No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gdb6 / gdb / mi / mi-main.c
blobc798c90b8fb544bda534e51070065b4f2651e96f
1 /* MI Command Set.
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Free Software
4 Foundation, Inc.
6 Contributed by Cygnus Solutions (a Red Hat company).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
25 /* Work in progress */
27 #include "defs.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "gdb_string.h"
31 #include "exceptions.h"
32 #include "top.h"
33 #include "gdbthread.h"
34 #include "mi-cmds.h"
35 #include "mi-parse.h"
36 #include "mi-getopt.h"
37 #include "mi-console.h"
38 #include "ui-out.h"
39 #include "mi-out.h"
40 #include "interps.h"
41 #include "event-loop.h"
42 #include "event-top.h"
43 #include "gdbcore.h" /* for write_memory() */
44 #include "value.h" /* for deprecated_write_register_bytes() */
45 #include "regcache.h"
46 #include "gdb.h"
47 #include "frame.h"
48 #include "mi-main.h"
50 #include <ctype.h>
51 #include <sys/time.h>
53 enum
55 FROM_TTY = 0
58 /* Enumerations of the actions that may result from calling
59 captured_mi_execute_command */
61 enum captured_mi_execute_command_actions
63 EXECUTE_COMMAND_DISPLAY_PROMPT,
64 EXECUTE_COMMAND_SUPRESS_PROMPT
67 /* This structure is used to pass information from captured_mi_execute_command
68 to mi_execute_command. */
69 struct captured_mi_execute_command_args
71 /* This return result of the MI command (output) */
72 enum mi_cmd_result rc;
74 /* What action to perform when the call is finished (output) */
75 enum captured_mi_execute_command_actions action;
77 /* The command context to be executed (input) */
78 struct mi_parse *command;
81 int mi_debug_p;
82 struct ui_file *raw_stdout;
84 /* The token of the last asynchronous command */
85 static char *last_async_command;
86 static char *previous_async_command;
87 char *mi_error_message;
88 static char *old_regs;
90 extern void _initialize_mi_main (void);
91 static enum mi_cmd_result mi_cmd_execute (struct mi_parse *parse);
93 static void mi_execute_cli_command (const char *cmd, int args_p,
94 const char *args);
95 static enum mi_cmd_result mi_execute_async_cli_command (char *mi, char *args, int from_tty);
97 static void mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg);
99 static int register_changed_p (int regnum);
100 static int get_register (int regnum, int format);
102 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
103 layer that calls libgdb. Any operation used in the below should be
104 formalized. */
106 enum mi_cmd_result
107 mi_cmd_gdb_exit (char *command, char **argv, int argc)
109 /* We have to print everything right here because we never return */
110 if (last_async_command)
111 fputs_unfiltered (last_async_command, raw_stdout);
112 fputs_unfiltered ("^exit\n", raw_stdout);
113 mi_out_put (uiout, raw_stdout);
114 /* FIXME: The function called is not yet a formal libgdb function */
115 quit_force (NULL, FROM_TTY);
116 return MI_CMD_DONE;
119 enum mi_cmd_result
120 mi_cmd_exec_run (char *args, int from_tty)
122 /* FIXME: Should call a libgdb function, not a cli wrapper */
123 return mi_execute_async_cli_command ("run", args, from_tty);
126 enum mi_cmd_result
127 mi_cmd_exec_next (char *args, int from_tty)
129 /* FIXME: Should call a libgdb function, not a cli wrapper */
130 return mi_execute_async_cli_command ("next", args, from_tty);
133 enum mi_cmd_result
134 mi_cmd_exec_next_instruction (char *args, int from_tty)
136 /* FIXME: Should call a libgdb function, not a cli wrapper */
137 return mi_execute_async_cli_command ("nexti", args, from_tty);
140 enum mi_cmd_result
141 mi_cmd_exec_step (char *args, int from_tty)
143 /* FIXME: Should call a libgdb function, not a cli wrapper */
144 return mi_execute_async_cli_command ("step", args, from_tty);
147 enum mi_cmd_result
148 mi_cmd_exec_step_instruction (char *args, int from_tty)
150 /* FIXME: Should call a libgdb function, not a cli wrapper */
151 return mi_execute_async_cli_command ("stepi", args, from_tty);
154 enum mi_cmd_result
155 mi_cmd_exec_finish (char *args, int from_tty)
157 /* FIXME: Should call a libgdb function, not a cli wrapper */
158 return mi_execute_async_cli_command ("finish", args, from_tty);
161 enum mi_cmd_result
162 mi_cmd_exec_until (char *args, int from_tty)
164 /* FIXME: Should call a libgdb function, not a cli wrapper */
165 return mi_execute_async_cli_command ("until", args, from_tty);
168 enum mi_cmd_result
169 mi_cmd_exec_return (char *args, int from_tty)
171 /* This command doesn't really execute the target, it just pops the
172 specified number of frames. */
173 if (*args)
174 /* Call return_command with from_tty argument equal to 0 so as to
175 avoid being queried. */
176 return_command (args, 0);
177 else
178 /* Call return_command with from_tty argument equal to 0 so as to
179 avoid being queried. */
180 return_command (NULL, 0);
182 /* Because we have called return_command with from_tty = 0, we need
183 to print the frame here. */
