No empty .Rs/.Re
[netbsd-mini2440.git] / lib / libpthread / pthread_mutex.c
blob132e0304d9f494f39faa0bd421ae989ba80fdbfb
1 /* $NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $ */
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * To track threads waiting for mutexes to be released, we use lockless
34 * lists built on atomic operations and memory barriers.
36 * A simple spinlock would be faster and make the code easier to
37 * follow, but spinlocks are problematic in userspace. If a thread is
38 * preempted by the kernel while holding a spinlock, any other thread
39 * attempting to acquire that spinlock will needlessly busy wait.
41 * There is no good way to know that the holding thread is no longer
42 * running, nor to request a wake-up once it has begun running again.
43 * Of more concern, threads in the SCHED_FIFO class do not have a
44 * limited time quantum and so could spin forever, preventing the
45 * thread holding the spinlock from getting CPU time: it would never
46 * be released.
49 #include <sys/cdefs.h>
50 __RCSID("$NetBSD: pthread_mutex.c,v 1.50 2008/05/25 17:05:28 ad Exp $");
52 #include <sys/types.h>
53 #include <sys/lwpctl.h>
54 #include <sys/lock.h>
56 #include <errno.h>
57 #include <limits.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <stdio.h>
62 #include "pthread.h"
63 #include "pthread_int.h"
65 #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
66 #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
67 #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
68 #define MUTEX_THREAD ((uintptr_t)-16L)
70 #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
74 #if __GNUC_PREREQ__(3, 0)
75 #define NOINLINE __attribute ((noinline))
76 #else
77 #define NOINLINE /* nothing */
78 #endif
80 static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 static int pthread__mutex_lock_slow(pthread_mutex_t *);
82 static int pthread__mutex_unlock_slow(pthread_mutex_t *);
83 static void pthread__mutex_pause(void);
85 int _pthread_mutex_held_np(pthread_mutex_t *);
86 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
88 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
91 __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
97 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
101 __strong_alias(__libc_thr_once,pthread_once)
104 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
106 intptr_t type;
108 if (attr == NULL)
109 type = PTHREAD_MUTEX_NORMAL;
110 else
111 type = (intptr_t)attr->ptma_private;
113 switch (type) {
114 case PTHREAD_MUTEX_ERRORCHECK:
115 __cpu_simple_lock_set(&ptm->ptm_errorcheck);
116 ptm->ptm_owner = NULL;
117 break;
118 case PTHREAD_MUTEX_RECURSIVE:
119 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
120 ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
121 break;
122 default:
123 __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
124 ptm->ptm_owner = NULL;
125 break;
128 ptm->ptm_magic = _PT_MUTEX_MAGIC;
129 ptm->ptm_waiters = NULL;
130 ptm->ptm_recursed = 0;
132 return 0;
137 pthread_mutex_destroy(pthread_mutex_t *ptm)
140 pthread__error(EINVAL, "Invalid mutex",
141 ptm->ptm_magic == _PT_MUTEX_MAGIC);
142 pthread__error(EBUSY, "Destroying locked mutex",
143 MUTEX_OWNER(ptm->ptm_owner) == 0);
145 ptm->ptm_magic = _PT_MUTEX_DEAD;
146 return 0;
150 pthread_mutex_lock(pthread_mutex_t *ptm)
152 pthread_t self;
153 void *val;
155 self = pthread__self();
156 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
157 if (__predict_true(val == NULL)) {
158 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
159 membar_enter();
160 #endif
161 return 0;
163 return pthread__mutex_lock_slow(ptm);
166 /* We want function call overhead. */
167 NOINLINE static void
168 pthread__mutex_pause(void)
171 pthread__smt_pause();
175 * Spin while the holder is running. 'lwpctl' gives us the true
176 * status of the thread. pt_blocking is set by libpthread in order
177 * to cut out system call and kernel spinlock overhead on remote CPUs
178 * (could represent many thousands of clock cycles). pt_blocking also
179 * makes this thread yield if the target is calling sched_yield().
181 NOINLINE static void *
182 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
184 pthread_t thread;
185 unsigned int count, i;
187 for (count = 2;; owner = ptm->ptm_owner) {
188 thread = (pthread_t)MUTEX_OWNER(owner);
189 if (thread == NULL)
190 break;
191 if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
192 thread->pt_blocking)
193 break;
194 if (count < 128)
195 count += count;
196 for (i = count; i != 0; i--)
197 pthread__mutex_pause();
200 return owner;
203 NOINLINE static int
204 pthread__mutex_lock_slow(pthread_mutex_t *ptm)
206 void *waiters, *new, *owner, *next;
207 pthread_t self;
209 pthread__error(EINVAL, "Invalid mutex",
210 ptm->ptm_magic == _PT_MUTEX_MAGIC);
212 owner = ptm->ptm_owner;
213 self = pthread__self();
215 /* Recursive or errorcheck? */
216 if (MUTEX_OWNER(owner) == (uintptr_t)self) {
217 if (MUTEX_RECURSIVE(owner)) {
218 if (ptm->ptm_recursed == INT_MAX)
219 return EAGAIN;
220 ptm->ptm_recursed++;
221 return 0;
223 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
224 return EDEADLK;
227 for (;; owner = ptm->ptm_owner) {
228 /* Spin while the owner is running. */
229 owner = pthread__mutex_spin(ptm, owner);
231 /* If it has become free, try to acquire it again. */
232 if (MUTEX_OWNER(owner) == 0) {
233 do {
234 new = (void *)
235 ((uintptr_t)self | (uintptr_t)owner);
236 next = atomic_cas_ptr(&ptm->ptm_owner, owner,
237 new);
238 if (next == owner) {
239 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
240 membar_enter();
241 #endif
242 return 0;
244 owner = next;
245 } while (MUTEX_OWNER(owner) == 0);
247 * We have lost the race to acquire the mutex.
