No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gdb6 / gdb / regcache.c
blobad080e071f6e389a8881ad652d5d938d263e25a2
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002, 2004 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdbcmd.h" /* For maintenanceprintlist. */
33 #include "observer.h"
36 * DATA STRUCTURE
38 * Here is the actual register cache.
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created */
44 struct gdbarch_data *regcache_descr_handle;
46 struct regcache_descr
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_valid_p;
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
64 both raw registers and memory by the architecture methods
65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
66 int nr_cooked_registers;
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_valid_p;
70 /* Offset and size (in 8 bit bytes), of reach register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
73 Assigning all registers an offset makes it possible to keep
74 legacy code, such as that found in read_register_bytes() and
75 write_register_bytes() working. */
76 long *register_offset;
77 long *sizeof_register;
79 /* Cached table containing the type of each register. */
80 struct type **register_type;
83 static void *
84 init_regcache_descr (struct gdbarch *gdbarch)
86 int i;
87 struct regcache_descr *descr;
88 gdb_assert (gdbarch != NULL);
90 /* Create an initial, zero filled, table. */
91 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
92 descr->gdbarch = gdbarch;
94 /* Total size of the register space. The raw registers are mapped
95 directly onto the raw register cache while the pseudo's are
96 either mapped onto raw-registers or memory. */
97 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
98 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
100 /* Fill in a table of register types. */
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
103 for (i = 0; i < descr->nr_cooked_registers; i++)
104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = NUM_REGS;
110 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
111 array. This pretects GDB from erant code that accesses elements
112 of the global register_valid_p[] array in the range [NUM_REGS
113 .. NUM_REGS + NUM_PSEUDO_REGS). */
114 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
116 /* Lay out the register cache.
118 NOTE: cagney/2002-05-22: Only register_type() is used when
119 constructing the register cache. It is assumed that the
120 register's raw size, virtual size and type length are all the
121 same. */
124 long offset = 0;
125 descr->sizeof_register
126 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
127 descr->register_offset
128 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
129 for (i = 0; i < descr->nr_cooked_registers; i++)
131 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
132 descr->register_offset[i] = offset;
133 offset += descr->sizeof_register[i];
134 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
136 /* Set the real size of the register cache buffer. */
137 descr->sizeof_cooked_registers = offset;
140 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
141 the raw registers. Unfortunately some code still accesses the
142 register array directly using the global registers[]. Until that
143 code has been purged, play safe and over allocating the register
144 buffer. Ulgh! */
145 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
147 return descr;
150 static struct regcache_descr *
151 regcache_descr (struct gdbarch *gdbarch)
153 return gdbarch_data (gdbarch, regcache_descr_handle);
156 /* Utility functions returning useful register attributes stored in
157 the regcache descr. */
159 struct type *
160 register_type (struct gdbarch *gdbarch, int regnum)
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
167 /* Utility functions returning useful register attributes stored in
168 the regcache descr. */
171 register_size (struct gdbarch *gdbarch, int regnum)
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
176 size = descr->sizeof_register[regnum];
177 return size;
180 /* The register cache for storing raw register values. */
182 struct regcache
184 struct regcache_descr *descr;
185 /* The register buffers. A read-only register cache can hold the
186 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
187 register cache can only hold [0 .. NUM_REGS). */
188 gdb_byte *registers;
189 gdb_byte *register_valid_p;
190 /* Is this a read-only cache? A read-only cache is used for saving
191 the target's register state (e.g, across an inferior function
192 call or just before forcing a function return). A read-only
193 cache can only be updated via the methods regcache_dup() and
194 regcache_cpy(). The actual contents are determined by the
195 reggroup_save and reggroup_restore methods. */
196 int readonly_p;
199 struct regcache *
200 regcache_xmalloc (struct gdbarch *gdbarch)
202 struct regcache_descr *descr;
203 struct regcache *regcache;
204 gdb_assert (gdbarch != NULL);
205 descr = regcache_descr (gdbarch);
206 regcache = XMALLOC (struct regcache);
207 regcache->descr = descr;
208 regcache->registers
209 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
210 regcache->register_valid_p
211 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
212 regcache->readonly_p = 1;
213 return regcache;
216 void
217 regcache_xfree (struct regcache *regcache)
219 if (regcache == NULL)
220 return;
221 xfree (regcache->registers);
222 xfree (regcache->register_valid_p);
223 xfree (regcache);
226 static void