184 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
186 return MI_CMD_DONE;
189 enum mi_cmd_result
190 mi_cmd_exec_continue (char *args, int from_tty)
192 /* FIXME: Should call a libgdb function, not a cli wrapper */
193 return mi_execute_async_cli_command ("continue", args, from_tty);
196 /* Interrupt the execution of the target. Note how we must play around
197 with the token varialbes, in order to display the current token in
198 the result of the interrupt command, and the previous execution
199 token when the target finally stops. See comments in
200 mi_cmd_execute. */
201 enum mi_cmd_result
202 mi_cmd_exec_interrupt (char *args, int from_tty)
204 if (!target_executing)
206 mi_error_message = xstrprintf ("mi_cmd_exec_interrupt: Inferior not executing.");
207 return MI_CMD_ERROR;
209 interrupt_target_command (args, from_tty);
210 if (last_async_command)
211 fputs_unfiltered (last_async_command, raw_stdout);
212 fputs_unfiltered ("^done", raw_stdout);
213 xfree (last_async_command);
214 if (previous_async_command)
215 last_async_command = xstrdup (previous_async_command);
216 xfree (previous_async_command);
217 previous_async_command = NULL;
218 mi_out_put (uiout, raw_stdout);
219 mi_out_rewind (uiout);
220 fputs_unfiltered ("\n", raw_stdout);
221 return MI_CMD_QUIET;
224 enum mi_cmd_result
225 mi_cmd_thread_select (char *command, char **argv, int argc)
227 enum gdb_rc rc;
229 if (argc != 1)
231 mi_error_message = xstrprintf ("mi_cmd_thread_select: USAGE: threadnum.");
232 return MI_CMD_ERROR;
234 else
235 rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
237 /* RC is enum gdb_rc if it is successful (>=0)
238 enum return_reason if not (<0). */
239 if ((int) rc < 0 && (enum return_reason) rc == RETURN_ERROR)
240 return MI_CMD_ERROR;
241 else if ((int) rc >= 0 && rc == GDB_RC_FAIL)
242 return MI_CMD_ERROR;
243 else
244 return MI_CMD_DONE;
247 enum mi_cmd_result
248 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
250 enum gdb_rc rc = MI_CMD_DONE;
252 if (argc != 0)
254 mi_error_message = xstrprintf ("mi_cmd_thread_list_ids: No arguments required.");
255 return MI_CMD_ERROR;
257 else
258 rc = gdb_list_thread_ids (uiout, &mi_error_message);
260 if (rc == GDB_RC_FAIL)
261 return MI_CMD_ERROR;
262 else
263 return MI_CMD_DONE;
266 enum mi_cmd_result
267 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
269 int regnum, numregs;
270 int i;
271 struct cleanup *cleanup;
273 /* Note that the test for a valid register must include checking the
274 REGISTER_NAME because NUM_REGS may be allocated for the union of
275 the register sets within a family of related processors. In this
276 case, some entries of REGISTER_NAME will change depending upon
277 the particular processor being debugged. */
279 numregs = NUM_REGS + NUM_PSEUDO_REGS;
281 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
283 if (argc == 0) /* No args, just do all the regs */
285 for (regnum = 0;
286 regnum < numregs;
287 regnum++)
289 if (REGISTER_NAME (regnum) == NULL
290 || *(REGISTER_NAME (regnum)) == '\0')
291 ui_out_field_string (uiout, NULL, "");
292 else
293 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
297 /* Else, list of register #s, just do listed regs */
298 for (i = 0; i < argc; i++)
300 regnum = atoi (argv[i]);
301 if (regnum < 0 || regnum >= numregs)
303 do_cleanups (cleanup);
304 mi_error_message = xstrprintf ("bad register number");
305 return MI_CMD_ERROR;
307 if (REGISTER_NAME (regnum) == NULL
308 || *(REGISTER_NAME (regnum)) == '\0')
309 ui_out_field_string (uiout, NULL, "");
310 else
311 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
313 do_cleanups (cleanup);
314 return MI_CMD_DONE;
317 enum mi_cmd_result
318 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
320 int regnum, numregs, changed;
321 int i;
322 struct cleanup *cleanup;
324 /* Note that the test for a valid register must include checking the
325 REGISTER_NAME because NUM_REGS may be allocated for the union of
326 the register sets within a family of related processors. In this
327 case, some entries of REGISTER_NAME will change depending upon
328 the particular processor being debugged. */
330 numregs = NUM_REGS + NUM_PSEUDO_REGS;
332 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
334 if (argc == 0) /* No args, just do all the regs */
336 for (regnum = 0;
337 regnum < numregs;
338 regnum++)
340 if (REGISTER_NAME (regnum) == NULL
341 || *(REGISTER_NAME (regnum)) == '\0')
342 continue;
343 changed = register_changed_p (regnum);
344 if (changed < 0)
346 do_cleanups (cleanup);
347 mi_error_message = xstrprintf ("mi_cmd_data_list_changed_registers: Unable to read register contents.");
348 return MI_CMD_ERROR;
350 else if (changed)
351 ui_out_field_int (uiout, NULL, regnum);
355 /* Else, list of register #s, just do listed regs */
356 for (i = 0; i < argc; i++)
358 regnum = atoi (argv[i]);
360 if (regnum >= 0
361 && regnum < numregs
362 && REGISTER_NAME (regnum) != NULL
363 && *REGISTER_NAME (regnum) != '\000')
