No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gdb6 / sim / common / genmloop.sh
blobdddd1a1c3374edf3f258e7706bcecea2de57ac51
1 # Generate the main loop of the simulator.
2 # Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3 # Contributed by Cygnus Support.
5 # This file is part of the GNU simulators.
7 # This program is free software; you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation; either version 2, or (at your option)
10 # any later version.
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License along
18 # with this program; if not, write to the Free Software Foundation, Inc.,
19 # 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 # This file creates two files: eng.hin and mloop.cin.
22 # eng.hin defines a few macros that specify what kind of engine was selected
23 # based on the arguments to this script.
24 # mloop.cin contains the engine.
26 # ??? Rename mloop.c to eng.c?
27 # ??? Rename mainloop.in to engine.in?
28 # ??? Add options to specify output file names?
29 # ??? Rename this file to genengine.sh?
31 # Syntax: genmloop.sh [options]
33 # Options:
35 # -mono | -multi
36 # - specify single cpu or multiple cpus (number specifyable at runtime),
37 # maximum number is a configuration parameter
38 # - -multi wip
40 # -fast: include support for fast execution in addition to full featured mode
42 # Full featured mode is for tracing, profiling, etc. and is always
43 # provided. Fast mode contains no frills, except speed.
44 # A target need only provide a "full" version of one of
45 # simple,scache,pbb. If the target wants it can also provide a fast
46 # version of same. It can't provide more than this.
47 # ??? Later add ability to have another set of full/fast semantics
48 # for use in with-devices/with-smp situations (pbb can be inappropriate
49 # here).
51 # -full-switch: same as -fast but for full featured version of -switch
52 # Only needed if -fast present.
54 # -simple: simple execution engine (the default)
56 # This engine fetches and executes one instruction at a time.
57 # Field extraction is done in the semantic routines.
59 # ??? There are two possible flavours of -simple. One that extracts
60 # fields in the semantic routine (which is what is implemented here),
61 # and one that stores the extracted fields in ARGBUF before calling the
62 # semantic routine. The latter is essentially the -scache case with a
63 # cache size of one (and the scache lookup code removed). There are no
64 # current uses of this and it's not clear when doing this would be a win.
65 # More complicated ISA's that want to use -simple may find this a win.
66 # Should this ever be desirable, implement a new engine style here and
67 # call it -extract (or some such). It's believed that the CGEN-generated
68 # code for the -scache case would be usable here, so no new code
69 # generation option would be needed for CGEN.
71 # -scache: use the scache to speed things up (not always a win)
73 # This engine caches the extracted instruction before executing it.
74 # When executing instructions they are first looked up in the scache.
76 # -pbb: same as -scache but extract a (pseudo-) basic block at a time
78 # This engine is basically identical to the scache version except that
79 # extraction is done a pseudo-basic-block at a time and the address of
80 # the scache entry of a branch target is recorded as well.
81 # Additional speedups are then possible by defering Ctrl-C checking
82 # to the end of basic blocks and by threading the insns together.
83 # We call them pseudo-basic-block's instead of just basic-blocks because
84 # they're not necessarily basic-blocks, though normally are.
86 # -parallel-read: support parallel execution with read-before-exec support.
87 # -parallel-write: support parallel execution with write-after-exec support.
88 # -parallel-generic-write: support parallel execution with generic queued
89 # writes.
91 # One of these options is specified in addition to -simple, -scache,
92 # -pbb. Note that while the code can determine if the cpu supports
93 # parallel execution with HAVE_PARALLEL_INSNS [and thus this option is
94 # technically unnecessary], having this option cuts down on the clutter
95 # in the result.
97 # -parallel-only: semantic code only supports parallel version of insn
99 # Semantic code only supports parallel versions of each insn.
100 # Things can be sped up by generating both serial and parallel versions
101 # and is better suited to mixed parallel architectures like the m32r.
103 # -prefix: string to prepend to function names in mloop.c/eng.h.
105 # If no prefix is specified, the cpu type is used.
107 # -switch file: specify file containing semantics implemented as a switch()
109 # -cpu <cpu-family>
111 # Specify the cpu family name.
113 # -infile <input-file>
115 # Specify the mainloop.in input file.
117 # -outfile-suffix <output-file-suffix>
119 # Specify the suffix to append to output files.
121 # Only one of -scache/-pbb may be selected.
122 # -simple is the default.
124 ####
126 # TODO
127 # - build mainloop.in from .cpu file
129 type=mono
130 #scache=
131 #fast=
132 #full_switch=
133 #pbb=
134 parallel=no
135 parallel_only=no
136 switch=
137 cpu="unknown"
138 infile=""
139 prefix="unknown"
140 outsuffix=""
142 while test $# -gt 0
144 case $1 in
145 -mono) type=mono ;;
146 -multi) type=multi ;;
147 -no-fast) ;;
148 -fast) fast=yes ;;
149 -full-switch) full_switch=yes ;;
150 -simple) ;;
151 -scache) scache=yes ;;
152 -pbb) pbb=yes ;;
153 -no-parallel) ;;
154 -outfile-suffix) shift ; outsuffix=$1 ;;
155 -parallel-read) parallel=read ;;
156 -parallel-write) parallel=write ;;
157 -parallel-generic-write) parallel=genwrite ;;
158 -parallel-only) parallel_only=yes ;;
159 -prefix) shift ; prefix=$1 ;;
160 -switch) shift ; switch=$1 ;;
161 -cpu) shift ; cpu=$1 ;;
162 -infile) shift ; infile=$1 ;;
163 *) echo "unknown option: $1" >&2 ; exit 1 ;;
164 esac
165 shift
166 done
168 # Argument validation.
