No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gdb6 / gdb / d10v-tdep.c
blobaadac050e0f3f0f26cbfd05ad5cf5d98cb1642b1
1 // OBSOLETE /* Target-dependent code for Renesas D10V, for GDB.
2 // OBSOLETE
3 // OBSOLETE Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 // OBSOLETE Foundation, Inc.
5 // OBSOLETE
6 // OBSOLETE This file is part of GDB.
7 // OBSOLETE
8 // OBSOLETE This program is free software; you can redistribute it and/or modify
9 // OBSOLETE it under the terms of the GNU General Public License as published by
10 // OBSOLETE the Free Software Foundation; either version 2 of the License, or
11 // OBSOLETE (at your option) any later version.
12 // OBSOLETE
13 // OBSOLETE This program is distributed in the hope that it will be useful,
14 // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // OBSOLETE GNU General Public License for more details.
17 // OBSOLETE
18 // OBSOLETE You should have received a copy of the GNU General Public License
19 // OBSOLETE along with this program; if not, write to the Free Software
20 // OBSOLETE Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 // OBSOLETE Boston, MA 02110-1301, USA. */
22 // OBSOLETE
23 // OBSOLETE /* Contributed by Martin Hunt, hunt@cygnus.com */
24 // OBSOLETE
25 // OBSOLETE #include "defs.h"
26 // OBSOLETE #include "frame.h"
27 // OBSOLETE #include "frame-unwind.h"
28 // OBSOLETE #include "frame-base.h"
29 // OBSOLETE #include "symtab.h"
30 // OBSOLETE #include "gdbtypes.h"
31 // OBSOLETE #include "gdbcmd.h"
32 // OBSOLETE #include "gdbcore.h"
33 // OBSOLETE #include "gdb_string.h"
34 // OBSOLETE #include "value.h"
35 // OBSOLETE #include "inferior.h"
36 // OBSOLETE #include "dis-asm.h"
37 // OBSOLETE #include "symfile.h"
38 // OBSOLETE #include "objfiles.h"
39 // OBSOLETE #include "language.h"
40 // OBSOLETE #include "arch-utils.h"
41 // OBSOLETE #include "regcache.h"
42 // OBSOLETE #include "remote.h"
43 // OBSOLETE #include "floatformat.h"
44 // OBSOLETE #include "gdb/sim-d10v.h"
45 // OBSOLETE #include "sim-regno.h"
46 // OBSOLETE #include "disasm.h"
47 // OBSOLETE #include "trad-frame.h"
48 // OBSOLETE
49 // OBSOLETE #include "gdb_assert.h"
50 // OBSOLETE
51 // OBSOLETE struct gdbarch_tdep
52 // OBSOLETE {
53 // OBSOLETE int a0_regnum;
54 // OBSOLETE int nr_dmap_regs;
55 // OBSOLETE unsigned long (*dmap_register) (void *regcache, int nr);
56 // OBSOLETE unsigned long (*imap_register) (void *regcache, int nr);
57 // OBSOLETE };
58 // OBSOLETE
59 // OBSOLETE /* These are the addresses the D10V-EVA board maps data and
60 // OBSOLETE instruction memory to. */
61 // OBSOLETE
62 // OBSOLETE enum memspace {
63 // OBSOLETE DMEM_START = 0x2000000,
64 // OBSOLETE IMEM_START = 0x1000000,
65 // OBSOLETE STACK_START = 0x200bffe
66 // OBSOLETE };
67 // OBSOLETE
68 // OBSOLETE /* d10v register names. */
69 // OBSOLETE
70 // OBSOLETE enum
71 // OBSOLETE {
72 // OBSOLETE R0_REGNUM = 0,
73 // OBSOLETE R3_REGNUM = 3,
74 // OBSOLETE D10V_FP_REGNUM = 11,
75 // OBSOLETE LR_REGNUM = 13,
76 // OBSOLETE D10V_SP_REGNUM = 15,
77 // OBSOLETE PSW_REGNUM = 16,
78 // OBSOLETE D10V_PC_REGNUM = 18,
79 // OBSOLETE NR_IMAP_REGS = 2,
80 // OBSOLETE NR_A_REGS = 2,
81 // OBSOLETE TS2_NUM_REGS = 37,
82 // OBSOLETE TS3_NUM_REGS = 42,
83 // OBSOLETE /* d10v calling convention. */
84 // OBSOLETE ARG1_REGNUM = R0_REGNUM,
85 // OBSOLETE ARGN_REGNUM = R3_REGNUM
86 // OBSOLETE };
87 // OBSOLETE
88 // OBSOLETE static int
89 // OBSOLETE nr_dmap_regs (struct gdbarch *gdbarch)
90 // OBSOLETE {
91 // OBSOLETE return gdbarch_tdep (gdbarch)->nr_dmap_regs;
92 // OBSOLETE }
93 // OBSOLETE
94 // OBSOLETE static int
95 // OBSOLETE a0_regnum (struct gdbarch *gdbarch)
96 // OBSOLETE {
97 // OBSOLETE return gdbarch_tdep (gdbarch)->a0_regnum;
98 // OBSOLETE }
99 // OBSOLETE
100 // OBSOLETE /* Local functions */
101 // OBSOLETE
102 // OBSOLETE extern void _initialize_d10v_tdep (void);
103 // OBSOLETE
104 // OBSOLETE static void d10v_eva_prepare_to_trace (void);
105 // OBSOLETE
106 // OBSOLETE static void d10v_eva_get_trace_data (void);
107 // OBSOLETE
108 // OBSOLETE static CORE_ADDR
109 // OBSOLETE d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
110 // OBSOLETE {
111 // OBSOLETE /* Align to the size of an instruction (so that they can safely be
112 // OBSOLETE pushed onto the stack. */
113 // OBSOLETE return sp & ~3;
114 // OBSOLETE }
115 // OBSOLETE
116 // OBSOLETE static const unsigned char *
117 // OBSOLETE d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
118 // OBSOLETE {
119 // OBSOLETE static unsigned char breakpoint[] =
120 // OBSOLETE {0x2f, 0x90, 0x5e, 0x00};
121 // OBSOLETE *lenptr = sizeof (breakpoint);
122 // OBSOLETE return breakpoint;
123 // OBSOLETE }
124 // OBSOLETE
125 // OBSOLETE /* Map the REG_NR onto an ascii name. Return NULL or an empty string
126 // OBSOLETE when the reg_nr isn't valid. */
127 // OBSOLETE
128 // OBSOLETE enum ts2_regnums
129 // OBSOLETE {
130 // OBSOLETE TS2_IMAP0_REGNUM = 32,
131 // OBSOLETE TS2_DMAP_REGNUM = 34,
132 // OBSOLETE TS2_NR_DMAP_REGS = 1,
133 // OBSOLETE TS2_A0_REGNUM = 35
134 // OBSOLETE };
135 // OBSOLETE
136 // OBSOLETE static const char *
137 // OBSOLETE d10v_ts2_register_name (int reg_nr)
138 // OBSOLETE {
139 // OBSOLETE static char *register_names[] =
140 // OBSOLETE {
141 // OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
142 // OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
143 // OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
144 // OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
145 // OBSOLETE "imap0", "imap1", "dmap", "a0", "a1"
146 // OBSOLETE };
147 // OBSOLETE if (reg_nr < 0)
148 // OBSOLETE return NULL;
149 // OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 // OBSOLETE return NULL;
151 // OBSOLETE return register_names[reg_nr];
152 // OBSOLETE }
153 // OBSOLETE
154 // OBSOLETE enum ts3_regnums
155 // OBSOLETE {
156 // OBSOLETE TS3_IMAP0_REGNUM = 36,
157 // OBSOLETE TS3_DMAP0_REGNUM = 38,
158 // OBSOLETE TS3_NR_DMAP_REGS = 4,
159 // OBSOLETE TS3_A0_REGNUM = 32
160 // OBSOLETE };
161 // OBSOLETE
162 // OBSOLETE static const char *
163 // OBSOLETE d10v_ts3_register_name (int reg_nr)
164 // OBSOLETE {
165 // OBSOLETE static char *register_names[] =
166 // OBSOLETE {
167 // OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
168 // OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
169 // OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
170 // OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
171 // OBSOLETE "a0", "a1",
172 // OBSOLETE "spi", "spu",
173 // OBSOLETE "imap0", "imap1",
174 // OBSOLETE "dmap0", "dmap1", "dmap2", "dmap3"
175 // OBSOLETE };
176 // OBSOLETE if (reg_nr < 0)
177 // OBSOLETE return NULL;
178 // OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
179 // OBSOLETE return NULL;
180 // OBSOLETE return register_names[reg_nr];
181 // OBSOLETE }
182 // OBSOLETE
183 // OBSOLETE /* Access the DMAP/IMAP registers in a target independent way.
184 // OBSOLETE
185 // OBSOLETE Divide the D10V's 64k data space into four 16k segments:
186 // OBSOLETE 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
187 // OBSOLETE 0xc000 -- 0xffff.
188 // OBSOLETE
189 // OBSOLETE On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
190 // OBSOLETE 0x7fff) always map to the on-chip data RAM, and the fourth always
191 // OBSOLETE maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
192 // OBSOLETE unified memory or instruction memory, under the control of the
193 // OBSOLETE single DMAP register.