365 changed = register_changed_p (regnum);
366 if (changed < 0)
368 do_cleanups (cleanup);
369 mi_error_message = xstrprintf ("mi_cmd_data_list_register_change: Unable to read register contents.");
370 return MI_CMD_ERROR;
372 else if (changed)
373 ui_out_field_int (uiout, NULL, regnum);
375 else
377 do_cleanups (cleanup);
378 mi_error_message = xstrprintf ("bad register number");
379 return MI_CMD_ERROR;
382 do_cleanups (cleanup);
383 return MI_CMD_DONE;
386 static int
387 register_changed_p (int regnum)
389 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
391 if (! frame_register_read (get_selected_frame (NULL), regnum, raw_buffer))
392 return -1;
394 if (memcmp (&old_regs[DEPRECATED_REGISTER_BYTE (regnum)], raw_buffer,
395 register_size (current_gdbarch, regnum)) == 0)
396 return 0;
398 /* Found a changed register. Return 1. */
400 memcpy (&old_regs[DEPRECATED_REGISTER_BYTE (regnum)], raw_buffer,
401 register_size (current_gdbarch, regnum));
403 return 1;
406 /* Return a list of register number and value pairs. The valid
407 arguments expected are: a letter indicating the format in which to
408 display the registers contents. This can be one of: x (hexadecimal), d
409 (decimal), N (natural), t (binary), o (octal), r (raw). After the
410 format argumetn there can be a sequence of numbers, indicating which
411 registers to fetch the content of. If the format is the only argument,
412 a list of all the registers with their values is returned. */
413 enum mi_cmd_result
414 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
416 int regnum, numregs, format, result;
417 int i;
418 struct cleanup *list_cleanup, *tuple_cleanup;
420 /* Note that the test for a valid register must include checking the
421 REGISTER_NAME because NUM_REGS may be allocated for the union of
422 the register sets within a family of related processors. In this
423 case, some entries of REGISTER_NAME will change depending upon
424 the particular processor being debugged. */
426 numregs = NUM_REGS + NUM_PSEUDO_REGS;
428 if (argc == 0)
430 mi_error_message = xstrprintf ("mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
431 return MI_CMD_ERROR;
434 format = (int) argv[0][0];
436 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
438 if (argc == 1) /* No args, beside the format: do all the regs */
440 for (regnum = 0;
441 regnum < numregs;
442 regnum++)
444 if (REGISTER_NAME (regnum) == NULL
445 || *(REGISTER_NAME (regnum)) == '\0')
446 continue;
447 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
448 ui_out_field_int (uiout, "number", regnum);
449 result = get_register (regnum, format);
450 if (result == -1)
452 do_cleanups (list_cleanup);
453 return MI_CMD_ERROR;
455 do_cleanups (tuple_cleanup);
459 /* Else, list of register #s, just do listed regs */
460 for (i = 1; i < argc; i++)
462 regnum = atoi (argv[i]);
464 if (regnum >= 0
465 && regnum < numregs
466 && REGISTER_NAME (regnum) != NULL
467 && *REGISTER_NAME (regnum) != '\000')
469 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
470 ui_out_field_int (uiout, "number", regnum);
471 result = get_register (regnum, format);
472 if (result == -1)
474 do_cleanups (list_cleanup);
475 return MI_CMD_ERROR;
477 do_cleanups (tuple_cleanup);
479 else
481 do_cleanups (list_cleanup);
482 mi_error_message = xstrprintf ("bad register number");
483 return MI_CMD_ERROR;
486 do_cleanups (list_cleanup);
487 return MI_CMD_DONE;
490 /* Output one register's contents in the desired format. */
491 static int
492 get_register (int regnum, int format)
494 gdb_byte buffer[MAX_REGISTER_SIZE];
495 int optim;
496 int realnum;
497 CORE_ADDR addr;
498 enum lval_type lval;
499 static struct ui_stream *stb = NULL;
501 stb = ui_out_stream_new (uiout);
503 if (format == 'N')
504 format = 0;
506 frame_register (get_selected_frame (NULL), regnum, &optim, &lval, &addr,
507 &realnum, buffer);
509 if (optim)
511 mi_error_message = xstrprintf ("Optimized out");
512 return -1;
515 if (format == 'r')
517 int j;
518 char *ptr, buf[1024];
520 strcpy (buf, "0x");
521 ptr = buf + 2;
522 for (j = 0; j < register_size (current_gdbarch, regnum); j++)
524 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
525 : register_size (current_gdbarch, regnum) - 1 - j;
526 sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
527 ptr += 2;
529 ui_out_field_string (uiout, "value", buf);
530 /*fputs_filtered (buf, gdb_stdout); */
532 else
534 val_print (register_type (current_gdbarch, regnum), buffer, 0, 0,
535 stb->stream, format, 1, 0, Val_pretty_default);
536 ui_out_field_stream (uiout, "value", stb);
537 ui_out_stream_delete (stb);
539 return 1;
542 /* Write given values into registers. The registers and values are
543 given as pairs. The corresponding MI command is
544 -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
545 enum mi_cmd_result
546 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
548 int regnum;
549 int i;
550 int numregs;
551 LONGEST value;
552 char format;