170 if [ x$scache = xyes -a x$pbb = xyes ] ; then
171 echo "only one of -scache and -pbb may be selected" >&2
172 exit 1
175 if [ "x$cpu" = xunknown ] ; then
176 echo "cpu family not specified" >&2
177 exit 1
180 if [ "x$infile" = x ] ; then
181 echo "mainloop.in not specified" >&2
182 exit 1
185 if [ "x$prefix" = xunknown ] ; then
186 prefix=$cpu
189 lowercase='abcdefghijklmnopqrstuvwxyz'
190 uppercase='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
191 CPU=`echo ${cpu} | tr "${lowercase}" "${uppercase}"`
192 PREFIX=`echo ${prefix} | tr "${lowercase}" "${uppercase}"`
194 ##########################################################################
196 rm -f eng${outsuffix}.hin
197 exec 1>eng${outsuffix}.hin
199 echo "/* engine configuration for ${cpu} */"
200 echo ""
202 echo "/* WITH_FAST: non-zero if a fast version of the engine is available"
203 echo " in addition to the full-featured version. */"
204 if [ x$fast = xyes ] ; then
205 echo "#define WITH_FAST 1"
206 else
207 echo "#define WITH_FAST 0"
210 echo ""
211 echo "/* WITH_SCACHE_PBB_${PREFIX}: non-zero if the pbb engine was selected. */"
212 if [ x$pbb = xyes ] ; then
213 echo "#define WITH_SCACHE_PBB_${PREFIX} 1"
214 else
215 echo "#define WITH_SCACHE_PBB_${PREFIX} 0"
218 echo ""
219 echo "/* HAVE_PARALLEL_INSNS: non-zero if cpu can parallelly execute > 1 insn. */"
220 # blah blah blah, other ways to do this, blah blah blah
221 case x$parallel in
222 xno)
223 echo "#define HAVE_PARALLEL_INSNS 0"
224 echo "#define WITH_PARALLEL_READ 0"
225 echo "#define WITH_PARALLEL_WRITE 0"
226 echo "#define WITH_PARALLEL_GENWRITE 0"
228 xread)
229 echo "#define HAVE_PARALLEL_INSNS 1"
230 echo "/* Parallel execution is supported by read-before-exec. */"
231 echo "#define WITH_PARALLEL_READ 1"
232 echo "#define WITH_PARALLEL_WRITE 0"
233 echo "#define WITH_PARALLEL_GENWRITE 0"
235 xwrite)
236 echo "#define HAVE_PARALLEL_INSNS 1"
237 echo "/* Parallel execution is supported by write-after-exec. */"
238 echo "#define WITH_PARALLEL_READ 0"
239 echo "#define WITH_PARALLEL_WRITE 1"
240 echo "#define WITH_PARALLEL_GENWRITE 0"
242 xgenwrite)
243 echo "#define HAVE_PARALLEL_INSNS 1"
244 echo "/* Parallel execution is supported by generic write-after-exec. */"
245 echo "#define WITH_PARALLEL_READ 0"
246 echo "#define WITH_PARALLEL_WRITE 0"
247 echo "#define WITH_PARALLEL_GENWRITE 1"
249 esac
251 if [ "x$switch" != x ] ; then
252 echo ""
253 echo "/* WITH_SEM_SWITCH_FULL: non-zero if full-featured engine is"
254 echo " implemented as a switch(). */"
255 if [ x$fast != xyes -o x$full_switch = xyes ] ; then
256 echo "#define WITH_SEM_SWITCH_FULL 1"
257 else
258 echo "#define WITH_SEM_SWITCH_FULL 0"
260 echo ""
261 echo "/* WITH_SEM_SWITCH_FAST: non-zero if fast engine is"
262 echo " implemented as a switch(). */"
263 if [ x$fast = xyes ] ; then
264 echo "#define WITH_SEM_SWITCH_FAST 1"
265 else
266 echo "#define WITH_SEM_SWITCH_FAST 0"
270 # Decls of functions we define.
