1 /* The remote-virtual-component simulator framework
2 for GDB, the GNU Debugger.
4 Copyright 2006 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
50 #ifdef HAVE_SYS_TYPES_H
51 #include <sys/types.h>
54 #ifdef HAVE_SYS_TIME_H
58 #ifdef HAVE_SYS_SELECT_H
59 #include <sys/select.h>
62 /* Not guarded in dv-sockser.c, so why here. */
63 #include <netinet/in.h>
64 #include <arpa/inet.h>
66 #include <sys/socket.h>
72 rv - Remote Virtual component
78 Socket connection to a remote simulator component, for example one
79 for testing a verilog construction. Protocol defined below.
81 There is a set of 32-bit I/O ports, with a mapping from local to
82 remote addresses. There is a set of interrupts expressed as a
83 bit-mask, with a mapping from remote to local. There is a set of
84 memory ranges (actual memory defined elsewhere), also with a
85 mapping from remote to local addresses, that is expected to be
86 accessible to the remote simulator in 32-byte chunks (simulating
87 DMA). There is a mapping from remote cycles (or an appropriate
88 elsewhere defined time-slice) to local cycles.
92 reg = <address> <size>
93 The address (within the parent bus) that this device is to
96 remote-reg = <remote-address>
97 The address of reg on the remote side. Defaults to 0.
99 mem = <address> <size>
100 Specify an address-range (within the parent bus) that the remote
101 device can access. The memory is assumed to be already defined.
102 If there's no memory defined but the remote side asks for a memory
103 access, the simulation is aborted.
105 remote-mem = <remote-address>
106 The address of mem on the remote side. Defaults to 0.
109 Address of the mailbox interface. Writes to this address with the
110 local address of a mailbox command, a complete packet with length
111 and command; (4 or 6)) invokes the mailbox interface. Reads are
112 invalid. Replies are written to the same address. Address space
113 from <address> up-to-and-including <address>+3 is allocated.
115 max-poll-ticks = <local-count>
116 Sets the maximum interval between polling the external component,
117 expressed in internal cycles. Defaults to 10000.
119 watchdog-interval = <seconds>
120 Sets the wallclock seconds between watchdog packets sent to the
121 remote side (may be larger if there's no rv activity in that time).
122 Defaults to 30. If set to 0, no watchdog packets are sent.
124 intnum = <local-int-0> <local-int-1> ... <local-int-31>
125 Defines a map from remote bit numbers to local values to be emitted
126 on the "int" port, with the external bit number as the ordinal - 1
127 of the local translation. E.g. 43 121 would mean map external
128 (1<<0) to internal 43 and external (1<<1) to internal 121. The
129 default is unity; no translation. If more than one bit is set in
130 the remote interrupt word, the intmultiple property can be used to
131 control the translation.
133 intmultiple = <intvalue>
134 When more than one bit is set in the remote interrupt word, you may
135 want to map this situation to a separate interrupt value. If this
136 property is non-zero, it is used as that value. If it is zero, the
137 local value for the "int" port is the bitwise-or of the translated
141 The hostname or address where the simulator to be used listens.
142 Defaults to "127.0.0.1"
145 The hostname or address where the simulator to be used listens.
151 Don't connect to a remote side; use initial dummy contents from
152 <filename> (which has to be at least as big as the <size> argument
153 of reg above) or filled with byte-value <value>. Mailboxes are not
154 supported (can be defined but can not be used) and remote-memory
155 accesses don't apply. The main purpose for this property is to
156 simplify use of configuration and simulated hardware that is
157 e.g. only trivially initialized but not actually used.
163 Driven as a result of a remote interrupt request. The value is a
164 32-bit bitset of active interrupts.
174 This is version 1.0 of this protocol, defining packet format and
175 actions in a supposedly upward-compatible manner where client and
176 servers of different versions are expected to interoperate; the
177 format and the definitions below are hopefully generic enough to
180 Each connection has a server and a client (this code); the roles
181 are known beforehand. The client usually corresponds to a CPU and
182 memory system and the server corresponds to a memory-mapped
183 register hardware interface and/or a DMA controller. They
184 communicate using packets with specific commands, of which some
185 require replies from the other side; most are intiated by the
186 client with one exception. A reply uses the same format as the
189 Packets are at least three bytes long, where the first two bytes
190 form a header, a 16-bit little-endian number that is the total
191 length of the packet including the header. There is also a
192 one-byte command. The payload is optional, depending on the
195 [[16-bit-low-byte-of-length] [16-bit-high-byte-of-length]
196 [command/reply] [payload byte 0] [payload byte 1]
197 ... [payload byte (length-of-packet - 3)]]
201 A client or server that reads an undocumented command may exit with
202 a hard error. Payload not defined or disallowed below is ignored.