554 /* Note that the test for a valid register must include checking the
555 REGISTER_NAME because NUM_REGS may be allocated for the union of
556 the register sets within a family of related processors. In this
557 case, some entries of REGISTER_NAME will change depending upon
558 the particular processor being debugged. */
560 numregs = NUM_REGS + NUM_PSEUDO_REGS;
562 if (argc == 0)
564 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
565 return MI_CMD_ERROR;
568 format = (int) argv[0][0];
570 if (!target_has_registers)
572 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: No registers.");
573 return MI_CMD_ERROR;
576 if (!(argc - 1))
578 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: No regs and values specified.");
579 return MI_CMD_ERROR;
582 if ((argc - 1) % 2)
584 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
585 return MI_CMD_ERROR;
588 for (i = 1; i < argc; i = i + 2)
590 regnum = atoi (argv[i]);
592 if (regnum >= 0
593 && regnum < numregs
594 && REGISTER_NAME (regnum) != NULL
595 && *REGISTER_NAME (regnum) != '\000')
597 void *buffer;
598 struct cleanup *old_chain;
600 /* Get the value as a number */
601 value = parse_and_eval_address (argv[i + 1]);
602 /* Get the value into an array */
603 buffer = xmalloc (DEPRECATED_REGISTER_SIZE);
604 old_chain = make_cleanup (xfree, buffer);
605 store_signed_integer (buffer, DEPRECATED_REGISTER_SIZE, value);
606 /* Write it down */
607 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), buffer, register_size (current_gdbarch, regnum));
608 /* Free the buffer. */
609 do_cleanups (old_chain);
611 else
613 mi_error_message = xstrprintf ("bad register number");
614 return MI_CMD_ERROR;
617 return MI_CMD_DONE;
620 #if 0
621 /*This is commented out because we decided it was not useful. I leave
622 it, just in case. ezannoni:1999-12-08 */
624 /* Assign a value to a variable. The expression argument must be in
625 the form A=2 or "A = 2" (I.e. if there are spaces it needs to be
626 quoted. */
627 enum mi_cmd_result
628 mi_cmd_data_assign (char *command, char **argv, int argc)
630 struct expression *expr;
631 struct cleanup *old_chain;
633 if (argc != 1)
635 mi_error_message = xstrprintf ("mi_cmd_data_assign: Usage: -data-assign expression");
636 return MI_CMD_ERROR;
639 /* NOTE what follows is a clone of set_command(). FIXME: ezannoni
640 01-12-1999: Need to decide what to do with this for libgdb purposes. */
642 expr = parse_expression (argv[0]);
643 old_chain = make_cleanup (free_current_contents, &expr);
644 evaluate_expression (expr);
645 do_cleanups (old_chain);
646 return MI_CMD_DONE;
648 #endif
650 /* Evaluate the value of the argument. The argument is an
651 expression. If the expression contains spaces it needs to be
652 included in double quotes. */
653 enum mi_cmd_result
654 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
656 struct expression *expr;
657 struct cleanup *old_chain = NULL;
658 struct value *val;
659 struct ui_stream *stb = NULL;
661 stb = ui_out_stream_new (uiout);
663 if (argc != 1)
665 mi_error_message = xstrprintf ("mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
666 return MI_CMD_ERROR;
669 expr = parse_expression (argv[0]);
671 old_chain = make_cleanup (free_current_contents, &expr);
673 val = evaluate_expression (expr);
675 /* Print the result of the expression evaluation. */
676 val_print (value_type (val), value_contents (val),
677 value_embedded_offset (val), VALUE_ADDRESS (val),
678 stb->stream, 0, 0, 0, 0);
680 ui_out_field_stream (uiout, "value", stb);
681 ui_out_stream_delete (stb);
683 do_cleanups (old_chain);
685 return MI_CMD_DONE;
688 enum mi_cmd_result
689 mi_cmd_target_download (char *args, int from_tty)
691 char *run;
692 struct cleanup *old_cleanups = NULL;
694 run = xstrprintf ("load %s", args);
695 old_cleanups = make_cleanup (xfree, run);
696 execute_command (run, from_tty);
698 do_cleanups (old_cleanups);
699 return MI_CMD_DONE;
702 /* Connect to the remote target. */
703 enum mi_cmd_result
704 mi_cmd_target_select (char *args, int from_tty)
706 char *run;
707 struct cleanup *old_cleanups = NULL;
709 run = xstrprintf ("target %s", args);
710 old_cleanups = make_cleanup (xfree, run);
712 /* target-select is always synchronous. once the call has returned
713 we know that we are connected. */
714 /* NOTE: At present all targets that are connected are also
715 (implicitly) talking to a halted target. In the future this may
716 change. */
717 execute_command (run, from_tty);
719 do_cleanups (old_cleanups);
721 /* Issue the completion message here. */
722 if (last_async_command)
723 fputs_unfiltered (last_async_command, raw_stdout);
724 fputs_unfiltered ("^connected", raw_stdout);
725 mi_out_put (uiout, raw_stdout);
726 mi_out_rewind (uiout);
727 fputs_unfiltered ("\n", raw_stdout);
728 do_exec_cleanups (ALL_CLEANUPS);
729 return MI_CMD_QUIET;
732 /* DATA-MEMORY-READ:
734 ADDR: start address of data to be dumped.
735 WORD-FORMAT: a char indicating format for the ``word''. See
736 the ``x'' command.
