0;
1061 int c;
1062 int base = input_radix;
1063 int unsigned_p = 0;
1065 /* Number of "L" suffixes encountered. */
1066 int long_p = 0;
1068 /* We have found a "L" or "U" suffix. */
1069 int found_suffix = 0;
1071 ULONGEST high_bit;
1072 struct type *signed_type;
1073 struct type *unsigned_type;
1075 if (parsed_float)
1077 /* It's a float since it contains a point or an exponent. */
1078 char *s = malloc (len);
1079 int num = 0; /* number of tokens scanned by scanf */
1080 char saved_char = p[len];
1082 p[len] = 0; /* null-terminate the token */
1083 num = sscanf (p, DOUBLEST_SCAN_FORMAT "%s",
1084 &putithere->typed_val_float.dval, s);
1085 p[len] = saved_char; /* restore the input stream */
1087 if (num == 1)
1088 putithere->typed_val_float.type =
1089 builtin_type (current_gdbarch)->builtin_double;
1091 if (num == 2 )
1093 /* See if it has any float suffix: 'f' for float, 'l' for long
1094 double. */
1095 if (!strcasecmp (s, "f"))
1096 putithere->typed_val_float.type =
1097 builtin_type (current_gdbarch)->builtin_float;
1098 else if (!strcasecmp (s, "l"))
1099 putithere->typed_val_float.type =
1100 builtin_type (current_gdbarch)->builtin_long_double;
1101 else
1102 return ERROR;
1105 return FLOAT;
1108 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1109 if (p[0] == '0')
1110 switch (p[1])
1112 case 'x':
1113 case 'X':
1114 if (len >= 3)
1116 p += 2;
1117 base = 16;
1118 len -= 2;
1120 break;
1122 case 't':
1123 case 'T':
1124 case 'd':
1125 case 'D':
1126 if (len >= 3)
1128 p += 2;
1129 base = 10;
1130 len -= 2;
1132 break;
1134 default:
1135 base = 8;
1136 break;
1139 while (len-- > 0)
1141 c = *p++;
1142 if (c >= 'A' && c <= 'Z')
1143 c += 'a' - 'A';
1144 if (c != 'l' && c != 'u')
1145 n *= base;
1146 if (c >= '0' && c <= '9')
1148 if (found_suffix)
1149 return ERROR;
1150 n += i = c - '0';
1152 else
1154 if (base > 10 && c >= 'a' && c <= 'f')
1156 if (found_suffix)
1157 return ERROR;
1158 n += i = c - 'a' + 10;
1160 else if (c == 'l')
1162 ++long_p;
1163 found_suffix = 1;
1165 else if (c == 'u')
1167 unsigned_p = 1;
1168 found_suffix = 1;
1170 else
1171 return ERROR; /* Char not a digit */
1173 if (i >= base)
1174 return ERROR; /* Invalid digit in this base */
1176 /* Portably test for overflow (only works for nonzero values, so make
1177 a second check for zero). FIXME: Can't we just make n and prevn
1178 unsigned and avoid this? */
1179 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1180 unsigned_p = 1; /* Try something unsigned */
1182 /* Portably test for unsigned overflow.