204 It is expected that future client versions find out the version of
205 the server side by polling with base commands, assuming earlier
206 versions if a certain reply isn't seen, with newly defined payload
207 parts where earlier versions left it undefined. New commands and
208 formats are sent only to the other side after the client and server
209 has found out each others version. Not all servers support all
210 commands; the type of server and supported set of commands is
211 expected to be known beforehand.
214 Initiated by the client, requires a reply from the server. The
215 payload from the client is at least 4 bytes, forming a 4-byte
216 little-endian address, the rest being undefined. The reply from
217 the server is at least 8 bytes, forming the same address data as in
218 the request and the second 4-byte data being the little-endian
222 Initiated by the client, requires a reply from the server. Payload
223 from the client is at least 8 bytes, forming a 4-byte little-endian
224 word being the address, the rest being the little-endian contents
225 to write. The reply from the server is 8 bytes unless elsewhere
226 agreed otherwise, forming the same address and data as in the
227 request. The data sent back may have been altered to correspond to
228 defined parts but can safely be discarded.
231 Initiated by the server, no reply. The payload is 4 bytes, forming
232 a little-endian word with bits numbers corresponding to currently
233 active interrupt sources; value (1<<N) indicating interrupt source
237 Initiated by the server, requires a reply. A client must know
238 beforehand when (in command sequence or constant) the server can
239 send this command and if so must then not send any commands of its
240 own (including watchdog commands); the server is allowed to assume
241 that incoming data is only replies to this command. The format is
242 8 bytes of data; 4 bytes of little-endian address followed by a
243 32-bit little endian word with the number of bytes to read. The
244 reply is the same address and number of bytes, followed by the data
248 Initiated by the server, no reply. The format is the same as a
249 reply to RV_MEM_RD_CMD; a 32-bit little-endian address, followed by
250 the 32-bit little-endian number of bytes to write (redundant
251 information but must be consistent with the packet header).
253 RV_MBOX_HANDLE_CMD = 5
254 Initiated by the client, requires a reply. The payload is 4
255 undefined bytes followed by an binary blob, the size of the
256 blob given by the packet header. The reply is a 32-bit little
257 endian number at the same index as the undefined bytes. Actual
258 semantics are application-specific.
261 Initiated by the client, requires a reply, with the reply using the
262 RV_MBOX_HANDLE_CMD reply format (i.e. *both* that command and
263 32-bit little-endian number). The payload is a 32-bit little
264 endian number followed by an undefined payload, at most 20 bytes
265 long. The reply is a 32-bit little endian number. Actual
266 semantics are application-specific.
269 Initiated by the client, no reply. A version 1.0 client sends no
270 payload; a version 1.0 server should ignore any such payload. A
271 version 1.0 server must not send a reply.
274 Possible future enhancements:
276 Synchronization; server and client reports the number of elapsed
277 cycles (unit to-be-defined) at each request or notification.
278 Pretty much the top-of-the-todo-list item.
280 Large addresses; 1.0 being restricted to 32-bit addresses.
282 Variable-size data; currently restricted to 32-bit register
285 Specified data endianness (not the packet header) perhaps as part
286 of an initial format request; currently little-endian only.
290 When used with servers sending RV_MEM_RD_CMD but being
291 narrow-minded about indata, set watchdog-interval to 0. Use
292 multiple rv instances when there are e.g. separate register and
293 memory servers. Alway log, setting "/rv/trace? true", at the
294 development phase. Borrow from the test-suite.