737 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes
738 NR_ROW: Number of rows.
739 NR_COL: The number of colums (words per row).
740 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
741 ASCHAR for unprintable characters.
743 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
744 displayes them. Returns:
746 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
748 Returns:
749 The number of bytes read is SIZE*ROW*COL. */
751 enum mi_cmd_result
752 mi_cmd_data_read_memory (char *command, char **argv, int argc)
754 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
755 CORE_ADDR addr;
756 long total_bytes;
757 long nr_cols;
758 long nr_rows;
759 char word_format;
760 struct type *word_type;
761 long word_size;
762 char word_asize;
763 char aschar;
764 gdb_byte *mbuf;
765 int nr_bytes;
766 long offset = 0;
767 int optind = 0;
768 char *optarg;
769 enum opt
771 OFFSET_OPT
773 static struct mi_opt opts[] =
775 {"o", OFFSET_OPT, 1},
779 while (1)
781 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
782 &optind, &optarg);
783 if (opt < 0)
784 break;
785 switch ((enum opt) opt)
787 case OFFSET_OPT:
788 offset = atol (optarg);
789 break;
792 argv += optind;
793 argc -= optind;
795 if (argc < 5 || argc > 6)
797 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
798 return MI_CMD_ERROR;
801 /* Extract all the arguments. */
803 /* Start address of the memory dump. */
804 addr = parse_and_eval_address (argv[0]) + offset;
805 /* The format character to use when displaying a memory word. See
806 the ``x'' command. */
807 word_format = argv[1][0];
808 /* The size of the memory word. */
809 word_size = atol (argv[2]);
810 switch (word_size)
812 case 1:
813 word_type = builtin_type_int8;
814 word_asize = 'b';
815 break;
816 case 2:
817 word_type = builtin_type_int16;
818 word_asize = 'h';
819 break;
820 case 4:
821 word_type = builtin_type_int32;
822 word_asize = 'w';
823 break;
824 case 8:
825 word_type = builtin_type_int64;
826 word_asize = 'g';
827 break;
828 default:
829 word_type = builtin_type_int8;
830 word_asize = 'b';
832 /* The number of rows */
833 nr_rows = atol (argv[3]);
834 if (nr_rows <= 0)
836 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: invalid number of rows.");
837 return MI_CMD_ERROR;
839 /* number of bytes per row. */
840 nr_cols = atol (argv[4]);
841 if (nr_cols <= 0)
843 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: invalid number of columns.");
844 return MI_CMD_ERROR;
846 /* The un-printable character when printing ascii. */
847 if (argc == 6)
848 aschar = *argv[5];
849 else
850 aschar = 0;
852 /* create a buffer and read it in. */
853 total_bytes = word_size * nr_rows * nr_cols;
854 mbuf = xcalloc (total_bytes, 1);
855 make_cleanup (xfree, mbuf);
856 nr_bytes = 0;
857 while (nr_bytes < total_bytes)
859 int error;
860 long num = target_read_memory_partial (addr + nr_bytes, mbuf + nr_bytes,
861 total_bytes - nr_bytes,
862 &error);
863 if (num <= 0)
864 break;
865 nr_bytes += num;
868 /* output the header information. */
869 ui_out_field_core_addr (uiout, "addr", addr);
870 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
871 ui_out_field_int (uiout, "total-bytes", total_bytes);
872 ui_out_field_core_addr (uiout, "next-row", addr + word_size * nr_cols);
873 ui_out_field_core_addr (uiout, "prev-row", addr - word_size * nr_cols);
874 ui_out_field_core_addr (uiout, "next-page", addr + total_bytes);
875 ui_out_field_core_addr (uiout, "prev-page", addr - total_bytes);
877 /* Build the result as a two dimentional table. */
879 struct ui_stream *stream = ui_out_stream_new (uiout);
880 struct cleanup *cleanup_list_memory;
881 int row;
882 int row_byte;
883 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
884 for (row = 0, row_byte = 0;
885 row < nr_rows;
886 row++, row_byte += nr_cols * word_size)
888 int col;
889 int col_byte;
890 struct cleanup *cleanup_tuple;
891 struct cleanup *cleanup_list_data;
892 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
893 ui_out_field_core_addr (uiout, "addr", addr + row_byte);
894 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
895 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
896 for (col = 0, col_byte = row_byte;
897 col < nr_cols;
898 col++, col_byte += word_size)
900 if (col_byte + word_size > nr_bytes)
902 ui_out_field_string (uiout, NULL, "N/A");
904 else
906 ui_file_rewind (stream->stream);
907 print_scalar_formatted (mbuf + col_byte, word_type, word_format,
908 word_asize, stream->stream);
909 ui_out_field_stream (uiout, NULL, stream);
912 do_cleanups (cleanup_list_data);
913 if (aschar)
915 int byte;
916 ui_file_rewind (stream->stream);
917 for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
919 if (byte >= nr_bytes)
921 fputc_unfiltered ('X', stream->stream);
923 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
925 fputc_unfiltered (aschar, stream->stream);
927 else
928 fputc_unfiltered (mbuf[byte], stream->stream);
930 ui_out_field_stream (uiout, "ascii", stream);
932 do_cleanups (cleanup_tuple);
934 ui_out_stream_delete (stream);
935 do_cleanups (cleanup_list_memory);
937 do_cleanups (cleanups);
938 return MI_CMD_DONE;
941 /* DATA-MEMORY-WRITE:
943 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
944 offset from the beginning of the memory grid row where the cell to
945 be written is.
946 ADDR: start address of the row in the memory grid where the memory
947 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
948 the location to write to.
949 FORMAT: a char indicating format for the ``word''. See
950 the ``x'' command.