194 // OBSOLETE
195 // OBSOLETE On the TS3, there are four DMAP registers, each of which controls
196 // OBSOLETE one of the segments. */
197 // OBSOLETE
198 // OBSOLETE static unsigned long
199 // OBSOLETE d10v_ts2_dmap_register (void *regcache, int reg_nr)
200 // OBSOLETE {
201 // OBSOLETE switch (reg_nr)
202 // OBSOLETE {
203 // OBSOLETE case 0:
204 // OBSOLETE case 1:
205 // OBSOLETE return 0x2000;
206 // OBSOLETE case 2:
207 // OBSOLETE {
208 // OBSOLETE ULONGEST reg;
209 // OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, &reg);
210 // OBSOLETE return reg;
211 // OBSOLETE }
212 // OBSOLETE default:
213 // OBSOLETE return 0;
214 // OBSOLETE }
215 // OBSOLETE }
216 // OBSOLETE
217 // OBSOLETE static unsigned long
218 // OBSOLETE d10v_ts3_dmap_register (void *regcache, int reg_nr)
219 // OBSOLETE {
220 // OBSOLETE ULONGEST reg;
221 // OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, &reg);
222 // OBSOLETE return reg;
223 // OBSOLETE }
224 // OBSOLETE
225 // OBSOLETE static unsigned long
226 // OBSOLETE d10v_ts2_imap_register (void *regcache, int reg_nr)
227 // OBSOLETE {
228 // OBSOLETE ULONGEST reg;
229 // OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, &reg);
230 // OBSOLETE return reg;
231 // OBSOLETE }
232 // OBSOLETE
233 // OBSOLETE static unsigned long
234 // OBSOLETE d10v_ts3_imap_register (void *regcache, int reg_nr)
235 // OBSOLETE {
236 // OBSOLETE ULONGEST reg;
237 // OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, &reg);
238 // OBSOLETE return reg;
239 // OBSOLETE }
240 // OBSOLETE
241 // OBSOLETE /* MAP GDB's internal register numbering (determined by the layout
242 // OBSOLETE from the DEPRECATED_REGISTER_BYTE array) onto the simulator's
243 // OBSOLETE register numbering. */
244 // OBSOLETE
245 // OBSOLETE static int
246 // OBSOLETE d10v_ts2_register_sim_regno (int nr)
247 // OBSOLETE {
248 // OBSOLETE /* Only makes sense to supply raw registers. */
249 // OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
250 // OBSOLETE if (nr >= TS2_IMAP0_REGNUM
251 // OBSOLETE && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
252 // OBSOLETE return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
253 // OBSOLETE if (nr == TS2_DMAP_REGNUM)
254 // OBSOLETE return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
255 // OBSOLETE if (nr >= TS2_A0_REGNUM
256 // OBSOLETE && nr < TS2_A0_REGNUM + NR_A_REGS)
257 // OBSOLETE return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
258 // OBSOLETE return nr;
259 // OBSOLETE }
260 // OBSOLETE
261 // OBSOLETE static int
262 // OBSOLETE d10v_ts3_register_sim_regno (int nr)
263 // OBSOLETE {
264 // OBSOLETE /* Only makes sense to supply raw registers. */
265 // OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS);
266 // OBSOLETE if (nr >= TS3_IMAP0_REGNUM
267 // OBSOLETE && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
268 // OBSOLETE return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
269 // OBSOLETE if (nr >= TS3_DMAP0_REGNUM
270 // OBSOLETE && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
271 // OBSOLETE return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
272 // OBSOLETE if (nr >= TS3_A0_REGNUM
273 // OBSOLETE && nr < TS3_A0_REGNUM + NR_A_REGS)
274 // OBSOLETE return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
275 // OBSOLETE return nr;
276 // OBSOLETE }
277 // OBSOLETE
278 // OBSOLETE /* Return the GDB type object for the "standard" data type
279 // OBSOLETE of data in register N. */
280 // OBSOLETE
281 // OBSOLETE static struct type *
282 // OBSOLETE d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
283 // OBSOLETE {
284 // OBSOLETE if (reg_nr == D10V_PC_REGNUM)
285 // OBSOLETE return builtin_type (gdbarch)->builtin_func_ptr;
286 // OBSOLETE if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
287 // OBSOLETE return builtin_type (gdbarch)->builtin_data_ptr;
288 // OBSOLETE else if (reg_nr >= a0_regnum (gdbarch)
289 // OBSOLETE && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
290 // OBSOLETE return builtin_type_int64;
291 // OBSOLETE else
292 // OBSOLETE return builtin_type_int16;
293 // OBSOLETE }
294 // OBSOLETE
295 // OBSOLETE static int
296 // OBSOLETE d10v_iaddr_p (CORE_ADDR x)
297 // OBSOLETE {
298 // OBSOLETE return (((x) & 0x3000000) == IMEM_START);
299 // OBSOLETE }
300 // OBSOLETE
301 // OBSOLETE static CORE_ADDR
302 // OBSOLETE d10v_make_daddr (CORE_ADDR x)
303 // OBSOLETE {
304 // OBSOLETE return ((x) | DMEM_START);
305 // OBSOLETE }
306 // OBSOLETE
307 // OBSOLETE static CORE_ADDR
308 // OBSOLETE d10v_make_iaddr (CORE_ADDR x)
309 // OBSOLETE {
310 // OBSOLETE if (d10v_iaddr_p (x))
311 // OBSOLETE return x; /* Idempotency -- x is already in the IMEM space. */
312 // OBSOLETE else
313 // OBSOLETE return (((x) << 2) | IMEM_START);
314 // OBSOLETE }
315 // OBSOLETE
316 // OBSOLETE static CORE_ADDR
317 // OBSOLETE d10v_convert_iaddr_to_raw (CORE_ADDR x)
318 // OBSOLETE {
319 // OBSOLETE return (((x) >> 2) & 0xffff);
320 // OBSOLETE }
321 // OBSOLETE
322 // OBSOLETE static CORE_ADDR
323 // OBSOLETE d10v_convert_daddr_to_raw (CORE_ADDR x)
324 // OBSOLETE {
325 // OBSOLETE return ((x) & 0xffff);
326 // OBSOLETE }
327 // OBSOLETE
328 // OBSOLETE static void
329 // OBSOLETE d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
330 // OBSOLETE {
331 // OBSOLETE /* Is it a code address? */
332 // OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
333 // OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
334 // OBSOLETE {
335 // OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
336 // OBSOLETE d10v_convert_iaddr_to_raw (addr));
337 // OBSOLETE }
338 // OBSOLETE else
339 // OBSOLETE {
340 // OBSOLETE /* Strip off any upper segment bits. */
341 // OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type),
342 // OBSOLETE d10v_convert_daddr_to_raw (addr));
343 // OBSOLETE }
344 // OBSOLETE }
345 // OBSOLETE
346 // OBSOLETE static CORE_ADDR
347 // OBSOLETE d10v_pointer_to_address (struct type *type, const void *buf)
348 // OBSOLETE {
349 // OBSOLETE CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
350 // OBSOLETE /* Is it a code address? */
351 // OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
352 // OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
353 // OBSOLETE || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
354 // OBSOLETE return d10v_make_iaddr (addr);
355 // OBSOLETE else
356 // OBSOLETE return d10v_make_daddr (addr);
357 // OBSOLETE }
358 // OBSOLETE
359 // OBSOLETE /* Don't do anything if we have an integer, this way users can type 'x
360 // OBSOLETE <addr>' w/o having gdb outsmart them. The internal gdb conversions
361 // OBSOLETE to the correct space are taken care of in the pointer_to_address
362 // OBSOLETE function. If we don't do this, 'x $fp' wouldn't work. */
363 // OBSOLETE static CORE_ADDR
364 // OBSOLETE d10v_integer_to_address (struct type *type, void *buf)
365 // OBSOLETE {
366 // OBSOLETE LONGEST val;
367 // OBSOLETE val = unpack_long (type, buf);
368 // OBSOLETE return val;
369 // OBSOLETE }
370 // OBSOLETE
371 // OBSOLETE /* Handle the d10v's return_value convention. */
372 // OBSOLETE
373 // OBSOLETE static enum return_value_convention
374 // OBSOLETE d10v_return_value (struct gdbarch *gdbarch, struct type *valtype,
375 // OBSOLETE struct regcache *regcache, void *readbuf,
376 // OBSOLETE const void *writebuf)
377 // OBSOLETE {
378 // OBSOLETE if (TYPE_LENGTH (valtype) > 8)
379 // OBSOLETE /* Anything larger than 8 bytes (4 registers) goes on the stack. */
380 // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
381 // OBSOLETE if (TYPE_LENGTH (valtype) == 5
382 // OBSOLETE || TYPE_LENGTH (valtype) == 6)
383 // OBSOLETE /* Anything 5 or 6 bytes in size goes in memory. Contents don't
384 // OBSOLETE appear to matter. Note that 7 and 8 byte objects do end up in
385 // OBSOLETE registers! */
386 // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
387 // OBSOLETE if (TYPE_LENGTH (valtype) == 1)
388 // OBSOLETE {
389 // OBSOLETE /* All single byte values go in a register stored right-aligned.