1183 FIXME: This check is wrong; for example it doesn't find overflow
1184 on 0x123456789 when LONGEST is 32 bits. */
1185 if (c != 'l' && c != 'u' && n != 0)
1187 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1188 error ("Numeric constant too large.");
1190 prevn = n;
1193 /* An integer constant is an int, a long, or a long long. An L
1194 suffix forces it to be long; an LL suffix forces it to be long
1195 long. If not forced to a larger size, it gets the first type of
1196 the above that it fits in. To figure out whether it fits, we
1197 shift it right and see whether anything remains. Note that we
1198 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1199 operation, because many compilers will warn about such a shift
1200 (which always produces a zero result). Sometimes TARGET_INT_BIT
1201 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1202 the case where it is we just always shift the value more than
1203 once, with fewer bits each time. */
1205 un = (ULONGEST)n >> 2;
1206 if (long_p == 0
1207 && (un >> (TARGET_INT_BIT - 2)) == 0)
1209 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1211 /* A large decimal (not hex or octal) constant (between INT_MAX
1212 and UINT_MAX) is a long or unsigned long, according to ANSI,
1213 never an unsigned int, but this code treats it as unsigned
1214 int. This probably should be fixed. GCC gives a warning on
1215 such constants. */
1217 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_int;
1218 signed_type = builtin_type (current_gdbarch)->builtin_int;
1220 else if (long_p <= 1
1221 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1223 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1224 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long;
1225 signed_type = builtin_type (current_gdbarch)->builtin_long;
1227 else
1229 int shift;
1230 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
1231 /* A long long does not fit in a LONGEST. */
1232 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1233 else
1234 shift = (TARGET_LONG_LONG_BIT - 1);
1235 high_bit = (ULONGEST) 1 << shift;
1236 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long_long;
1237 signed_type = builtin_type (current_gdbarch)->builtin_long_long;
1240 putithere->typed_val_int.val = n;
1242 /* If the high bit of the worked out type is set then this number
1243 has to be unsigned. */
1245 if (unsigned_p || (n & high_bit))
1247 putithere->typed_val_int.type = unsigned_type;
1249 else
1251 putithere->typed_val_int.type = signed_type;
1254 return INT;
1257 struct token
1259 char *operator;
1260 int token;
1261 enum exp_opcode opcode;
1264 static const struct token tokentab3[] =
1266 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1267 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1270 static const struct token tokentab2[] =
1272 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1273 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1274 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1275 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1276 {"%=", ASSIGN_MODIFY, BINOP_REM},
1277 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1278 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1279 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1280 {"++", INCREMENT, BINOP_END},
1281 {"--", DECREMENT, BINOP_END},
1282 {"->", ARROW, BINOP_END},
1283 {"&&", ANDAND, BINOP_END},
1284 {"||", OROR, BINOP_END},
1285 {"::", COLONCOLON, BINOP_END},
1286 {"<<", LSH, BINOP_END},
1287 {">>", RSH, BINOP_END},
1288 {"==", EQUAL, BINOP_END},
1289 {"!=", NOTEQUAL, BINOP_END},
1290 {"<=", LEQ, BINOP_END},
1291 {">=", GEQ, BINOP_END}
1294 /* Read one token, getting characters through lexptr. */
1296 static int
1297 yylex ()
1299 int c;
1300 int namelen;
1301 unsigned int i;
1302 char *tokstart;
1303 char *tokptr;
1304 int tempbufindex;
1305 static char *tempbuf;
1306 static int tempbufsize;
1307 struct symbol * sym_class = NULL;
1308 char * token_string = NULL;
1309 int class_prefix = 0;
1310 int unquoted_expr;
1312 retry:
1314 /* Check if this is a macro invocation that we need to expand. */
1315 if (! scanning_macro_expansion ())
1317 char *expanded = macro_expand_next (&lexptr,
1318 expression_macro_lookup_func,
1319 expression_macro_lookup_baton);
1321 if (expanded)
1322 scan_macro_expansion (expanded);
1325 prev_lexptr = lexptr;
1326 unquoted_expr = 1;
1328 tokstart = lexptr;
1329 /* See if it is a special token of length 3. */
1330 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1331 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1333 lexptr += 3;
1334 yylval.opcode = tokentab3[i].opcode;
1335 return tokentab3[i].token;
1338 /* See if it is a special token of length 2. */
1339 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1340 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1342 lexptr += 2;
1343 yylval.opcode = tokentab2[i].opcode;
1344 return tokentab2[i].token;
1347 switch (c = *tokstart)
1349 case 0:
1350 /* If we were just scanning the result of a macro expansion,
1351 then we need to resume scanning the original text.