297 #define RV_FAMILY_NAME "rv"
305 RV_MBOX_HANDLE_CMD
= 5,
311 typedef struct _hw_rv_device
313 /* Mapping of remote interrupt bit-numbers to local ones. */
314 unsigned32 remote_to_local_int
[32];
316 /* When multiple bits are set, a non-zero value here indicates that
317 this value should be used instead. */
318 unsigned32 intmultiple
;
320 /* Local address of registers. */
321 unsigned32 reg_address
;
323 /* Size of register bank in bytes. */
326 /* Remote address of registers. */
327 unsigned32 remote_reg_address
;
329 /* Local address of DMA:able memory. */
330 unsigned32 mem_address
;
332 /* Size of DMA:able memory in bytes. */
335 /* Bitmask for valid DMA request size. */
336 unsigned32 mem_burst_mask
;
338 /* Remote address of DMA:able memory. */
339 unsigned32 remote_mem_address
;
341 /* (Local) address of mbox; where to put a pointer to the mbox to be
343 unsigned32 mbox_address
;
345 /* Probably not 127.0.0.1:10000. */
349 /* If non-NULL, points to memory to use instead of connection. */
352 /* File descriptor for the socket. Set to -1 when error. Only one
353 of dummy and this is active. */
356 /* Stashed errno, as we don't emit an error right away. */
359 /* This, plus latency because the CPU might not be checking until a
360 CTI insn (usually a branch or a jump) is the interval in cycles
361 between the rv is polled for e.g. DMA requests. */
362 unsigned32 max_tick_poll_interval
;
364 /* Running counter for exponential backoff up to
365 max_tick_poll_interval to avoid polling the connection
366 unnecessarily often. Set to 1 when rv activity (read/write
367 register, DMA request) is detected. */
368 unsigned32 next_period
;
370 /* This is the interval in wall-clock seconds between watchdog
371 packets are sent to the remote side. Zero means no watchdog
373 unsigned32 watchdog_interval
;
375 /* Last time we sent a watchdog packet. */
376 struct timeval last_wdog_time
;
378 /* Mostly used as a kludge for knowing which rv:s have poll events
380 struct hw_event
*poll_callback
;
384 /* We might add ports in the future, so keep this an enumeration. */
391 static const struct hw_port_descriptor hw_rv_ports
[] = {
392 { "int", INT_PORT
, 0, output_port
},
396 /* Send LEN bytes of data from BUF to the socket. Abort on
400 hw_rv_write (struct hw
*me
,
404 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
405 unsigned8
*bufp
= buf
;
407 /* If we don't have a valid fd here, it's because we got an error
408 initially, and we suppressed that error. */
410 hw_abort (me
, "couldn't open a connection to %s:%d because: %s",
411 rv
->host
, rv
->port
, strerror (rv
->saved_errno
));
415 ssize_t ret
= write (rv
->fd
, bufp
, len
);
417 /* FIXME: More graceful exit. */
418 hw_abort (me
, "write to %s:%d failed: %s\n", rv
->host
, rv
->port
,
426 /* Read LEN bytes of data into BUF from the socket. Set the file
427 descriptor to -1 if there's an error. */
430 hw_rv_read (struct hw
*me
,
434 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
435 unsigned8
*bufp
= buf
;
439 ssize_t ret
= read (rv
->fd
, bufp
, len
);
441 /* We get all zero if the remote end quits, but no error
442 indication; even select says there's data active. */
445 if (close (rv
->fd
) != 0)
446 /* FIXME: More graceful exit. */
447 hw_abort (me
, "read from %s:%d failed: %d\n", rv
->host
, rv
->port
, errno
);
457 /* Construct and send a packet of data of type CMD and len
458 LEN_NOHEADER (not counting the header...). */
461 hw_rv_send (struct hw
*me
,
464 unsigned int len_noheader
)
466 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
469 unsigned int len
= len_noheader
+ 3;
473 buf
[1] = (len
>> 8) & 255;
476 if (len
> sizeof (buf
))
478 hw_rv_write (me
, buf
, 3);
484 memcpy (buf
+ 3, msg
, len_noheader
);
488 hw_rv_write (me
, bufp
, len
);
491 /* Handle incoming DMA requests as per the RV_MEM_RD_CMD packet.
495 hw_rv_read_mem (struct hw
*me
, unsigned int len
)
497 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
498 /* If you change this size, please adjust the mem2 testcase. */
500 unsigned8
*bufp
= buf
;
507 hw_abort (me
, "expected DMA read request len 8+3, got %d+3", len
);
509 hw_rv_read (me
, &leaddr
, 4);
510 hw_rv_read (me
, &lelen
, 4);
511 len
= LE2H_4 (lelen
);
512 addr
= LE2H_4 (leaddr
);
514 if (addr
< rv
->remote_mem_address
515 || addr
>= rv
->remote_mem_address
+ rv
->mem_size
)
516 hw_abort (me
, "DMA read at remote 0x%x; outside [0x%x..0x%x-1]",
517 (unsigned) addr
, (unsigned) rv
->remote_mem_address
,
518 (unsigned) (rv
->remote_mem_address
+ rv
->mem_size
));
519 addr
= addr
- rv
->remote_mem_address
+ rv
->mem_address
;
522 hw_abort (me
, "DMA read request for 0 bytes isn't supported");
524 if (len
& ~rv
->mem_burst_mask
)
525 hw_abort (me
, "DMA trying to read %d bytes; not matching mask of 0x%x",
526 len
, rv
->mem_burst_mask
);
527 if (len
+ 8 > sizeof (buf
))
528 bufp
= hw_malloc (me
, len
+ 8);
530 HW_TRACE ((me
, "DMA R 0x%x..0x%x", addr
, addr
+ len
-1));
531 hw_dma_read_buffer (me
, bufp
+ 8, 0, addr
, len
);
533 for (i
= 0; i
< len
; i
+= 4)
534 HW_TRACE ((me
, "0x%x: %02x %02x %02x %02x",
536 bufp
[i
+8], bufp
[i
+9], bufp
[i
+10], bufp
[i
+11]));
538 memcpy (bufp
, &leaddr
, 4);
539 memcpy (bufp
+ 4, &lelen
, 4);
540 hw_rv_send (me
, RV_MEM_RD_CMD
, bufp
, len
+ 8);
545 /* Handle incoming DMA requests as per the RV_MEM_WR_CMD packet.