390 // OBSOLETE Note: 2 byte integer values are handled further down. */
391 // OBSOLETE if (readbuf)
392 // OBSOLETE {
393 // OBSOLETE /* Since TYPE is smaller than the register, there isn't a
394 // OBSOLETE sign extension problem. Let the extraction truncate the
395 // OBSOLETE register value. */
396 // OBSOLETE ULONGEST regval;
397 // OBSOLETE regcache_cooked_read_unsigned (regcache, R0_REGNUM,
398 // OBSOLETE &regval);
399 // OBSOLETE store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
400 // OBSOLETE
401 // OBSOLETE }
402 // OBSOLETE if (writebuf)
403 // OBSOLETE {
404 // OBSOLETE ULONGEST regval;
405 // OBSOLETE if (TYPE_CODE (valtype) == TYPE_CODE_INT)
406 // OBSOLETE /* Some sort of integer value stored in R0. Use
407 // OBSOLETE unpack_long since that should handle any required sign
408 // OBSOLETE extension. */
409 // OBSOLETE regval = unpack_long (valtype, writebuf);
410 // OBSOLETE else
411 // OBSOLETE /* Some other type. Don't sign-extend the value when
412 // OBSOLETE storing it in the register. */
413 // OBSOLETE regval = extract_unsigned_integer (writebuf, 1);
414 // OBSOLETE regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval);
415 // OBSOLETE }
416 // OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
417 // OBSOLETE }
418 // OBSOLETE if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
419 // OBSOLETE || TYPE_CODE (valtype) == TYPE_CODE_UNION)
420 // OBSOLETE && TYPE_NFIELDS (valtype) > 1
421 // OBSOLETE && TYPE_FIELD_BITPOS (valtype, 1) == 8)
422 // OBSOLETE /* If a composite is 8 bit aligned (determined by looking at the
423 // OBSOLETE start address of the second field), put it in memory. */
424 // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION;
425 // OBSOLETE /* Assume it is in registers. */
426 // OBSOLETE if (writebuf || readbuf)
427 // OBSOLETE {
428 // OBSOLETE int reg;
429 // OBSOLETE /* Per above, the value is never more than 8 bytes long. */
430 // OBSOLETE gdb_assert (TYPE_LENGTH (valtype) <= 8);
431 // OBSOLETE /* Xfer 2 bytes at a time. */
432 // OBSOLETE for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++)
433 // OBSOLETE {
434 // OBSOLETE if (readbuf)
435 // OBSOLETE regcache_cooked_read (regcache, R0_REGNUM + reg,
436 // OBSOLETE (bfd_byte *) readbuf + reg * 2);
437 // OBSOLETE if (writebuf)
438 // OBSOLETE regcache_cooked_write (regcache, R0_REGNUM + reg,
439 // OBSOLETE (bfd_byte *) writebuf + reg * 2);
440 // OBSOLETE }
441 // OBSOLETE /* Any trailing byte ends up _left_ aligned. */
442 // OBSOLETE if ((reg * 2) < TYPE_LENGTH (valtype))
443 // OBSOLETE {
444 // OBSOLETE if (readbuf)
445 // OBSOLETE regcache_cooked_read_part (regcache, R0_REGNUM + reg,
446 // OBSOLETE 0, 1, (bfd_byte *) readbuf + reg * 2);
447 // OBSOLETE if (writebuf)
448 // OBSOLETE regcache_cooked_write_part (regcache, R0_REGNUM + reg,
449 // OBSOLETE 0, 1, (bfd_byte *) writebuf + reg * 2);
450 // OBSOLETE }
451 // OBSOLETE }
452 // OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION;
453 // OBSOLETE }
454 // OBSOLETE
455 // OBSOLETE static int
456 // OBSOLETE check_prologue (unsigned short op)
457 // OBSOLETE {
458 // OBSOLETE /* st rn, @-sp */
459 // OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
460 // OBSOLETE return 1;
461 // OBSOLETE
462 // OBSOLETE /* st2w rn, @-sp */
463 // OBSOLETE if ((op & 0x7E3F) == 0x6E1F)
464 // OBSOLETE return 1;
465 // OBSOLETE
466 // OBSOLETE /* subi sp, n */
467 // OBSOLETE if ((op & 0x7FE1) == 0x01E1)
468 // OBSOLETE return 1;
469 // OBSOLETE
470 // OBSOLETE /* mv r11, sp */
471 // OBSOLETE if (op == 0x417E)
472 // OBSOLETE return 1;
473 // OBSOLETE
474 // OBSOLETE /* nop */
475 // OBSOLETE if (op == 0x5E00)
476 // OBSOLETE return 1;
477 // OBSOLETE
478 // OBSOLETE /* st rn, @sp */
479 // OBSOLETE if ((op & 0x7E1F) == 0x681E)
480 // OBSOLETE return 1;
481 // OBSOLETE
482 // OBSOLETE /* st2w rn, @sp */
483 // OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
484 // OBSOLETE return 1;
485 // OBSOLETE
486 // OBSOLETE return 0;
487 // OBSOLETE }
488 // OBSOLETE
489 // OBSOLETE static CORE_ADDR
490 // OBSOLETE d10v_skip_prologue (CORE_ADDR pc)
491 // OBSOLETE {
492 // OBSOLETE unsigned long op;
493 // OBSOLETE unsigned short op1, op2;
494 // OBSOLETE CORE_ADDR func_addr, func_end;
495 // OBSOLETE struct symtab_and_line sal;
496 // OBSOLETE
497 // OBSOLETE /* If we have line debugging information, then the end of the prologue
498 // OBSOLETE should be the first assembly instruction of the first source line. */
499 // OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
500 // OBSOLETE {
501 // OBSOLETE sal = find_pc_line (func_addr, 0);
502 // OBSOLETE if (sal.end && sal.end < func_end)
503 // OBSOLETE return sal.end;
504 // OBSOLETE }
505 // OBSOLETE
506 // OBSOLETE if (target_read_memory (pc, (char *) &op, 4))
507 // OBSOLETE return pc; /* Can't access it -- assume no prologue. */
508 // OBSOLETE
509 // OBSOLETE while (1)
510 // OBSOLETE {
511 // OBSOLETE op = (unsigned long) read_memory_integer (pc, 4);
512 // OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
513 // OBSOLETE {
514 // OBSOLETE /* long instruction */
515 // OBSOLETE if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
516 // OBSOLETE ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
517 // OBSOLETE ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
518 // OBSOLETE break;
519 // OBSOLETE }
520 // OBSOLETE else
521 // OBSOLETE {
522 // OBSOLETE /* short instructions */
523 // OBSOLETE if ((op & 0xC0000000) == 0x80000000)
524 // OBSOLETE {
525 // OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
526 // OBSOLETE op1 = op & 0x7FFF;
527 // OBSOLETE }
528 // OBSOLETE else
529 // OBSOLETE {
530 // OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
531 // OBSOLETE op2 = op & 0x7FFF;
532 // OBSOLETE }
533 // OBSOLETE if (check_prologue (op1))
534 // OBSOLETE {
535 // OBSOLETE if (!check_prologue (op2))
536 // OBSOLETE {
537 // OBSOLETE /* If the previous opcode was really part of the
538 // OBSOLETE prologue and not just a NOP, then we want to
539 // OBSOLETE break after both instructions. */
540 // OBSOLETE if (op1 != 0x5E00)
541 // OBSOLETE pc += 4;
542 // OBSOLETE break;
543 // OBSOLETE }
544 // OBSOLETE }
545 // OBSOLETE else
546 // OBSOLETE break;
547 // OBSOLETE }
548 // OBSOLETE pc += 4;
549 // OBSOLETE }
550 // OBSOLETE return pc;
551 // OBSOLETE }
552 // OBSOLETE
553 // OBSOLETE struct d10v_unwind_cache
554 // OBSOLETE {
555 // OBSOLETE /* The previous frame's inner most stack address. Used as this
556 // OBSOLETE frame ID's stack_addr. */
557 // OBSOLETE CORE_ADDR prev_sp;
558 // OBSOLETE /* The frame's base, optionally used by the high-level debug info. */
559 // OBSOLETE CORE_ADDR base;
560 // OBSOLETE int size;
561 // OBSOLETE /* How far the SP and r11 (FP) have been offset from the start of
562 // OBSOLETE the stack frame (as defined by the previous frame's stack
563 // OBSOLETE pointer). */
564 // OBSOLETE LONGEST sp_offset;
565 // OBSOLETE LONGEST r11_offset;
566 // OBSOLETE int uses_frame;
567 // OBSOLETE /* Table indicating the location of each and every register. */
568 // OBSOLETE struct trad_frame_saved_reg *saved_regs;
569 // OBSOLETE };
570 // OBSOLETE
571 // OBSOLETE static int