272 echo ""
273 echo "/* Functions defined in the generated mainloop.c file"
274 echo " (which doesn't necessarily have that file name). */"
275 echo ""
276 echo "extern ENGINE_FN ${prefix}_engine_run_full;"
277 echo "extern ENGINE_FN ${prefix}_engine_run_fast;"
279 if [ x$pbb = xyes ] ; then
280 echo ""
281 echo "extern SEM_PC ${prefix}_pbb_begin (SIM_CPU *, int);"
282 echo "extern SEM_PC ${prefix}_pbb_chain (SIM_CPU *, SEM_ARG);"
283 echo "extern SEM_PC ${prefix}_pbb_cti_chain (SIM_CPU *, SEM_ARG, SEM_BRANCH_TYPE, PCADDR);"
284 echo "extern void ${prefix}_pbb_before (SIM_CPU *, SCACHE *);"
285 echo "extern void ${prefix}_pbb_after (SIM_CPU *, SCACHE *);"
288 ##########################################################################
290 rm -f tmp-mloop-$$.cin mloop${outsuffix}.cin
291 exec 1>tmp-mloop-$$.cin
293 # We use @cpu@ instead of ${cpu} because we still need to run sed to handle
294 # transformation of @cpu@ for mainloop.in, so there's no need to use ${cpu}
295 # here.
297 cat << EOF
298 /* This file is generated by the genmloop script. DO NOT EDIT! */
300 /* Enable switch() support in cgen headers. */
301 #define SEM_IN_SWITCH
303 #define WANT_CPU @cpu@
304 #define WANT_CPU_@CPU@
306 #include "sim-main.h"
307 #include "bfd.h"
308 #include "cgen-mem.h"
309 #include "cgen-ops.h"
310 #include "sim-assert.h"
312 /* Fill in the administrative ARGBUF fields required by all insns,
313 virtual and real. */
315 static INLINE void
316 @prefix@_fill_argbuf (const SIM_CPU *cpu, ARGBUF *abuf, const IDESC *idesc,
317 PCADDR pc, int fast_p)
319 #if WITH_SCACHE
320 SEM_SET_CODE (abuf, idesc, fast_p);
321 ARGBUF_ADDR (abuf) = pc;
322 #endif
323 ARGBUF_IDESC (abuf) = idesc;
326 /* Fill in tracing/profiling fields of an ARGBUF. */
328 static INLINE void
329 @prefix@_fill_argbuf_tp (const SIM_CPU *cpu, ARGBUF *abuf,
330 int trace_p, int profile_p)
332 ARGBUF_TRACE_P (abuf) = trace_p;
333 ARGBUF_PROFILE_P (abuf) = profile_p;
336 #if WITH_SCACHE_PBB
338 /* Emit the "x-before" handler.
339 x-before is emitted before each insn (serial or parallel).
340 This is as opposed to x-after which is only emitted at the end of a group
341 of parallel insns. */
343 static INLINE void
344 @prefix@_emit_before (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc, int first_p)
346 ARGBUF *abuf = &sc[0].argbuf;
347 const IDESC *id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEFORE];
349 abuf->fields.before.first_p = first_p;
350 @prefix@_fill_argbuf (current_cpu, abuf, id, pc, 0);
351 /* no need to set trace_p,profile_p */
354 /* Emit the "x-after" handler.
355 x-after is emitted after a serial insn or at the end of a group of
356 parallel insns. */
358 static INLINE void
359 @prefix@_emit_after (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc)
361 ARGBUF *abuf = &sc[0].argbuf;
362 const IDESC *id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_AFTER];
364 @prefix@_fill_argbuf (current_cpu, abuf, id, pc, 0);
365 /* no need to set trace_p,profile_p */
368 #endif /* WITH_SCACHE_PBB */
372 ${SHELL} $infile support
374 ##########################################################################
376 # Simple engine: fetch an instruction, execute the instruction.
378 # Instruction fields are not extracted into ARGBUF, they are extracted in
379 # the semantic routines themselves. However, there is still a need to pass
380 # and return misc. information to the semantic routines so we still use ARGBUF.
381 # [One could certainly implement things differently and remove ARGBUF.
382 # It's not clear this is necessarily always a win.]
383 # ??? The use of the SCACHE struct is for consistency with the with-scache
384 # case though it might be a source of confusion.
386 if [ x$scache != xyes -a x$pbb != xyes ] ; then
388 cat << EOF
390 #define FAST_P 0
392 void
393 @prefix@_engine_run_full (SIM_CPU *current_cpu)
395 #define FAST_P 0
396 SIM_DESC current_state = CPU_STATE (current_cpu);
397 /* ??? Use of SCACHE is a bit of a hack as we don't actually use the scache.
398 We do however use ARGBUF so for consistency with the other engine flavours
399 the SCACHE type is used. */
400 SCACHE cache[MAX_LIW_INSNS];
401 SCACHE *sc = &cache[0];
405 case x$parallel in
406 xread | xwrite)
407 cat << EOF
408 PAREXEC pbufs[MAX_PARALLEL_INSNS];
409 PAREXEC *par_exec;
413 esac
415 # Any initialization code before looping starts.
416 # Note that this code may declare some locals.