549 hw_rv_write_mem (struct hw
*me
, unsigned int plen
)
551 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
552 /* If you change this size, please adjust the mem2 testcase. */
554 unsigned8
*bufp
= buf
;
561 hw_rv_read (me
, &leaddr
, 4);
562 hw_rv_read (me
, &lelen
, 4);
563 len
= LE2H_4 (lelen
);
564 addr
= LE2H_4 (leaddr
);
568 "inconsistency in DMA write request packet: "
569 "envelope %d+3, inner %d bytes", plen
, len
);
571 if (addr
< rv
->remote_mem_address
572 || addr
>= rv
->remote_mem_address
+ rv
->mem_size
)
573 hw_abort (me
, "DMA write at remote 0x%x; outside [0x%x..0x%x-1]",
574 (unsigned) addr
, (unsigned) rv
->remote_mem_address
,
575 (unsigned) (rv
->remote_mem_address
+ rv
->mem_size
));
577 addr
= addr
- rv
->remote_mem_address
+ rv
->mem_address
;
579 hw_abort (me
, "DMA write request for 0 bytes isn't supported");
581 if (len
& ~rv
->mem_burst_mask
)
582 hw_abort (me
, "DMA trying to write %d bytes; not matching mask of 0x%x",
583 len
, rv
->mem_burst_mask
);
584 if (len
+ 8 > sizeof (buf
))
585 bufp
= hw_malloc (me
, len
+ 8);
587 hw_rv_read (me
, bufp
+ 8, len
);
588 HW_TRACE ((me
, "DMA W 0x%x..0x%x", addr
, addr
+ len
- 1));
589 hw_dma_write_buffer (me
, bufp
+ 8, 0, addr
, len
, 0);
591 for (i
= 0; i
< len
; i
+= 4)
592 HW_TRACE ((me
, "0x%x: %02x %02x %02x %02x",
594 bufp
[i
+8], bufp
[i
+9], bufp
[i
+10], bufp
[i
+11]));
600 hw_rv_irq (struct hw
*me
, unsigned int len
)
602 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
603 unsigned32 intbitsle
;
604 unsigned32 intbits_ext
;
605 unsigned32 intval
= 0;
609 hw_abort (me
, "IRQ with %d data not supported", len
);
611 hw_rv_read (me
, &intbitsle
, 4);
612 intbits_ext
= LE2H_4 (intbitsle
);
613 for (i
= 0; i
< 32; i
++)
614 if ((intbits_ext
& (1 << i
)) != 0)
615 intval
|= rv
->remote_to_local_int
[i
];
616 if ((intbits_ext
& ~(intbits_ext
- 1)) != intbits_ext
617 && rv
->intmultiple
!= 0)
618 intval
= rv
->intmultiple
;
620 HW_TRACE ((me
, "IRQ 0x%x", intval
));
621 hw_port_event (me
, INT_PORT
, intval
);
624 /* Handle incoming interrupt notifications as per the RV_IRQ_CMD
625 packet. Abort on errors. */
628 hw_rv_handle_incoming (struct hw
*me
,
631 unsigned int *return_len
)
633 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
640 hw_rv_read (me
, cbuf
, 3);
645 len
= cbuf
[0] + cbuf
[1] * 256 - 3;
648 /* These come in "asynchronously"; not as a reply. */
656 hw_rv_read_mem (me
, len
);
660 hw_rv_write_mem (me
, len
);
664 /* Something is incoming from the other side, so tighten up all
665 slack at the next wait. */
673 /* Don't try to handle more than one of these if we were'nt
674 expecting a reply. */
675 if (expected_type
== -1)
680 /* Require a match between this supposed-reply and the command
682 if (cmd
!= expected_type
)
683 hw_abort (me
, "unexpected reply, expected command %d, got %d",
688 case RV_MBOX_PUT_CMD
:
689 case RV_MBOX_HANDLE_CMD
:
692 hw_rv_read (me
, buf
, len
<= *return_len
? len
: *return_len
);
700 /* Send a watchdog packet. Make a note of wallclock time. */
703 hw_rv_send_wdog (struct hw
*me
)
705 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
706 HW_TRACE ((me
, "WD"));
707 gettimeofday (&rv
->last_wdog_time
, NULL
);
708 hw_rv_send (me
, RV_WATCHDOG_CMD
, "", 0);
711 /* Poll the remote side: see if there's any incoming traffic; handle a
712 packet if so. Send a watchdog packet if it's time to do so.