572 // OBSOLETE prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
573 // OBSOLETE CORE_ADDR addr)
574 // OBSOLETE {
575 // OBSOLETE int n;
576 // OBSOLETE
577 // OBSOLETE /* st rn, @-sp */
578 // OBSOLETE if ((op & 0x7E1F) == 0x6C1F)
579 // OBSOLETE {
580 // OBSOLETE n = (op & 0x1E0) >> 5;
581 // OBSOLETE info->sp_offset -= 2;
582 // OBSOLETE info->saved_regs[n].addr = info->sp_offset;
583 // OBSOLETE return 1;
584 // OBSOLETE }
585 // OBSOLETE
586 // OBSOLETE /* st2w rn, @-sp */
587 // OBSOLETE else if ((op & 0x7E3F) == 0x6E1F)
588 // OBSOLETE {
589 // OBSOLETE n = (op & 0x1E0) >> 5;
590 // OBSOLETE info->sp_offset -= 4;
591 // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
592 // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
593 // OBSOLETE return 1;
594 // OBSOLETE }
595 // OBSOLETE
596 // OBSOLETE /* subi sp, n */
597 // OBSOLETE if ((op & 0x7FE1) == 0x01E1)
598 // OBSOLETE {
599 // OBSOLETE n = (op & 0x1E) >> 1;
600 // OBSOLETE if (n == 0)
601 // OBSOLETE n = 16;
602 // OBSOLETE info->sp_offset -= n;
603 // OBSOLETE return 1;
604 // OBSOLETE }
605 // OBSOLETE
606 // OBSOLETE /* mv r11, sp */
607 // OBSOLETE if (op == 0x417E)
608 // OBSOLETE {
609 // OBSOLETE info->uses_frame = 1;
610 // OBSOLETE info->r11_offset = info->sp_offset;
611 // OBSOLETE return 1;
612 // OBSOLETE }
613 // OBSOLETE
614 // OBSOLETE /* st rn, @r11 */
615 // OBSOLETE if ((op & 0x7E1F) == 0x6816)
616 // OBSOLETE {
617 // OBSOLETE n = (op & 0x1E0) >> 5;
618 // OBSOLETE info->saved_regs[n].addr = info->r11_offset;
619 // OBSOLETE return 1;
620 // OBSOLETE }
621 // OBSOLETE
622 // OBSOLETE /* nop */
623 // OBSOLETE if (op == 0x5E00)
624 // OBSOLETE return 1;
625 // OBSOLETE
626 // OBSOLETE /* st rn, @sp */
627 // OBSOLETE if ((op & 0x7E1F) == 0x681E)
628 // OBSOLETE {
629 // OBSOLETE n = (op & 0x1E0) >> 5;
630 // OBSOLETE info->saved_regs[n].addr = info->sp_offset;
631 // OBSOLETE return 1;
632 // OBSOLETE }
633 // OBSOLETE
634 // OBSOLETE /* st2w rn, @sp */
635 // OBSOLETE if ((op & 0x7E3F) == 0x3A1E)
636 // OBSOLETE {
637 // OBSOLETE n = (op & 0x1E0) >> 5;
638 // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0;
639 // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2;
640 // OBSOLETE return 1;
641 // OBSOLETE }
642 // OBSOLETE
643 // OBSOLETE return 0;
644 // OBSOLETE }
645 // OBSOLETE
646 // OBSOLETE /* Put here the code to store, into fi->saved_regs, the addresses of
647 // OBSOLETE the saved registers of frame described by FRAME_INFO. This
648 // OBSOLETE includes special registers such as pc and fp saved in special ways
649 // OBSOLETE in the stack frame. sp is even more special: the address we return
650 // OBSOLETE for it IS the sp for the next frame. */
651 // OBSOLETE
652 // OBSOLETE static struct d10v_unwind_cache *
653 // OBSOLETE d10v_frame_unwind_cache (struct frame_info *next_frame,
654 // OBSOLETE void **this_prologue_cache)
655 // OBSOLETE {
656 // OBSOLETE struct gdbarch *gdbarch = get_frame_arch (next_frame);
657 // OBSOLETE CORE_ADDR pc;
658 // OBSOLETE ULONGEST prev_sp;
659 // OBSOLETE ULONGEST this_base;
660 // OBSOLETE unsigned long op;
661 // OBSOLETE unsigned short op1, op2;
662 // OBSOLETE int i;
663 // OBSOLETE struct d10v_unwind_cache *info;
664 // OBSOLETE
665 // OBSOLETE if ((*this_prologue_cache))
666 // OBSOLETE return (*this_prologue_cache);
667 // OBSOLETE
668 // OBSOLETE info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
669 // OBSOLETE (*this_prologue_cache) = info;
670 // OBSOLETE info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
671 // OBSOLETE
672 // OBSOLETE info->size = 0;
673 // OBSOLETE info->sp_offset = 0;
674 // OBSOLETE
675 // OBSOLETE info->uses_frame = 0;
676 // OBSOLETE for (pc = frame_func_unwind (next_frame);
677 // OBSOLETE pc > 0 && pc < frame_pc_unwind (next_frame);
678 // OBSOLETE pc += 4)
679 // OBSOLETE {
680 // OBSOLETE op = get_frame_memory_unsigned (next_frame, pc, 4);
681 // OBSOLETE if ((op & 0xC0000000) == 0xC0000000)
682 // OBSOLETE {
683 // OBSOLETE /* long instruction */
684 // OBSOLETE if ((op & 0x3FFF0000) == 0x01FF0000)
685 // OBSOLETE {
686 // OBSOLETE /* add3 sp,sp,n */
687 // OBSOLETE short n = op & 0xFFFF;
688 // OBSOLETE info->sp_offset += n;
689 // OBSOLETE }
690 // OBSOLETE else if ((op & 0x3F0F0000) == 0x340F0000)
691 // OBSOLETE {
692 // OBSOLETE /* st rn, @(offset,sp) */
693 // OBSOLETE short offset = op & 0xFFFF;
694 // OBSOLETE short n = (op >> 20) & 0xF;
695 // OBSOLETE info->saved_regs[n].addr = info->sp_offset + offset;
696 // OBSOLETE }
697 // OBSOLETE else if ((op & 0x3F1F0000) == 0x350F0000)
698 // OBSOLETE {
699 // OBSOLETE /* st2w rn, @(offset,sp) */
700 // OBSOLETE short offset = op & 0xFFFF;
701 // OBSOLETE short n = (op >> 20) & 0xF;
702 // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + offset + 0;
703 // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + offset + 2;
704 // OBSOLETE }
705 // OBSOLETE else
706 // OBSOLETE break;
707 // OBSOLETE }
708 // OBSOLETE else
709 // OBSOLETE {
710 // OBSOLETE /* short instructions */
711 // OBSOLETE if ((op & 0xC0000000) == 0x80000000)
712 // OBSOLETE {
713 // OBSOLETE op2 = (op & 0x3FFF8000) >> 15;
714 // OBSOLETE op1 = op & 0x7FFF;
715 // OBSOLETE }
716 // OBSOLETE else
717 // OBSOLETE {
718 // OBSOLETE op1 = (op & 0x3FFF8000) >> 15;
719 // OBSOLETE op2 = op & 0x7FFF;
720 // OBSOLETE }
721 // OBSOLETE if (!prologue_find_regs (info, op1, pc)
722 // OBSOLETE || !prologue_find_regs (info, op2, pc))
723 // OBSOLETE break;
724 // OBSOLETE }
725 // OBSOLETE }
726 // OBSOLETE
727 // OBSOLETE info->size = -info->sp_offset;
728 // OBSOLETE
729 // OBSOLETE /* Compute the previous frame's stack pointer (which is also the
730 // OBSOLETE frame's ID's stack address), and this frame's base pointer. */
731 // OBSOLETE if (info->uses_frame)
732 // OBSOLETE {
733 // OBSOLETE /* The SP was moved to the FP. This indicates that a new frame
734 // OBSOLETE was created. Get THIS frame's FP value by unwinding it from
735 // OBSOLETE the next frame. */
736 // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
737 // OBSOLETE /* The FP points at the last saved register. Adjust the FP back
738 // OBSOLETE to before the first saved register giving the SP. */
739 // OBSOLETE prev_sp = this_base + info->size;
740 // OBSOLETE }
741 // OBSOLETE else
742 // OBSOLETE {
743 // OBSOLETE /* Assume that the FP is this frame's SP but with that pushed
744 // OBSOLETE stack space added back. */
745 // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
746 // OBSOLETE prev_sp = this_base + info->size;
747 // OBSOLETE }
748 // OBSOLETE
749 // OBSOLETE /* Convert that SP/BASE into real addresses. */
750 // OBSOLETE info->prev_sp = d10v_make_daddr (prev_sp);
751 // OBSOLETE info->base = d10v_make_daddr (this_base);
752 // OBSOLETE
753 // OBSOLETE /* Adjust all the saved registers so that they contain addresses and
754 // OBSOLETE not offsets. */
755 // OBSOLETE for (i = 0; i < NUM_REGS - 1; i++)
756 // OBSOLETE if (trad_frame_addr_p (info->saved_regs, i))
757 // OBSOLETE {
758 // OBSOLETE info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
759 // OBSOLETE }
760 // OBSOLETE
761 // OBSOLETE /* The call instruction moves the caller's PC in the callee's LR.