227 do_regcache_xfree (void *data)
229 regcache_xfree (data);
232 struct cleanup *
233 make_cleanup_regcache_xfree (struct regcache *regcache)
235 return make_cleanup (do_regcache_xfree, regcache);
238 /* Return REGCACHE's architecture. */
240 struct gdbarch *
241 get_regcache_arch (const struct regcache *regcache)
243 return regcache->descr->gdbarch;
246 /* Return a pointer to register REGNUM's buffer cache. */
248 static gdb_byte *
249 register_buffer (const struct regcache *regcache, int regnum)
251 return regcache->registers + regcache->descr->register_offset[regnum];
254 void
255 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
256 void *src)
258 struct gdbarch *gdbarch = dst->descr->gdbarch;
259 gdb_byte buf[MAX_REGISTER_SIZE];
260 int regnum;
261 /* The DST should be `read-only', if it wasn't then the save would
262 end up trying to write the register values back out to the
263 target. */
264 gdb_assert (dst->readonly_p);
265 /* Clear the dest. */
266 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
267 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
268 /* Copy over any registers (identified by their membership in the
269 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
270 NUM_PSEUDO_REGS) range is checked since some architectures need
271 to save/restore `cooked' registers that live in memory. */
272 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
274 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
276 int valid = cooked_read (src, regnum, buf);
277 if (valid)
279 memcpy (register_buffer (dst, regnum), buf,
280 register_size (gdbarch, regnum));
281 dst->register_valid_p[regnum] = 1;
287 void
288 regcache_restore (struct regcache *dst,
289 regcache_cooked_read_ftype *cooked_read,
290 void *cooked_read_context)
292 struct gdbarch *gdbarch = dst->descr->gdbarch;
293 gdb_byte buf[MAX_REGISTER_SIZE];
294 int regnum;
295 /* The dst had better not be read-only. If it is, the `restore'
296 doesn't make much sense. */
297 gdb_assert (!dst->readonly_p);
298 /* Copy over any registers, being careful to only restore those that
299 were both saved and need to be restored. The full [0 .. NUM_REGS
300 + NUM_PSEUDO_REGS) range is checked since some architectures need
301 to save/restore `cooked' registers that live in memory. */
302 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
304 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
306 int valid = cooked_read (cooked_read_context, regnum, buf);
307 if (valid)
308 regcache_cooked_write (dst, regnum, buf);
313 static int
314 do_cooked_read (void *src, int regnum, gdb_byte *buf)
316 struct regcache *regcache = src;
317 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
318 /* Don't even think about fetching a register from a read-only
319 cache when the register isn't yet valid. There isn't a target
320 from which the register value can be fetched. */
321 return 0;
322 regcache_cooked_read (regcache, regnum, buf);
323 return 1;
327 void
328 regcache_cpy (struct regcache *dst, struct regcache *src)
330 int i;
331 gdb_byte *buf;
332 gdb_assert (src != NULL && dst != NULL);
333 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
334 gdb_assert (src != dst);
335 gdb_assert (src->readonly_p || dst->readonly_p);
336 if (!src->readonly_p)
337 regcache_save (dst, do_cooked_read, src);
338 else if (!dst->readonly_p)
339 regcache_restore (dst, do_cooked_read, src);
340 else
341 regcache_cpy_no_passthrough (dst, src);
344 void
345 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
347 int i;
348 gdb_assert (src != NULL && dst != NULL);
349 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
350 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
351 move of data into the current_regcache(). Doing this would be
352 silly - it would mean that valid_p would be completely invalid. */
353 gdb_assert (dst != current_regcache);
354 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
355 memcpy (dst->register_valid_p, src->register_valid_p,
356 dst->descr->sizeof_raw_register_valid_p);
359 struct regcache *
360 regcache_dup (struct regcache *src)
362 struct regcache *newbuf;
363 gdb_assert (current_regcache != NULL);
364 newbuf = regcache_xmalloc (src->descr->gdbarch);
365 regcache_cpy (newbuf, src);
366 return newbuf;
369 struct regcache *
370 regcache_dup_no_passthrough (struct regcache *src)
372 struct regcache *newbuf;
373 gdb_assert (current_regcache != NULL);
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy_no_passthrough (newbuf, src);
376 return newbuf;
380 regcache_valid_p (struct regcache *regcache, int regnum)
382 gdb_assert (regcache != NULL);
383 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
384 return regcache->register_valid_p[regnum];
387 gdb_byte *
388 deprecated_grub_regcache_for_registers (struct regcache *regcache)
390 return regcache->registers;
393 /* Global structure containing the current regcache. */
394 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
395 deprecated_register_valid[] currently point into this structure. */
396 struct regcache *current_regcache;
398 /* NOTE: this is a write-through cache. There is no "dirty" bit for
399 recording if the register values have been changed (eg. by the
400 user). Therefore all registers must be written back to the
401 target when appropriate. */
403 /* The thread/process associated with the current set of registers. */
405 static ptid_t registers_ptid;
408 * FUNCTIONS:
411 /* REGISTER_CACHED()
413 Returns 0 if the value is not in the cache (needs fetch).
414 >0 if the value is in the cache.