417 ${SHELL} $infile init
419 if [ x$parallel = xread ] ; then
420 cat << EOF
422 #if defined (__GNUC__)
424 if (! CPU_IDESC_READ_INIT_P (current_cpu))
426 /* ??? Later maybe paste read.c in when building mainloop.c. */
427 #define DEFINE_LABELS
428 #include "readx.c"
429 CPU_IDESC_READ_INIT_P (current_cpu) = 1;
432 #endif
437 cat << EOF
439 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
441 #if WITH_SEM_SWITCH_FULL
442 #if defined (__GNUC__)
443 /* ??? Later maybe paste sem-switch.c in when building mainloop.c. */
444 #define DEFINE_LABELS
445 #include "$switch"
446 #endif
447 #else
448 @prefix@_sem_init_idesc_table (current_cpu);
449 #endif
450 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
455 /* begin full-exec-simple */
458 ${SHELL} $infile full-exec-simple
460 cat << EOF
461 /* end full-exec-simple */
463 ++ CPU_INSN_COUNT (current_cpu);
465 while (0 /*CPU_RUNNING_P (current_cpu)*/);
468 #undef FAST_P
472 ####################################
474 # Simple engine: fast version.
475 # ??? A somewhat dubious effort, but for completeness' sake.
477 if [ x$fast = xyes ] ; then
479 cat << EOF
481 #define FAST_P 1
483 FIXME: "fast simple version unimplemented, delete -fast arg to genmloop.sh."
485 #undef FAST_P
489 fi # -fast
491 fi # simple engine
493 ##########################################################################
495 # Non-parallel scache engine: lookup insn in scache, fetch if missing,
496 # then execute it.
498 if [ x$scache = xyes -a x$parallel = xno ] ; then
500 cat << EOF
502 static INLINE SCACHE *
503 @prefix@_scache_lookup (SIM_CPU *current_cpu, PCADDR vpc, SCACHE *scache,
504 unsigned int hash_mask, int FAST_P)
506 /* First step: look up current insn in hash table. */
507 SCACHE *sc = scache + SCACHE_HASH_PC (vpc, hash_mask);
509 /* If the entry isn't the one we want (cache miss),
510 fetch and decode the instruction. */
511 if (sc->argbuf.addr != vpc)
513 if (! FAST_P)
514 PROFILE_COUNT_SCACHE_MISS (current_cpu);
516 /* begin extract-scache */
519 ${SHELL} $infile extract-scache
521 cat << EOF
522 /* end extract-scache */
524 else if (! FAST_P)
526 PROFILE_COUNT_SCACHE_HIT (current_cpu);
527 /* Make core access statistics come out right.
528 The size is a guess, but it's currently not used either. */
529 PROFILE_COUNT_CORE (current_cpu, vpc, 2, exec_map);
532 return sc;
535 #define FAST_P 0
537 void
538 @prefix@_engine_run_full (SIM_CPU *current_cpu)
540 SIM_DESC current_state = CPU_STATE (current_cpu);
541 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
542 unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
543 SEM_PC vpc;
547 # Any initialization code before looping starts.
548 # Note that this code may declare some locals.
549 ${SHELL} $infile init
551 cat << EOF
553 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
555 #if ! WITH_SEM_SWITCH_FULL
556 @prefix@_sem_init_idesc_table (current_cpu);
557 #endif
558 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
561 vpc = GET_H_PC ();
565 SCACHE *sc;
567 sc = @prefix@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
569 /* begin full-exec-scache */
572 ${SHELL} $infile full-exec-scache
574 cat << EOF
575 /* end full-exec-scache */
577 SET_H_PC (vpc);
579 ++ CPU_INSN_COUNT (current_cpu);
581 while (0 /*CPU_RUNNING_P (current_cpu)*/);
584 #undef FAST_P
588 ####################################
590 # Non-parallel scache engine: fast version.
592 if [ x$fast = xyes ] ; then
594 cat << EOF
596 #define FAST_P 1
598 void
599 @prefix@_engine_run_fast (SIM_CPU *current_cpu)
601 SIM_DESC current_state = CPU_STATE (current_cpu);
602 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
603 unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
604 SEM_PC vpc;
608 # Any initialization code before looping starts.
609 # Note that this code may declare some locals.
610 ${SHELL} $infile init
612 cat << EOF
614 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
616 #if WITH_SEM_SWITCH_FAST
617 #if defined (__GNUC__)
618 /* ??? Later maybe paste sem-switch.c in when building mainloop.c. */
619 #define DEFINE_LABELS
620 #include "$switch"
621 #endif
622 #else
623 @prefix@_semf_init_idesc_table (current_cpu);
624 #endif
625 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
628 vpc = GET_H_PC ();
632 SCACHE *sc;
634 sc = @prefix@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
636 /* begin fast-exec-scache */
639 ${SHELL} $infile fast-exec-scache
641 cat << EOF
642 /* end fast-exec-scache */
644 SET_H_PC (vpc);
646 ++ CPU_INSN_COUNT (current_cpu);
648 while (0 /*CPU_RUNNING_P (current_cpu)*/);
651 #undef FAST_P
655 fi # -fast
657 fi # -scache && ! parallel
659 ##########################################################################
661 # Parallel scache engine: lookup insn in scache, fetch if missing,
662 # then execute it.
663 # For the parallel case we give the target more flexibility.