762 // OBSOLETE Since this is an unwind, do the reverse. Copy the location of LR
763 // OBSOLETE into PC (the address / regnum) so that a request for PC will be
764 // OBSOLETE converted into a request for the LR. */
765 // OBSOLETE info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM];
766 // OBSOLETE
767 // OBSOLETE /* The previous frame's SP needed to be computed. Save the computed
768 // OBSOLETE value. */
769 // OBSOLETE trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM,
770 // OBSOLETE d10v_make_daddr (prev_sp));
771 // OBSOLETE
772 // OBSOLETE return info;
773 // OBSOLETE }
774 // OBSOLETE
775 // OBSOLETE static void
776 // OBSOLETE d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
777 // OBSOLETE struct frame_info *frame, int regnum, int all)
778 // OBSOLETE {
779 // OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
780 // OBSOLETE if (regnum >= 0)
781 // OBSOLETE {
782 // OBSOLETE default_print_registers_info (gdbarch, file, frame, regnum, all);
783 // OBSOLETE return;
784 // OBSOLETE }
785 // OBSOLETE
786 // OBSOLETE {
787 // OBSOLETE ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
788 // OBSOLETE pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM);
789 // OBSOLETE psw = get_frame_register_unsigned (frame, PSW_REGNUM);
790 // OBSOLETE rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1));
791 // OBSOLETE rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1));
792 // OBSOLETE rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1));
793 // OBSOLETE fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
794 // OBSOLETE (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
795 // OBSOLETE (long) rpt_s, (long) rpt_e, (long) rpt_c);
796 // OBSOLETE }
797 // OBSOLETE
798 // OBSOLETE {
799 // OBSOLETE int group;
800 // OBSOLETE for (group = 0; group < 16; group += 8)
801 // OBSOLETE {
802 // OBSOLETE int r;
803 // OBSOLETE fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
804 // OBSOLETE for (r = group; r < group + 8; r++)
805 // OBSOLETE {
806 // OBSOLETE ULONGEST tmp;
807 // OBSOLETE tmp = get_frame_register_unsigned (frame, r);
808 // OBSOLETE fprintf_filtered (file, " %04lx", (long) tmp);
809 // OBSOLETE }
810 // OBSOLETE fprintf_filtered (file, "\n");
811 // OBSOLETE }
812 // OBSOLETE }
813 // OBSOLETE
814 // OBSOLETE /* Note: The IMAP/DMAP registers don't participate in function
815 // OBSOLETE calls. Don't bother trying to unwind them. */
816 // OBSOLETE
817 // OBSOLETE {
818 // OBSOLETE int a;
819 // OBSOLETE for (a = 0; a < NR_IMAP_REGS; a++)
820 // OBSOLETE {
821 // OBSOLETE if (a > 0)
822 // OBSOLETE fprintf_filtered (file, " ");
823 // OBSOLETE fprintf_filtered (file, "IMAP%d %04lx", a,
824 // OBSOLETE tdep->imap_register (current_regcache, a));
825 // OBSOLETE }
826 // OBSOLETE if (nr_dmap_regs (gdbarch) == 1)
827 // OBSOLETE /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
828 // OBSOLETE fprintf_filtered (file, " DMAP %04lx\n",
829 // OBSOLETE tdep->dmap_register (current_regcache, 2));
830 // OBSOLETE else
831 // OBSOLETE {
832 // OBSOLETE for (a = 0; a < nr_dmap_regs (gdbarch); a++)
833 // OBSOLETE {
834 // OBSOLETE fprintf_filtered (file, " DMAP%d %04lx", a,
835 // OBSOLETE tdep->dmap_register (current_regcache, a));
836 // OBSOLETE }
837 // OBSOLETE fprintf_filtered (file, "\n");
838 // OBSOLETE }
839 // OBSOLETE }
840 // OBSOLETE
841 // OBSOLETE {
842 // OBSOLETE char num[MAX_REGISTER_SIZE];
843 // OBSOLETE int a;
844 // OBSOLETE fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
845 // OBSOLETE for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
846 // OBSOLETE {
847 // OBSOLETE int i;
848 // OBSOLETE fprintf_filtered (file, " ");
849 // OBSOLETE get_frame_register (frame, a, num);
850 // OBSOLETE for (i = 0; i < register_size (gdbarch, a); i++)
851 // OBSOLETE {
852 // OBSOLETE fprintf_filtered (file, "%02x", (num[i] & 0xff));
853 // OBSOLETE }
854 // OBSOLETE }
855 // OBSOLETE }
856 // OBSOLETE fprintf_filtered (file, "\n");
857 // OBSOLETE }
858 // OBSOLETE
859 // OBSOLETE static void
860 // OBSOLETE show_regs (char *args, int from_tty)
861 // OBSOLETE {
862 // OBSOLETE d10v_print_registers_info (current_gdbarch, gdb_stdout,
863 // OBSOLETE get_current_frame (), -1, 1);
864 // OBSOLETE }
865 // OBSOLETE
866 // OBSOLETE static CORE_ADDR
867 // OBSOLETE d10v_read_pc (ptid_t ptid)
868 // OBSOLETE {
869 // OBSOLETE ptid_t save_ptid;
870 // OBSOLETE CORE_ADDR pc;
871 // OBSOLETE CORE_ADDR retval;
872 // OBSOLETE
873 // OBSOLETE save_ptid = inferior_ptid;
874 // OBSOLETE inferior_ptid = ptid;
875 // OBSOLETE pc = (int) read_register (D10V_PC_REGNUM);
876 // OBSOLETE inferior_ptid = save_ptid;
877 // OBSOLETE retval = d10v_make_iaddr (pc);
878 // OBSOLETE return retval;
879 // OBSOLETE }
880 // OBSOLETE
881 // OBSOLETE static void
882 // OBSOLETE d10v_write_pc (CORE_ADDR val, ptid_t ptid)
883 // OBSOLETE {
884 // OBSOLETE ptid_t save_ptid;
885 // OBSOLETE
886 // OBSOLETE save_ptid = inferior_ptid;
887 // OBSOLETE inferior_ptid = ptid;
888 // OBSOLETE write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
889 // OBSOLETE inferior_ptid = save_ptid;
890 // OBSOLETE }
891 // OBSOLETE
892 // OBSOLETE static CORE_ADDR
893 // OBSOLETE d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
894 // OBSOLETE {
895 // OBSOLETE ULONGEST sp;
896 // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp);
897 // OBSOLETE return d10v_make_daddr (sp);
898 // OBSOLETE }
899 // OBSOLETE
900 // OBSOLETE /* When arguments must be pushed onto the stack, they go on in reverse
901 // OBSOLETE order. The below implements a FILO (stack) to do this. */
902 // OBSOLETE
903 // OBSOLETE struct stack_item
904 // OBSOLETE {
905 // OBSOLETE int len;
906 // OBSOLETE struct stack_item *prev;
907 // OBSOLETE void *data;
908 // OBSOLETE };
909 // OBSOLETE
910 // OBSOLETE static struct stack_item *push_stack_item (struct stack_item *prev,
911 // OBSOLETE void *contents, int len);
912 // OBSOLETE static struct stack_item *
913 // OBSOLETE push_stack_item (struct stack_item *prev, void *contents, int len)
914 // OBSOLETE {
915 // OBSOLETE struct stack_item *si;
916 // OBSOLETE si = xmalloc (sizeof (struct stack_item));
917 // OBSOLETE si->data = xmalloc (len);
918 // OBSOLETE si->len = len;
919 // OBSOLETE si->prev = prev;
920 // OBSOLETE memcpy (si->data, contents, len);
921 // OBSOLETE return si;
922 // OBSOLETE }
923 // OBSOLETE
924 // OBSOLETE static struct stack_item *pop_stack_item (struct stack_item *si);
925 // OBSOLETE static struct stack_item *
926 // OBSOLETE pop_stack_item (struct stack_item *si)
927 // OBSOLETE {
928 // OBSOLETE struct stack_item *dead = si;
929 // OBSOLETE si = si->prev;
930 // OBSOLETE xfree (dead->data);
931 // OBSOLETE xfree (dead);
932 // OBSOLETE return si;
933 // OBSOLETE }
934 // OBSOLETE
935 // OBSOLETE
936 // OBSOLETE static CORE_ADDR
937 // OBSOLETE d10v_push_dummy_code (struct gdbarch *gdbarch,
938 // OBSOLETE CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
939 // OBSOLETE struct value **args, int nargs,
940 // OBSOLETE struct type *value_type,
941 // OBSOLETE CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
942 // OBSOLETE {
943 // OBSOLETE /* Allocate space sufficient for a breakpoint. */
944 // OBSOLETE sp = (sp - 4) & ~3;
945 // OBSOLETE /* Store the address of that breakpoint taking care to first convert
946 // OBSOLETE it into a code (IADDR) address from a stack (DADDR) address.
947 // OBSOLETE This of course assumes that the two virtual addresses map onto
948 // OBSOLETE the same real address. */
949 // OBSOLETE (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
950 // OBSOLETE /* d10v always starts the call at the callee's entry point. */
951 // OBSOLETE (*real_pc) = funaddr;
952 // OBSOLETE return sp;
953 // OBSOLETE }
954 // OBSOLETE
955 // OBSOLETE static CORE_ADDR
956 // OBSOLETE d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
957 // OBSOLETE struct regcache *regcache, CORE_ADDR bp_addr,
958 // OBSOLETE int nargs, struct value **args, CORE_ADDR sp,
959 // OBSOLETE int struct_return, CORE_ADDR struct_addr)
960 // OBSOLETE {
961 // OBSOLETE int i;
962 // OBSOLETE int regnum = ARG1_REGNUM;
963 // OBSOLETE struct stack_item *si = NULL;
964 // OBSOLETE long val;
965 // OBSOLETE
966 // OBSOLETE /* Set the return address. For the d10v, the return breakpoint is
967 // OBSOLETE always at BP_ADDR. */
968 // OBSOLETE regcache_cooked_write_unsigned (regcache, LR_REGNUM,
969 // OBSOLETE d10v_convert_iaddr_to_raw (bp_addr));
970 // OBSOLETE
971 // OBSOLETE /* If STRUCT_RETURN is true, then the struct return address (in
972 // OBSOLETE STRUCT_ADDR) will consume the first argument-passing register.