415 <0 if the value is permanently unavailable (don't ask again). */
418 register_cached (int regnum)
420 return current_regcache->register_valid_p[regnum];
423 /* Record that REGNUM's value is cached if STATE is >0, uncached but
424 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
426 void
427 set_register_cached (int regnum, int state)
429 gdb_assert (regnum >= 0);
430 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
431 current_regcache->register_valid_p[regnum] = state;
434 /* Observer for the target_changed event. */
436 void
437 regcache_observer_target_changed (struct target_ops *target)
439 registers_changed ();
442 /* Low level examining and depositing of registers.
444 The caller is responsible for making sure that the inferior is
445 stopped before calling the fetching routines, or it will get
446 garbage. (a change from GDB version 3, in which the caller got the
447 value from the last stop). */
449 /* REGISTERS_CHANGED ()
451 Indicate that registers may have changed, so invalidate the cache. */
453 void
454 registers_changed (void)
456 int i;
458 registers_ptid = pid_to_ptid (-1);
460 /* Force cleanup of any alloca areas if using C alloca instead of
461 a builtin alloca. This particular call is used to clean up
462 areas allocated by low level target code which may build up
463 during lengthy interactions between gdb and the target before
464 gdb gives control to the user (ie watchpoints). */
465 alloca (0);
467 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
468 set_register_cached (i, 0);
470 if (deprecated_registers_changed_hook)
471 deprecated_registers_changed_hook ();
474 /* DEPRECATED_REGISTERS_FETCHED ()
476 Indicate that all registers have been fetched, so mark them all valid. */
478 /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
479 code was blatting the registers[] array and then calling this.
480 Since targets should only be using regcache_raw_supply() the need for
481 this function/hack is eliminated. */
483 void
484 deprecated_registers_fetched (void)
486 int i;
488 for (i = 0; i < NUM_REGS; i++)
489 set_register_cached (i, 1);
490 /* Do not assume that the pseudo-regs have also been fetched.
491 Fetching all real regs NEVER accounts for pseudo-regs. */
494 /* deprecated_read_register_bytes and deprecated_write_register_bytes
495 are generally a *BAD* idea. They are inefficient because they need
496 to check for partial updates, which can only be done by scanning
497 through all of the registers and seeing if the bytes that are being
498 read/written fall inside of an invalid register. [The main reason
499 this is necessary is that register sizes can vary, so a simple
500 index won't suffice.] It is far better to call read_register_gen
501 and write_register_gen if you want to get at the raw register
502 contents, as it only takes a regnum as an argument, and therefore
503 can't do a partial register update.
505 Prior to the recent fixes to check for partial updates, both read
506 and deprecated_write_register_bytes always checked to see if any
507 registers were stale, and then called target_fetch_registers (-1)
508 to update the whole set. This caused really slowed things down for
509 remote targets. */
511 /* Copy INLEN bytes of consecutive data from registers
512 starting with the INREGBYTE'th byte of register data
513 into memory at MYADDR. */
515 void
516 deprecated_read_register_bytes (int in_start, gdb_byte *in_buf, int in_len)
518 int in_end = in_start + in_len;
519 int regnum;
520 gdb_byte reg_buf[MAX_REGISTER_SIZE];
522 /* See if we are trying to read bytes from out-of-date registers. If so,
523 update just those registers. */
525 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
527 int reg_start;
528 int reg_end;
529 int reg_len;
530 int start;
531 int end;
532 int byte;
534 reg_start = DEPRECATED_REGISTER_BYTE (regnum);
535 reg_len = register_size (current_gdbarch, regnum);
536 reg_end = reg_start + reg_len;
538 if (reg_end <= in_start || in_end <= reg_start)
539 /* The range the user wants to read doesn't overlap with regnum. */
540 continue;
542 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
543 /* Force the cache to fetch the entire register. */
544 deprecated_read_register_gen (regnum, reg_buf);
546 /* Legacy note: This function, for some reason, allows a NULL
547 input buffer. If the buffer is NULL, the registers are still
548 fetched, just the final transfer is skipped. */
549 if (in_buf == NULL)
550 continue;
552 /* start = max (reg_start, in_start) */
553 if (reg_start > in_start)
554 start = reg_start;
555 else
556 start = in_start;
558 /* end = min (reg_end, in_end) */
559 if (reg_end < in_end)
560 end = reg_end;
561 else
562 end = in_end;
564 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
565 for (byte = start; byte < end; byte++)
567 in_buf[byte - in_start] = reg_buf[byte - reg_start];
572 void
573 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
575 gdb_assert (regcache != NULL && buf != NULL);
576 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
577 /* Make certain that the register cache is up-to-date with respect
578 to the current thread. This switching shouldn't be necessary
579 only there is still only one target side register cache. Sigh!