713 Beware that the Linux select call indicates traffic for a socket
714 that the remote side has closed (which may be because it was
715 finished; don't hork until we need to write something just because
719 hw_rv_poll_once (struct hw
*me
)
721 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
729 /* Connection has died or was never initiated. */
733 FD_SET (rv
->fd
, &rfds
);
735 FD_SET (rv
->fd
, &efds
);
739 ret
= select (rv
->fd
+ 1, &rfds
, NULL
, &efds
, &tv
);
740 gettimeofday (&now
, NULL
);
743 hw_abort (me
, "select failed: %d\n", errno
);
745 if (rv
->watchdog_interval
!= 0
746 && now
.tv_sec
- rv
->last_wdog_time
.tv_sec
>= rv
->watchdog_interval
)
747 hw_rv_send_wdog (me
);
749 if (FD_ISSET (rv
->fd
, &rfds
))
750 hw_rv_handle_incoming (me
, -1, NULL
, NULL
);
753 /* Initialize mapping of remote-to-local interrupt data. */
756 hw_rv_map_ints (struct hw
*me
)
758 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
761 for (i
= 0; i
< 32; i
++)
762 rv
->remote_to_local_int
[i
] = 1 << i
;
764 if (hw_find_property (me
, "intnum") != NULL
)
765 for (i
= 0; i
< 32; i
++)
767 signed_cell val
= -1;
768 if (hw_find_integer_array_property (me
, "intnum", i
, &val
) > 0)
771 rv
->remote_to_local_int
[i
] = val
;
773 hw_abort (me
, "property \"intnum@%d\" must be > 0; is %d",
779 /* Handle the after-N-ticks "poll event", calling the poll-the-fd
780 method. Update the period. */
783 do_poll_event (struct hw
*me
, void *data
)
785 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
786 unsigned32 new_period
;
788 if (rv
->dummy
!= NULL
)
791 hw_rv_poll_once (me
);
794 = hw_event_queue_schedule (me
, rv
->next_period
, do_poll_event
, NULL
);
796 new_period
= rv
->next_period
* 2;
797 if (new_period
<= rv
->max_tick_poll_interval
)
798 rv
->next_period
= new_period
;
801 /* HW tree traverse function for hw_rv_add_init. */
804 hw_rv_add_poller (struct hw
*me
, void *data
)
808 if (hw_family (me
) == NULL
809 || strcmp (hw_family (me
), RV_FAMILY_NAME
) != 0)
812 rv
= (hw_rv_device
*) hw_data (me
);
813 if (rv
->poll_callback
!= NULL
)
817 = hw_event_queue_schedule (me
, 1, do_poll_event
, NULL
);
820 /* Simulator module init function for hw_rv_add_init. */
822 /* FIXME: For the call so hw_tree_traverse, we need to know that the
823 first member of struct sim_hw is the struct hw *root, but there's
824 no accessor method and struct sim_hw is defined in sim-hw.c only.
825 Hence this hack, until an accessor is added, or there's a traverse
826 function that takes a SIM_DESC argument. */
827 struct sim_hw
{ struct hw
*tree
; };
830 hw_rv_add_rv_pollers (SIM_DESC sd
)
832 hw_tree_traverse (STATE_HW (sd
)->tree
, hw_rv_add_poller
, NULL
, NULL
);
836 /* We need to add events for polling, but we can't add one from the
837 finish-function, and there are no other call points, at least for
838 instances without "reg" (when there are just DMA requests from the
839 remote end; no locally initiated activity). Therefore we add a
840 simulator module init function, but those don't have private
841 payload arguments; just a SD argument. We cope by parsing the HW
842 root and making sure *all* "rv":s have poll callbacks installed.