665 if [ x$scache = xyes -a x$parallel != xno ] ; then
667 cat << EOF
669 static INLINE SCACHE *
670 @prefix@_scache_lookup (SIM_CPU *current_cpu, PCADDR vpc, SCACHE *scache,
671 unsigned int hash_mask, int FAST_P)
673 /* First step: look up current insn in hash table. */
674 SCACHE *sc = scache + SCACHE_HASH_PC (vpc, hash_mask);
676 /* If the entry isn't the one we want (cache miss),
677 fetch and decode the instruction. */
678 if (sc->argbuf.addr != vpc)
680 if (! FAST_P)
681 PROFILE_COUNT_SCACHE_MISS (current_cpu);
683 #define SET_LAST_INSN_P(last_p) do { sc->last_insn_p = (last_p); } while (0)
684 /* begin extract-scache */
687 ${SHELL} $infile extract-scache
689 cat << EOF
690 /* end extract-scache */
691 #undef SET_LAST_INSN_P
693 else if (! FAST_P)
695 PROFILE_COUNT_SCACHE_HIT (current_cpu);
696 /* Make core access statistics come out right.
697 The size is a guess, but it's currently not used either. */
698 PROFILE_COUNT_CORE (current_cpu, vpc, 2, exec_map);
701 return sc;
704 #define FAST_P 0
706 void
707 @prefix@_engine_run_full (SIM_CPU *current_cpu)
709 SIM_DESC current_state = CPU_STATE (current_cpu);
710 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
711 unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
712 SEM_PC vpc;
716 # Any initialization code before looping starts.
717 # Note that this code may declare some locals.
718 ${SHELL} $infile init
720 if [ x$parallel = xread ] ; then
721 cat << EOF
722 #if defined (__GNUC__)
724 if (! CPU_IDESC_READ_INIT_P (current_cpu))
726 /* ??? Later maybe paste read.c in when building mainloop.c. */
727 #define DEFINE_LABELS
728 #include "readx.c"
729 CPU_IDESC_READ_INIT_P (current_cpu) = 1;
732 #endif
737 cat << EOF
739 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
741 #if ! WITH_SEM_SWITCH_FULL
742 @prefix@_sem_init_idesc_table (current_cpu);
743 #endif
744 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
747 vpc = GET_H_PC ();
751 /* begin full-exec-scache */
754 ${SHELL} $infile full-exec-scache
756 cat << EOF
757 /* end full-exec-scache */
759 while (0 /*CPU_RUNNING_P (current_cpu)*/);
762 #undef FAST_P
766 ####################################
768 # Parallel scache engine: fast version.
770 if [ x$fast = xyes ] ; then
772 cat << EOF
774 #define FAST_P 1
776 void
777 @prefix@_engine_run_fast (SIM_CPU *current_cpu)
779 SIM_DESC current_state = CPU_STATE (current_cpu);
780 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
781 unsigned int hash_mask = CPU_SCACHE_HASH_MASK (current_cpu);
782 SEM_PC vpc;
783 PAREXEC pbufs[MAX_PARALLEL_INSNS];
784 PAREXEC *par_exec;
788 # Any initialization code before looping starts.
789 # Note that this code may declare some locals.
790 ${SHELL} $infile init
792 if [ x$parallel = xread ] ; then
793 cat << EOF
795 #if defined (__GNUC__)
797 if (! CPU_IDESC_READ_INIT_P (current_cpu))
799 /* ??? Later maybe paste read.c in when building mainloop.c. */
800 #define DEFINE_LABELS
801 #include "readx.c"
802 CPU_IDESC_READ_INIT_P (current_cpu) = 1;
805 #endif
810 cat << EOF
812 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
814 #if WITH_SEM_SWITCH_FAST
815 #if defined (__GNUC__)
816 /* ??? Later maybe paste sem-switch.c in when building mainloop.c. */
817 #define DEFINE_LABELS
818 #include "$switch"
819 #endif
820 #else
821 @prefix@_semf_init_idesc_table (current_cpu);
822 #endif
823 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
826 vpc = GET_H_PC ();
830 /* begin fast-exec-scache */
833 ${SHELL} $infile fast-exec-scache
835 cat << EOF
836 /* end fast-exec-scache */
838 while (0 /*CPU_RUNNING_P (current_cpu)*/);
841 #undef FAST_P
845 fi # -fast
847 fi # -scache && parallel
849 ##########################################################################
851 # Compilation engine: lookup insn in scache, extract a pbb
852 # (pseudo-basic-block) if missing, then execute the pbb.
853 # A "pbb" is a sequence of insns up to the next cti insn or until
854 # some prespecified maximum.
855 # CTI: control transfer instruction.
857 if [ x$pbb = xyes ] ; then
859 cat << EOF
861 /* Record address of cti terminating a pbb. */
862 #define SET_CTI_VPC(sc) do { _cti_sc = (sc); } while (0)
863 /* Record number of [real] insns in pbb. */
864 #define SET_INSN_COUNT(n) do { _insn_count = (n); } while (0)
866 /* Fetch and extract a pseudo-basic-block.