580 On the bright side, at least there is a regcache object. */
581 if (!regcache->readonly_p)
583 gdb_assert (regcache == current_regcache);
584 if (! ptid_equal (registers_ptid, inferior_ptid))
586 registers_changed ();
587 registers_ptid = inferior_ptid;
589 if (!register_cached (regnum))
590 target_fetch_registers (regnum);
591 #if 0
592 /* FIXME: cagney/2004-08-07: At present a number of targets
593 forget (or didn't know that they needed) to set this leading to
594 panics. Also is the problem that targets need to indicate
595 that a register is in one of the possible states: valid,
596 undefined, unknown. The last of which isn't yet
597 possible. */
598 gdb_assert (register_cached (regnum));
599 #endif
601 /* Copy the value directly into the register cache. */
602 memcpy (buf, register_buffer (regcache, regnum),
603 regcache->descr->sizeof_register[regnum]);
606 void
607 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
609 gdb_byte *buf;
610 gdb_assert (regcache != NULL);
611 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
612 buf = alloca (regcache->descr->sizeof_register[regnum]);
613 regcache_raw_read (regcache, regnum, buf);
614 (*val) = extract_signed_integer (buf,
615 regcache->descr->sizeof_register[regnum]);
618 void
619 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
620 ULONGEST *val)
622 gdb_byte *buf;
623 gdb_assert (regcache != NULL);
624 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
625 buf = alloca (regcache->descr->sizeof_register[regnum]);
626 regcache_raw_read (regcache, regnum, buf);
627 (*val) = extract_unsigned_integer (buf,
628 regcache->descr->sizeof_register[regnum]);
631 void
632 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
634 void *buf;
635 gdb_assert (regcache != NULL);
636 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
637 buf = alloca (regcache->descr->sizeof_register[regnum]);
638 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
639 regcache_raw_write (regcache, regnum, buf);
642 void
643 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
644 ULONGEST val)
646 void *buf;
647 gdb_assert (regcache != NULL);
648 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
649 buf = alloca (regcache->descr->sizeof_register[regnum]);
650 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
651 regcache_raw_write (regcache, regnum, buf);
654 void
655 deprecated_read_register_gen (int regnum, gdb_byte *buf)
657 gdb_assert (current_regcache != NULL);
658 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
659 regcache_cooked_read (current_regcache, regnum, buf);
662 void
663 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
665 gdb_assert (regnum >= 0);
666 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
667 if (regnum < regcache->descr->nr_raw_registers)
668 regcache_raw_read (regcache, regnum, buf);
669 else if (regcache->readonly_p
670 && regnum < regcache->descr->nr_cooked_registers
671 && regcache->register_valid_p[regnum])
672 /* Read-only register cache, perhaps the cooked value was cached? */
673 memcpy (buf, register_buffer (regcache, regnum),
674 regcache->descr->sizeof_register[regnum]);
675 else
676 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
677 regnum, buf);
680 void
681 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
682 LONGEST *val)
684 gdb_byte *buf;
685 gdb_assert (regcache != NULL);
686 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
687 buf = alloca (regcache->descr->sizeof_register[regnum]);
688 regcache_cooked_read (regcache, regnum, buf);
689 (*val) = extract_signed_integer (buf,
690 regcache->descr->sizeof_register[regnum]);
693 void
694 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
695 ULONGEST *val)
697 gdb_byte *buf;
698 gdb_assert (regcache != NULL);
699 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
700 buf = alloca (regcache->descr->sizeof_register[regnum]);
701 regcache_cooked_read (regcache, regnum, buf);
702 (*val) = extract_unsigned_integer (buf,
703 regcache->descr->sizeof_register[regnum]);
706 void
707 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
708 LONGEST val)
710 void *buf;
711 gdb_assert (regcache != NULL);
712 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
713 buf = alloca (regcache->descr->sizeof_register[regnum]);
714 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
715 regcache_cooked_write (regcache, regnum, buf);
718 void
719 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
720 ULONGEST val)
722 void *buf;
723 gdb_assert (regcache != NULL);
724 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
725 buf = alloca (regcache->descr->sizeof_register[regnum]);
726 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
727 regcache_cooked_write (regcache, regnum, buf);
730 void
731 regcache_raw_write (struct regcache *regcache, int regnum,
732 const gdb_byte *buf)
734 gdb_assert (regcache != NULL && buf != NULL);
735 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
736 gdb_assert (!regcache->readonly_p);