248 * The new owner could be running on another
249 * CPU, in which case we should spin and avoid
250 * the overhead of blocking.
252 continue;
256 * Nope, still held. Add thread to the list of waiters.
257 * Issue a memory barrier to ensure mutexwait/mutexnext
258 * are visible before we enter the waiters list.
260 self->pt_mutexwait = 1;
261 for (waiters = ptm->ptm_waiters;; waiters = next) {
262 self->pt_mutexnext = waiters;
263 membar_producer();
264 next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
265 if (next == waiters)
266 break;
270 * Set the waiters bit and block.
272 * Note that the mutex can become unlocked before we set
273 * the waiters bit. If that happens it's not safe to sleep
274 * as we may never be awoken: we must remove the current
275 * thread from the waiters list and try again.
277 * Because we are doing this atomically, we can't remove
278 * one waiter: we must remove all waiters and awken them,
279 * then sleep in _lwp_park() until we have been awoken.
281 * Issue a memory barrier to ensure that we are reading
282 * the value of ptm_owner/pt_mutexwait after we have entered
283 * the waiters list (the CAS itself must be atomic).
285 membar_consumer();
286 for (owner = ptm->ptm_owner;; owner = next) {
287 if (MUTEX_HAS_WAITERS(owner))
288 break;
289 if (MUTEX_OWNER(owner) == 0) {
290 pthread__mutex_wakeup(self, ptm);
291 break;
293 new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
294 next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
295 if (next == owner) {
297 * pthread_mutex_unlock() can do a
298 * non-interlocked CAS. We cannot
299 * know if our attempt to set the
300 * waiters bit has succeeded while
301 * the holding thread is running.
302 * There are many assumptions; see
303 * sys/kern/kern_mutex.c for details.
304 * In short, we must spin if we see
305 * that the holder is running again.
307 membar_sync();
308 next = pthread__mutex_spin(ptm, owner);
313 * We may have been awoken by the current thread above,
314 * or will be awoken by the current holder of the mutex.
315 * The key requirement is that we must not proceed until
316 * told that we are no longer waiting (via pt_mutexwait
317 * being set to zero). Otherwise it is unsafe to re-enter
318 * the thread onto the waiters list.
320 while (self->pt_mutexwait) {
321 self->pt_blocking++;
322 (void)_lwp_park(NULL, self->pt_unpark,
323 __UNVOLATILE(&ptm->ptm_waiters),
324 __UNVOLATILE(&ptm->ptm_waiters));
325 self->pt_unpark = 0;
326 self->pt_blocking--;
327 membar_sync();
333 pthread_mutex_trylock(pthread_mutex_t *ptm)
335 pthread_t self;
336 void *val, *new, *next;
338 self = pthread__self();
339 val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
340 if (__predict_true(val == NULL)) {
341 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 membar_enter();
343 #endif
344 return 0;
347 if (MUTEX_RECURSIVE(val)) {
348 if (MUTEX_OWNER(val) == 0) {
349 new = (void *)((uintptr_t)self | (uintptr_t)val);
350 next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
351 if (__predict_true(next == val)) {
352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 membar_enter();
354 #endif
355 return 0;
358 if (MUTEX_OWNER(val) == (uintptr_t)self) {
359 if (ptm->ptm_recursed == INT_MAX)
360 return EAGAIN;
361 ptm->ptm_recursed++;
362 return 0;
366 return EBUSY;
370 pthread_mutex_unlock(pthread_mutex_t *ptm)
372 pthread_t self;
373 void *value;
376 * Note this may be a non-interlocked CAS. See lock_slow()
377 * above and sys/kern/kern_mutex.c for details.
379 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
380 membar_exit();
381 #endif
382 self = pthread__self();
383 value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
384 if (__predict_true(value == self))
385 return 0;
386 return pthread__mutex_unlock_slow(ptm);
389 NOINLINE static int
390 pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
392 pthread_t self, owner, new;
393 int weown, error, deferred;
395 pthread__error(EINVAL, "Invalid mutex",
396 ptm->ptm_magic == _PT_MUTEX_MAGIC);
398 self = pthread__self();
399 owner = ptm->ptm_owner;
400 weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
401 deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
402 error = 0;
404 if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
405 if (!weown) {
406 error = EPERM;
407 new = owner;
408 } else {
409 new = NULL;
411 } else if (MUTEX_RECURSIVE(owner)) {
412 if (!weown) {
413 error = EPERM;
414 new = owner;
415 } else if (ptm->ptm_recursed) {
416 ptm->ptm_recursed--;
417 new = owner;
418 } else {
419 new = (pthread_t)MUTEX_RECURSIVE_BIT;
421 } else {
422 pthread__error(EPERM,
423 "Unlocking unlocked mutex", (owner != NULL));
424 pthread__error(EPERM,
425 "Unlocking mutex owned by another thread", weown);
426 new = NULL;
430 * Release the mutex. If there appear to be waiters, then
431 * wake them up.