973 // OBSOLETE Both adjust the register count and store that value. */
974 // OBSOLETE if (struct_return)
975 // OBSOLETE {
976 // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
977 // OBSOLETE regnum++;
978 // OBSOLETE }
979 // OBSOLETE
980 // OBSOLETE /* Fill in registers and arg lists */
981 // OBSOLETE for (i = 0; i < nargs; i++)
982 // OBSOLETE {
983 // OBSOLETE struct value *arg = args[i];
984 // OBSOLETE struct type *type = check_typedef (VALUE_TYPE (arg));
985 // OBSOLETE char *contents = VALUE_CONTENTS (arg);
986 // OBSOLETE int len = TYPE_LENGTH (type);
987 // OBSOLETE int aligned_regnum = (regnum + 1) & ~1;
988 // OBSOLETE
989 // OBSOLETE /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
990 // OBSOLETE if (len <= 2 && regnum <= ARGN_REGNUM)
991 // OBSOLETE /* fits in a single register, do not align */
992 // OBSOLETE {
993 // OBSOLETE val = extract_unsigned_integer (contents, len);
994 // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
995 // OBSOLETE }
996 // OBSOLETE else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
997 // OBSOLETE /* value fits in remaining registers, store keeping left
998 // OBSOLETE aligned */
999 // OBSOLETE {
1000 // OBSOLETE int b;
1001 // OBSOLETE regnum = aligned_regnum;
1002 // OBSOLETE for (b = 0; b < (len & ~1); b += 2)
1003 // OBSOLETE {
1004 // OBSOLETE val = extract_unsigned_integer (&contents[b], 2);
1005 // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val);
1006 // OBSOLETE }
1007 // OBSOLETE if (b < len)
1008 // OBSOLETE {
1009 // OBSOLETE val = extract_unsigned_integer (&contents[b], 1);
1010 // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
1011 // OBSOLETE }
1012 // OBSOLETE }
1013 // OBSOLETE else
1014 // OBSOLETE {
1015 // OBSOLETE /* arg will go onto stack */
1016 // OBSOLETE regnum = ARGN_REGNUM + 1;
1017 // OBSOLETE si = push_stack_item (si, contents, len);
1018 // OBSOLETE }
1019 // OBSOLETE }
1020 // OBSOLETE
1021 // OBSOLETE while (si)
1022 // OBSOLETE {
1023 // OBSOLETE sp = (sp - si->len) & ~1;
1024 // OBSOLETE write_memory (sp, si->data, si->len);
1025 // OBSOLETE si = pop_stack_item (si);
1026 // OBSOLETE }
1027 // OBSOLETE
1028 // OBSOLETE /* Finally, update the SP register. */
1029 // OBSOLETE regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
1030 // OBSOLETE d10v_convert_daddr_to_raw (sp));
1031 // OBSOLETE
1032 // OBSOLETE return sp;
1033 // OBSOLETE }
1034 // OBSOLETE
1035 // OBSOLETE /* Translate a GDB virtual ADDR/LEN into a format the remote target
1036 // OBSOLETE understands. Returns number of bytes that can be transfered
1037 // OBSOLETE starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1038 // OBSOLETE (segmentation fault). Since the simulator knows all about how the
1039 // OBSOLETE VM system works, we just call that to do the translation. */
1040 // OBSOLETE
1041 // OBSOLETE static void
1042 // OBSOLETE remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
1043 // OBSOLETE struct regcache *regcache,
1044 // OBSOLETE CORE_ADDR memaddr, int nr_bytes,
1045 // OBSOLETE CORE_ADDR *targ_addr, int *targ_len)
1046 // OBSOLETE {
1047 // OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1048 // OBSOLETE long out_addr;
1049 // OBSOLETE long out_len;
1050 // OBSOLETE out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
1051 // OBSOLETE tdep->dmap_register, tdep->imap_register);
1052 // OBSOLETE *targ_addr = out_addr;
1053 // OBSOLETE *targ_len = out_len;
1054 // OBSOLETE }
1055 // OBSOLETE
1056 // OBSOLETE
1057 // OBSOLETE /* The following code implements access to, and display of, the D10V's
1058 // OBSOLETE instruction trace buffer. The buffer consists of 64K or more
1059 // OBSOLETE 4-byte words of data, of which each words includes an 8-bit count,
1060 // OBSOLETE an 8-bit segment number, and a 16-bit instruction address.
1061 // OBSOLETE
1062 // OBSOLETE In theory, the trace buffer is continuously capturing instruction
1063 // OBSOLETE data that the CPU presents on its "debug bus", but in practice, the
1064 // OBSOLETE ROMified GDB stub only enables tracing when it continues or steps
1065 // OBSOLETE the program, and stops tracing when the program stops; so it
1066 // OBSOLETE actually works for GDB to read the buffer counter out of memory and
1067 // OBSOLETE then read each trace word. The counter records where the tracing
1068 // OBSOLETE stops, but there is no record of where it started, so we remember
1069 // OBSOLETE the PC when we resumed and then search backwards in the trace
1070 // OBSOLETE buffer for a word that includes that address. This is not perfect,
1071 // OBSOLETE because you will miss trace data if the resumption PC is the target
1072 // OBSOLETE of a branch. (The value of the buffer counter is semi-random, any
1073 // OBSOLETE trace data from a previous program stop is gone.) */
1074 // OBSOLETE
1075 // OBSOLETE /* The address of the last word recorded in the trace buffer. */
1076 // OBSOLETE
1077 // OBSOLETE #define DBBC_ADDR (0xd80000)
1078 // OBSOLETE
1079 // OBSOLETE /* The base of the trace buffer, at least for the "Board_0". */
1080 // OBSOLETE
1081 // OBSOLETE #define TRACE_BUFFER_BASE (0xf40000)
1082 // OBSOLETE
1083 // OBSOLETE static void trace_command (char *, int);
1084 // OBSOLETE
1085 // OBSOLETE static void untrace_command (char *, int);
1086 // OBSOLETE
1087 // OBSOLETE static void trace_info (char *, int);
1088 // OBSOLETE
1089 // OBSOLETE static void tdisassemble_command (char *, int);
1090 // OBSOLETE
1091 // OBSOLETE static void display_trace (int, int);
1092 // OBSOLETE
1093 // OBSOLETE /* True when instruction traces are being collected. */
1094 // OBSOLETE
1095 // OBSOLETE static int tracing;
1096 // OBSOLETE
1097 // OBSOLETE /* Remembered PC. */
1098 // OBSOLETE
1099 // OBSOLETE static CORE_ADDR last_pc;
1100 // OBSOLETE
1101 // OBSOLETE /* True when trace output should be displayed whenever program stops. */
1102 // OBSOLETE
1103 // OBSOLETE static int trace_display;
1104 // OBSOLETE
1105 // OBSOLETE /* True when trace listing should include source lines. */
1106 // OBSOLETE
1107 // OBSOLETE static int default_trace_show_source = 1;
1108 // OBSOLETE
1109 // OBSOLETE struct trace_buffer
1110 // OBSOLETE {
1111 // OBSOLETE int size;
1112 // OBSOLETE short *counts;
1113 // OBSOLETE CORE_ADDR *addrs;
1114 // OBSOLETE }
1115 // OBSOLETE trace_data;
1116 // OBSOLETE
1117 // OBSOLETE static void
1118 // OBSOLETE trace_command (char *args, int from_tty)
1119 // OBSOLETE {
1120 // OBSOLETE /* Clear the host-side trace buffer, allocating space if needed. */
1121 // OBSOLETE trace_data.size = 0;
1122 // OBSOLETE if (trace_data.counts == NULL)
1123 // OBSOLETE trace_data.counts = XCALLOC (65536, short);
1124 // OBSOLETE if (trace_data.addrs == NULL)
1125 // OBSOLETE trace_data.addrs = XCALLOC (65536, CORE_ADDR);
1126 // OBSOLETE
1127 // OBSOLETE tracing = 1;
1128 // OBSOLETE
1129 // OBSOLETE printf_filtered ("Tracing is now on.\n");
1130 // OBSOLETE }
1131 // OBSOLETE
1132 // OBSOLETE static void
1133 // OBSOLETE untrace_command (char *args, int from_tty)
1134 // OBSOLETE {
1135 // OBSOLETE tracing = 0;
1136 // OBSOLETE
1137 // OBSOLETE printf_filtered ("Tracing is now off.\n");
1138 // OBSOLETE }
1139 // OBSOLETE
1140 // OBSOLETE static void
1141 // OBSOLETE trace_info (char *args, int from_tty)
1142 // OBSOLETE {
1143 // OBSOLETE int i;
1144 // OBSOLETE
1145 // OBSOLETE if (trace_data.size)
1146 // OBSOLETE {
1147 // OBSOLETE printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1148 // OBSOLETE
1149 // OBSOLETE for (i = 0; i < trace_data.size; ++i)
1150 // OBSOLETE {
1151 // OBSOLETE printf_filtered ("%d: %d instruction%s at 0x%s\n",
1152 // OBSOLETE i,
1153 // OBSOLETE trace_data.counts[i],
1154 // OBSOLETE (trace_data.counts[i] == 1 ? "" : "s"),
1155 // OBSOLETE paddr_nz (trace_data.addrs[i]));
1156 // OBSOLETE }
1157 // OBSOLETE }
1158 // OBSOLETE else
1159 // OBSOLETE printf_filtered ("No entries in trace buffer.\n");
1160 // OBSOLETE
1161 // OBSOLETE printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1162 // OBSOLETE }
1163 // OBSOLETE
1164 // OBSOLETE static void
1165 // OBSOLETE d10v_eva_prepare_to_trace (void)
1166 // OBSOLETE {
1167 // OBSOLETE if (!tracing)
1168 // OBSOLETE return;
1169 // OBSOLETE
1170 // OBSOLETE last_pc = read_register (D10V_PC_REGNUM);
1171 // OBSOLETE }
1172 // OBSOLETE
1173 // OBSOLETE /* Collect trace data from the target board and format it into a form
1174 // OBSOLETE more useful for display. */
1175 // OBSOLETE
1176 // OBSOLETE static void
1177 // OBSOLETE d10v_eva_get_trace_data (void)
1178 // OBSOLETE {
1179 // OBSOLETE int count, i, j, oldsize;
1180 // OBSOLETE int trace_addr, trace_seg, trace_cnt, next_cnt;
1181 // OBSOLETE unsigned int last_trace, trace_word, next_word;