738 /* On the sparc, writing %g0 is a no-op, so we don't even want to
739 change the registers array if something writes to this register. */
740 if (CANNOT_STORE_REGISTER (regnum))
741 return;
743 /* Make certain that the correct cache is selected. */
744 gdb_assert (regcache == current_regcache);
745 if (! ptid_equal (registers_ptid, inferior_ptid))
747 registers_changed ();
748 registers_ptid = inferior_ptid;
751 /* If we have a valid copy of the register, and new value == old
752 value, then don't bother doing the actual store. */
753 if (regcache_valid_p (regcache, regnum)
754 && (memcmp (register_buffer (regcache, regnum), buf,
755 regcache->descr->sizeof_register[regnum]) == 0))
756 return;
758 target_prepare_to_store ();
759 memcpy (register_buffer (regcache, regnum), buf,
760 regcache->descr->sizeof_register[regnum]);
761 regcache->register_valid_p[regnum] = 1;
762 target_store_registers (regnum);
765 void
766 deprecated_write_register_gen (int regnum, gdb_byte *buf)
768 gdb_assert (current_regcache != NULL);
769 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
770 regcache_cooked_write (current_regcache, regnum, buf);
773 void
774 regcache_cooked_write (struct regcache *regcache, int regnum,
775 const gdb_byte *buf)
777 gdb_assert (regnum >= 0);
778 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
779 if (regnum < regcache->descr->nr_raw_registers)
780 regcache_raw_write (regcache, regnum, buf);
781 else
782 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
783 regnum, buf);
786 /* Copy INLEN bytes of consecutive data from memory at MYADDR
787 into registers starting with the MYREGSTART'th byte of register data. */
789 void
790 deprecated_write_register_bytes (int myregstart, gdb_byte *myaddr, int inlen)
792 int myregend = myregstart + inlen;
793 int regnum;
795 target_prepare_to_store ();
797 /* Scan through the registers updating any that are covered by the
798 range myregstart<=>myregend using write_register_gen, which does
799 nice things like handling threads, and avoiding updates when the
800 new and old contents are the same. */
802 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
804 int regstart, regend;
806 regstart = DEPRECATED_REGISTER_BYTE (regnum);
807 regend = regstart + register_size (current_gdbarch, regnum);
809 /* Is this register completely outside the range the user is writing? */
810 if (myregend <= regstart || regend <= myregstart)
811 /* do nothing */ ;
813 /* Is this register completely within the range the user is writing? */
814 else if (myregstart <= regstart && regend <= myregend)
815 deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));
817 /* The register partially overlaps the range being written. */
818 else
820 gdb_byte regbuf[MAX_REGISTER_SIZE];
821 /* What's the overlap between this register's bytes and
822 those the caller wants to write? */
823 int overlapstart = max (regstart, myregstart);
824 int overlapend = min (regend, myregend);
826 /* We may be doing a partial update of an invalid register.
827 Update it from the target before scribbling on it. */
828 deprecated_read_register_gen (regnum, regbuf);
830 target_store_registers (regnum);
835 /* Perform a partial register transfer using a read, modify, write
836 operation. */
838 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
839 void *buf);
840 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
841 const void *buf);
842 static void
843 regcache_xfer_part (struct regcache *regcache, int regnum,
844 int offset, int len, void *in, const void *out,
845 void (*xread) (struct regcache *regcache, int regnum,
846 gdb_byte *buf),
847 void (*write) (struct regcache *regcache, int regnum,
848 const gdb_byte *buf))
850 struct regcache_descr *descr = regcache->descr;
851 gdb_byte reg[MAX_REGISTER_SIZE];
852 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
853 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
854 /* Something to do? */
855 if (offset + len == 0)
856 return;
857 /* Read (when needed) ... */
858 if (in != NULL
859 || offset > 0
860 || offset + len < descr->sizeof_register[regnum])
862 gdb_assert (xread != NULL);
863 xread (regcache, regnum, reg);
865 /* ... modify ... */
866 if (in != NULL)
867 memcpy (in, reg + offset, len);
868 if (out != NULL)
869 memcpy (reg + offset, out, len);
870 /* ... write (when needed). */
871 if (out != NULL)
873 gdb_assert (write != NULL);
874 write (regcache, regnum, reg);
878 void
879 regcache_raw_read_part (struct regcache *regcache, int regnum,
880 int offset, int len, gdb_byte *buf)
882 struct regcache_descr *descr = regcache->descr;
883 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
884 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
885 regcache_raw_read, regcache_raw_write);
888 void
889 regcache_raw_write_part (struct regcache *regcache, int regnum,
890 int offset, int len, const gdb_byte *buf)
892 struct regcache_descr *descr = regcache->descr;