951 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
952 VALUE: value to be written into the memory address.
954 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
956 Prints nothing. */
957 enum mi_cmd_result
958 mi_cmd_data_write_memory (char *command, char **argv, int argc)
960 CORE_ADDR addr;
961 char word_format;
962 long word_size;
963 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
964 enough when using a compiler other than GCC. */
965 LONGEST value;
966 void *buffer;
967 struct cleanup *old_chain;
968 long offset = 0;
969 int optind = 0;
970 char *optarg;
971 enum opt
973 OFFSET_OPT
975 static struct mi_opt opts[] =
977 {"o", OFFSET_OPT, 1},
981 while (1)
983 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
984 &optind, &optarg);
985 if (opt < 0)
986 break;
987 switch ((enum opt) opt)
989 case OFFSET_OPT:
990 offset = atol (optarg);
991 break;
994 argv += optind;
995 argc -= optind;
997 if (argc != 4)
999 mi_error_message = xstrprintf ("mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1000 return MI_CMD_ERROR;
1003 /* Extract all the arguments. */
1004 /* Start address of the memory dump. */
1005 addr = parse_and_eval_address (argv[0]);
1006 /* The format character to use when displaying a memory word. See
1007 the ``x'' command. */
1008 word_format = argv[1][0];
1009 /* The size of the memory word. */
1010 word_size = atol (argv[2]);
1012 /* Calculate the real address of the write destination. */
1013 addr += (offset * word_size);
1015 /* Get the value as a number */
1016 value = parse_and_eval_address (argv[3]);
1017 /* Get the value into an array */
1018 buffer = xmalloc (word_size);
1019 old_chain = make_cleanup (xfree, buffer);
1020 store_signed_integer (buffer, word_size, value);
1021 /* Write it down to memory */
1022 write_memory (addr, buffer, word_size);
1023 /* Free the buffer. */
1024 do_cleanups (old_chain);
1026 return MI_CMD_DONE;
1029 /* Execute a command within a safe environment.
1030 Return <0 for error; >=0 for ok.
1032 args->action will tell mi_execute_command what action
1033 to perfrom after the given command has executed (display/supress
1034 prompt, display error). */
1036 static void
1037 captured_mi_execute_command (struct ui_out *uiout, void *data)
1039 struct captured_mi_execute_command_args *args =
1040 (struct captured_mi_execute_command_args *) data;
1041 struct mi_parse *context = args->command;
1043 switch (context->op)
1046 case MI_COMMAND:
1047 /* A MI command was read from the input stream */
1048 if (mi_debug_p)
1049 /* FIXME: gdb_???? */
1050 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1051 context->token, context->command, context->args);
1052 /* FIXME: cagney/1999-09-25: Rather than this convoluted
1053 condition expression, each function should return an
1054 indication of what action is required and then switch on
1055 that. */
1056 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1057 args->rc = mi_cmd_execute (context);
1059 if (!target_can_async_p () || !target_executing)
1061 /* print the result if there were no errors
1063 Remember that on the way out of executing a command, you have
1064 to directly use the mi_interp's uiout, since the command could
1065 have reset the interpreter, in which case the current uiout
1066 will most likely crash in the mi_out_* routines. */
1067 if (args->rc == MI_CMD_DONE)
1069 fputs_unfiltered (context->token, raw_stdout);
1070 fputs_unfiltered ("^done", raw_stdout);
1071 mi_out_put (uiout, raw_stdout);
1072 mi_out_rewind (uiout);
1073 fputs_unfiltered ("\n", raw_stdout);
1075 else if (args->rc == MI_CMD_ERROR)
1077 if (mi_error_message)
1079 fputs_unfiltered (context->token, raw_stdout);
1080 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1081 fputstr_unfiltered (mi_error_message, '"', raw_stdout);
1082 xfree (mi_error_message);
1083 fputs_unfiltered ("\"\n", raw_stdout);
1085 mi_out_rewind (uiout);
1087 else
1088 mi_out_rewind (uiout);
1090 else if (sync_execution)
1092 /* Don't print the prompt. We are executing the target in
1093 synchronous mode. */
1094 args->action = EXECUTE_COMMAND_SUPRESS_PROMPT;
1095 return;
1097 break;
1099 case CLI_COMMAND:
1101 char *argv[2];
1102 /* A CLI command was read from the input stream. */
1103 /* This "feature" will be removed as soon as we have a
1104 complete set of mi commands. */
1105 /* Echo the command on the console. */
1106 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1107 /* Call the "console" interpreter. */
1108 argv[0] = "console";
1109 argv[1] = context->command;
1110 args->rc = mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1112 /* If we changed interpreters, DON'T print out anything. */
1113 if (current_interp_named_p (INTERP_MI)
1114 || current_interp_named_p (INTERP_MI1)
1115 || current_interp_named_p (INTERP_MI2)
1116 || current_interp_named_p (INTERP_MI3))
1118 if (args->rc == MI_CMD_DONE)
1120 fputs_unfiltered (context->token, raw_stdout);
1121 fputs_unfiltered ("^done", raw_stdout);
1122 mi_out_put (uiout, raw_stdout);
1123 mi_out_rewind (uiout);
1124 fputs_unfiltered ("\n", raw_stdout);
1125 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1127 else if (args->rc == MI_CMD_ERROR)
1129 if (mi_error_message)
1131 fputs_unfiltered (context->token, raw_stdout);
1132 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1133 fputstr_unfiltered (mi_error_message, '"', raw_stdout);
1134 xfree (mi_error_message);
1135 fputs_unfiltered ("\"\n", raw_stdout);
1137 mi_out_rewind (uiout);
1139 else
1140 mi_out_rewind (uiout);
1142 break;
1147 return;
1151 void
1152 mi_execute_command (char *cmd, int from_tty)
1154 struct mi_parse *command;
1155 struct captured_mi_execute_command_args args;
1156 struct ui_out *saved_uiout = uiout;
1158 /* This is to handle EOF (^D). We just quit gdb. */
1159 /* FIXME: we should call some API function here. */
1160 if (cmd == 0)
1161 quit_force (NULL, from_tty);
1163 command = mi_parse (cmd);
1165 if (command != NULL)
1167 struct gdb_exception result;
1168 /* FIXME: cagney/1999-11-04: Can this use of catch_exceptions either
1169 be pushed even further down or even eliminated? */
1170 args.command = command;
1171 result = catch_exception (uiout, captured_mi_execute_command, &args,
1172 RETURN_MASK_ALL);
1173 exception_print (gdb_stderr, result);
1175 if (args.action == EXECUTE_COMMAND_SUPRESS_PROMPT)
1177 /* The command is executing synchronously. Bail out early
1178 suppressing the finished prompt. */
1179 mi_parse_free (command);
1180 return;
1182 if (result.reason < 0)
1184 /* The command execution failed and error() was called
1185 somewhere. */
1186 fputs_unfiltered (command->token, raw_stdout);
1187 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1188 fputstr_unfiltered (result.message, '"', raw_stdout);
1189 fputs_unfiltered ("\"\n", raw_stdout);
1190 mi_out_rewind (uiout);
1192 mi_parse_free (command);
1195 fputs_unfiltered ("(gdb) \n", raw_stdout);
1196 gdb_flush (raw_stdout);
1197 /* print any buffered hook code */
1198 /* ..... */
1201 static enum mi_cmd_result
1202 mi_cmd_execute (struct mi_parse *parse)
1204 if (parse->cmd->argv_func != NULL
1205 || parse->cmd->args_func != NULL)
1207 /* FIXME: We need to save the token because the command executed
1208 may be asynchronous and need to print the token again.