1352 Otherwise, we were already scanning the original text, and
1353 we're really done. */
1354 if (scanning_macro_expansion ())
1356 finished_macro_expansion ();
1357 goto retry;
1359 else
1360 return 0;
1362 case ' ':
1363 case '\t':
1364 case '\n':
1365 lexptr++;
1366 goto retry;
1368 case '\'':
1369 /* We either have a character constant ('0' or '\177' for example)
1370 or we have a quoted symbol reference ('foo(int,int)' in C++
1371 for example). */
1372 lexptr++;
1373 c = *lexptr++;
1374 if (c == '\\')
1375 c = parse_escape (&lexptr);
1376 else if (c == '\'')
1377 error ("Empty character constant.");
1378 else if (! host_char_to_target (c, &c))
1380 int toklen = lexptr - tokstart + 1;
1381 char *tok = alloca (toklen + 1);
1382 memcpy (tok, tokstart, toklen);
1383 tok[toklen] = '\0';
1384 error ("There is no character corresponding to %s in the target "
1385 "character set `%s'.", tok, target_charset ());
1388 yylval.typed_val_int.val = c;
1389 yylval.typed_val_int.type = builtin_type (current_gdbarch)->builtin_char;
1391 c = *lexptr++;
1392 if (c != '\'')
1394 namelen = skip_quoted (tokstart) - tokstart;
1395 if (namelen > 2)
1397 lexptr = tokstart + namelen;
1398 unquoted_expr = 0;
1399 if (lexptr[-1] != '\'')
1400 error ("Unmatched single quote.");
1401 namelen -= 2;
1402 tokstart++;
1403 goto tryname;
1405 error ("Invalid character constant.");
1407 return INT;
1409 case '(':
1410 paren_depth++;
1411 lexptr++;
1412 return c;
1414 case ')':
1415 if (paren_depth == 0)
1416 return 0;
1417 paren_depth--;
1418 lexptr++;
1419 return c;
1421 case ',':
1422 if (comma_terminates
1423 && paren_depth == 0
1424 && ! scanning_macro_expansion ())
1425 return 0;
1426 lexptr++;
1427 return c;
1429 case '.':
1430 /* Might be a floating point number. */
1431 if (lexptr[1] < '0' || lexptr[1] > '9')
1432 goto symbol; /* Nope, must be a symbol. */
1433 /* FALL THRU into number case. */
1435 case '0':
1436 case '1':
1437 case '2':
1438 case '3':
1439 case '4':
1440 case '5':
1441 case '6':
1442 case '7':
1443 case '8':
1444 case '9':
1446 /* It's a number. */
1447 int got_dot = 0, got_e = 0, toktype;
1448 char *p = tokstart;
1449 int hex = input_radix > 10;
1451 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1453 p += 2;
1454 hex = 1;
1456 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1458 p += 2;
1459 hex = 0;
1462 for (;; ++p)
1464 /* This test includes !hex because 'e' is a valid hex digit
1465 and thus does not indicate a floating point number when
1466 the radix is hex. */
1467 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1468 got_dot = got_e = 1;
1469 /* This test does not include !hex, because a '.' always indicates
1470 a decimal floating point number regardless of the radix. */
1471 else if (!got_dot && *p == '.')
1472 got_dot = 1;
1473 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1474 && (*p == '-' || *p == '+'))
1475 /* This is the sign of the exponent, not the end of the
1476 number. */
1477 continue;
1478 /* We will take any letters or digits. parse_number will
1479 complain if past the radix, or if L or U are not final. */
1480 else if ((*p < '0' || *p > '9')
1481 && ((*p < 'a' || *p > 'z')
1482 && (*p < 'A' || *p > 'Z')))
1483 break;
1485 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1486 if (toktype == ERROR)
1488 char *err_copy = (char *) alloca (p - tokstart + 1);
1490 memcpy (err_copy, tokstart, p - tokstart);
1491 err_copy[p - tokstart] = 0;
1492 error ("Invalid number \"%s\".", err_copy);
1494 lexptr = p;
1495 return toktype;
1498 case '+':
1499 case '-':
1500 case '*':
1501 case '/':
1502 case '%':
1503 case '|':
1504 case '&':
1505 case '^':
1506 case '~':
1507 case '!':
1508 case '@':
1509 case '<':
1510 case '>':
1511 case '[':
1512 case ']':
1513 case '?':
1514 case ':':
1515 case '=':
1516 case '{':
1517 case '}':
1518 symbol:
1519 lexptr++;
1520 return c;
1522 case '"':
1524 /* Build the gdb internal form of the input string in tempbuf,
1525 translating any standard C escape forms seen. Note that the