893 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
894 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
895 regcache_raw_read, regcache_raw_write);
898 void
899 regcache_cooked_read_part (struct regcache *regcache, int regnum,
900 int offset, int len, gdb_byte *buf)
902 struct regcache_descr *descr = regcache->descr;
903 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
904 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
905 regcache_cooked_read, regcache_cooked_write);
908 void
909 regcache_cooked_write_part (struct regcache *regcache, int regnum,
910 int offset, int len, const gdb_byte *buf)
912 struct regcache_descr *descr = regcache->descr;
913 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
914 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
915 regcache_cooked_read, regcache_cooked_write);
918 /* Hack to keep code that view the register buffer as raw bytes
919 working. */
922 register_offset_hack (struct gdbarch *gdbarch, int regnum)
924 struct regcache_descr *descr = regcache_descr (gdbarch);
925 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
926 return descr->register_offset[regnum];
929 /* Hack to keep code using register_bytes working. */
932 deprecated_register_bytes (void)
934 return current_regcache->descr->sizeof_raw_registers;
937 /* Return the contents of register REGNUM as an unsigned integer. */
939 ULONGEST
940 read_register (int regnum)
942 gdb_byte *buf = alloca (register_size (current_gdbarch, regnum));
943 deprecated_read_register_gen (regnum, buf);
944 return (extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)));
947 ULONGEST
948 read_register_pid (int regnum, ptid_t ptid)
950 ptid_t save_ptid;
951 int save_pid;
952 CORE_ADDR retval;
954 if (ptid_equal (ptid, inferior_ptid))
955 return read_register (regnum);
957 save_ptid = inferior_ptid;
959 inferior_ptid = ptid;
961 retval = read_register (regnum);
963 inferior_ptid = save_ptid;
965 return retval;
968 /* Store VALUE into the raw contents of register number REGNUM. */
970 void
971 write_register (int regnum, LONGEST val)
973 void *buf;
974 int size;
975 size = register_size (current_gdbarch, regnum);
976 buf = alloca (size);
977 store_signed_integer (buf, size, (LONGEST) val);
978 deprecated_write_register_gen (regnum, buf);
981 void
982 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
984 ptid_t save_ptid;
986 if (ptid_equal (ptid, inferior_ptid))
988 write_register (regnum, val);
989 return;
992 save_ptid = inferior_ptid;
994 inferior_ptid = ptid;
996 write_register (regnum, val);
998 inferior_ptid = save_ptid;
1001 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
1003 void
1004 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1006 void *regbuf;
1007 size_t size;
1009 gdb_assert (regcache != NULL);
1010 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1011 gdb_assert (!regcache->readonly_p);
1013 /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
1014 CURRENT_REGCACHE specially here. */
1015 if (regcache == current_regcache
1016 && !ptid_equal (registers_ptid, inferior_ptid))
1018 registers_changed ();
1019 registers_ptid = inferior_ptid;
1022 regbuf = register_buffer (regcache, regnum);
1023 size = regcache->descr->sizeof_register[regnum];
1025 if (buf)
1026 memcpy (regbuf, buf, size);
1027 else
1028 memset (regbuf, 0, size);
1030 /* Mark the register as cached. */
1031 regcache->register_valid_p[regnum] = 1;
1034 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1036 void
1037 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1039 const void *regbuf;
1040 size_t size;
1042 gdb_assert (regcache != NULL && buf != NULL);
1043 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1045 regbuf = register_buffer (regcache, regnum);
1046 size = regcache->descr->sizeof_register[regnum];
1047 memcpy (buf, regbuf, size);
1051 /* read_pc, write_pc, read_sp, etc. Special handling for registers
1052 PC, SP, and FP. */
1054 /* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc() and
1055 read_sp(), will eventually be replaced by per-frame methods.
1056 Instead of relying on the global INFERIOR_PTID, they will use the
1057 contextual information provided by the FRAME. These functions do
1058 not belong in the register cache. */
1060 /* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
1061 write_pc_pid() and write_pc(), all need to be replaced by something
1062 that does not rely on global state. But what? */
1064 CORE_ADDR
1065 read_pc_pid (ptid_t ptid)
1067 ptid_t saved_inferior_ptid;
1068 CORE_ADDR pc_val;
1070 /* In case ptid != inferior_ptid. */
1071 saved_inferior_ptid = inferior_ptid;
1072 inferior_ptid = ptid;
1074 if (TARGET_READ_PC_P ())
1075 pc_val = TARGET_READ_PC (ptid);
1076 /* Else use per-frame method on get_current_frame. */
1077 else if (PC_REGNUM >= 0)
1079 CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
1080 pc_val = ADDR_BITS_REMOVE (raw_val);
1082 else
1083 internal_error (__FILE__, __LINE__, _("read_pc_pid: Unable to find PC"));