843 Luckily, this is just an initialization step, and not many
844 simultaneous instances of rv are expected: we get a N**2 complexity
845 for visits to each rv node by this method. */
848 hw_rv_add_init (struct hw
*me
)
850 sim_module_add_init_fn (hw_system (me
), hw_rv_add_rv_pollers
);
853 /* Open up a connection to the other side. Abort on errors. */
856 hw_rv_init_socket (struct hw
*me
)
858 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
860 struct sockaddr_in server
;
864 if (rv
->dummy
!= NULL
)
867 memset (&server
, 0, sizeof (server
));
868 server
.sin_family
= AF_INET
;
869 server
.sin_addr
.s_addr
= inet_addr (rv
->host
);
871 /* Solaris 2.7 lacks this macro. */
873 #define INADDR_NONE -1
876 if (server
.sin_addr
.s_addr
== INADDR_NONE
)
879 h
= gethostbyname (rv
->host
);
882 memcpy (&server
.sin_addr
, h
->h_addr
, h
->h_length
);
883 server
.sin_family
= h
->h_addrtype
;
886 hw_abort (me
, "can't resolve host %s", rv
->host
);
889 server
.sin_port
= htons (rv
->port
);
890 sock
= socket (AF_INET
, SOCK_STREAM
, 0);
893 hw_abort (me
, "can't get a socket for %s:%d connection",
896 if (connect (sock
, (struct sockaddr
*) &server
, sizeof server
) >= 0)
900 /* FIXME: init packet here. Maybe start packet too. */
901 if (rv
->watchdog_interval
!= 0)
902 hw_rv_send_wdog (me
);
905 /* Stash the errno for later display, if some connection activity
906 is requested. Don't emit an error here; we might have been
907 called just for test purposes. */
908 rv
->saved_errno
= errno
;
911 /* Local rv register reads end up here. */
914 hw_rv_reg_read (struct hw
*me
,
918 unsigned int nr_bytes
)
920 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
921 unsigned8 addr_data
[8] = "";
922 unsigned32 a_l
= H2LE_4 (addr
- rv
->reg_address
+ rv
->remote_reg_address
);
923 unsigned int len
= 8;
926 hw_abort (me
, "must be four byte read");
928 if (addr
== rv
->mbox_address
)
929 hw_abort (me
, "invalid read of mbox address 0x%x",
930 (unsigned) rv
->mbox_address
);
932 memcpy (addr_data
, &a_l
, 4);
933 HW_TRACE ((me
, "REG R 0x%x", addr
));
934 if (rv
->dummy
!= NULL
)
937 memcpy (addr_data
+ 4, rv
->dummy
+ addr
- rv
->reg_address
, 4);
941 hw_rv_send (me
, RV_READ_CMD
, addr_data
, len
);
942 hw_rv_handle_incoming (me
, RV_READ_CMD
, addr_data
, &len
);
946 hw_abort (me
, "read %d != 8 bytes returned", len
);
947 HW_TRACE ((me
, ":= 0x%02x%02x%02x%02x",
948 addr_data
[7], addr_data
[6], addr_data
[5], addr_data
[4]));
949 memcpy (dest
, addr_data
+ 4, 4);
953 /* Local rv mbox requests (handle or put) end up here. */
956 hw_rv_mbox (struct hw
*me
, unsigned_word address
)
958 unsigned8 buf
[256+3];
963 = hw_dma_read_buffer (me
, buf
, 0, address
, 3);
966 hw_abort (me
, "mbox read %d != 3 bytes returned", len
);
969 if (cmd
!= RV_MBOX_HANDLE_CMD
&& cmd
!= RV_MBOX_PUT_CMD
)
970 hw_abort (me
, "unsupported mbox command %d", cmd
);
972 len
= buf
[0] + buf
[1]*256;
974 if (len
> sizeof (buf
))
975 hw_abort (me
, "mbox cmd %d send size %d unsupported", cmd
, len
);
977 rlen
= hw_dma_read_buffer (me
, buf
+ 3, 0, address
+ 3, len
- 3);
979 hw_abort (me
, "mbox read %d != %d bytes returned", rlen
, len
- 3);
981 HW_TRACE ((me
, "MBOX %s 0x%x..0x%x",
982 cmd
== RV_MBOX_HANDLE_CMD
? "H" : "P",
983 address
, address
+ len
- 1));
984 for (i