1526 buffer is null byte terminated *only* for the convenience of
1527 debugging gdb itself and printing the buffer contents when
1528 the buffer contains no embedded nulls. Gdb does not depend
1529 upon the buffer being null byte terminated, it uses the length
1530 string instead. This allows gdb to handle C strings (as well
1531 as strings in other languages) with embedded null bytes */
1533 tokptr = ++tokstart;
1534 tempbufindex = 0;
1536 do {
1537 char *char_start_pos = tokptr;
1539 /* Grow the static temp buffer if necessary, including allocating
1540 the first one on demand. */
1541 if (tempbufindex + 1 >= tempbufsize)
1543 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1545 switch (*tokptr)
1547 case '\0':
1548 case '"':
1549 /* Do nothing, loop will terminate. */
1550 break;
1551 case '\\':
1552 tokptr++;
1553 c = parse_escape (&tokptr);
1554 if (c == -1)
1556 continue;
1558 tempbuf[tempbufindex++] = c;
1559 break;
1560 default:
1561 c = *tokptr++;
1562 if (! host_char_to_target (c, &c))
1564 int len = tokptr - char_start_pos;
1565 char *copy = alloca (len + 1);
1566 memcpy (copy, char_start_pos, len);
1567 copy[len] = '\0';
1569 error ("There is no character corresponding to `%s' "
1570 "in the target character set `%s'.",
1571 copy, target_charset ());
1573 tempbuf[tempbufindex++] = c;
1574 break;
1576 } while ((*tokptr != '"') && (*tokptr != '\0'));
1577 if (*tokptr++ != '"')
1579 error ("Unterminated string in expression.");
1581 tempbuf[tempbufindex] = '\0'; /* See note above */
1582 yylval.sval.ptr = tempbuf;
1583 yylval.sval.length = tempbufindex;
1584 lexptr = tokptr;
1585 return (STRING);
1588 if (!(c == '_' || c == '$'
1589 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1590 /* We must have come across a bad character (e.g. ';'). */
1591 error ("Invalid character '%c' in expression.", c);
1593 /* It's a name. See how long it is. */
1594 namelen = 0;
1595 for (c = tokstart[namelen];
1596 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1597 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1599 /* Template parameter lists are part of the name.
1600 FIXME: This mishandles `print $a<4&&$a>3'. */
1602 if (c == '<')
1604 /* Scan ahead to get rest of the template specification. Note
1605 that we look ahead only when the '<' adjoins non-whitespace
1606 characters; for comparison expressions, e.g. "a < b > c",
1607 there must be spaces before the '<', etc. */
1609 char * p = find_template_name_end (tokstart + namelen);
1610 if (p)
1611 namelen = p - tokstart;
1612 break;
1614 c = tokstart[++namelen];
1617 /* The token "if" terminates the expression and is NOT removed from
1618 the input stream. It doesn't count if it appears in the
1619 expansion of a macro. */
1620 if (namelen == 2
1621 && tokstart[0] == 'i'
1622 && tokstart[1] == 'f'
1623 && ! scanning_macro_expansion ())
1625 return 0;
1628 lexptr += namelen;
1630 tryname:
1632 /* Catch specific keywords. Should be done with a data structure. */
1633 switch (namelen)
1635 case 8:
1636 if (strncmp (tokstart, "unsigned", 8) == 0)
1637 return UNSIGNED;
1638 if (current_language->la_language == language_cplus
1639 && strncmp (tokstart, "template", 8) == 0)
1640 return TEMPLATE;
1641 if (strncmp (tokstart, "volatile", 8) == 0)
1642 return VOLATILE_KEYWORD;
1643 break;
1644 case 6:
1645 if (strncmp (tokstart, "struct", 6) == 0)
1646 return STRUCT;
1647 if (strncmp (tokstart, "signed", 6) == 0)
1648 return SIGNED_KEYWORD;
1649 if (strncmp (tokstart, "sizeof", 6) == 0)
1650 return SIZEOF;
1651 if (strncmp (tokstart, "double", 6) == 0)
1652 return DOUBLE_KEYWORD;
1653 break;
1654 case 5:
1655 if (current_language->la_language == language_cplus)
1657 if (strncmp (tokstart, "false", 5) == 0)
1658 return FALSEKEYWORD;
1659 if (strncmp (tokstart, "class", 5) == 0)
1660 return CLASS;
1662 if (strncmp (tokstart, "union", 5) == 0)
1663 return UNION;
1664 if (strncmp (tokstart, "short", 5) == 0)
1665 return SHORT;
1666 if (strncmp (tokstart, "const", 5) == 0)
1667 return CONST_KEYWORD;
1668 break;
1669 case 4:
1670 if (strncmp (tokstart, "enum", 4) == 0)
1671 return ENUM;
1672 if (strncmp (tokstart, "long", 4) == 0)
1673 return LONG;
1674 if (current_language->la_language == language_cplus)
1676 if (strncmp (tokstart, "true", 4) == 0)
1677 return TRUEKEYWORD;
1679 break;
1680 case 3:
1681 if (strncmp (tokstart, "int", 3) == 0)
1682 return INT_KEYWORD;
1683 break;
1684 default:
1685 break;
1688 yylval.sval.ptr = tokstart;
1689 yylval.sval.length = namelen;
1691 if (*tokstart == '$')
1693 write_dollar_variable (yylval.sval);
1694 return VARIABLE;
1697 /* Look ahead and see if we can consume more of the input
1698 string to get a reasonable class/namespace spec or a
1699 fully-qualified name. This is a kludge to get around the
1700 HP aCC compiler's generation of symbol names with embedded
1701 colons for namespace and nested classes. */
1703 /* NOTE: carlton/2003-09-24: I don't entirely understand the
1704 HP-specific code, either here or in linespec. Having said that,
1705 I suspect that we're actually moving towards their model: we want
1706 symbols whose names are fully qualified, which matches the
1707 description above. */
1708 if (unquoted_expr)
1710 /* Only do it if not inside single quotes */
1711 sym_class = parse_nested_classes_for_hpacc (yylval.sval.ptr, yylval.sval.length,
1712 &token_string, &class_prefix, &lexptr);
1713 if (sym_class)
1715 /* Replace the current token with the bigger one we found */
1716 yylval.sval.ptr = token_string;
1717 yylval.sval.length = strlen (token_string);
1721 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1722 functions or symtabs. If this is not so, then ...
1723 Use token-type TYPENAME for symbols that happen to be defined
1724 currently as names of types; NAME for other symbols.
1725 The caller is not constrained to care about the distinction. */
1727 char *tmp = copy_name (yylval.sval);
1728 struct symbol *sym;
1729 int is_a_field_of_this = 0;
1730 int hextype;
1732 sym = lookup_symbol (tmp, expression_context_block,
1733 VAR_DOMAIN,
1734 current_language->la_language == language_cplus
1735 ? &is_a_field_of_this : (int *) NULL,
1736 (struct symtab **) NULL);
1737 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1738 no psymtabs (coff, xcoff, or some future change to blow away the
1739 psymtabs once once symbols are read). */
1740 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1742 yylval.ssym.sym = sym;
1743 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1744 return BLOCKNAME;
1746 else if (!sym)
1747 { /* See if it's a file name. */
1748 struct symtab *symtab;
1750 symtab = lookup_symtab (tmp);
1752 if (symtab)
1754 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1755 return FILENAME;
1759 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1761 /* NOTE: carlton/2003-09-25: There used to be code here to
1762 handle nested types. It didn't work very well. See the
1763 comment before qualified_type for more info. */
1764 yylval.tsym.type = SYMBOL_TYPE (sym);
1765 return TYPENAME;
1767 yylval.tsym.type
1768 = language_lookup_primitive_type_by_name (current_language,
1769 current_gdbarch, tmp);
1770 if (yylval.tsym.type != NULL)
1771 return TYPENAME;
1773 /* Input names that aren't symbols but ARE valid hex numbers,
1774 when the input radix permits them, can be names or numbers
1775 depending on the parse. Note we support radixes > 16 here. */
1776 if (!sym &&
1777 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1778 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1780 YYSTYPE newlval; /* Its value is ignored. */
1781 hextype = parse_number (tokstart, namelen, 0, &newlval);
1782 if (hextype == INT)
1784 yylval.ssym.sym = sym;
1785 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1786 return NAME_OR_INT;
1790 /* Any other kind of symbol */
1791 yylval.ssym.sym = sym;
1792 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1793 return NAME;
1797 void
1798 yyerror (msg)
1799 char *msg;
1801 if (prev_lexptr)
1802 lexptr = prev_lexptr;
1804 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);