1085 inferior_ptid = saved_inferior_ptid;
1086 return pc_val;
1089 CORE_ADDR
1090 read_pc (void)
1092 return read_pc_pid (inferior_ptid);
1095 void
1096 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
1098 if (PC_REGNUM >= 0)
1099 write_register_pid (PC_REGNUM, pc, ptid);
1100 else
1101 internal_error (__FILE__, __LINE__,
1102 _("generic_target_write_pc"));
1105 void
1106 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
1108 ptid_t saved_inferior_ptid;
1110 /* In case ptid != inferior_ptid. */
1111 saved_inferior_ptid = inferior_ptid;
1112 inferior_ptid = ptid;
1114 TARGET_WRITE_PC (pc, ptid);
1116 inferior_ptid = saved_inferior_ptid;
1119 void
1120 write_pc (CORE_ADDR pc)
1122 write_pc_pid (pc, inferior_ptid);
1125 /* Cope with strage ways of getting to the stack and frame pointers */
1127 CORE_ADDR
1128 read_sp (void)
1130 if (TARGET_READ_SP_P ())
1131 return TARGET_READ_SP ();
1132 else if (gdbarch_unwind_sp_p (current_gdbarch))
1133 return get_frame_sp (get_current_frame ());
1134 else if (SP_REGNUM >= 0)
1135 /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
1136 about the architecture so put it at the end. */
1137 return read_register (SP_REGNUM);
1138 internal_error (__FILE__, __LINE__, _("read_sp: Unable to find SP"));
1141 static void
1142 reg_flush_command (char *command, int from_tty)
1144 /* Force-flush the register cache. */
1145 registers_changed ();
1146 if (from_tty)
1147 printf_filtered (_("Register cache flushed.\n"));
1150 static void
1151 build_regcache (void)
1153 current_regcache = regcache_xmalloc (current_gdbarch);
1154 current_regcache->readonly_p = 0;
1157 static void
1158 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1159 const unsigned char *buf, long len)
1161 int i;
1162 switch (endian)
1164 case BFD_ENDIAN_BIG:
1165 for (i = 0; i < len; i++)
1166 fprintf_unfiltered (file, "%02x", buf[i]);
1167 break;
1168 case BFD_ENDIAN_LITTLE:
1169 for (i = len - 1; i >= 0; i--)
1170 fprintf_unfiltered (file, "%02x", buf[i]);
1171 break;
1172 default:
1173 internal_error (__FILE__, __LINE__, _("Bad switch"));
1177 enum regcache_dump_what
1179 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
1182 static void
1183 regcache_dump (struct regcache *regcache, struct ui_file *file,
1184 enum regcache_dump_what what_to_dump)
1186 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1187 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1188 int regnum;
1189 int footnote_nr = 0;
1190 int footnote_register_size = 0;
1191 int footnote_register_offset = 0;
1192 int footnote_register_type_name_null = 0;
1193 long register_offset = 0;
1194 unsigned char buf[MAX_REGISTER_SIZE];
1196 #if 0
1197 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1198 regcache->descr->nr_raw_registers);
1199 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1200 regcache->descr->nr_cooked_registers);
1201 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1202 regcache->descr->sizeof_raw_registers);
1203 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1204 regcache->descr->sizeof_raw_register_valid_p);
1205 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1206 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1207 #endif
1209 gdb_assert (regcache->descr->nr_cooked_registers
1210 == (NUM_REGS + NUM_PSEUDO_REGS));
1212 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1214 /* Name. */
1215 if (regnum < 0)
1216 fprintf_unfiltered (file, " %-10s", "Name");
1217 else
1219 const char *p = REGISTER_NAME (regnum);
1220 if (p == NULL)
1221 p = "";
1222 else if (p[0] == '\0')
1223 p = "''";
1224 fprintf_unfiltered (file, " %-10s", p);
1227 /* Number. */
1228 if (regnum < 0)
1229 fprintf_unfiltered (file, " %4s", "Nr");
1230 else
1231 fprintf_unfiltered (file, " %4d", regnum);
1233 /* Relative number. */
1234 if (regnum < 0)
1235 fprintf_unfiltered (file, " %4s", "Rel");
1236 else if (regnum < NUM_REGS)
1237 fprintf_unfiltered (file, " %4d", regnum);
1238 else
1239 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1241 /* Offset. */
1242 if (regnum < 0)
1243 fprintf_unfiltered (file, " %6s ", "Offset");
1244 else
1246 fprintf_unfiltered (file, " %6ld",
1247 regcache->descr->register_offset[regnum]);
1248 if (register_offset != regcache->descr->register_offset[regnum]
1249 || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
1250 || (regnum > 0
1251 && (regcache->descr->register_offset[regnum]
1252 != (regcache->descr->register_offset[regnum - 1]
1253 + regcache->descr->sizeof_register[regnum - 1])))
1256 if (!footnote_register_offset)
1257 footnote_register_offset = ++footnote_nr;
1258 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1260 else
1261 fprintf_unfiltered (file, " ");
1262 register_offset = (regcache->descr->register_offset[regnum]
1263 + regcache->descr->sizeof_register[regnum]);
1266 /* Size. */
1267 if (regnum < 0)
1268 fprintf_unfiltered (file, " %5s ", "Size");
1269 else
1270 fprintf_unfiltered (file, " %5ld",