867 FAST_P is non-zero if no tracing/profiling/etc. is wanted. */
869 INLINE SEM_PC
870 @prefix@_pbb_begin (SIM_CPU *current_cpu, int FAST_P)
872 SEM_PC new_vpc;
873 PCADDR pc;
874 SCACHE *sc;
875 int max_insns = CPU_SCACHE_MAX_CHAIN_LENGTH (current_cpu);
877 pc = GET_H_PC ();
879 new_vpc = scache_lookup_or_alloc (current_cpu, pc, max_insns, &sc);
880 if (! new_vpc)
882 /* Leading '_' to avoid collision with mainloop.in. */
883 int _insn_count = 0;
884 SCACHE *orig_sc = sc;
885 SCACHE *_cti_sc = NULL;
886 int slice_insns = CPU_MAX_SLICE_INSNS (current_cpu);
888 /* First figure out how many instructions to compile.
889 MAX_INSNS is the size of the allocated buffer, which includes space
890 for before/after handlers if they're being used.
891 SLICE_INSNS is the maxinum number of real insns that can be
892 executed. Zero means "as many as we want". */
893 /* ??? max_insns is serving two incompatible roles.
894 1) Number of slots available in scache buffer.
895 2) Number of real insns to execute.
896 They're incompatible because there are virtual insns emitted too
897 (chain,cti-chain,before,after handlers). */
899 if (slice_insns == 1)
901 /* No need to worry about extra slots required for virtual insns
902 and parallel exec support because MAX_CHAIN_LENGTH is
903 guaranteed to be big enough to execute at least 1 insn! */
904 max_insns = 1;
906 else
908 /* Allow enough slop so that while compiling insns, if max_insns > 0
909 then there's guaranteed to be enough space to emit one real insn.
910 MAX_CHAIN_LENGTH is typically much longer than
911 the normal number of insns between cti's anyway. */
912 max_insns -= (1 /* one for the trailing chain insn */
913 + (FAST_P
915 : (1 + MAX_PARALLEL_INSNS) /* before+after */)
916 + (MAX_PARALLEL_INSNS > 1
917 ? (MAX_PARALLEL_INSNS * 2)
918 : 0));
920 /* Account for before/after handlers. */
921 if (! FAST_P)
922 slice_insns *= 3;
924 if (slice_insns > 0
925 && slice_insns < max_insns)
926 max_insns = slice_insns;
929 new_vpc = sc;
931 /* SC,PC must be updated to point passed the last entry used.
932 SET_CTI_VPC must be called if pbb is terminated by a cti.
933 SET_INSN_COUNT must be called to record number of real insns in
934 pbb [could be computed by us of course, extra cpu but perhaps
935 negligible enough]. */
937 /* begin extract-pbb */
940 ${SHELL} $infile extract-pbb
942 cat << EOF
943 /* end extract-pbb */
945 /* The last one is a pseudo-insn to link to the next chain.
946 It is also used to record the insn count for this chain. */
948 const IDESC *id;
950 /* Was pbb terminated by a cti? */
951 if (_cti_sc)
953 id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_CTI_CHAIN];
955 else
957 id = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_CHAIN];
959 SEM_SET_CODE (&sc->argbuf, id, FAST_P);
960 sc->argbuf.idesc = id;
961 sc->argbuf.addr = pc;
962 sc->argbuf.fields.chain.insn_count = _insn_count;
963 sc->argbuf.fields.chain.next = 0;
964 sc->argbuf.fields.chain.branch_target = 0;
965 ++sc;
968 /* Update the pointer to the next free entry, may not have used as
969 many entries as was asked for. */
970 CPU_SCACHE_NEXT_FREE (current_cpu) = sc;
971 /* Record length of chain if profiling.
972 This includes virtual insns since they count against
973 max_insns too. */
974 if (! FAST_P)
975 PROFILE_COUNT_SCACHE_CHAIN_LENGTH (current_cpu, sc - orig_sc);
978 return new_vpc;
981 /* Chain to the next block from a non-cti terminated previous block. */
983 INLINE SEM_PC
984 @prefix@_pbb_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg)
986 ARGBUF *abuf = SEM_ARGBUF (sem_arg);
988 PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);
990 SET_H_PC (abuf->addr);
992 /* If not running forever, exit back to main loop. */
993 if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
994 /* Also exit back to main loop if there's an event.
995 Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
996 at the "right" time, but then that was what was asked for.
997 There is no silver bullet for simulator engines.
998 ??? Clearly this needs a cleaner interface.
999 At present it's just so Ctrl-C works. */
1000 || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
1001 CPU_RUNNING_P (current_cpu) = 0;
1003 /* If chained to next block, go straight to it. */
1004 if (abuf->fields.chain.next)
1005 return abuf->fields.chain.next;
1006 /* See if next block has already been compiled. */
1007 abuf->fields.chain.next = scache_lookup (current_cpu, abuf->addr);
1008 if (abuf->fields.chain.next)
1009 return abuf->fields.chain.next;
1010 /* Nope, so next insn is a virtual insn to invoke the compiler
1011 (begin a pbb). */
1012 return CPU_SCACHE_PBB_BEGIN (current_cpu);
1015 /* Chain to the next block from a cti terminated previous block.
1016 BR_TYPE indicates whether the branch was taken and whether we can cache
1017 the vpc of the branch target.