= 0; i
< rlen
; i
+= 8)
985 HW_TRACE ((me
, "0x%x: %02x %02x %02x %02x %02x %02x %02x %02x",
987 buf
[3+i
], buf
[4+i
], buf
[5+i
], buf
[6+i
], buf
[7+i
], buf
[8+i
],
988 buf
[9+i
], buf
[10+i
]));
991 hw_rv_send (me
, cmd
, buf
+ 3, len
);
993 /* Note: both ..._PUT and ..._HANDLE get the ..._HANDLE reply. */
994 hw_rv_handle_incoming (me
, RV_MBOX_HANDLE_CMD
, buf
+ 3, &len
);
995 if (len
> sizeof (buf
))
996 hw_abort (me
, "mbox cmd %d receive size %d unsupported", cmd
, len
);
997 HW_TRACE ((me
, "-> 0x%x..0x%x", address
, address
+ len
+ 3 - 1));
998 for (i
= 0; i
< len
; i
+= 8)
999 HW_TRACE ((me
, "0x%x: %02x %02x %02x %02x %02x %02x %02x %02x",
1001 buf
[3+i
], buf
[4+i
], buf
[5+i
], buf
[6+i
], buf
[7+i
], buf
[8+i
],
1002 buf
[9+i
], buf
[10+i
]));
1007 rlen
= hw_dma_write_buffer (me
, buf
, 0, address
, len
, 0);
1009 hw_abort (me
, "mbox write %d != %d bytes", rlen
, len
);
1012 /* Local rv register writes end up here. */
1015 hw_rv_reg_write (struct hw
*me
,
1019 unsigned int nr_bytes
)
1021 hw_rv_device
*rv
= (hw_rv_device
*) hw_data (me
);
1023 unsigned8 addr_data
[8] = "";
1024 unsigned32 a_l
= H2LE_4 (addr
- rv
->reg_address
+ rv
->remote_reg_address
);
1025 unsigned int len
= 8;
1028 hw_abort (me
, "must be four byte write");
1030 memcpy (addr_data
, &a_l
, 4);
1031 memcpy (addr_data
+ 4, source
, 4);
1033 if (addr
== rv
->mbox_address
)
1035 unsigned32 mbox_addr_le
;
1036 if (rv
->dummy
!= NULL
)
1037 hw_abort (me
, "mbox not supported for a dummy instance");
1038 memcpy (&mbox_addr_le
, source
, 4);
1039 hw_rv_mbox (me
, LE2H_4 (mbox_addr_le
));
1043 HW_TRACE ((me
, "REG W 0x%x := 0x%02x%02x%02x%02x", addr
,
1044 addr_data
[7], addr_data
[6], addr_data
[5], addr_data
[4]));
1045 if (rv
->dummy
!= NULL
)
1048 memcpy (rv
->dummy
+ addr
- rv
->reg_address
, addr_data
+ 4, 4);
1052 hw_rv_send (me
, RV_WRITE_CMD
, addr_data
, len
);
1053 hw_rv_handle_incoming (me
, RV_WRITE_CMD
, addr_data
, &len
);
1057 hw_abort (me
, "read %d != 8 bytes returned", len
);
1059 /* We had an access: tighten up all slack. */
1060 rv
->next_period
= 1;
1065 /* Instance initializer function. */
1068 hw_rv_finish (struct hw
*me
)
1070 hw_rv_device
*rv
= HW_ZALLOC (me
, hw_rv_device
);
1072 const struct hw_property
*mem_prop
;
1073 const struct hw_property
*dummy_prop
;
1074 const struct hw_property
*mbox_prop
;
1076 set_hw_data (me
, rv
);
1080 #define RV_GET_PROP(T, N, M, D) \
1083 if (hw_find_property (me, N) != NULL) \
1084 rv->M = hw_find_ ## T ## _property (me, N); \
1089 #define RV_GET_IPROP(N, M, D) RV_GET_PROP (integer, N, M, D)
1091 RV_GET_PROP (string
, "host", host
, "127.0.0.1");
1092 RV_GET_IPROP ("port", port
, 10000);
1093 RV_GET_IPROP ("remote-reg", remote_reg_address
, 0);
1094 RV_GET_IPROP ("max-poll-ticks", max_tick_poll_interval
, 10000);
1095 RV_GET_IPROP ("watchdog-interval", watchdog_interval
, 30);
1096 RV_GET_IPROP ("remote-mem", remote_mem_address
, 0);
1097 RV_GET_IPROP ("mem-burst-mask", mem_burst_mask
, 0xffff);
1098 RV_GET_IPROP ("intmultiple", intmultiple
, 0);
1100 set_hw_io_read_buffer (me
, hw_rv_reg_read
);
1101 set_hw_io_write_buffer (me
, hw_rv_reg_write
);
1102 set_hw_ports (me
, hw_rv_ports
);
1103 rv
->next_period
= 1;
1105 /* FIXME: We only support zero or one reg and zero or one mem area. */