1271 regcache->descr->sizeof_register[regnum]);
1273 /* Type. */
1275 const char *t;
1276 if (regnum < 0)
1277 t = "Type";
1278 else
1280 static const char blt[] = "builtin_type";
1281 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1282 if (t == NULL)
1284 char *n;
1285 if (!footnote_register_type_name_null)
1286 footnote_register_type_name_null = ++footnote_nr;
1287 n = xstrprintf ("*%d", footnote_register_type_name_null);
1288 make_cleanup (xfree, n);
1289 t = n;
1291 /* Chop a leading builtin_type. */
1292 if (strncmp (t, blt, strlen (blt)) == 0)
1293 t += strlen (blt);
1295 fprintf_unfiltered (file, " %-15s", t);
1298 /* Leading space always present. */
1299 fprintf_unfiltered (file, " ");
1301 /* Value, raw. */
1302 if (what_to_dump == regcache_dump_raw)
1304 if (regnum < 0)
1305 fprintf_unfiltered (file, "Raw value");
1306 else if (regnum >= regcache->descr->nr_raw_registers)
1307 fprintf_unfiltered (file, "<cooked>");
1308 else if (!regcache_valid_p (regcache, regnum))
1309 fprintf_unfiltered (file, "<invalid>");
1310 else
1312 regcache_raw_read (regcache, regnum, buf);
1313 fprintf_unfiltered (file, "0x");
1314 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1315 regcache->descr->sizeof_register[regnum]);
1319 /* Value, cooked. */
1320 if (what_to_dump == regcache_dump_cooked)
1322 if (regnum < 0)
1323 fprintf_unfiltered (file, "Cooked value");
1324 else
1326 regcache_cooked_read (regcache, regnum, buf);
1327 fprintf_unfiltered (file, "0x");
1328 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
1329 regcache->descr->sizeof_register[regnum]);
1333 /* Group members. */
1334 if (what_to_dump == regcache_dump_groups)
1336 if (regnum < 0)
1337 fprintf_unfiltered (file, "Groups");
1338 else
1340 const char *sep = "";
1341 struct reggroup *group;
1342 for (group = reggroup_next (gdbarch, NULL);
1343 group != NULL;
1344 group = reggroup_next (gdbarch, group))
1346 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1348 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1349 sep = ",";
1355 fprintf_unfiltered (file, "\n");
1358 if (footnote_register_size)
1359 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1360 footnote_register_size);
1361 if (footnote_register_offset)
1362 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1363 footnote_register_offset);
1364 if (footnote_register_type_name_null)
1365 fprintf_unfiltered (file,
1366 "*%d: Register type's name NULL.\n",
1367 footnote_register_type_name_null);
1368 do_cleanups (cleanups);
1371 static void
1372 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1374 if (args == NULL)
1375 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1376 else
1378 struct ui_file *file = gdb_fopen (args, "w");
1379 if (file == NULL)
1380 perror_with_name (_("maintenance print architecture"));
1381 regcache_dump (current_regcache, file, what_to_dump);
1382 ui_file_delete (file);
1386 static void
1387 maintenance_print_registers (char *args, int from_tty)
1389 regcache_print (args, regcache_dump_none);
1392 static void
1393 maintenance_print_raw_registers (char *args, int from_tty)
1395 regcache_print (args, regcache_dump_raw);
1398 static void
1399 maintenance_print_cooked_registers (char *args, int from_tty)
1401 regcache_print (args, regcache_dump_cooked);
1404 static void
1405 maintenance_print_register_groups (char *args, int from_tty)
1407 regcache_print (args, regcache_dump_groups);
1410 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1412 void
1413 _initialize_regcache (void)
1415 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1416 DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
1417 deprecated_register_gdbarch_swap (NULL, 0, build_regcache);
1419 observer_attach_target_changed (regcache_observer_target_changed);
1421 add_com ("flushregs", class_maintenance, reg_flush_command,
1422 _("Force gdb to flush its register cache (maintainer command)"));
1424 /* Initialize the thread/process associated with the current set of
1425 registers. For now, -1 is special, and means `no current process'. */
1426 registers_ptid = pid_to_ptid (-1);
1428 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1429 Print the internal register configuration.\n\
1430 Takes an optional file parameter."), &maintenanceprintlist);
1431 add_cmd ("raw-registers", class_maintenance,
1432 maintenance_print_raw_registers, _("\
1433 Print the internal register configuration including raw values.\n\
1434 Takes an optional file parameter."), &maintenanceprintlist);
1435 add_cmd ("cooked-registers", class_maintenance,
1436 maintenance_print_cooked_registers, _("\
1437 Print the internal register configuration including cooked values.\n\
1438 Takes an optional file parameter."), &maintenanceprintlist);
1439 add_cmd ("register-groups", class_maintenance,
1440 maintenance_print_register_groups, _("\
1441 Print the internal register configuration including each register's group.\n\
1442 Takes an optional file parameter."),
1443 &maintenanceprintlist);