433 if (new != owner) {
434 owner = atomic_swap_ptr(&ptm->ptm_owner, new);
435 if (MUTEX_HAS_WAITERS(owner) != 0) {
436 pthread__mutex_wakeup(self, ptm);
437 return 0;
442 * There were no waiters, but we may have deferred waking
443 * other threads until mutex unlock - we must wake them now.
445 if (!deferred)
446 return error;
448 if (self->pt_nwaiters == 1) {
450 * If the calling thread is about to block, defer
451 * unparking the target until _lwp_park() is called.
453 if (self->pt_willpark && self->pt_unpark == 0) {
454 self->pt_unpark = self->pt_waiters[0];
455 } else {
456 (void)_lwp_unpark(self->pt_waiters[0],
457 __UNVOLATILE(&ptm->ptm_waiters));
459 } else {
460 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
461 __UNVOLATILE(&ptm->ptm_waiters));
463 self->pt_nwaiters = 0;
465 return error;
468 static void
469 pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
471 pthread_t thread, next;
472 ssize_t n, rv;
475 * Take ownership of the current set of waiters. No
476 * need for a memory barrier following this, all loads
477 * are dependent upon 'thread'.
479 thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
481 for (;;) {
483 * Pull waiters from the queue and add to our list.
484 * Use a memory barrier to ensure that we safely
485 * read the value of pt_mutexnext before 'thread'
486 * sees pt_mutexwait being cleared.
488 for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
489 n < pthread__unpark_max && thread != NULL;
490 thread = next) {
491 next = thread->pt_mutexnext;
492 if (thread != self) {
493 self->pt_waiters[n++] = thread->pt_lid;
494 membar_sync();
496 thread->pt_mutexwait = 0;
497 /* No longer safe to touch 'thread' */
500 switch (n) {
501 case 0:
502 return;
503 case 1:
505 * If the calling thread is about to block,
506 * defer unparking the target until _lwp_park()
507 * is called.
509 if (self->pt_willpark && self->pt_unpark == 0) {
510 self->pt_unpark = self->pt_waiters[0];
511 return;
513 rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
514 __UNVOLATILE(&ptm->ptm_waiters));
515 if (rv != 0 && errno != EALREADY && errno != EINTR &&
516 errno != ESRCH) {
517 pthread__errorfunc(__FILE__, __LINE__,
518 __func__, "_lwp_unpark failed");
520 return;
521 default:
522 rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
523 __UNVOLATILE(&ptm->ptm_waiters));
524 if (rv != 0 && errno != EINTR) {
525 pthread__errorfunc(__FILE__, __LINE__,
526 __func__, "_lwp_unpark_all failed");
528 break;
533 pthread_mutexattr_init(pthread_mutexattr_t *attr)
536 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
537 attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
538 return 0;
542 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
545 pthread__error(EINVAL, "Invalid mutex attribute",
546 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
548 return 0;
553 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
556 pthread__error(EINVAL, "Invalid mutex attribute",
557 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
559 *typep = (int)(intptr_t)attr->ptma_private;
560 return 0;
565 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
568 pthread__error(EINVAL, "Invalid mutex attribute",
569 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
571 switch (type) {
572 case PTHREAD_MUTEX_NORMAL:
573 case PTHREAD_MUTEX_ERRORCHECK:
574 case PTHREAD_MUTEX_RECURSIVE:
575 attr->ptma_private = (void *)(intptr_t)type;
576 return 0;
577 default:
578 return EINVAL;
583 static void
584 once_cleanup(void *closure)
587 pthread_mutex_unlock((pthread_mutex_t *)closure);
592 pthread_once(pthread_once_t *once_control, void (*routine)(void))
595 if (once_control->pto_done == 0) {
596 pthread_mutex_lock(&once_control->pto_mutex);
597 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
598 if (once_control->pto_done == 0) {
599 routine();
600 once_control->pto_done = 1;
602 pthread_cleanup_pop(1);
605 return 0;
608 void
609 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
612 if (__predict_false(ptm == NULL ||
613 MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
614 (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
615 __UNVOLATILE(&ptm->ptm_waiters));
616 self->pt_nwaiters = 0;
617 } else {
618 atomic_or_ulong((volatile unsigned long *)
619 (uintptr_t)&ptm->ptm_owner,
620 (unsigned long)MUTEX_DEFERRED_BIT);
625 _pthread_mutex_held_np(pthread_mutex_t *ptm)
628 return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
631 pthread_t
632 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
635 return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);