1106 if (hw_find_property (me
, "reg") != NULL
)
1108 reg_property_spec reg
;
1109 if (hw_find_reg_array_property (me
, "reg", 0, ®
))
1111 unsigned_word attach_address
;
1113 unsigned int attach_size
;
1115 hw_unit_address_to_attach_address (hw_parent (me
),
1120 rv
->reg_address
= attach_address
;
1121 hw_unit_size_to_attach_size (hw_parent (me
),
1124 rv
->reg_size
= attach_size
;
1125 if ((attach_address
& 3) != 0)
1126 hw_abort (me
, "register block must be 4 byte aligned");
1127 hw_attach_address (hw_parent (me
),
1129 attach_space
, attach_address
, attach_size
,
1133 hw_abort (me
, "property \"reg\" has the wrong type");
1136 dummy_prop
= hw_find_property (me
, "dummy");
1137 if (dummy_prop
!= NULL
)
1139 if (rv
->reg_size
== 0)
1140 hw_abort (me
, "dummy argument requires a \"reg\" property");
1142 if (hw_property_type (dummy_prop
) == integer_property
)
1144 unsigned32 dummyfill
= hw_find_integer_property (me
, "dummy");
1145 unsigned8
*dummymem
= hw_malloc (me
, rv
->reg_size
);
1146 memset (dummymem
, dummyfill
, rv
->reg_size
);
1147 rv
->dummy
= dummymem
;
1151 const char *dummyarg
= hw_find_string_property (me
, "dummy");
1152 unsigned8
*dummymem
= hw_malloc (me
, rv
->reg_size
);
1153 FILE *f
= fopen (dummyarg
, "rb");
1156 hw_abort (me
, "opening dummy-file \"%s\": %s",
1157 dummyarg
, strerror (errno
));
1158 if (fread (dummymem
, 1, rv
->reg_size
, f
) != rv
->reg_size
)
1159 hw_abort (me
, "reading dummy-file \"%s\": %s",
1160 dummyarg
, strerror (errno
));
1162 rv
->dummy
= dummymem
;
1166 mbox_prop
= hw_find_property (me
, "mbox");
1167 if (mbox_prop
!= NULL
)
1169 if (hw_property_type (mbox_prop
) == integer_property
)
1171 signed_cell attach_address_sc
1172 = hw_find_integer_property (me
, "mbox");
1174 rv
->mbox_address
= (unsigned32
) attach_address_sc
;
1175 hw_attach_address (hw_parent (me
),
1177 0, (unsigned32
) attach_address_sc
, 4, me
);
1180 hw_abort (me
, "property \"mbox\" has the wrong type");
1183 mem_prop
= hw_find_property (me
, "mem");
1184 if (mem_prop
!= NULL
)
1186 signed_cell attach_address_sc
;
1187 signed_cell attach_size_sc
;
1189 /* Only specific names are reg_array_properties, the rest are
1190 array_properties. */
1191 if (hw_property_type (mem_prop
) == array_property
1192 && hw_property_sizeof_array (mem_prop
) == 2 * sizeof (attach_address_sc
)
1193 && hw_find_integer_array_property (me
, "mem", 0, &attach_address_sc
)
1194 && hw_find_integer_array_property (me
, "mem", 1, &attach_size_sc
))
1196 /* Unfortunate choice of types forces us to dance around a bit. */
1197 rv
->mem_address
= (unsigned32
) attach_address_sc
;
1198 rv
->mem_size
= (unsigned32
) attach_size_sc
;
1199 if ((attach_address_sc
& 3) != 0)
1200 hw_abort (me
, "memory block must be 4 byte aligned");
1203 hw_abort (me
, "property \"mem\" has the wrong type");
1206 hw_rv_map_ints (me
);
1208 hw_rv_init_socket (me
);
1210 /* We need an extra initialization pass, after all others currently
1211 scheduled (mostly, after the simulation events machinery has been
1212 initialized so the events we want don't get thrown out). */
1213 hw_rv_add_init (me
);
1216 /* Our root structure; see dv-* build machinery for usage. */
1218 const struct hw_descriptor dv_rv_descriptor
[] = {
1219 { RV_FAMILY_NAME
, hw_rv_finish
},