1182 // OBSOLETE unsigned int *tmpspace;
1183 // OBSOLETE
1184 // OBSOLETE if (!tracing)
1185 // OBSOLETE return;
1186 // OBSOLETE
1187 // OBSOLETE tmpspace = xmalloc (65536 * sizeof (unsigned int));
1188 // OBSOLETE
1189 // OBSOLETE last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1190 // OBSOLETE
1191 // OBSOLETE /* Collect buffer contents from the target, stopping when we reach
1192 // OBSOLETE the word recorded when execution resumed. */
1193 // OBSOLETE
1194 // OBSOLETE count = 0;
1195 // OBSOLETE while (last_trace > 0)
1196 // OBSOLETE {
1197 // OBSOLETE QUIT;
1198 // OBSOLETE trace_word =
1199 // OBSOLETE read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1200 // OBSOLETE trace_addr = trace_word & 0xffff;
1201 // OBSOLETE last_trace -= 4;
1202 // OBSOLETE /* Ignore an apparently nonsensical entry. */
1203 // OBSOLETE if (trace_addr == 0xffd5)
1204 // OBSOLETE continue;
1205 // OBSOLETE tmpspace[count++] = trace_word;
1206 // OBSOLETE if (trace_addr == last_pc)
1207 // OBSOLETE break;
1208 // OBSOLETE if (count > 65535)
1209 // OBSOLETE break;
1210 // OBSOLETE }
1211 // OBSOLETE
1212 // OBSOLETE /* Move the data to the host-side trace buffer, adjusting counts to
1213 // OBSOLETE include the last instruction executed and transforming the address
1214 // OBSOLETE into something that GDB likes. */
1215 // OBSOLETE
1216 // OBSOLETE for (i = 0; i < count; ++i)
1217 // OBSOLETE {
1218 // OBSOLETE trace_word = tmpspace[i];
1219 // OBSOLETE next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1220 // OBSOLETE trace_addr = trace_word & 0xffff;
1221 // OBSOLETE next_cnt = (next_word >> 24) & 0xff;
1222 // OBSOLETE j = trace_data.size + count - i - 1;
1223 // OBSOLETE trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1224 // OBSOLETE trace_data.counts[j] = next_cnt + 1;
1225 // OBSOLETE }
1226 // OBSOLETE
1227 // OBSOLETE oldsize = trace_data.size;
1228 // OBSOLETE trace_data.size += count;
1229 // OBSOLETE
1230 // OBSOLETE xfree (tmpspace);
1231 // OBSOLETE
1232 // OBSOLETE if (trace_display)
1233 // OBSOLETE display_trace (oldsize, trace_data.size);
1234 // OBSOLETE }
1235 // OBSOLETE
1236 // OBSOLETE static void
1237 // OBSOLETE tdisassemble_command (char *arg, int from_tty)
1238 // OBSOLETE {
1239 // OBSOLETE int i, count;
1240 // OBSOLETE CORE_ADDR low, high;
1241 // OBSOLETE
1242 // OBSOLETE if (!arg)
1243 // OBSOLETE {
1244 // OBSOLETE low = 0;
1245 // OBSOLETE high = trace_data.size;
1246 // OBSOLETE }
1247 // OBSOLETE else
1248 // OBSOLETE {
1249 // OBSOLETE char *space_index = strchr (arg, ' ');
1250 // OBSOLETE if (space_index == NULL)
1251 // OBSOLETE {
1252 // OBSOLETE low = parse_and_eval_address (arg);
1253 // OBSOLETE high = low + 5;
1254 // OBSOLETE }
1255 // OBSOLETE else
1256 // OBSOLETE {
1257 // OBSOLETE /* Two arguments. */
1258 // OBSOLETE *space_index = '\0';
1259 // OBSOLETE low = parse_and_eval_address (arg);
1260 // OBSOLETE high = parse_and_eval_address (space_index + 1);
1261 // OBSOLETE if (high < low)
1262 // OBSOLETE high = low;
1263 // OBSOLETE }
1264 // OBSOLETE }
1265 // OBSOLETE
1266 // OBSOLETE printf_filtered ("Dump of trace from %s to %s:\n",
1267 // OBSOLETE paddr_u (low), paddr_u (high));
1268 // OBSOLETE
1269 // OBSOLETE display_trace (low, high);
1270 // OBSOLETE
1271 // OBSOLETE printf_filtered ("End of trace dump.\n");
1272 // OBSOLETE gdb_flush (gdb_stdout);
1273 // OBSOLETE }
1274 // OBSOLETE
1275 // OBSOLETE static void
1276 // OBSOLETE display_trace (int low, int high)
1277 // OBSOLETE {
1278 // OBSOLETE int i, count, trace_show_source, first, suppress;
1279 // OBSOLETE CORE_ADDR next_address;
1280 // OBSOLETE
1281 // OBSOLETE trace_show_source = default_trace_show_source;
1282 // OBSOLETE if (!have_full_symbols () && !have_partial_symbols ())
1283 // OBSOLETE {
1284 // OBSOLETE trace_show_source = 0;
1285 // OBSOLETE printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1286 // OBSOLETE printf_filtered ("Trace will not display any source.\n");
1287 // OBSOLETE }
1288 // OBSOLETE
1289 // OBSOLETE first = 1;
1290 // OBSOLETE suppress = 0;
1291 // OBSOLETE for (i = low; i < high; ++i)
1292 // OBSOLETE {
1293 // OBSOLETE next_address = trace_data.addrs[i];
1294 // OBSOLETE count = trace_data.counts[i];
1295 // OBSOLETE while (count-- > 0)
1296 // OBSOLETE {
1297 // OBSOLETE QUIT;
1298 // OBSOLETE if (trace_show_source)
1299 // OBSOLETE {
1300 // OBSOLETE struct symtab_and_line sal, sal_prev;
1301 // OBSOLETE
1302 // OBSOLETE sal_prev = find_pc_line (next_address - 4, 0);
1303 // OBSOLETE sal = find_pc_line (next_address, 0);
1304 // OBSOLETE
1305 // OBSOLETE if (sal.symtab)
1306 // OBSOLETE {
1307 // OBSOLETE if (first || sal.line != sal_prev.line)
1308 // OBSOLETE print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1309 // OBSOLETE suppress = 0;
1310 // OBSOLETE }
1311 // OBSOLETE else
1312 // OBSOLETE {
1313 // OBSOLETE if (!suppress)
1314 // OBSOLETE /* FIXME-32x64--assumes sal.pc fits in long. */
1315 // OBSOLETE printf_filtered ("No source file for address %s.\n",
1316 // OBSOLETE hex_string ((unsigned long) sal.pc));
1317 // OBSOLETE suppress = 1;
1318 // OBSOLETE }
1319 // OBSOLETE }
1320 // OBSOLETE first = 0;
1321 // OBSOLETE print_address (next_address, gdb_stdout);
1322 // OBSOLETE printf_filtered (":");
1323 // OBSOLETE printf_filtered ("\t");
1324 // OBSOLETE wrap_here (" ");
1325 // OBSOLETE next_address += gdb_print_insn (next_address, gdb_stdout);
1326 // OBSOLETE printf_filtered ("\n");
1327 // OBSOLETE gdb_flush (gdb_stdout);
1328 // OBSOLETE }
1329 // OBSOLETE }
1330 // OBSOLETE }
1331 // OBSOLETE
1332 // OBSOLETE static CORE_ADDR
1333 // OBSOLETE d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1334 // OBSOLETE {
1335 // OBSOLETE ULONGEST pc;
1336 // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
1337 // OBSOLETE return d10v_make_iaddr (pc);
1338 // OBSOLETE }
1339 // OBSOLETE
1340 // OBSOLETE /* Given a GDB frame, determine the address of the calling function's
1341 // OBSOLETE frame. This will be used to create a new GDB frame struct. */
1342 // OBSOLETE
1343 // OBSOLETE static void
1344 // OBSOLETE d10v_frame_this_id (struct frame_info *next_frame,
1345 // OBSOLETE void **this_prologue_cache,
1346 // OBSOLETE struct frame_id *this_id)
1347 // OBSOLETE {
1348 // OBSOLETE struct d10v_unwind_cache *info
1349 // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1350 // OBSOLETE CORE_ADDR base;
1351 // OBSOLETE CORE_ADDR func;
1352 // OBSOLETE struct frame_id id;
1353 // OBSOLETE
1354 // OBSOLETE /* The FUNC is easy. */
1355 // OBSOLETE func = frame_func_unwind (next_frame);
1356 // OBSOLETE
1357 // OBSOLETE /* Hopefully the prologue analysis either correctly determined the
1358 // OBSOLETE frame's base (which is the SP from the previous frame), or set
1359 // OBSOLETE that base to "NULL". */
1360 // OBSOLETE base = info->prev_sp;
1361 // OBSOLETE if (base == STACK_START || base == 0)
1362 // OBSOLETE return;
1363 // OBSOLETE
1364 // OBSOLETE id = frame_id_build (base, func);
1365 // OBSOLETE
1366 // OBSOLETE (*this_id) = id;
1367 // OBSOLETE }
1368 // OBSOLETE
1369 // OBSOLETE static void
1370 // OBSOLETE d10v_frame_prev_register (struct frame_info *next_frame,
1371 // OBSOLETE void **this_prologue_cache,
1372 // OBSOLETE int regnum, int *optimizedp,
1373 // OBSOLETE enum lval_type *lvalp, CORE_ADDR *addrp,
1374 // OBSOLETE int *realnump, void *bufferp)
1375 // OBSOLETE {
1376 // OBSOLETE struct d10v_unwind_cache *info
1377 // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1378 // OBSOLETE trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1379 // OBSOLETE optimizedp, lvalp, addrp, realnump, bufferp);
1380 // OBSOLETE }
1381 // OBSOLETE
1382 // OBSOLETE static const struct frame_unwind d10v_frame_unwind = {
1383 // OBSOLETE NORMAL_FRAME,
1384 // OBSOLETE d10v_frame_this_id,
1385 // OBSOLETE d10v_frame_prev_register
1386 // OBSOLETE };
1387 // OBSOLETE
1388 // OBSOLETE static const struct frame_unwind *
1389 // OBSOLETE d10v_frame_sniffer (struct frame_info *next_frame)
1390 // OBSOLETE {
1391 // OBSOLETE return &d10v_frame_unwind;
1392 // OBSOLETE }
1393 // OBSOLETE
1394 // OBSOLETE static CORE_ADDR
1395 // OBSOLETE d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
1396 // OBSOLETE {
1397 // OBSOLETE struct d10v_unwind_cache *info
1398 // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_cache);
1399 // OBSOLETE return info->base;
1400 // OBSOLETE }
1401 // OBSOLETE
1402 // OBSOLETE static const struct frame_base d10v_frame_base = {
1403 // OBSOLETE &d10v_frame_unwind,
1404 // OBSOLETE d10v_frame_base_address,
1405 // OBSOLETE d10v_frame_base_address,
1406 // OBSOLETE d10v_frame_base_address
1407 // OBSOLETE };
1408 // OBSOLETE