1209 In the future we can pass the token down to the func
1210 and get rid of the last_async_command */
1211 /* The problem here is to keep the token around when we launch
1212 the target, and we want to interrupt it later on. The
1213 interrupt command will have its own token, but when the
1214 target stops, we must display the token corresponding to the
1215 last execution command given. So we have another string where
1216 we copy the token (previous_async_command), if this was
1217 indeed the token of an execution command, and when we stop we
1218 print that one. This is possible because the interrupt
1219 command, when over, will copy that token back into the
1220 default token string (last_async_command). */
1222 if (target_executing)
1224 if (!previous_async_command)
1225 previous_async_command = xstrdup (last_async_command);
1226 if (strcmp (parse->command, "exec-interrupt"))
1228 fputs_unfiltered (parse->token, raw_stdout);
1229 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1230 fputs_unfiltered ("Cannot execute command ", raw_stdout);
1231 fputstr_unfiltered (parse->command, '"', raw_stdout);
1232 fputs_unfiltered (" while target running", raw_stdout);
1233 fputs_unfiltered ("\"\n", raw_stdout);
1234 return MI_CMD_ERROR;
1237 last_async_command = xstrdup (parse->token);
1238 make_exec_cleanup (free_current_contents, &last_async_command);
1239 /* FIXME: DELETE THIS! */
1240 if (parse->cmd->args_func != NULL)
1241 return parse->cmd->args_func (parse->args, 0 /*from_tty */ );
1242 return parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
1244 else if (parse->cmd->cli.cmd != 0)
1246 /* FIXME: DELETE THIS. */
1247 /* The operation is still implemented by a cli command */
1248 /* Must be a synchronous one */
1249 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
1250 parse->args);
1251 return MI_CMD_DONE;
1253 else
1255 /* FIXME: DELETE THIS. */
1256 fputs_unfiltered (parse->token, raw_stdout);
1257 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1258 fputs_unfiltered ("Undefined mi command: ", raw_stdout);
1259 fputstr_unfiltered (parse->command, '"', raw_stdout);
1260 fputs_unfiltered (" (missing implementation)", raw_stdout);
1261 fputs_unfiltered ("\"\n", raw_stdout);
1262 return MI_CMD_ERROR;
1266 /* FIXME: This is just a hack so we can get some extra commands going.
1267 We don't want to channel things through the CLI, but call libgdb directly */
1268 /* Use only for synchronous commands */
1270 void
1271 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
1273 if (cmd != 0)
1275 struct cleanup *old_cleanups;
1276 char *run;
1277 if (args_p)
1278 run = xstrprintf ("%s %s", cmd, args);
1279 else
1280 run = xstrdup (cmd);
1281 if (mi_debug_p)
1282 /* FIXME: gdb_???? */
1283 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
1284 cmd, run);
1285 old_cleanups = make_cleanup (xfree, run);
1286 execute_command ( /*ui */ run, 0 /*from_tty */ );
1287 do_cleanups (old_cleanups);
1288 return;
1292 enum mi_cmd_result
1293 mi_execute_async_cli_command (char *mi, char *args, int from_tty)
1295 struct cleanup *old_cleanups;
1296 char *run;
1297 char *async_args;
1299 if (target_can_async_p ())
1301 async_args = (char *) xmalloc (strlen (args) + 2);
1302 make_exec_cleanup (free, async_args);
1303 strcpy (async_args, args);
1304 strcat (async_args, "&");
1305 run = xstrprintf ("%s %s", mi, async_args);
1306 make_exec_cleanup (free, run);
1307 add_continuation (mi_exec_async_cli_cmd_continuation, NULL);
1308 old_cleanups = NULL;
1310 else
1312 run = xstrprintf ("%s %s", mi, args);
1313 old_cleanups = make_cleanup (xfree, run);
1316 if (!target_can_async_p ())
1318 /* NOTE: For synchronous targets asynchronous behavour is faked by
1319 printing out the GDB prompt before we even try to execute the
1320 command. */
1321 if (last_async_command)
1322 fputs_unfiltered (last_async_command, raw_stdout);
1323 fputs_unfiltered ("^running\n", raw_stdout);
1324 fputs_unfiltered ("(gdb) \n", raw_stdout);
1325 gdb_flush (raw_stdout);
1327 else
1329 /* FIXME: cagney/1999-11-29: Printing this message before
1330 calling execute_command is wrong. It should only be printed
1331 once gdb has confirmed that it really has managed to send a
1332 run command to the target. */