1018 NEW_PC is the target's branch address, and is only valid if
1019 BR_TYPE != SEM_BRANCH_UNTAKEN. */
1021 INLINE SEM_PC
1022 @prefix@_pbb_cti_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg,
1023 SEM_BRANCH_TYPE br_type, PCADDR new_pc)
1025 SEM_PC *new_vpc_ptr;
1027 PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);
1029 /* If not running forever, exit back to main loop. */
1030 if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
1031 /* Also exit back to main loop if there's an event.
1032 Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
1033 at the "right" time, but then that was what was asked for.
1034 There is no silver bullet for simulator engines.
1035 ??? Clearly this needs a cleaner interface.
1036 At present it's just so Ctrl-C works. */
1037 || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
1038 CPU_RUNNING_P (current_cpu) = 0;
1040 /* Restart compiler if we branched to an uncacheable address
1041 (e.g. "j reg"). */
1042 if (br_type == SEM_BRANCH_UNCACHEABLE)
1044 SET_H_PC (new_pc);
1045 return CPU_SCACHE_PBB_BEGIN (current_cpu);
1048 /* If branch wasn't taken, update the pc and set BR_ADDR_PTR to our
1049 next chain ptr. */
1050 if (br_type == SEM_BRANCH_UNTAKEN)
1052 ARGBUF *abuf = SEM_ARGBUF (sem_arg);
1053 new_pc = abuf->addr;
1054 SET_H_PC (new_pc);
1055 new_vpc_ptr = &abuf->fields.chain.next;
1057 else
1059 ARGBUF *abuf = SEM_ARGBUF (sem_arg);
1060 SET_H_PC (new_pc);
1061 new_vpc_ptr = &abuf->fields.chain.branch_target;
1064 /* If chained to next block, go straight to it. */
1065 if (*new_vpc_ptr)
1066 return *new_vpc_ptr;
1067 /* See if next block has already been compiled. */
1068 *new_vpc_ptr = scache_lookup (current_cpu, new_pc);
1069 if (*new_vpc_ptr)
1070 return *new_vpc_ptr;
1071 /* Nope, so next insn is a virtual insn to invoke the compiler
1072 (begin a pbb). */
1073 return CPU_SCACHE_PBB_BEGIN (current_cpu);
1076 /* x-before handler.
1077 This is called before each insn. */
1079 void
1080 @prefix@_pbb_before (SIM_CPU *current_cpu, SCACHE *sc)
1082 SEM_ARG sem_arg = sc;
1083 const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
1084 int first_p = abuf->fields.before.first_p;
1085 const ARGBUF *cur_abuf = SEM_ARGBUF (sc + 1);
1086 const IDESC *cur_idesc = cur_abuf->idesc;
1087 PCADDR pc = cur_abuf->addr;
1089 if (ARGBUF_PROFILE_P (cur_abuf))
1090 PROFILE_COUNT_INSN (current_cpu, pc, cur_idesc->num);
1092 /* If this isn't the first insn, finish up the previous one. */
1094 if (! first_p)
1096 if (PROFILE_MODEL_P (current_cpu))
1098 const SEM_ARG prev_sem_arg = sc - 1;
1099 const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);
1100 const IDESC *prev_idesc = prev_abuf->idesc;
1101 int cycles;
1103 /* ??? May want to measure all insns if doing insn tracing. */
1104 if (ARGBUF_PROFILE_P (prev_abuf))
1106 cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
1107 @prefix@_model_insn_after (current_cpu, 0 /*last_p*/, cycles);
1111 TRACE_INSN_FINI (current_cpu, cur_abuf, 0 /*last_p*/);
1114 /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
1115 if (PROFILE_MODEL_P (current_cpu)
1116 && ARGBUF_PROFILE_P (cur_abuf))
1117 @prefix@_model_insn_before (current_cpu, first_p);
1119 TRACE_INSN_INIT (current_cpu, cur_abuf, first_p);
1120 TRACE_INSN (current_cpu, cur_idesc->idata, cur_abuf, pc);
1123 /* x-after handler.
1124 This is called after a serial insn or at the end of a group of parallel
1125 insns. */
1127 void
1128 @prefix@_pbb_after (SIM_CPU *current_cpu, SCACHE *sc)
1130 SEM_ARG sem_arg = sc;
1131 const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
1132 const SEM_ARG prev_sem_arg = sc - 1;
1133 const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);
1135 /* ??? May want to measure all insns if doing insn tracing. */
1136 if (PROFILE_MODEL_P (current_cpu)
1137 && ARGBUF_PROFILE_P (prev_abuf))
1139 const IDESC *prev_idesc = prev_abuf->idesc;
1140 int cycles;
1142 cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
1143 @prefix@_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
1145 TRACE_INSN_FINI (current_cpu, prev_abuf, 1 /*last_p*/);
1148 #define FAST_P 0
1150 void
1151 @prefix@_engine_run_full (SIM_CPU *current_cpu)
1153 SIM_DESC current_state = CPU_STATE (current_cpu);
1154 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
1155 /* virtual program counter */
1156 SEM_PC vpc;
1157 #if WITH_SEM_SWITCH_FULL
1158 /* For communication between cti's and cti-chain. */
1159 SEM_BRANCH_TYPE pbb_br_type;
1160 PCADDR pbb_br_npc;
1161 #endif
1165 case x$parallel in
1166 xread | xwrite)
1167 cat << EOF
1168 PAREXEC pbufs[MAX_PARALLEL_INSNS];
1169 PAREXEC *par_exec = &pbufs[0];
1173 esac
1175 # Any initialization code before looping starts.