1409 // OBSOLETE /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1410 // OBSOLETE dummy frame. The frame ID's base needs to match the TOS value
1411 // OBSOLETE saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1412 // OBSOLETE breakpoint. */
1413 // OBSOLETE
1414 // OBSOLETE static struct frame_id
1415 // OBSOLETE d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1416 // OBSOLETE {
1417 // OBSOLETE return frame_id_build (d10v_unwind_sp (gdbarch, next_frame),
1418 // OBSOLETE frame_pc_unwind (next_frame));
1419 // OBSOLETE }
1420 // OBSOLETE
1421 // OBSOLETE static gdbarch_init_ftype d10v_gdbarch_init;
1422 // OBSOLETE
1423 // OBSOLETE static struct gdbarch *
1424 // OBSOLETE d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425 // OBSOLETE {
1426 // OBSOLETE struct gdbarch *gdbarch;
1427 // OBSOLETE int d10v_num_regs;
1428 // OBSOLETE struct gdbarch_tdep *tdep;
1429 // OBSOLETE gdbarch_register_name_ftype *d10v_register_name;
1430 // OBSOLETE gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1431 // OBSOLETE
1432 // OBSOLETE /* Find a candidate among the list of pre-declared architectures. */
1433 // OBSOLETE arches = gdbarch_list_lookup_by_info (arches, &info);
1434 // OBSOLETE if (arches != NULL)
1435 // OBSOLETE return arches->gdbarch;
1436 // OBSOLETE
1437 // OBSOLETE /* None found, create a new architecture from the information
1438 // OBSOLETE provided. */
1439 // OBSOLETE tdep = XMALLOC (struct gdbarch_tdep);
1440 // OBSOLETE gdbarch = gdbarch_alloc (&info, tdep);
1441 // OBSOLETE
1442 // OBSOLETE switch (info.bfd_arch_info->mach)
1443 // OBSOLETE {
1444 // OBSOLETE case bfd_mach_d10v_ts2:
1445 // OBSOLETE d10v_num_regs = 37;
1446 // OBSOLETE d10v_register_name = d10v_ts2_register_name;
1447 // OBSOLETE d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1448 // OBSOLETE tdep->a0_regnum = TS2_A0_REGNUM;
1449 // OBSOLETE tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1450 // OBSOLETE tdep->dmap_register = d10v_ts2_dmap_register;
1451 // OBSOLETE tdep->imap_register = d10v_ts2_imap_register;
1452 // OBSOLETE break;
1453 // OBSOLETE default:
1454 // OBSOLETE case bfd_mach_d10v_ts3:
1455 // OBSOLETE d10v_num_regs = 42;
1456 // OBSOLETE d10v_register_name = d10v_ts3_register_name;
1457 // OBSOLETE d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1458 // OBSOLETE tdep->a0_regnum = TS3_A0_REGNUM;
1459 // OBSOLETE tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1460 // OBSOLETE tdep->dmap_register = d10v_ts3_dmap_register;
1461 // OBSOLETE tdep->imap_register = d10v_ts3_imap_register;
1462 // OBSOLETE break;
1463 // OBSOLETE }
1464 // OBSOLETE
1465 // OBSOLETE set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1466 // OBSOLETE set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1467 // OBSOLETE set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp);
1468 // OBSOLETE
1469 // OBSOLETE set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1470 // OBSOLETE set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
1471 // OBSOLETE set_gdbarch_register_name (gdbarch, d10v_register_name);
1472 // OBSOLETE set_gdbarch_register_type (gdbarch, d10v_register_type);
1473 // OBSOLETE
1474 // OBSOLETE set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1475 // OBSOLETE set_gdbarch_addr_bit (gdbarch, 32);
1476 // OBSOLETE set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1477 // OBSOLETE set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1478 // OBSOLETE set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1479 // OBSOLETE set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1480 // OBSOLETE set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1481 // OBSOLETE set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 // OBSOLETE set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1483 // OBSOLETE /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1484 // OBSOLETE double'' is 64 bits. */
1485 // OBSOLETE set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486 // OBSOLETE set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487 // OBSOLETE set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1488 // OBSOLETE switch (info.byte_order)
1489 // OBSOLETE {
1490 // OBSOLETE case BFD_ENDIAN_BIG:
1491 // OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1492 // OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1493 // OBSOLETE set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1494 // OBSOLETE break;
1495 // OBSOLETE case BFD_ENDIAN_LITTLE:
1496 // OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1497 // OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1498 // OBSOLETE set_gdbarch_long_double_format (gdbarch,
1499 // OBSOLETE &floatformat_ieee_double_little);
1500 // OBSOLETE break;
1501 // OBSOLETE default:
1502 // OBSOLETE internal_error (__FILE__, __LINE__,
1503 // OBSOLETE "d10v_gdbarch_init: bad byte order for float format");
1504 // OBSOLETE }
1505 // OBSOLETE
1506 // OBSOLETE set_gdbarch_return_value (gdbarch, d10v_return_value);
1507 // OBSOLETE set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
1508 // OBSOLETE set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
1509 // OBSOLETE
1510 // OBSOLETE set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1511 // OBSOLETE set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1512 // OBSOLETE set_gdbarch_decr_pc_after_break (gdbarch, 4);
1513 // OBSOLETE set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1514 // OBSOLETE
1515 // OBSOLETE set_gdbarch_remote_translate_xfer_address (gdbarch,
1516 // OBSOLETE remote_d10v_translate_xfer_address);
1517 // OBSOLETE
1518 // OBSOLETE set_gdbarch_frame_align (gdbarch, d10v_frame_align);
1519 // OBSOLETE
1520 // OBSOLETE set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1521 // OBSOLETE
1522 // OBSOLETE set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1523 // OBSOLETE
1524 // OBSOLETE frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer);
1525 // OBSOLETE frame_base_set_default (gdbarch, &d10v_frame_base);
1526 // OBSOLETE
1527 // OBSOLETE /* Methods for saving / extracting a dummy frame's ID. The ID's
1528 // OBSOLETE stack address must match the SP value returned by
1529 // OBSOLETE PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1530 // OBSOLETE set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
1531 // OBSOLETE
1532 // OBSOLETE /* Return the unwound PC value. */
1533 // OBSOLETE set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
1534 // OBSOLETE
1535 // OBSOLETE set_gdbarch_print_insn (gdbarch, print_insn_d10v);
1536 // OBSOLETE
1537 // OBSOLETE return gdbarch;
1538 // OBSOLETE }
1539 // OBSOLETE
1540 // OBSOLETE void
1541 // OBSOLETE _initialize_d10v_tdep (void)
1542 // OBSOLETE {
1543 // OBSOLETE register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1544 // OBSOLETE
1545 // OBSOLETE deprecated_target_resume_hook = d10v_eva_prepare_to_trace;
1546 // OBSOLETE deprecated_target_wait_loop_hook = d10v_eva_get_trace_data;
1547 // OBSOLETE
1548 // OBSOLETE deprecate_cmd (add_com ("regs", class_vars, show_regs,
1549 // OBSOLETE "Print all registers"),
1550 // OBSOLETE "info registers");
1551 // OBSOLETE
1552 // OBSOLETE add_com ("itrace", class_support, trace_command,
1553 // OBSOLETE "Enable tracing of instruction execution.");
1554 // OBSOLETE
1555 // OBSOLETE add_com ("iuntrace", class_support, untrace_command,
1556 // OBSOLETE "Disable tracing of instruction execution.");
1557 // OBSOLETE
1558 // OBSOLETE add_com ("itdisassemble", class_vars, tdisassemble_command,
1559 // OBSOLETE "Disassemble the trace buffer.\n\
1560 // OBSOLETE Two optional arguments specify a range of trace buffer entries\n\
1561 // OBSOLETE as reported by info trace (NOT addresses!).");
1562 // OBSOLETE
1563 // OBSOLETE add_info ("itrace", trace_info,
1564 // OBSOLETE "Display info about the trace data buffer.");
1565 // OBSOLETE
1566 // OBSOLETE add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\
1567 // OBSOLETE Set automatic display of trace.", "\
1568 // OBSOLETE Show automatic display of trace.", "\
1569 // OBSOLETE Controls the display of d10v specific instruction trace information.", "\
1570 // OBSOLETE Automatic display of trace is %s.",
1571 // OBSOLETE NULL, NULL, &setlist, &showlist);
1572 // OBSOLETE add_setshow_boolean_cmd ("itracesource", no_class,
1573 // OBSOLETE &default_trace_show_source, "\
1574 // OBSOLETE Set display of source code with trace.", "\
1575 // OBSOLETE Show display of source code with trace.", "\
1576 // OBSOLETE When on source code is included in the d10v instruction trace display.", "\
1577 // OBSOLETE Display of source code with trace is %s.",
1578 // OBSOLETE NULL, NULL, &setlist, &showlist);
1579 // OBSOLETE }