1333 if (last_async_command)
1334 fputs_unfiltered (last_async_command, raw_stdout);
1335 fputs_unfiltered ("^running\n", raw_stdout);
1338 execute_command ( /*ui */ run, 0 /*from_tty */ );
1340 if (!target_can_async_p ())
1342 /* Do this before doing any printing. It would appear that some
1343 print code leaves garbage around in the buffer. */
1344 do_cleanups (old_cleanups);
1345 /* If the target was doing the operation synchronously we fake
1346 the stopped message. */
1347 if (last_async_command)
1348 fputs_unfiltered (last_async_command, raw_stdout);
1349 fputs_unfiltered ("*stopped", raw_stdout);
1350 mi_out_put (uiout, raw_stdout);
1351 mi_out_rewind (uiout);
1352 fputs_unfiltered ("\n", raw_stdout);
1353 return MI_CMD_QUIET;
1355 return MI_CMD_DONE;
1358 void
1359 mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg)
1361 if (last_async_command)
1362 fputs_unfiltered (last_async_command, raw_stdout);
1363 fputs_unfiltered ("*stopped", raw_stdout);
1364 mi_out_put (uiout, raw_stdout);
1365 fputs_unfiltered ("\n", raw_stdout);
1366 fputs_unfiltered ("(gdb) \n", raw_stdout);
1367 gdb_flush (raw_stdout);
1368 do_exec_cleanups (ALL_CLEANUPS);
1371 void
1372 mi_load_progress (const char *section_name,
1373 unsigned long sent_so_far,
1374 unsigned long total_section,
1375 unsigned long total_sent,
1376 unsigned long grand_total)
1378 struct timeval time_now, delta, update_threshold;
1379 static struct timeval last_update;
1380 static char *previous_sect_name = NULL;
1381 int new_section;
1382 struct ui_out *saved_uiout;
1384 /* This function is called through deprecated_show_load_progress
1385 which means uiout may not be correct. Fix it for the duration
1386 of this function. */
1387 saved_uiout = uiout;
1389 if (current_interp_named_p (INTERP_MI))
1390 uiout = mi_out_new (2);
1391 else if (current_interp_named_p (INTERP_MI1))
1392 uiout = mi_out_new (1);
1393 else
1394 return;
1396 update_threshold.tv_sec = 0;
1397 update_threshold.tv_usec = 500000;
1398 gettimeofday (&time_now, NULL);
1400 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
1401 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
1403 if (delta.tv_usec < 0)
1405 delta.tv_sec -= 1;
1406 delta.tv_usec += 1000000;
1409 new_section = (previous_sect_name ?
1410 strcmp (previous_sect_name, section_name) : 1);
1411 if (new_section)
1413 struct cleanup *cleanup_tuple;
1414 xfree (previous_sect_name);
1415 previous_sect_name = xstrdup (section_name);
1417 if (last_async_command)
1418 fputs_unfiltered (last_async_command, raw_stdout);
1419 fputs_unfiltered ("+download", raw_stdout);
1420 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1421 ui_out_field_string (uiout, "section", section_name);
1422 ui_out_field_int (uiout, "section-size", total_section);
1423 ui_out_field_int (uiout, "total-size", grand_total);
1424 do_cleanups (cleanup_tuple);
1425 mi_out_put (uiout, raw_stdout);
1426 fputs_unfiltered ("\n", raw_stdout);
1427 gdb_flush (raw_stdout);
1430 if (delta.tv_sec >= update_threshold.tv_sec &&
1431 delta.tv_usec >= update_threshold.tv_usec)
1433 struct cleanup *cleanup_tuple;
1434 last_update.tv_sec = time_now.tv_sec;
1435 last_update.tv_usec = time_now.tv_usec;
1436 if (last_async_command)
1437 fputs_unfiltered (last_async_command, raw_stdout);
1438 fputs_unfiltered ("+download", raw_stdout);
1439 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1440 ui_out_field_string (uiout, "section", section_name);
1441 ui_out_field_int (uiout, "section-sent", sent_so_far);
1442 ui_out_field_int (uiout, "section-size", total_section);
1443 ui_out_field_int (uiout, "total-sent", total_sent);
1444 ui_out_field_int (uiout, "total-size", grand_total);
1445 do_cleanups (cleanup_tuple);
1446 mi_out_put (uiout, raw_stdout);
1447 fputs_unfiltered ("\n", raw_stdout);
1448 gdb_flush (raw_stdout);
1451 xfree (uiout);
1452 uiout = saved_uiout;
1455 void
1456 mi_setup_architecture_data (void)
1458 old_regs = xmalloc ((NUM_REGS + NUM_PSEUDO_REGS) * MAX_REGISTER_SIZE + 1);
1459 memset (old_regs, 0, (NUM_REGS + NUM_PSEUDO_REGS) * MAX_REGISTER_SIZE + 1);
1462 void
1463 _initialize_mi_main (void)
1465 DEPRECATED_REGISTER_GDBARCH_SWAP (old_regs);
1466 deprecated_register_gdbarch_swap (NULL, 0, mi_setup_architecture_data);