1176 # Note that this code may declare some locals.
1177 ${SHELL} $infile init
1179 cat << EOF
1181 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
1183 /* ??? 'twould be nice to move this up a level and only call it once.
1184 On the other hand, in the "let's go fast" case the test is only done
1185 once per pbb (since we only return to the main loop at the end of
1186 a pbb). And in the "let's run until we're done" case we don't return
1187 until the program exits. */
1189 #if WITH_SEM_SWITCH_FULL
1190 #if defined (__GNUC__)
1191 /* ??? Later maybe paste sem-switch.c in when building mainloop.c. */
1192 #define DEFINE_LABELS
1193 #include "$switch"
1194 #endif
1195 #else
1196 @prefix@_sem_init_idesc_table (current_cpu);
1197 #endif
1199 /* Initialize the "begin (compile) a pbb" virtual insn. */
1200 vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
1201 SEM_SET_FULL_CODE (SEM_ARGBUF (vpc),
1202 & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN]);
1203 vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN];
1205 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
1208 CPU_RUNNING_P (current_cpu) = 1;
1209 /* ??? In the case where we're returning to the main loop after every
1210 pbb we don't want to call pbb_begin each time (which hashes on the pc
1211 and does a table lookup). A way to speed this up is to save vpc
1212 between calls. */
1213 vpc = @prefix@_pbb_begin (current_cpu, FAST_P);
1217 /* begin full-exec-pbb */
1220 ${SHELL} $infile full-exec-pbb
1222 cat << EOF
1223 /* end full-exec-pbb */
1225 while (CPU_RUNNING_P (current_cpu));
1228 #undef FAST_P
1232 ####################################
1234 # Compile engine: fast version.
1236 if [ x$fast = xyes ] ; then
1238 cat << EOF
1240 #define FAST_P 1
1242 void
1243 @prefix@_engine_run_fast (SIM_CPU *current_cpu)
1245 SIM_DESC current_state = CPU_STATE (current_cpu);
1246 SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
1247 /* virtual program counter */
1248 SEM_PC vpc;
1249 #if WITH_SEM_SWITCH_FAST
1250 /* For communication between cti's and cti-chain. */
1251 SEM_BRANCH_TYPE pbb_br_type;
1252 PCADDR pbb_br_npc;
1253 #endif
1257 case x$parallel in
1258 xread | xwrite)
1259 cat << EOF
1260 PAREXEC pbufs[MAX_PARALLEL_INSNS];
1261 PAREXEC *par_exec = &pbufs[0];
1265 esac
1267 # Any initialization code before looping starts.
1268 # Note that this code may declare some locals.
1269 ${SHELL} $infile init
1271 cat << EOF
1273 if (! CPU_IDESC_SEM_INIT_P (current_cpu))
1275 /* ??? 'twould be nice to move this up a level and only call it once.
1276 On the other hand, in the "let's go fast" case the test is only done
1277 once per pbb (since we only return to the main loop at the end of
1278 a pbb). And in the "let's run until we're done" case we don't return
1279 until the program exits. */
1281 #if WITH_SEM_SWITCH_FAST
1282 #if defined (__GNUC__)
1283 /* ??? Later maybe paste sem-switch.c in when building mainloop.c. */
1284 #define DEFINE_LABELS
1285 #include "$switch"
1286 #endif
1287 #else
1288 @prefix@_semf_init_idesc_table (current_cpu);
1289 #endif
1291 /* Initialize the "begin (compile) a pbb" virtual insn. */
1292 vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
1293 SEM_SET_FAST_CODE (SEM_ARGBUF (vpc),
1294 & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN]);
1295 vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [@PREFIX@_INSN_X_BEGIN];
1297 CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
1300 CPU_RUNNING_P (current_cpu) = 1;
1301 /* ??? In the case where we're returning to the main loop after every
1302 pbb we don't want to call pbb_begin each time (which hashes on the pc
1303 and does a table lookup). A way to speed this up is to save vpc
1304 between calls. */
1305 vpc = @prefix@_pbb_begin (current_cpu, FAST_P);
1309 /* begin fast-exec-pbb */
1312 ${SHELL} $infile fast-exec-pbb
1314 cat << EOF
1315 /* end fast-exec-pbb */
1317 while (CPU_RUNNING_P (current_cpu));
1320 #undef FAST_P
1323 fi # -fast
1325 fi # -pbb
1327 # Expand @..@ macros appearing in tmp-mloop-{pid}.cin.
1328 sed \
1329 -e "s/@cpu@/$cpu/g" -e "s/@CPU@/$CPU/g" \
1330 -e "s/@prefix@/$prefix/g" -e "s/@PREFIX@/$PREFIX/g" < tmp-mloop-$$.cin > mloop${outsuffix}.cin
1331 rc=$?
1332 rm -f tmp-mloop-$$.cin
1334 exit $rc